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Narrow escape problems

A Brownian particle escapes from a bounded domain through small windows.

Examples: Pores of cell nuclei; synaptic receptors on dendrites, ...
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Narrow escape problems

A Brownian particle escapes from a bounded domain through small windows.

Typical nucleus size: ∼ 6× 10−6 m

Pore size ∼ 10−8 m

∼ 2000 nuclear pore complexes in a typical nucleus

mRNA, proteins, smaller molecules

∼ 1000 translocations per complex per second

Trap separation ∼ 5× 10−7 m
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Mathematical formulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Given:

A Brownian particle confined in a domain Ω ∈ R3.

Initial position: x ∈ Ω.

Mean First Passage Time (MFPT): v(x).

Domain boundary: ∂Ω = ∂Ωr (reflecting) ∪ ∂Ωa (absorbing).

∂Ωa =
⋃N

i=1 ∂Ωεi : small absorbing traps (size ∼ ε).
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Mathematical formulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Average MFPT: v̄ =
1

|Ω|

∫
Ω

v(x) dx = const.
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The mathematical problem

Boundary Value Problem:

Linear;

Strongly heterogeneous
Dirichlet/Neumann BCs;

Singularly perturbed:

ε → 0+ ⇒ v → +∞ a.e.

Problem for the MFPT:


4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa = ∪N
j=1∂Ωεj ,

∂nv = 0, x ∈ ∂Ωr .
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Some previously known results

 

xj 

x 

Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

v̄ ∼ |Ω|
πD

[− log ε+O (1)]

Unit sphere; one trap [Singer et al (2006)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]
Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
H: mean curvature at the center of the trap.

A. Cheviakov (UofS, Canada) The Narrow Escape Problem for 3D Domains June 26, 2018 8 / 45



Matched asymptotic expansions (illustration for the unit sphere)

 

xj 

Outer expansion 

Inner expansion 

Matching 

Inner expansion of solution near trap centered at xj uses scaled coordinates:

vin ∼ ε−1w0(y) + log
( ε

2

)
w1(y) + w2(y) + · · · .

Outer expansion (defined at O(1) distances from traps):

vout ∼ ε−1v0 + v1 + ε log
( ε

2

)
v2 + εv3 + · · · .

Matching condition: when x → xj and y = ε−1(x − xj )→∞,

vin ∼ vout .
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Higher-order asymptotic MFPT for the sphere

Given:

Sphere with N traps.

Trap radii: rj = ajε, j = 1, . . . ,N; capacitances: cj = 2aj/π.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs (x ; xj ) +O(ε log ε)

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc (x1, . . . , xN )− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Gs (x ; xj ): spherical Neumann Green’s function (known);

c̄: average capacitance; κj = const;

pc (x1, . . . , xN ): trap interaction term.
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The Green’s function

The Green’s function G(x ; ξ) is the unique solution of the BVP

4G =
1

|Ω| , x ∈ Ω ;

∂nG = 0 , x ∈ ∂Ω \ {ξ} ;

∫
Ω

G dx = 0 ,

Singularity behaviour:

G(x ; ξ) =
1

2π|x − ξ| −
Hm

4π
log |x − ξ|+ R(ξ; ξ) ,

where Hm = Hm(ξ) is the mean curvature of the boundary at ξ ∈ ∂Ω, with Hm = 1
for the unit sphere.
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The Green’s function – unit sphere
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The Green’s function for the unit sphere:

Gs (x ; ξ) =
1

2π |x − ξ| +
1

8π

(
|x |2 + 1

)
+

1

4π
log

(
2

1− |x | cos γ + |x − ξ|

)
− 7

10π
,

x ∈ Ω, ξ ∈ ∂Ω, |x | cos γ = x · ξ, |ξ| = 1.
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MFPT for the sphere with N equal traps

N equal traps of radius ε:

Average MFPT:

v̄ ∼ |Ω|
4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)]
.

Interaction energy:

H(x1, . . . , xN ) =
N∑

i=1

N∑
j=i+1

 1

|xi − xj |︸ ︷︷ ︸
Coulomb

− 1

2
log |xi − xj |︸ ︷︷ ︸
Logarithmic

−1

2
log (2 + |xi − xj |)

 .

Optimal arrangements

min v̄ ⇔ min H(x1, . . . , xN ), a global optimization problem.

“Thomson problem”: optimal arrangements for the Coulomb potential.

Optimal arrangements minimizing v̄ for N . 100: general software (e.g., LGO).
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Validity of the asymptotic MFPT for the sphere

Asymptotic vs. numerical solutions for the unit sphere [A.C., A.Reimer, M.Ward
(2011)]:

Comparison of asymptotic (a) and numerical (b) results for the MFPT v(x) for one
trap of radius ε = 0.2 on the boundary of the unit sphere:MATHEMATICAL MODELING AND NUMERICAL . . . PHYSICAL REVIEW E 85, 021131 (2012)
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x 
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FIG. 9. (Color online) Comparison of asymptotic (a) and numerical (b) results for the MFPT v(x) for one trap of radius ε = 0.2, on the
boundary of the unit sphere. Comparison of asymptotic and numerical results along the line x2 = x3 = 0 (c).

B. Trap separation effects

The results (2.9) and (2.20) for the average MFPT in
a general 2D and a spherical 3D domain, respectively, are
valid under the assumption of “well-separated” boundary
traps. To study how the asymptotic results perform when the
traps are not necessarily so well-separated, we compare the
asymptotic and full numerical results for the whole range
of two-trap configurations, ranging from two touching traps
to the maximal possible separation distance in each given
configuration.

The following comparisons suggest that, for the domains
considered below, the asymptotic formulas for the average
MFPT are still rather reliable, in the sense of being within 1%
of the full numerical result, even for small separation distances
of order O(ε).

1. The unit square

For the unit square, two configurations were considered.
In the first configuration, two identical traps of length ε were
located on adjacent sides, centered at a point at a distance
L from the corner (ε/2 � L � 1 − ε/2; see Fig. 7). In the

second configuration, two identical traps were symmetrically
located on one side of the square, at a distance L between their
centers (ε � L � 1 − ε).

For traps of length ε = 0.05, a plot of the numerical
and asymptotic average MFPT and their relative difference
is shown in Fig. 11. For traps located on one side of the
square, the agreement between the asymptotic and numerical
results is within 1% for all values of L. For traps located on
adjacent sides of the square, the asymptotic result overshoots
by approximately 6% when the traps are touching at the origin,
but is within approximately 2% of the full numerical results
when each trap is centered at a distance 0.05 from the origin.

2. The unit sphere and the unit disk

As shown in Fig. 12, a very good agreement between the
asymptotic and numerical results for the average MFPT is also
observed for the case of two arbitrarily spaced traps on the
surface of the unit disk or unit sphere. For the unit disk, traps
of arclength ε = 0.05 were chosen. For the unit sphere, we
chose circular traps of radius ε = 0.2 located on the equator.
For all separation distances, ranging from touching traps to
traps on opposite sides of a diameter, the discrepancy between
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FIG. 10. (Color online) (a) Dependence of the average MFPT v̄ on the common trap radius ε for one, two, and three traps that are equally
spaced on the equator of the unit sphere. The curves correspond to the asymptotic results and the crosses to full numerical results. (b) Percent
difference between asymptotic and numerical results.
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Validity of the asymptotic MFPT for the sphere
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valid under the assumption of “well-separated” boundary
traps. To study how the asymptotic results perform when the
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The following comparisons suggest that, for the domains
considered below, the asymptotic formulas for the average
MFPT are still rather reliable, in the sense of being within 1%
of the full numerical result, even for small separation distances
of order O(ε).
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located on adjacent sides, centered at a point at a distance
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observed for the case of two arbitrarily spaced traps on the
surface of the unit disk or unit sphere. For the unit disk, traps
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Globally and locally optimal trap arrangements

Optimize the trap interaction term pc (x1, . . . , xN ).

