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Point Symmetries of PDEs

Model equations

A given system of PDEs of order k:

Rσ[u] = Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

Higher-order symmetries are rather uncommon (though important). We will talk
about point symmetries in this lecture.

Point symmetries

A one-parameter Lie group of point transformations preserving the model:

(x i )∗ = f i (x,u; ε) = x i + εξi (x,u) + O(ε2),
(uµ)∗ = gµ(x,u; ε) = uµ + εηµ(x,u) + O(ε2).

The corresponding infinitesimal generator (tangent vector field):

X = ξi (x,u)
∂

∂x i
+ ηµ(x,u)

∂

∂uµ
.
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Possible symmetry group dimensions

Finite-dimensional group – general case for nonlinear PDEs.

Infinite-dimensional group (parameterized by arbitrary function(s) with of fewer
arguments than # of independent variables) – occurs for nonlinear models (e.g.,
Galilei group).

Infinite-dimensional group (parameterized by arbitrary function(s), # arguments =
# independent variables) – common for linear PDEs, and PDEs that may be
linearized by a point transformation.
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Infinite symmetries – linear PDEs

If the given PDE system

Rσ[u] = Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

is linear, then the evolutionary symmetry components are arbitrary solutions of the
linearized equations (linear homogeneous PDEs)

L{R}σµ[u]ζµ = 0, σ = 1, . . . ,N.

Example: u = u(x , t),
ut = uxx ,

has an infinite point symmetry group with X = g(x , t)
∂

∂u
,

x∗ = x , t∗ = t, u∗ = u + g(x , t),

where gt = gxx .
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Infinite symmetries – linearization by a point transformation

Applications of 
Symmetry Methods
to Partial Differential
Equations

A P P L I E D M A T H E M A T I C A L S C I E N C E S 168

George W. Bluman
Alexei F. Cheviakov

Stephen C. Anco
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Infinite symmetries – linearization by a point transformation

Invertible Mappings Through Symmetries 141

Consequently, in the case of a given nonlinear scalar PDE, if the Lie algebra

of the infinitesimal generators of its contact symmetries is at most finite-

dimensional, then there exists no invertible mapping to a linear PDE ; in the

case of a given nonlinear PDE system, if the Lie algebra of the infinitesimal

generators of its point symmetries is at most finite-dimensional, then there

exists no invertible mapping to a linear PDE system.

2.4.1 Invertible mappings of nonlinear PDE systems
(with at least two dependent variables) to linear
PDE systems

Theorem 2.4.1 (Necessary conditions for the existence of an invertible lin-

earization mapping of a nonlinear PDE system). If there exists an invertible

mapping µ of a given nonlinear PDE system R{x ;u} (m ≥ 2) to some linear

PDE system S{z ;w}, then
(i) µ is a point transformation of the form

zj = φj(x, u), j = 1, . . . , n, (2.61a)

wγ = ψγ(x, u), γ = 1, . . . ,m; (2.61b)

(ii) R{x ;u} has an infinite set of point symmetries given by an infinitesi-

mal generator

X = ξi(x, u)
∂

∂xi
+ ην(x, u)

∂

∂uν
(2.62)

with infinitesimals ξi(x, u), η
ν(x, u) of the form

ξi(x, u) = αiσ(x, u)F
σ(x, u), (2.63a)

ην(x, u) = βνσ(x, u)F
σ(x, u), (2.63b)

where αiσ(x, u), β
ν
σ(x, u), i = 1, . . . , n; ν;σ = 1, . . . ,m, are specific

functions of x and u, and where F = (F 1, . . . , Fm) is an arbitrary

solution of some linear PDE system

L[X ]F = 0 (2.64)

in terms of some linear differential operator L[X ] and specific indepen-

dent variables X = (X1(x, u), . . . , Xn(x, u)) = (φ1, . . . , φn).

Proof. Necessary condition (i) follows directly from Theorem 2.2.2. Suppose

there exists an invertible mapping µ from a given nonlinear PDE system

R{x ;u} to some linear system of PDEs S{z ;w}, represented by
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Infinite symmetries – linearization by a point transformation

Some PDE systems can be linearized by a nonlocal transformation (have a
sufficiently large set of nonlocal symmetries).

E.g. Burgers equation: ut + uux − uxx = 0, u = u(x , t): finitely many point/contact
symmetries.

