Symmetries of Differential Equations: Practical session

Alexei Cheviakov
(Alt. English spelling: Alexey Shevyakov)
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

April 2018

Outline

(1) Point symmetries of ODEs
(2) Local symmetries of PDEs
(3) Nonlocal symmetries of PDEs

Outline

(1) Point symmetries of ODEs

(2) Local symmetries of PDEs

(3) Nonlocal symmetries of PDEs

Applications of point symmetries of ODEs

- Every symmetry can be used to reduce order by 1 (by differential invariants, or canonical coordinates).
- Can find exact invariant solutions, or mappings: solutions \rightarrow solutions.

Point symmetries of ODEs

- First-order ODEs

$$
y^{\prime}(x)=F(x, y(x))
$$

have infinitely many point symmetries

$$
\mathrm{X}=\xi(x, y) \frac{\partial}{\partial x}+\eta(x, y) \frac{\partial}{\partial y}
$$

- Finding them is harder than to solve the ODE itself...
- Example 1: find point symmetries of the ODE

$$
y^{\prime}(x)=x^{2}+y^{2}(x)
$$

Point symmetries of ODEs

- Fact: nth order ODEs $(n>2)$ admit finitely many symmetries.
- One can show that a second order ODE admits at most an eight-parameter Lie group of transformations. An nth order ODE ($n>2$) admits at most an $(n+4)$-parameter Lie group of transformations [Lie (1893) Ovsiannikov (1982)].
- Example 2: find all (8) point symmetries of the second-order ODE

$$
y^{\prime \prime}(x)=0
$$

- Example 3: find all point symmetries of the second-order ODE

$$
y^{\prime \prime}(x)=y(x) y^{\prime}(x)
$$

Use the scaling symmetry and its canonical coordinates to reduce the ODE order to one.

Outline

(1) Point symmetries of ODEs
(2) Local symmetries of PDEs
(3) Nonlocal symmetries of PDEs

Applications of point symmetries of PDEs

- Every symmetry of a PDE/PDE system

$$
\mathrm{X}=\xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\eta^{\mu}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\mu}}
$$

involving independent variables (some $\xi^{i} \neq 0$) can be used to seek invariant solutions.

- Invariant solutions are defined by DEs with a reduced number of independent variables (by 1); possibly ODEs.
- Symmetries can be used to construct new solutions from known ones.
- Symmetries are used to determine whether the PDE/system can be linearized by a point transformation.
- Other applications exist.

Point symmetries of PDEs

- Fact: Linear, or linearizable PDEs have infinitely many symmetries

$$
\mathrm{X}=\xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\eta^{\mu}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\mu}}
$$

with components ξ^{i}, η^{μ} parameterized by solutions of linear PDEs.

- Nonlinear PDEs usually have a finite-dimensional Lie algebra of point symmetries, but sometimes admit infinitely many symmetries, with components ξ^{i} and/or η^{μ} involving some arbitrary functions.
- It is uncommon for nonlinear models to admit higher-order symmetries; their existence is often related to S-integrability.

Point symmetries of PDEs

- Example 4: find all point symmetries of the the nonlinear wave equation on $u(x, t)$ given by

$$
u_{t t}=\left(1+u_{x}^{2}\right) u_{x x} .
$$

Point symmetries of PDEs

- Example 5: Find all local symmetries in the evolutionary form $\hat{X}=\zeta[u] \partial_{u}$ of the modified nonlinear heat equation

$$
u_{t}=u_{x x}+u_{x}^{2}
$$

where $\zeta[u]=\zeta\left(x, t, u, u_{x}, u_{x x}, u_{x x x}\right)$. Identify point and genuinely higher-order symmetries.

Point symmetries of PDEs

- Example 6: Compute the basis of the Lie algebra of point symmetries of the 2D Navier-Stokes equations of the constant-density fluid motion:

$$
\begin{aligned}
& u_{x}+v_{y}=0 \\
& u_{t}+u u_{x}+v u_{y}=-P_{x}+\nu\left(u_{x x}+u_{y y}\right) \\
& v_{t}+u v_{x}+v v_{y}=-P_{y}+\nu\left(v_{x x}+v_{y y}\right)
\end{aligned}
$$

where u, v, P are functions of t, x, y.

Outline

(1) Point symmetries of ODEs
(2) Local symmetries of PDEs
(3) Nonlocal symmetries of PDEs

Example 7: a potential symmetry

- Compute point symmetries of a nonlinear diffusion equation on $u(x, t)$:

$$
U[u]=u_{t}-(L(u))_{x x}=0, \quad L^{\prime}(u)=K(u)=u^{-2 / 3}
$$

- Compute point symmetries of the potential systems

$$
U V[u, v]: \quad\left\{\begin{array}{l}
v_{x}=u \\
v_{t}=K(u) u_{x}
\end{array}\right.
$$

and

$$
U A[u, a]: \quad\left\{\begin{array}{l}
a_{x}=x u \\
a_{t}=x K(u) u_{x}-L(u)
\end{array}\right.
$$

- Compute point symmetries of the couplet potential system

$$
\operatorname{UVA}[u, v, a]:\left\{\begin{array}{l}
v_{x}=u \\
v_{t}=K(u) u_{x} \\
a_{x}=x u \\
a_{t}=x K(u) u_{x}-L(u)
\end{array}\right.
$$

- Find a potential symmetry of the nonlinear diffusion equation $U[u]$.