2N − 3 degrees of freedom, quickly increasing numbers of local minima.

How to distinguish configurations, modulo geometrical symmetries?
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Identical traps on the unit sphere

N . 100 traps: direct optimization, use software [A.C., R. Straube, M.Ward (2010)]
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NARROW ESCAPE FROM A SPHERE 859

Table 4.3
Spherical coordinates (θ, φ) of the optimal locations of 3 ≤ N ≤ 12 traps. These arrangements

simultaneously minimize the discrete energy (2.51b) and the two classical discrete energies in (4.1).

N Spherical coordinates of optimal trap locations

3 θ 0.000 2.094 2.094

φ 0.000 0.000 3.142

4 θ 0.000 1.911 1.911 1.911

φ 0.000 0.000 2.094 4.189

5 θ 0.000 1.571 1.571 1.571 3.142

φ 0.000 0.000 2.094 4.189 0.000

6 θ 0.000 1.571 1.571 1.571 1.571 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.000

7 θ 0.000 1.570 1.570 1.570 1.570 1.570 3.142

φ 0.000 0.000 2.513 5.027 1.257 3.770 0.000

8 θ 0.000 1.251 1.251 1.399 1.399 1.952 2.497 2.497

φ 0.000 1.445 3.565 0.000 5.010 2.505 0.706 4.304

9 θ 0.000 1.207 1.207 1.325 1.325 1.561 2.361 2.415 2.415

φ 0.000 0.000 2.369 3.639 5.013 1.185 4.326 2.369 0.000

10 θ 0.000 1.134 1.134 1.134 1.134 2.007 2.007 2.007 2.007 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.785 2.356 3.927 5.498 0.000

11 θ 0.000 1.041 1.019 1.192 1.254 1.399 1.906 2.095 2.056 2.272 2.799

φ 0.000 0.000 2.516 3.862 5.047 1.041 1.948 3.194 6.044 4.576 1.042

12 θ 0.000 1.107 1.107 1.107 1.107 1.107 2.035 2.035 2.035 2.035 2.035 3.142

φ 0.000 0.628 1.885 3.142 4.398 5.655 0.000 1.257 2.513 3.770 5.026 2.132

(a) N = 4 (b) N = 5 (c) N = 6 (d) N = 7

Fig. 4.3. Minimal energy trap configurations for N = 4, 5, 6, 7 traps, common for the three
discrete energy functions.

(a) N = 8 (b) N = 9 (c) N = 10 (d) N = 12

Fig. 4.4. Minimal energy trap configurations for N = 8, 9, 10, 12 traps, common for the three
discrete energy functions.

which yields cos θ0 = 1 − 2/N . For N � 1, we use cos θ0 ≈ 1 − θ20/2, to obtain
θ0 ≈

√
4/N , as was given in [3].

Next, the interaction energy of the north-pole charge with the remaining charges
is approximated by

(4.3) ε1 =

∫ 2π

0

∫ π

θ0

P (θ, φ)E
(1)
1i sin θ dθ dφ ,

which can be calculated analytically as ε1 = −N
[
sin

(
N−1/2

)
− 1

]
. From a Taylor

series expansion, valid for large N , we can approximate the total energy of the particle
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N � 1: an iterative optimization procedure

Example: optimal configuration for N = 17

Topological derivative:

Rate of change of v̄ with respect to the size of the (N + 1)st trap of radius αε at
the point x∗ on the unit sphere, computed at α = 0.

T (x∗) = lim
α→0

v̄(x1, . . . , xN , x
∗)− v̄(x1, . . . , xN )

α
∼M(x∗),

M(x∗) =
N∑

i=1

[
1

|xi − x∗| −
1

2
log |xi − x∗| − 1

2
log (2 + |xi − x∗|)

]
.
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N → N + 1 traps: trap insertion

Example: optimal configuration for N = 17.

ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

A. Addition of an infinitesimal trap: The topological derivative

In the spirit of [17], define the topological derivative of v̄,

T (x∗) = lim
α→0

v̄(x1, . . . ,xN , x∗) − v̄(x1, . . . ,xN )

α
, (3.1)

as the rate of change of v̄ with respect to the size of the
(N + 1)st trap of radius αε, located at the point x∗ on the unit
sphere, computed at α = 0. The leading terms of the topolog-
ical derivative can be calculated directly from the expression
(2.5); the computation yields

T (x∗) ∼ π

3DεN2

[
− 1 + ε

π

(
−1 + 4 log 2 − 2 log

2

ε

)

−8ε

π

N∑
i,j=1

Gij + 8ε

N∑
i=1

G(xi,x
∗)

]
. (3.2)

It follows that it is optimal to introduce an additional
infinitesimally small trap at the point x∗ that minimizes T (x∗),
i.e., leads to the largest relative decrease of the average MFPT
v̄ (3.1).

It is only the last term in Eq. (3.2) that depends on the
position x∗ of the new trap; the topological derivative is
thus minimized through minimization of the interaction term∑N

i=1 G(xi,x
∗) or, equivalently, the quantity

M(x∗) =
N∑

i=1

[
1

|xi − x∗| − 1

2
log |xi − x∗|

−1

2
log(2 + |xi − x∗|)

]
. (3.3)

The optimal location x∗ of an additional infinitesimal trap thus
is the global minimum of the function (3.3) that depends on
two spherical coordinates.

B. Addition of a trap of an arbitrary size comparable
to existing traps

The above calculation can be generalized to treat the
addition of a trap of arbitrary radius αε (comparable to given
traps, so that asymptotic formulas remain valid). The following
statement holds.

Principal result 1. Consider a prescribed configuration of
N equal traps of radii ε located on the unit sphere at the
points xj ∈ ∂�, j = 1, . . . ,N . Consider an additional trap
of radius αε, located at x∗ ∈ ∂�, x∗ 
= xj , j = 1, . . . ,N .
The difference between the asymptotic average MFPT values
v̄N+1(x1, . . . ,xN , x∗) for the N + 1-trap configuration and
v̄N (x1, . . . ,xN ) for the N -trap configuration is given by


v(x∗) ≡ v̄N+1(x1, . . . ,xN , x∗) − v̄N (x1, . . . ,xN )

∼ 8π

DN

{
1

3

α

N
− 2

(
α

N

)2

+
(

α

N

)3

−4

3

(
α

N

)4

+ O

[(
α

N

)5]}
M(x∗) + K, (3.4)

where M(x∗) is given by (3.3), and the quantity K does not
depend on the location x∗ of the additional trap.

Formula (3.4) is derived directly using the expression (2.5).
Depending on the sign of the square bracket in Eq. (3.4), the

FIG. 2. (Color online) The topological derivative for an optimal
arrangement of 17 equal traps on a unit sphere. (a) The value of
log[M(x∗)] (3.3) on the surface of the unit sphere. The darker (dark
blue) color corresponds to low values of M(x∗) [equivalently, of the
topological derivative T (x∗) (3.2) and the function 
v(x∗) (3.4)].
Red and lighter colors correspond to higher values of log[M(x∗)]
that occur close to existing traps. (b) The 17 optimally arranged traps
(medium-sized blue markers), the local minima of the function M(x∗)
(3.3) (small black markers), and the global minimum of M(x∗) (large
red marker).

optimal location x∗ of the additional trap is either a global
minimum or a global maximum of M(x∗) (3.3).