Potential equations vx = 2u, vt = 2ux − u2 have an infinite number of point
symmetries given by the infinitesimal generator

X = ev/4

{
[2h(x , t) + g(x , t)u]

∂

∂u
+ 4g(x , t)

∂

∂v

}
,

where (g(x , t), h(x , t)) is an arbitrary solution of the linear PDE system

h = gx , hx = gt .

As a result, the Hopf-Cole transformation u = 2yx/y maps (non-invertibly) the
Burgers equation into a linear diffusion equation:

∂

∂x

(
2

y
(yt − yxx )

)
= 0.
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Point symmetry structure of linear PDEs

We will mostly follow this paper:

Cheviakov, A. (2010).
Symbolic computation of local symmetries of nonlinear and linear partial and
ordinary differential equations. Mathematics in Computer Science, 4(2-3), 203–222.
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Point symmetry structure of linear DEs: trivial linearity symmetries

Consider a linear DE system

Lσ(x , u, ∂u, . . . , ∂k u) = Fσ(x), σ = 1, . . . ,N,

of order k, with n ≥ 2 independent variables x = (x1, . . . , xn), and m ≥ 1 dependent
variables u(x) = (u1(x), . . . , um(x)).

Here each Lσ[u] is a linear homogeneous differential expression in u(x).

If u(x) is a solution of the linear system Lσ[u] = Fσ(x), and w(x) is a solution of
the linear homogeneous system Lσ[w ] = 0, then

û(x) = u(x) + w(x)

is also a solution of the linear system: Lσ[û] = Fσ(x).

The transformation u(x)→ u(x) + w(x) yields an infinite set of trivial Lie point
symmetries

Xtr = wµ(x)
∂

∂uµ
.
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Symmetries of linear ODEs and PDEs

Linear ODEs

For linear ODEs, the dimension of Lie group is always finite, which is better from the
point of view of symbolic computations.

If the explicit form of the general solution of the linear homogeneous ODE is
unknown, symbolic software would not be able to compute all point symmetries
explicitly.

Linear PDEs

For linear PDEs, the dimension of point symmetry Lie algebra is infinity.

Trivial symmetry components are general solutions of linear homogeneous PDE(s).

These PDEs do not have closed-form solutions, so symbolic software is not able to
compute these symmetries explicitly.
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Linear DEs: symmetry structure theorems

The following helpful theorems has been established in this paper:

Bluman, G. (1990).
Simplifying the form of Lie groups admitted by a given differential equation. Journal of
mathematical analysis and applications, 145(1), 52-62.

Theorem

Suppose L[u] = F (x) is a scalar linear PDE (i.e., N = m = 1, n ≥ 2) of order k ≥ 2.
Then components ξi , η of its point symmetries satisfy

∂ξi

∂u
=
∂2η

∂u2
= 0, i = 1, . . . , n.

Theorem

Suppose L[u] = F (x) is a scalar linear ODE (i.e., N = m = n = 1) of order k ≥ 3. Then
components ξ, η of its point symmetries satisfy

∂ξ

∂u
=
∂2η

∂u2
= 0.
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Linear DEs: Ovsiannikov’s conjecture

Ovsiannikov, L. V. (1982).
Group Analysis of Differential Equations, Academic Press.

Ovsiannikov’s “linear DE conjecture”

For a linear DE system Lσ[u] = Fσ(x), components ξi , ηµ of any point symmetry

X = ξi (x,u)
∂

∂x i
+ ηµ(x,u)

∂

∂uµ

satisfy
∂ξi

∂uν
= 0,

∂2ηµ

∂uνuλ
= 0, i = 1, . . . , n, µ, ν, λ = 1, . . . ,m.

It is stated to hold for the “majority of linear DEs” (that is, PDE and ODE systems).

Is it true?
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Conjecture verification and use

Ovsiannikov’s “linear DE conjecture”

For a linear DE system Lσ[u)] = Fσ(x), components ξi , ηµ of any point symmetry

X = ξi (x,u)
∂

∂x i
+ ηµ(x,u)

∂

∂uµ

satisfy
∂ξi

∂uν
= 0,

∂2ηµ

∂uνuλ
= 0, i = 1, . . . , n, µ, ν, λ = 1, . . . ,m.