In subsequent sections, we consider the question of finding
optimal arrangements of large numbers of equal traps. Formula
(3.4) will be used to seek putative optimal configurations of
N + k traps starting from a known putative optimal N -trap
configuration. When α = 1, k = 1, and N � 1, the bracketed
expression in Eq. (3.4) is positive, hence the optimal location
x∗ of one new trap will correspond to the global minimum of
the function (3.3) on the surface of the unit sphere.

An illustration showing local minima and the global
minimum of the function M(x∗) for a unit sphere with 17
optimally arranged traps is given in Fig. 2. (The optimal
arrangement has been computed in Ref. [10].)

IV. COMPUTATION OF OPTIMAL ARRANGEMENTS OF
LARGE NUMBERS OF TRAPS ON A SPHERE

A. The global optimization problem

The general problem of finding a global minimum of a
function

F (x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

f (|xi − xj |),
(4.1)

|xk| = 1, k = 1, . . . ,N,

that depends only on distances between pairs of N traps on the
unit sphere has recently received a lot of attention on its own.
For some particular dimensions and number of traps, there
exist universally optimal configurations that minimize (4.1) for
some class of functions f [19]. For example, an icosahedron
on S2 ∈ R3 is universally optimal. However, generally, for a
given N , a universally optimal configuration on S2 ∈ R3 may
not exist. This is proven to be the case, for example, for five
points on S2 (see [19]). Hence, in general, computations have
to be done separately for every specific form of the pairwise
interaction function f .
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Introduction of a trap of an arbitrary radius αε at the point x∗.

Change of the asymptotic average MFPT:

∆v̄ ≡ v̄N+1(x1, . . . , xN , x
∗)− v̄N (x1, . . . , xN ) ∼ f (α,N)M(x∗),

M(x∗) =
N∑

i=1

[
1

|xi − x∗| −
1

2
log |xi − x∗| − 1

2
log (2 + |xi − x∗|)

]
.
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N → N + 1 traps: trap insertion

Example: optimal configuration for N = 17.ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

A. Addition of an infinitesimal trap: The topological derivative

In the spirit of [17], define the topological derivative of v̄,

T (x∗) = lim
α→0

v̄(x1, . . . ,xN , x∗) − v̄(x1, . . . ,xN )

α
, (3.1)

as the rate of change of v̄ with respect to the size of the
(N + 1)st trap of radius αε, located at the point x∗ on the unit
sphere, computed at α = 0. The leading terms of the topolog-
ical derivative can be calculated directly from the expression
(2.5); the computation yields

T (x∗) ∼ π

3DεN2

[
− 1 + ε

π

(
−1 + 4 log 2 − 2 log

2

ε

)

−8ε

π

N∑
i,j=1

Gij + 8ε

N∑
i=1

G(xi,x
∗)

]
. (3.2)

It follows that it is optimal to introduce an additional
infinitesimally small trap at the point x∗ that minimizes T (x∗),
i.e., leads to the largest relative decrease of the average MFPT
v̄ (3.1).

It is only the last term in Eq. (3.2) that depends on the
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i=1 G(xi,x
∗) or, equivalently, the quantity

M(x∗) =
N∑

i=1

[
1

|xi − x∗| − 1

2
log |xi − x∗|

−1

2
log(2 + |xi − x∗|)

]
. (3.3)

The optimal location x∗ of an additional infinitesimal trap thus
is the global minimum of the function (3.3) that depends on
two spherical coordinates.

B. Addition of a trap of an arbitrary size comparable
to existing traps

The above calculation can be generalized to treat the
addition of a trap of arbitrary radius αε (comparable to given
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N equal traps of radii ε located on the unit sphere at the
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v(x∗) ≡ v̄N+1(x1, . . . ,xN , x∗) − v̄N (x1, . . . ,xN )

∼ 8π

DN

{
1

3

α

N
− 2

(
α

N

)2

+
(

α

N

)3

−4

3

(
α

N

)4

+ O

[(
α

N

)5]}
M(x∗) + K, (3.4)

where M(x∗) is given by (3.3), and the quantity K does not
depend on the location x∗ of the additional trap.

Formula (3.4) is derived directly using the expression (2.5).
Depending on the sign of the square bracket in Eq. (3.4), the

FIG. 2. (Color online) The topological derivative for an optimal
arrangement of 17 equal traps on a unit sphere. (a) The value of
log[M(x∗)] (3.3) on the surface of the unit sphere. The darker (dark
blue) color corresponds to low values of M(x∗) [equivalently, of the
topological derivative T (x∗) (3.2) and the function 
v(x∗) (3.4)].
Red and lighter colors correspond to higher values of log[M(x∗)]
that occur close to existing traps. (b) The 17 optimally arranged traps
(medium-sized blue markers), the local minima of the function M(x∗)
(3.3) (small black markers), and the global minimum of M(x∗) (large
red marker).

optimal location x∗ of the additional trap is either a global
minimum or a global maximum of M(x∗) (3.3).

In subsequent sections, we consider the question of finding
optimal arrangements of large numbers of equal traps. Formula
(3.4) will be used to seek putative optimal configurations of
N + k traps starting from a known putative optimal N -trap
configuration. When α = 1, k = 1, and N � 1, the bracketed
expression in Eq. (3.4) is positive, hence the optimal location
x∗ of one new trap will correspond to the global minimum of
the function (3.3) on the surface of the unit sphere.

An illustration showing local minima and the global
minimum of the function M(x∗) for a unit sphere with 17
optimally arranged traps is given in Fig. 2. (The optimal
arrangement has been computed in Ref. [10].)
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The general problem of finding a global minimum of a
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F (x1, . . . ,xN ) =
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f (|xi − xj |),
(4.1)

|xk| = 1, k = 1, . . . ,N,

that depends only on distances between pairs of N traps on the
unit sphere has recently received a lot of attention on its own.
For some particular dimensions and number of traps, there
exist universally optimal configurations that minimize (4.1) for
some class of functions f [19]. For example, an icosahedron
on S2 ∈ R3 is universally optimal. However, generally, for a
given N , a universally optimal configuration on S2 ∈ R3 may
not exist. This is proven to be the case, for example, for five
points on S2 (see [19]). Hence, in general, computations have
to be done separately for every specific form of the pairwise
interaction function f .
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Heuristic optimization: N → N + k traps

A heuristic algorithm

(a) Start from a given N-trap arrangement.

(b) Compute triangle vertices.

(c) Compute the adjacent local minima of M(x∗) by solving gradM(x∗) = 0.

(d) Introduce additional k traps at k lowest local minima of M. Run a local
optimization routine.

160→ 436 traps.
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The N2 conjecture

The N2 conjecture

For an optimal arrangement of N ≥ 2 traps corresponding that minimizes the interaction
energy H and the asymptotic average MFPT v̄, the sum of squares of pairwise distances
between traps is equal to N2:

Q(x1, . . . , xN ) ≡
N∑

i=1

N∑
j=i+1

|xi − xj |2 = N2.

Evidence

Can be shown to hold for small N exactly.

For known global minima 5 ≤ N ≤ 200, holds numerically up to 10 significant digits.

Supported by an asymptotic scaling law estimate of Q(x1, . . . , xN ) as N →∞ [See
A.C. & D. Zawada (2013)].