The conjecture can be verified symbolically: use <> capability of rifsimp.
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Point Symmetries: Computational Examples

1 Symmetries of the linear homogeneous heat equation: ut = uxx .

2 Symmetries of the linear non-homogeneous heat equation: ut = uxx + f (x).

3 Symmetries of the linear wave equation: utt = c2(x)uxx .
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Notation; material picture

Author's personal copy

A.F. Cheviakov, J.-F. Ganghoffer / J. Math. Anal. Appl. 396 (2012) 625–639 627

Fig. 1. Material and Eulerian coordinates.

The actual position x of a material point labeled by X ∈ Ω0 at time t is given by
x = φ (X, t) , xi = φi (X, t) .

Coordinates X in the reference configuration are commonly referred to as Lagrangian coordinates, and actual coordinates
x as Eulerian coordinates. The deformed body occupies an Eulerian domain Ω = φ(Ω0) ⊂ R3 (Fig. 1). The velocity of a
material point X is given by

v (X, t) =
dx
dt

≡
dφ
dt

.

Themappingφmust be sufficiently smooth (the regularity conditions depending on the particular problem). The Jacobian
matrix of the coordinate transformation is given by the deformation gradient

F(X, t) = ∇φ, (1)
which is an invertible matrix with components

F i
j =

∂φi

∂X j
= Fij. (2)

(Throughout the paper, we use Cartesian coordinates and flat space metric tensor g ij
= δij, therefore indices of all tensors

can be raised or lowered freely as needed.) The transformation satisfies the orientation preserving condition
J = det F > 0.

Forces and stress tensors
By the well-known Cauchy theorem, the force (per unit area) acting on a surface element S within or on the boundary of

the solid body is given in the Eulerian configuration by
t = σn,

where n is a unit normal, and σ = σ(x, t) is Cauchy stress tensor (see Fig. 1). The Cauchy stress tensor is symmetric:
σ = σT , which is a consequence of the conservation of angular momentum. For an elastic medium undergoing a smooth
deformation under the action of prescribed surface and volumetric forces, the existence and uniqueness of the Cauchy stress
σ follows from the conservation ofmomentum (cf. [29, Section 2.2]). The force acting on a surface element S0 in the reference
configuration is given by the stress vector

T = PN,

where P is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through

P = JσF−T . (3)
In (3), (F−T )ij ≡ (F−1)ji is the transpose of the inverse of the deformation gradient.

Hyperelastic materials
A hyperelastic (or Green elastic)material is an ideally elasticmaterial forwhich the stress–strain relationship follows from

a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response
of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by P = P (X, F). A hyperelastic material
assumes the existence of a scalar valued volumetric strain energy function W = W (X, F) in the reference configuration,
encapsulating all information regarding the material behavior, and related to the stress tensor through

P = ρ0
∂W
∂F

, P ij
= ρ0

∂W
∂Fij

, (4)

where ρ0 = ρ0(X) is the time-independent body density in the reference configuration. The actual density in Eulerian
coordinates ρ = ρ(X, t) is time-dependent and is given by

ρ = ρ0/J.

Material picture

A solid body occupies the reference (Lagrangian) volume Ω0 ⊂ R3.

Actual (Eulerian) configuration: Ω ⊂ R3.

Material points are labelled by X ∈ Ω0.

The actual position of a material point: x = φ (X, t) ∈ Ω.
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σ follows from the conservation ofmomentum (cf. [29, Section 2.2]). The force acting on a surface element S0 in the reference
configuration is given by the stress vector

T = PN,

where P is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through

P = JσF−T . (3)
In (3), (F−T )ij ≡ (F−1)ji is the transpose of the inverse of the deformation gradient.

Hyperelastic materials
A hyperelastic (or Green elastic)material is an ideally elasticmaterial forwhich the stress–strain relationship follows from

a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response
of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by P = P (X, F). A hyperelastic material
assumes the existence of a scalar valued volumetric strain energy function W = W (X, F) in the reference configuration,
encapsulating all information regarding the material behavior, and related to the stress tensor through

P = ρ0
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, P ij
= ρ0
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∂Fij

, (4)

where ρ0 = ρ0(X) is the time-independent body density in the reference configuration. The actual density in Eulerian
coordinates ρ = ρ(X, t) is time-dependent and is given by

ρ = ρ0/J.

Material picture

Velocity of a material point X: v (X, t) =
dx

dt
.

Jacobian matrix (deformation gradient):

F(X, t) = ∇φ; J = detF > 0;

F = {Fij} = {F i
j}.
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configuration is given by the stress vector
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where P is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through
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In (3), (F−T )ij ≡ (F−1)ji is the transpose of the inverse of the deformation gradient.

Hyperelastic materials
A hyperelastic (or Green elastic)material is an ideally elasticmaterial forwhich the stress–strain relationship follows from

a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response
of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by P = P (X, F). A hyperelastic material
assumes the existence of a scalar valued volumetric strain energy function W = W (X, F) in the reference configuration,
encapsulating all information regarding the material behavior, and related to the stress tensor through

P = ρ0
∂W
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where ρ0 = ρ0(X) is the time-independent body density in the reference configuration. The actual density in Eulerian
coordinates ρ = ρ(X, t) is time-dependent and is given by

ρ = ρ0/J.

Material picture

Boundary force (per unit area) in Eulerian configuration: t = σn.

Boundary force (per unit area) in Lagrangian configuration: T = PN.

σ = σ(x, t) is the Cauchy stress tensor.

P = JσF−T is the first Piola-Kirchhoff tensor.
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Material picture

Density in reference configuration: ρ0 = ρ0(X) (time-independent).

Density in actual configuration:

ρ = ρ(X, t) = ρ0/J.
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Governing equations for hyperelastic materials

Equations of motion (no dissipation, purely elastic setting):

ρ0xtt = div(X )P + ρ0R,

R = R(X, t): total body force per unit mass.

(div(X )P)i =
∂P ij

∂X j
.

Cauchy stress tensor symmetry (conservation of angular momentum):

FPT = PFT ⇔ σ = σT .

The first Piola-Kirchhoff stress tensor:

P = ρ0
∂W

∂F
, P ij = ρ0

∂W

∂Fij
.

W = W (X,F): a scalar strain energy density function.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3) = Ū(Ī1, Ī2, Ī3).

For the left Cauchy-Green strain tensor B = FFT ,

I1 = TrB = F i
k F i

k = λ2
1 + λ2

2 + λ2
3,

I2 = 1
2
[(TrB)2 − Tr(B2)] = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, ,

I3 = detB = J2 = λ2
1λ

2
2λ

2
3.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3) = Ū(Ī1, Ī2, Ī3).

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

Type Neo-Hookean Mooney-Rivlin

Standard W = aI1, W = aI1 + bI2,

a > 0. a, b > 0

Generalized W = aĪ1 + c(J − 1)2, W = aĪ1 + bĪ2 + c(J − 1)2

a, c > 0. a, b, c > 0

Generalized (Ciarlet) W = aI1 + Γ(J), W = aI1 + bI2 + Γ(J)

“compressible” Γ(q) = cq2 − d log q, a, c, d > 0 Γ(q) = cq2 − d log q, a, b, c, d > 0
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3) = Ū(Ī1, Ī2, Ī3).

Example: the Neo-Hookean Case

Strain energy density: W = a I1, a = const.

Equations of motion are linear and decoupled:

(xk )tt = a

(
∂2

∂(X 1)2
+

∂2

∂(X 2)2
+

∂2

∂(X 3)2

)
xk ,

k = 1, 2, 3.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3) = Ū(Ī1, Ī2, Ī3).

General compressible framework

Strain energy density:
W = Ū(Ī1, Ī2, Ī3).

Barred invariants:
Ī1 = J−2/3I1, Ī2 = J−4/3I2, Ī3 = J

Piola-Kirchhoff stress tensor – incompressible case:

P = −p F−T + ρ0
∂W

∂F
, P ij = −p (F−1)ji + ρ0

∂W

∂Fij
.
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2D incompressible Mooney-Rivlin hyperelastic materials

A 2D setting:

x1,2 = x1,2
(

X 1,X 2, t
)
, x3 = X 3,

R1,2,3 = 0, ρ0 = const.