Not tested for all local minima for each N...
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The N2 conjecture

ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

TABLE I. Values of the interaction energy H (2.8) and sums of squared distances between traps Q (4.2) for putative globally optimal
arrangements of N equal traps on a unit sphere surface. The optimal arrangements were computed with using the LGO global optimization
package for 2 � N � 90, and a combination of the LGO package and the local optimization technique (see Sec. IV C1) for 95 � N � 200.
Numbers are given with eight significant digits for H, and 10 significant digits for Q. The LGO computations were performed by Spiteri and
Richards [27].

N H Q N H Q N H Q

2 −0.53972077 4.000000000 33 54.295972 1089.000000 64 324.08963 4096.000000
3 −1.0673453 9.000000000 34 59.379488 1156.000000 65 336.76971 4225.000000
4 −1.6671799 16.00000000 35 64.736711 1225.000000 70 403.83089 4900.000000
5 −2.0879876 25.00000000 36 70.276097 1296.000000 75 477.36359 5625.000000
6 −2.5810055 36.00000000 37 76.066237 1369.000000 80 557.23154 6400.000000
7 −2.7636584 49.00000000 38 82.080300 1444.000000 85 643.77234 7225.000000
8 −2.9495765 64.00000000 39 88.329560 1521.000000 90 736.65320 8100.000000
9 −2.9764336 81.00000000 40 94.817831 1600.000000 95 836.12537 9025.000000

10 −2.8357352 100.0000000 41 101.56854 1681.000000 100 942.12865 10000.00000
11 −2.4567341 120.9999505 42 108.54028 1764.000000 105 1054.8688 11025.00000
12 −2.1612842 144.0000000 43 115.77028 1849.000000 110 1174.1103 12100.00000
13 −1.3678269 168.9999763 44 123.16343 1936.000000 115 1300.1081 13225.00000
14 −0.55259278 196.0000000 45 130.90532 2025.000000 120 1432.6666 14400.00000
15 0.47743760 225.0000000 46 138.92047 2116.000000 125 1572.0271 15625.00000
16 1.6784049 256.0000000 47 147.15035 2209.000000 130 1718.0039 16900.00000
17 3.0751594 289.0000000 48 155.41742 2304.000000 135 1870.6706 18225.00000
18 4.6651247 324.0000000 49 164.21746 2401.000000 140 2030.3338 19600.00000
19 6.5461714 361.0000000 50 173.07868 2500.000000 145 2196.5017 21025.00000
20 8.4817896 400.0000000 51 182.26664 2601.000000 150 2369.6548 22500.00000
21 10.701320 441.0000000 52 191.72428 2704.000000 155 2549.6182 24025.00000
22 13.101742 484.0000000 53 201.38475 2809.000000 160 2736.2180 25600.00000
23 15.821282 529.0000000 54 211.28349 2916.000000 165 2929.8023 27225.00000
24 18.581981 576.0000000 55 221.46381 3025.000000 170 3130.1596 28900.00000
25 21.724913 625.0000000 56 231.85398 3136.000000 175 3337.4168 30625.00000
26 25.010031 676.0000000 57 242.51803 3249.000000 180 3551.5021 32400.00000
27 28.429699 729.0000000 58 253.43460 3364.000000 185 3772.5761 34225.00000
28 32.192933 784.0000000 59 264.57186 3481.000000 190 4000.3892 36100.00000
29 36.219783 841.0000000 60 275.90942 3600.000000 195 4235.2645 38025.00000
30 40.354439 900.0000000 61 287.62114 3721.000000 200 4477.0669 40000.00000
31 44.757617 961.0000000 62 299.48031 3844.000000
32 49.240949 1024.000000 63 311.65585 3969.000000

other traps as

Fi = −∇iH

=
∑
j 
=i

[
1

|xi − xj |2 + 1

2|xi − xj | + 1

2(2 + |xi − xj |)
]

eji ,

(4.3)

where eji is a unit vector from trap j to trap i. The algorithm
consists of moving each trap in the direction of the force, and
proceeds as follows:

(1) Compute the total force (4.3) acting on each trap.
(2) Move each particle a small distance proportional to the

force in that direction. The proportionality constant is a user
specified parameter.

(3) Project the position of each particle back onto the surface
of the unit sphere.

After a number of iterations (in our computations, 500), the
tangential components of the force acting on each particle are
computed, and if the sum of the absolute values of these is less
than a user specified tolerance level, the program is stopped.

2. An algorithm to compute a putative globally optimal
arrangement of N + k traps

Suppose that the globally optimal N -trap arrangement that
minimizes the interaction energy (2.8) is known. We wish to
introduce k additional traps and compute the corresponding
putative globally optimal arrangement of N + k traps. The
procedure used in the current paper can be outlined as
follows:

(1) For the current N -trap configuration, compute all local
minima of the function M(x∗) (3.3) on the surface of the
unit sphere. [These local minima are computed by numerically
solving the equation grad M(x∗) = 0 in the vicinity of a center
of each triangle formed by three adjacent traps in the given
N -trap arrangement.]

(2) Order the local minima of M(x∗) starting from the
lowest; refer to these points as xm1, xm2, . . . .

(3) Introduce additional k traps at the k smallest local
minima xm1, xm2, . . . , xmk of M(x∗).

(4) Run the local optimization routine described in
Sec. IV C1 to adjust positions of all the N + k equal traps

042118-6
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The N2 conjectureALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

TABLE II. Values of the interaction energy H (2.8) and sums of squared distances between traps Q (4.2) for globally optimal arrangements
of N equal traps on a unit sphere surface, 200 � N � 1004, computed using the algorithm of Sec. IV C2. Numbers are given with eight
significant digits for H and 10 significant digits for Q.

N H Q N H Q N H Q

206 4776.8410 42436.00000 406 20535.947 164836.0000 650 55251.870 422500.0000
219 5459.4441 47961.00000 413 21292.863 170569.0000 697 63918.659 485809.0000
248 7151.7851 61504.00000 424 22511.130 179776.0000 704 65263.714 495616.0000
253 7466.6853 64009.00000 436 23879.932 190096.0000 764 77386.805 583696.0000
260 7920.1793 67600.00000 437 23996.280 190969.0000 778 80361.722 605284.0000
268 8455.6701 71824.00000 442 24579.608 195364.0000 781 81008.459 609961.0000
272 8729.6105 73984.00000 449 25409.395 201601.0000 802 85602.707 643204.0000
291 10094.183 84681.00000 462 26987.790 213444.0000 850 96587.973 722500.0000
308 11401.557 94864.00000 480 29251.492 230400.0000 868 100878.53 753424.0000
310 11560.554 96100.00000 529 35888.599 279841.0000 891 106503.70 793881.0000
333 13471.931 110889.0000 536 36896.959 287296.0000 922 114327.22 850084.0000
337 13819.916 113569.0000 546 38354.222 298116.0000 928 115873.47 861184.0000
368 16669.611 135424.0000 548 38648.578 300304.0000 992 133031.24 984064.0000
369 16766.235 136161.0000 577 43063.555 332929.0000 1004 136383.69 1008016.000
380 17846.466 144400.0000 618 49718.287 381924.0000
382 18045.887 145924.0000 636 52794.233 404496.0000

V. DILUTE TRAP FRACTION LIMIT OF
HOMOGENIZATION THEORY FOR THE UNIT SPHERE

The homogenization theory approach is now used to
provide a simplified approximate description of the MFPT
problem (1.1) for the unit sphere in the case of a large number
of small boundary traps, distributed “homogeneously” over
the sphere and known to occupy a certain given surface area
fraction.

A. Homogenization theory for the unit disk and the unit sphere

For a two-dimensional version of the narrow-escape prob-
lem (1.1) formulated for a unit disk, the homogenization theory
limit has been considered in Ref. [18]. It has been shown that
in the dilute trap fraction limit, i.e., when the number of traps
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FIG. 5. (Color online) The asymptotic scaling law (2.9a), its
leading term H ∼ N2

2 (1 − log 2), and the numerically computed trap
interaction energies H (2.8) for putative optimal arrangements of
2 � N � 1004 traps on the unit sphere.

N → +∞, with the total trap length fraction σ = 2εN/(2π )
kept constant, the mixed Dirichlet-Neumann problem (1.1) for
the MFPT v(x) can be approximated by a Robin problem for
vh(x) � v(x) given by

�vh = − 1

D
, r = |x| < 1; ε∂rvh + κ(σ )vh = 0,

(5.1)
r = 1,

where the boundary condition factor κ(σ ) is given by

κ = −πσ

2

{
log

[
sin

(
πσ

2

)]}−1

.

In Ref. [8], an asymptotic solution was constructed for a two-
dimensional MFPT problem with an arbitrary number of small
well-separated traps on the boundary of a unit disk. It has also
been demonstrated in Ref. [8] that in the limit N → +∞
with the total trap length fraction σ � 1 kept constant, the
asymptotic solution indeed corresponds to the solution of the
problem (5.1) described in Ref. [18].

The homogenization transition in the problem for a sphere
in three dimensions with equal traps is significantly different
from that for a 2D disk. Indeed, for a unit disk, an optimal
arrangement of N equal boundary traps evidently corresponds
to the N values of N

√
1 in the complex plane. Conversely,

locations of N optimally placed traps on a unit sphere are not
regular, neither are they given by analytical formulas.

As discussed in Sec. IV above, such optimal arrangements
can be approximately computed by global minimization
of the average asymptotic MFPT (2.7), which is highly
computationally intensive. In the current section, we show
that in spite of this difficulty, it is still possible to make an
association between the asymptotic MFPT result (2.7) and
a solution to a homogenization theory-type boundary value
problem, and thus obtain high-precision approximations of the
average MFPT with minimal computations, avoiding global
optimization.
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Two families of traps

2N traps: N having radius ε; N having radius αε, α > 1.

Asymptotic MFPT [A.C., A.Reimer, M.Ward (2012)]:

v̄ ∼ |Ω|
4εDN(1 + α)

[
1 +

ε

π
log

(
2

ε

)(
1 + α2

1 + α

)
+
ε

π

(
S +

4

N(1 + α)
H̃(x1, . . . , xN )

)]
,

S = S(N, α),

H̃(x1, . . . , xN ) =
N∑

i=1

N∑
j=i+1

h(xi ; xj ) + α

N∑
i=1

2N∑
j=N+1

h(xi ; xj ) + α2
2N∑

i=N+1

2N∑
j=i+1

h(xi ; xj ) ,

with the same pairwise energy function

h(xi ; xj ) =
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |) .
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Two families of traps

Example: three locally optimal configurations of 2N=10 traps; α = 10.

Global minimum:

Nearby local minima:

Figure 18: Spherical trap configurations for 2N = 10 traps of two kinds with radius ratio α = 10.
The larger traps are shown in red, the smaller traps in black. (a) the configuration corresponding
to the global minimum of the average MFPT v̄. (b), (c): configurations corresponding to nearby
local minima of v̄ with H̃ = (−198.36939,−197.76083).
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Figure 19: Trap fragmentation effects. The average spherical MFPT v̄ (2.22) versus N (number of traps)
for a fixed trap surface area percentage. Curves for f = 0.1%, 0.2%, 0.3%, 0.5%, 1%, 2.2%, 4%, 10% (top to
bottom).
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Two families of traps

Example: three locally optimal configurations of 2N=10 traps; α = 10.

Global minimum (a): H̃ = −198.80759.

Nearby local minima (b,c): H̃ = (−198.36939,−197.76083).

Figure 18: Spherical trap configurations for 2N = 10 traps of two kinds with radius ratio α = 10.
The larger traps are shown in red, the smaller traps in black. (a) the configuration corresponding
to the global minimum of the average MFPT v̄. (b), (c): configurations corresponding to nearby
local minima of v̄ with H̃ = (−198.36939,−197.76083).
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Figure 19: Trap fragmentation effects. The average spherical MFPT v̄ (2.22) versus N (number of traps)
for a fixed trap surface area percentage. Curves for f = 0.1%, 0.2%, 0.3%, 0.5%, 1%, 2.2%, 4%, 10% (top to
bottom).
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Dilute trap fraction limit of homogenization theory

N � 1 small boundary traps, distributed “homogeneously” over the sphere.

Dilute trap limit [Muratov & Shvartsman, 2008, unit disk]:
Approximate the mixed Dirichlet-Neumann problem for the MFPT v(x) by a Robin
problem for vh(x) ' v(x).

Assumptions:

N � 1, ε� 1,

Total trap area fraction σ = πε2N/(4π) = Nε2/4� 1.

v(x) ∼ vh(ρ), where the latter satisfies the Robin problem

4vh = − 1

D
, ρ = |x | < 1;

f (ε)∂rvh + κ(σ)vh = 0, ρ = 1.

Functions f (ε), κ(σ) can be estimated using the asymptotic formula for v(x)
derived earlier.
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Dilute trap fraction limit of homogenization theory

N � 1 small boundary traps, distributed “homogeneously” over the sphere.

Dilute trap limit [Muratov & Shvartsman, 2008, unit disk]:
Approximate the mixed Dirichlet-Neumann problem for the MFPT v(x) by a Robin
problem for vh(x) ' v(x).

Assumptions:

N � 1, ε� 1,

Total trap area fraction σ = πε2N/(4π) = Nε2/4� 1.

v(x) ∼ vh(ρ), where the latter satisfies the Robin problem

4vh = − 1

D
, ρ = |x | < 1;

f (ε)∂rvh + κ(σ)vh = 0, ρ = 1.

The solution is given by a simple formula

vh(ρ) =
f (ε)

3Dκ(σ)
+

1− ρ2

6D
, v̄h =

f (ε)

3Dκ(σ)
+

1

15D
.
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Dilute trap fraction limit of homogenization theory

Principal result [A.C. & D. Zawada, 2013]:

In an asymptotic limit ε→ 0, N � O(log ε), the asymptotic expression for v(x) and the
average MFPT v̄ can be approximated, within the four leading terms, by a solution vh(ρ)
of the Robin problem with parameters

f (ε) = ε− ε2

π
log ε+

ε2

π
log 2, κ(σ) =

4σ

π − 4
√
σ
.

The values of v(x) and v̄ can be approximately computed without the computation
of trap coordinates of the actual globally optimal trap arrangement.

vh(ρ) =
f (ε)

3Dκ(σ)
+

1− ρ2

6D
, v̄h =

f (ε)

3Dκ(σ)
+

1

15D
.

Example: N = 802 traps of radius ε = 0.0005. Comparison of asymptotic and
homogenization solution.
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Dilute trap fraction limit of homogenization theory

ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

one makes the homogenization MFPT v̄h (5.5) become

v̄h = πε

12Dσ
+ 1

15D
, (5.9)

which contains the correct first and third terms of the
asymptotic MFPT (5.7).

In order to match additional terms of (5.7), one can consider
the coefficients f (ε) and κ(σ ) of the extended form

f (ε) = ε + αε2 log ε + βε2, κ(σ ) = 4σ

π + γ
√

σ
.