Derivative notation:

∂2x1

∂t2 ≡ x1
tt ,

∂x1

∂X 2
≡ x1

2 ,
∂2x2

∂X 1∂X 2
≡ x2

12,
∂2p

∂X 2∂t
≡ p2 t ,

Equations of motion:

R1[x , p] = 1− J = 1−
(

x1
1 x2

2 − x1
2 x2

1

)
= 0,

R2[x , p] = x1
tt −

[
α
(

x1
11 + x1

22

)
− p1x2

2 + p2x2
1

]
= 0,

R3[x , p] = x2
tt −

[
α
(

x2
11 + x2

22

)
− p2x1

1 + p1x1
2

]
= 0,

where α = 2(a + b) = const > 0 is a material parameter.
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Lagrangian form

The model has a classical Lagrangian:

L = −K + W − p(J − 1),

where

K =
1

2

(
(x1

t )2 + (x2
t )2
)

is the kinetic energy density,

W =
α

2

((
x1

1

)2

+
(

x1
2

)2

+
(

x2
1

)2

+
(

x2
2

)2
)

is the and potential (strain) energy density.

A Lagrangian density equivalent to the above (up to a total divergence) can be
obtained using a homotopy formula

L̂ =

∫ 1

0

u · R[λu] dλ.

The Mooney-Rivlin equations arise as Euler-Lagrange equations under the actions of
the Euler operators:

Ep L = R1[x , p], Ex1 L = R2[x , p], Ex2 L = R3[x , p].
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Extended Kovalevskaya form

The above 2D equations admit an extended Kovalevskaya form:

R̂1[x , p] = x1
1 −

(
x2

2

)−1

S [x1, x2] = 0,

R̂2[x , p] = x2
11 −

(
−x2

22 + α−1

[
x2

tt − p1x1
2 + p2

(
x2

2

)−1

S [x1, x2]

])
= 0,

R̂3[x , p] = p1− M[x1, x2]
{(

x2
2

)2 (
x1

2 x2
tt − x2

2 x1
tt

)
+
(
x2

1 N[x1, x2] + x1
2

)
x2

2 p2

+α
[
x2

2 x1
22N[x1, x2]− x2

2 x2
12 −

(
x1

2 N[x1, x2] + x2
1

)
x2

22

] }
= 0,

where

N[x1, x2] =
(

x1
2

)2

+
(

x2
2

)2

, M[x1, x2] = N[x1, x2]−1
(

x2
2

)−2

,

S [x1, x2] =
(

1 + x1
2 x2

1

)
.

The leading derivatives: {x1
1 , x2

11, p1}.
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Point symmetries

Theorem

The two-dimensional Mooney-Rivlin equations are invariant under an infinite-dimensional
group of Lie point transformations given by the infinitesimal generators

R1 =
∂

∂t
, R2 =

∂

∂X 1
, R3 =

∂

∂X 2
,

R4 = X 2 ∂

∂X 1
− X 1 ∂

∂ X 2
, R5 = x2 ∂

∂x1
− x1 ∂

∂x2
,

R6 = F1(t)
∂

∂x1
− F ′′1 (t) x1 ∂

∂p
,

R7 = F2(t)
∂

∂x2
− F ′′2 (t) x2 ∂

∂p
,

R8 = F3(t)
∂

∂p
,

R9 = t
∂

∂t
+ X 1 ∂

∂X 1
+ X 2 ∂

∂X 2
+ x1 ∂

∂x1
+ x2 ∂

∂x2
,

where F1(t), F2(t), and F3(t) are arbitrary functions of time.
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Maple computation, etc.

Maple/GeM computation

Evolutionary forms and Noether theorem: next slide.

Cheviakov, A. and St. Jean, S. (2015).
A comparison of conservation law construction approaches for the two-dimensional
incompressible Mooney-Rivlin hyperelasticity model. JMP 56, 121505.
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Some references

Ovsiannikov, L. V. (1982)
Group Analysis of Differential Equations. Academic Press, New York.

Bluman, G. (1990).
Simplifying the form of Lie groups admitted by a given differential equation. Journal of
mathematical Analysis and applications, 145(1), 52-62.

Cheviakov, A. (2004–now)

GeM for Maple: a symmetry/conservation law symbolic computation package.
http://math.usask.ca/~shevyakov/gem/

Cheviakov, A. (2010).
Symbolic computation of local symmetries of nonlinear and linear partial and ordinary
differential equations. Mathematics in Computer Science, 4(2-3), 203-222.

Cheviakov, A. and St. Jean, S. (2015).
A comparison of conservation law construction approaches for the two-dimensional
incompressible Mooney-Rivlin hyperelasticity model. JMP 56, 121505.
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