(5.10)

The homogenization MFPT (5.5) consequently becomes

v̄h = πε

12Dσ
+ πε2

12Dσ
(β + α log ε) + 1

15D

+ γ ε

12D
√

σ
+ Q(ε,σ ), (5.11)

where

Q(ε,σ ) = γ ε2

12Dσ
(β + α log ε). (5.12)

The form (5.11) of the homogenization MFPT can be used to
match the first four leading terms of (5.7) upon choosing

α = − 1

π
, β = 1

π
log 2, γ = 8b1. (5.13)

A direct computation shows that under the choice of
parameters (5.13), the additional term Q(ε,σ ) (5.12) is small
compared to both of the higher-order terms A(ε,σ ) and B(ε,σ )
in the limit ε → 0, N � O(log ε). We have thus arrived at the
following result.

Principal result 2. Consider an arrangement of N �
1 equal small traps on a unit sphere. Suppose that this
arrangement is optimal, i.e., it minimizes the interaction energy
(2.8). Then, in an asymptotic limit ε → 0, N � O(log ε), the
asymptotic expression for the MFPT v(x) (2.1) and the average
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FIG. 7. (Color online) MFPT comparison plots for N = 802 traps with ε = 0.0005. (a) The putative optimal trap arrangement. (b) The
equatorial cross section (z = 0) of the asymptotic MFPT v(x) (2.1). (c) The equatorial cross section of the homogenization MFPT vh(ρ) (5.4).
(d) The absolute difference |vh(ρ) − v(x)|.
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Compare average asymptotic and homogenization MFPT

Homogenization MFPT:

v̄h =
f (ε)

3Dκ(σ)
+

1

15D
, f (ε) = ε− ε2

π
log ε+

ε2

π
log 2, κ(σ) =

4σ

π − 4
√
σ
.

Asymptotic MFPT Scaling Law:

v̄ ∼ |Ω|
4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)]
,

H ∼ N2

2
(1− log 2) + b1N

3/2 + b2N logN + b3N + b4

√
N + b5 logN + b6 + o(1) .

A. Cheviakov (UofS, Canada) The Narrow Escape Problem for 3D Domains June 26, 2018 30 / 45



Outline

1 Narrow Escape Problems, Mean First Passage Time (MFPT)

2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere

3 Validity of the Asymptotic MFPT for the Sphere

4 Globally and Locally Optimal Trap Arrangements for the Unit Sphere
The N2 Conjecture
Two Families of Traps

5 Homogenization Theory Approximation for N � 1 Small Equal Traps

6 Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

7 Highlights and talk summary
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A general class of 3D domains

(µ, ν, ω) : an orthogonal coordinate system in R3.

Consider Ω defined by

Ω ≡ {(µ, ν, ω) | 0 ≤ µ ≤ µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0},
∂Ω ≡ {(µ, ν, ω) |µ = µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0}.

At the boundary: ∂n|∂Ω = ∂µ|µ=µ0 .

Scale factors:

hµj = hµ(xj ), hνj = hν(xj ), hωj = hω(xj ).

Local stretched coordinates (centered at the j th trap):

η = −hµj

µ− µj

ε
, s1 = hνj

ν − νj

ε
, s2 = hωj

ω − ωj

ε
.

Example: axially symmetric domains.
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The Laplacian in local stretched coordinates

Laplacian in orthogonal coordinates (µ, ν, ω):

∆Ψ =
1

hµhνhω

[
∂

∂µ

(
hνhω
hµ

∂Ψ

∂µ

)
+

∂

∂ν

(
hµhω
hν

∂Ψ

∂ν

)
+

∂

∂ω

(
hµhν
hω

∂Ψ

∂ω

)]
.
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The surface Neumann Green’s function

Green’s Function problem:

∆Gs (x ; xj ) =
1

|Ω| , x ∈ Ω, ∂nGs (x ; xj ) = δs (x − xj ), x ∈ ∂Ω,∫
Ω

G dx = 0.

Expression for a general domain [A. Singer, Z. Schuss & D. Holcman (2008)]:

Gs (x ; xj ) =
1

2π|x − xj |
− H(xj )

4π
log |x − xj |+ vs (x ; xj ).

H(xj ): the mean curvature of ∂Ω at xj .

vs (x ; xj ): a bounded function of x and xj in Ω.
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The average MFPT asymptotic expression

Average MFPT for a general domain [D. Gomez, A.C. (2015)]:

Under the assumption g1 = 0 in the Green’s function, as it is for the sphere,
matched solutions for first terms of the asymptotic expansions can be computed.

Average MFPT expression in the outer region |x − xj | � O(ε):

v̄ =
|Ω|

2πDNc̄ε

[
1−

(
1

2Nc̄

N∑
i=1

c2
i H(xi )

)
ε log

( ε
2

)
+O(ε)

]

Compare to the spherical MFPT formula:

v̄ =
|Ω|

2πDNc̄ε

[
1−

(
1

2Nc̄

N∑
j=1

c2
j

)
ε log

( ε
2

)
+

2πε

Nc̄
pc (x1, . . . , xN )− ε

Nc̄

N∑
j=1

cjκj + . . .

]

O(1) term for the sphere depends on trap positions.

A similar expression of the same order for a general domain can be derived, with
some details still missing...
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Nonspherical MFPT: comparison of asymptotic and numerical results

Numerical solver: COMSOL Multiphysics 4.3b

Compare numerical and asymptotic average MFPT for three distinct geometries

N = 3 and N = 5 traps

Relative error:
R.E. = 100%× |v̄numerical − v̄asymptotic|/v̄numerical

“Extremely fine” and “fine” mesh regions:

(a) (b)

Figure 2: Illustration of extremely fine and fine mesh regions.

3.2 Oblate Spheroid

As our first numerical example we consider the oblate spheroidal coordinates

x = ρ cosh ξ cos ν cosφ, y = ρ cosh ξ cos ν sinφ, z = ρ sinh ξ sin ν, (23)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). The orthogonality of such a coordinate
system is easily verified. Furthermore the level sets ξ = ξ0 generate oblate spheroids with a
minor-axis of length ρ sinh ξ0 along the z-axis and a major-axis of length ρ cosh ξ0 on the xy-
plane. The volume enclosed within ξ ≤ ξ0 therefore falls into our class of three-dimensional
domains.

With ξ0 = tanh−1(0.5) and ρ = (cosh ξ0)−1 the level surface ξ = ξ0 becomes an oblate
spheroid with major-axis of length 1 and minor-axis of length 0.5. Explicitly, the surface is
parametrized by

x = cos ν cosφ, y = cos ν sinφ, z = 0.5 · sin ν. (24)

The volume of this oblate spheroid is |Ω| = 2.0944 and its mean curvature is given by

H(ν) = 0.5
8− 3 cos2 ν

(4− 3 cos2 ν)3/2
. (25)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table
1. The comparisons between the COMSOL numerical average MFPT and the asymptotic two-
term formula (21) are shown in Figures 3 and 4 for the three- and the five-trap configurations,
respectively. In addition to these plots, Figures 5a and 5b show the fully numerical calculation
of the MFPT done in COMSOL to demonstrate the trap arrangements, as well as the MFPT
behaviour on the boundary of the domain.

12

A. Cheviakov (UofS, Canada) The Narrow Escape Problem for 3D Domains June 26, 2018 36 / 45



Sample COMSOL MFPT computations for the unit sphere

Narrow Escape Problems in 3D Domains
Daniel Gomez and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
Biological Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

Cell Membrane

Retrieved Aug. 13, 2013 from:
http://library.thinkquest.org/C004535/cell membranes.html

Red Blood Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle
undergoing Brownian motion to escape an enclosing three-dimensional domain.

I Ω: three-Dimensional domain.

I ∂Ωεj : absorbing boundary trap (j = 1, ..., N).

I v(x): MFPT for particle starting at x ∈ Ω.

I D: diffusion coefficient.

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.
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NARROW ESCAPE FROM A SPHERE 837

the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ; v(x) = 0, x ∈ ⋃
j ∂Ωεj.

Asymptotic Solutions

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of
the strongly heterogeneous boundary conditions.
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over
numerical methods include:

I Faster computation times.

I Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the order of magnitude of trap sizes.

Surface Neumann-Green’s Function

Of critical importance to the NEP is the surface Neumann-Green’s Function, Gs(x,xj), satisfying

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

Using the method of matched asymptotic expansions, the surface Neumann-Green’s function appears in
the expression for the MFPT as

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), kj = const.

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii εaj centred at xj respectively yields
numerous results [1].

I Surface Neumann-Green’s Function:

Gs(x,xj) =
1

2π|x− xj|
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj|

)
− 7

10π

I Mean First Passage Time:

v(x) =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε).

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
.

I Two important quantities depending only on ∂Ωεj :

cj =
2aj
π

(trap capacitance), κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Self-Interaction Term pc(x1, ...,xN )

Term pc(x1, ...,xN ) appearing in expressions for v(x) and v̄(x) is a self-interaction term.

I Describes interaction between individual traps ⇒ important for optimization.

I Depends only on Gs(xi,xj) and each cj according to

pc(x1, ...,xN ) = CTGsC

Gs ≡




− 9

20π
Gs(x1,x2) · · · Gs(x1,xN )

Gs(x2,x1) − 9

20π
· · · Gs(x2,xN )

... ... . . . ...

Gs(xN ,x1) · · · Gs(xN ,xN−1) − 9

20π



, C ≡



c1
...
cN


 .

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps

Average MFPT
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Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap ∂Ωε of
radius ε (i.e. a = 1) located at x0 [4].

I Surface-Neumann Green’s Function:

Gs(x,x0) =
1

2π|x− xj|
− H(x0)

4π
log |x− x0| + vs(x,x0),

where vs(x,xj) is an unknown bounded function of x,xj ∈ Ω.

I Average MFPT:

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

.

Limitations of this approach are:

I Approximation is only valid for one absorbing window.

I No asymptotic expression for the (non-averaged) MFPT is given.

I Error bound of O(ε) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap

Average MFPT
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Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate
system (µ, ν, ω). Then assume the coordinate surface is µ = µ0.

I Examples: spheres, spheroids, ellipsoids,
surfaces of rotation.

I N traps located at (µ0, νj, ωj) for
j = 1, ..., N .

I hµ, hν, hω: scale factors of particular
coordinate system.

I Local stretched coordinates:

η = −hµ0

µ− µ0

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj
ω − ωj
ε

.

(µ0, νj, ωj)

η

s1 s2

Local Form of Surface Neumann-Green’s Function

Using the expression for the surface Neumann-Green’s function (1) and introducing the local stretched
coordinates gives:

Gs(η, s1, s2;xj) =
1

2πρε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2;xj) + ε log

ε

2
g1(η, s1, s2;xj) +O(ε),

where ρ =
√
η2 + s2

1 + s2
2 and g0 and g1 are bounded functions depending on the geometry at xj.

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

Inner Problem (near xj)

I Local stretched coordinates (η, s1, s2).

I w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 +O(ε).

I Domain: η ≥ 0, s1, s2 ∈ R.

I Linear PDE: ∆(η,s1,s2)wk = δk2Lw0.

(L is a second-order linear differential operator.)

I Boundary Conditions:

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j.

Outer Problem (far from xj)

I Global coordinates (µ, ν, ω).

I v(µ, ν, ω) ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 +O(ε).

I Domain: (µ, ν, ω) ∈ Ω.

I PDE: ∆vk = − 1

D
δk1.

I Boundary Conditions:

∂nvk = 0, x ∈ ∂Ω \ {x1, ...,xN}.

Matched Asymptotic Expansions Condition

1

ε
w0 + log

ε

2
w1 + w2 + · · · ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · .

I Collect like coefficients of ε and sequentially solve for wk and vk using the inner problem, the outer
problem, and the matching condition.

Proposed Asymptotic Solutions for MFPT and Average MFPT

I Assumptions: g1 = 0 and w2 ∼
v0bj
ρ

.

I MFPT:

v(x) =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

∑N
j=1 bj +O(ε2 log ε)

]
.

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
+

2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

N∑

j=1

bj +O(ε2 log ε)

]
.

I p̃c(x1, ...,xN ) is a modified version of pc(x1, ...,xN ) for the sphere, depending only on Gs(xi,xj).

I bj is modified version of κj for the sphere, determined by the far field behaviour of w2.

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Traps of Different Sizes

Prolate Spheroid
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Conclusions

I Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.

I The average MFPT values following from the proposed asymptotic formulae were found to be in close
agreement with numerical simulation results.

Future Research

I Comparison to numerical simulation for a more extensive variety of geometries.

I Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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Oblate spheroid
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.

14

x = ρ cosh ξ cos ν cosφ, y = ρ cosh ξ cos ν sinφ, z = ρ sinh ξ sin ν

ξ ∈ [0,∞), ν ∈ [−π/2, π/2], φ ∈ [0, 2π)

∂Ω: ξ = ξ0 = tanh−1(0.5), ρ = (cosh ξ0)−1
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Oblate spheroid
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.

14

Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 3:

Number of Traps a ν φ

1 −3π/8 0

N = 3 2 0 π

4 π/2 0

1 0 π/2

2 π/4 0

N = 5 2 −π/2 0

3 −π/4 π/4

4 π/4 π

Table 1: Trap locations and relative radii for in sample MFPT computations for oblate and
prolate spheroids.
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Figure 3: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 3.

13

A. Cheviakov (UofS, Canada) The Narrow Escape Problem for 3D Domains June 26, 2018 38 / 45



Oblate spheroid

0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50



A
v
e

ra
g

e
 M

F
P

T
 [

s]

(a)

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35



R
e

la
ti
ve

 E
rr

o
r 

(%
)

(b)

Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 5:
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Prolate spheroid
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 3:
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Figure 6: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 3.

3.3 Prolate Spheroid

In a similar fashion to the oblate spheroid we can consider the prolate spheroidal coordiantes

x = ρ sinh ξ cos ν cosφ, y = ρ sinh ξ cos ν sinφ, z = ρ cosh ξ sin ν, (26)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). As with the oblate spheroidal coordinates,
the volume enclosed by ξ ≤ ξ0 falls within our class of three-dimensional domains.

With ξ0 = tanh−1(1/1.5) and ρ = (sinh ξ0)−1 the level surface ξ = ξ0 becomes a prolate
spheroid with major-axis of length 1.5 and minor axis of length 1. The surface is parametrized
by

x = cos ν cosφ, y = cos ν sinφ, z = 1.5 · sin ν. (27)

Finally it has a volume of |Ω| = 6.2832 and a mean curvature given by

H(ν) = 1.5
8 + 5 cos ν2

(4 + 5 cos ν2)3/2
. (28)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table 1.
The comparisons between the COMSOL numerical average MFPT and the asymptotic two-term
formula (21) are shown in Figures 6 and 7 for the N = 3 and N = 5 configurations respectively.
Additionally, Figures 8a and 8b show the fully numerical calculation of the MFPT perfomed in
COMSOL.
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 5:
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Biconcave disk (blood cell shape)

0 0.5 1 1.5
-0.5

0

0.5

x

z

Shape obtained by rotating the following curve about the z-axis:

x = aα sinχ, z = a
α

2
(b + c sin2 χ− d sin4 χ) cosχ, χ ∈ [0, π].

Common parameters [Pozrikidis (2003)]:

a = 1, α = 1.38581994, b = 0.207, c = 2.003, d = 1.123.
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Biconcave disk (blood cell shape)
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
1

hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0

N∑

j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:

v(x) =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
− 2πε

N∑

j=1

cjGs(x;xj)

+
ε

Nc̄

N∑

j=1

bj +
2πε

Nc̄

N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) +O(ε2 log ε)

]
,

(33)

and

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
+

ε

Nc̄

( N∑

j=1

bj+2π

N∑

j=1

∑

i6=j
cjciGs(xj ;xi)

)
+O(ε2 log ε)

]

(34)

The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) (35)
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Numerical vs. asymptotic average MFPT for the biconcave disk, N = 3:
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Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
1

hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0

N∑

j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:

v(x) =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄
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c2jH(xj)ε log
ε
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− 2πε
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+
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Nc̄
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bj +
2πε

Nc̄
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∑

i 6=j
cjciGs(xj ;xi) +O(ε2 log ε)

]
,

(33)

and

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
+

ε

Nc̄

( N∑

j=1

bj+2π

N∑

j=1

∑

i6=j
cjciGs(xj ;xi)

)
+O(ε2 log ε)

]

(34)

The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) (35)
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Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Sample COMSOL meshes

Narrow Escape Problems in 3D Domains
Daniel Gomez and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
Biological Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

Cell Membrane

Retrieved Aug. 13, 2013 from:
http://library.thinkquest.org/C004535/cell membranes.html

Red Blood Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle
undergoing Brownian motion to escape an enclosing three-dimensional domain.

I Ω: three-Dimensional domain.

I ∂Ωεj : absorbing boundary trap (j = 1, ..., N).

I v(x): MFPT for particle starting at x ∈ Ω.

I D: diffusion coefficient.

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ; v(x) = 0, x ∈ ⋃
j ∂Ωεj.

Asymptotic Solutions

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of
the strongly heterogeneous boundary conditions.
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over
numerical methods include:

I Faster computation times.

I Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the order of magnitude of trap sizes.

Surface Neumann-Green’s Function

Of critical importance to the NEP is the surface Neumann-Green’s Function, Gs(x,xj), satisfying

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

Using the method of matched asymptotic expansions, the surface Neumann-Green’s function appears in
the expression for the MFPT as

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), kj = const.

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii εaj centred at xj respectively yields
numerous results [1].

I Surface Neumann-Green’s Function:

Gs(x,xj) =
1

2π|x− xj|
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj|

)
− 7

10π

I Mean First Passage Time:

v(x) =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε).

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
.

I Two important quantities depending only on ∂Ωεj :

cj =
2aj
π

(trap capacitance), κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Self-Interaction Term pc(x1, ...,xN )

Term pc(x1, ...,xN ) appearing in expressions for v(x) and v̄(x) is a self-interaction term.

I Describes interaction between individual traps ⇒ important for optimization.

I Depends only on Gs(xi,xj) and each cj according to

pc(x1, ...,xN ) = CTGsC

Gs ≡




− 9

20π
Gs(x1,x2) · · · Gs(x1,xN )

Gs(x2,x1) − 9

20π
· · · Gs(x2,xN )

... ... . . . ...

Gs(xN ,x1) · · · Gs(xN ,xN−1) − 9

20π



, C ≡



c1
...
cN


 .

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps
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Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap ∂Ωε of
radius ε (i.e. a = 1) located at x0 [4].

I Surface-Neumann Green’s Function:

Gs(x,x0) =
1

2π|x− xj|
− H(x0)

4π
log |x− x0| + vs(x,x0),

where vs(x,xj) is an unknown bounded function of x,xj ∈ Ω.

I Average MFPT:

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

.

Limitations of this approach are:

I Approximation is only valid for one absorbing window.

I No asymptotic expression for the (non-averaged) MFPT is given.

I Error bound of O(ε) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap
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Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate
system (µ, ν, ω). Then assume the coordinate surface is µ = µ0.

I Examples: spheres, spheroids, ellipsoids,
surfaces of rotation.

I N traps located at (µ0, νj, ωj) for
j = 1, ..., N .

I hµ, hν, hω: scale factors of particular
coordinate system.

I Local stretched coordinates:

η = −hµ0

µ− µ0

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj
ω − ωj
ε

.

(µ0, νj, ωj)

η

s1 s2

Local Form of Surface Neumann-Green’s Function

Using the expression for the surface Neumann-Green’s function (1) and introducing the local stretched
coordinates gives:

Gs(η, s1, s2;xj) =
1

2πρε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2;xj) + ε log

ε

2
g1(η, s1, s2;xj) +O(ε),

where ρ =
√
η2 + s2

1 + s2
2 and g0 and g1 are bounded functions depending on the geometry at xj.

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

Inner Problem (near xj)

I Local stretched coordinates (η, s1, s2).

I w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 +O(ε).

I Domain: η ≥ 0, s1, s2 ∈ R.

I Linear PDE: ∆(η,s1,s2)wk = δk2Lw0.

(L is a second-order linear differential operator.)

I Boundary Conditions:

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j.

Outer Problem (far from xj)

I Global coordinates (µ, ν, ω).

I v(µ, ν, ω) ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 +O(ε).

I Domain: (µ, ν, ω) ∈ Ω.

I PDE: ∆vk = − 1

D
δk1.

I Boundary Conditions:

∂nvk = 0, x ∈ ∂Ω \ {x1, ...,xN}.

Matched Asymptotic Expansions Condition

1

ε
w0 + log

ε

2
w1 + w2 + · · · ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · .

I Collect like coefficients of ε and sequentially solve for wk and vk using the inner problem, the outer
problem, and the matching condition.

Proposed Asymptotic Solutions for MFPT and Average MFPT

I Assumptions: g1 = 0 and w2 ∼
v0bj
ρ

.

I MFPT:

v(x) =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

∑N
j=1 bj +O(ε2 log ε)

]
.

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
+

2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

N∑

j=1

bj +O(ε2 log ε)

]
.

I p̃c(x1, ...,xN ) is a modified version of pc(x1, ...,xN ) for the sphere, depending only on Gs(xi,xj).

I bj is modified version of κj for the sphere, determined by the far field behaviour of w2.

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Traps of Different Sizes

Prolate Spheroid
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Biconcave Disk
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Conclusions

I Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.

I The average MFPT values following from the proposed asymptotic formulae were found to be in close
agreement with numerical simulation results.

Future Research

I Comparison to numerical simulation for a more extensive variety of geometries.

I Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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Highlights and talk summary

The narrow escape problem, asymptotic solutions as ε→ 0.

Numerical comparisons, validity.

Global and locally MFPT-minimizing arrangements; topological derivative.

Dilute trap limit, homogenization, Robin problem.

Non-spherical domains.

Green’s unction for nonspherical domains?

Better understanding of locally and globally optimal configurations?

The N2 result explanation?

Non-homogeneous media?

Many open questions!
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Thank you for attention!
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