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Point Symmetries of PDEs

Model equations

@ A given system of PDEs of order k:

R°[u] = R%(x,u,du,...,0"u) =0, o=1,...,N.

o Higher-order symmetries are rather uncommon (though important). We will talk
about point symmetries in this lecture.

Point symmetries
@ A one-parameter Lie group of point transformations preserving the model:

)= fi(xv u;e) = x+ 5§i(x7 u) + 0(52)7

(x
ut)* H(x,u;e) = ut 4 en”(x, u) + O(e?).

(

@ The corresponding infinitesimal generator (tangent vector field):

+n*(x, u) 0

i 0

ox’
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Possible symmetry group dimensions

o Finite-dimensional group — general case for nonlinear PDEs.

@ Infinite-dimensional group (parameterized by arbitrary function(s) with of fewer
arguments than # of independent variables) — occurs for nonlinear models (e.g.,
Galilei group).

@ Infinite-dimensional group (parameterized by arbitrary function(s), # arguments =
# independent variables) — common for linear PDEs, and PDEs that may be
linearized by a point transformation.
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© Infinite Symmetries of Linear PDEs
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Infinite symmetries — linear PDEs

o If the given PDE system
R°[u] = R°(x,u,du,...,8"u) =0, o=1,...,N

is linear, then the evolutionary symmetry components are arbitrary solutions of the
linearized equations (linear homogeneous PDEs)

L{R}][u]¢" =0, o=1,...,N.
o Example: u = u(x,t),
Ut = Uxx,
has an infinite point symmetry group with X = g(x, t)%
X =X, t =1, u*:u—l—g(x,t),

where g; = g«.
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© Linearization by a point transformation
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Infinite symmetries — linearization by a point transformation

George W. Bluman
Alexei F. Cheviakov
Stephen C. Anco

APPLIED MATHEMATICAL SCIENCES

Applications of
Symmetry Methods
to Partial Differential
Equations

@ Springer
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Infinite symmetries — linearization by a point transformation

Theorem 2.4.1 (Necessary conditions for the existence of an invertible lin-
earization mapping of a nonlinear PDE system). If there exists an invertible
mapping p of a given nonlinear PDE system R{z :u} (m > 2) to some linear
PDE system S{z;w}, then

(i) p is a point transformation of the form
= (@), j=1,...,n, (2.61a)
wY =YY (z,u), y=1,...,m; (2.61b)

(it) R{x;u} has an infinite set of point symmetries given by an infinitesi-
mal generator

X =€) 4 o) (2.62)
with infinitesimals & (x, u), n”(x,u) of the form
&z, u) = al(z,u)F7 (z,u), (2.63a)
0" (@, u) = By (z,u)F (z,u), (2.63b)
where o (x,u), By(z,u), i = 1,...,n; vioc = 1,...,m, are specific

functions of x and u, and where F = (F',... F™) is an arbitrary
solution of some linear PDE system

LIX]F =0 (2.64)

in terms of some linear differential operator L[X| and specific indepen-
dent variables X = (X*(z,u),..., X" (z,u)) = (¢',...,¢").
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Infinite symmetries — linearization by a point transformation

@ Some PDE systems can be linearized by a nonlocal transformation (have a
sufficiently large set of nonlocal symmetries).

o E.g. Burgers equation: u; + uux — ux = 0, u = u(x, t): finitely many point/contact
symmetries.

o Potential equations vy = 2u, vy = 2ux — u? have an infinite number of point
symmetries given by the infinitesimal generator

X =e"* {[zh(x, t) + g(x, t)u]% + 4g(x, t)%} ,

where (g(x, t), h(x, t)) is an arbitrary solution of the linear PDE system

h=g., he=g:.

@ As a result, the Hopf-Cole transformation u = 2y, /y maps (non-invertibly) the
Burgers equation into a linear diffusion equation:

2 (20 10) =0
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Point symmetry structure of linear PDEs

o We will mostly follow this paper:

[A Cheviakov, A. (2010).
Symbolic computation of local symmetries of nonlinear and linear partial and
ordinary differential equations. Mathematics in Computer Science, 4(2-3), 203—-222.
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Point symmetry structure of linear DEs: trivial linearity symmetries

o Consider a linear DE system
L°(x,u,du,...,0"u) = F7(x), o=1,...,N,
of order k, with n > 2 independent variables x = (xl7 ...,x"), and m > 1 dependent
variables u(x) = (v*(x), ..., u™(x)).

@ Here each L7[u] is a linear homogeneous differential expression in u(x).

o If u(x) is a solution of the linear system L7[u] = F?(x), and w(x) is a solution of
the linear homogeneous system L7[w] = 0, then

o(x) = u(x) + w(x)

is also a solution of the linear system: L7[0] = F7(x).

@ The transformation u(x) — u(x) 4+ w(x) yields an infinite set of trivial Lie point
symmetries

0

Xtr = W“’(X)m.
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Symmetries of linear ODEs and PDEs

Linear ODEs

@ For linear ODEs, the dimension of Lie group is always finite, which is better from the
point of view of symbolic computations.

o If the explicit form of the general solution of the linear homogeneous ODE is
unknown, symbolic software would not be able to compute all point symmetries
explicitly.

Linear PDEs

o For linear PDEs, the dimension of point symmetry Lie algebra is infinity.

o Trivial symmetry components are general solutions of linear homogeneous PDE(s).

@ These PDEs do not have closed-form solutions, so symbolic software is not able to
compute these symmetries explicitly.
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Linear DEs: symmetry structure theorems

@ The following helpful theorems has been established in this paper:

[3 Bluman, G. (1990).
Simplifying the form of Lie groups admitted by a given differential equation. Journal of

mathematical analysis and applications, 145(1), 52-62.

Suppose L[u] = F(x) is a scalar linear PDE (i.e., N = m =1,n > 2) of order k > 2.
Then components &', n of its point symmetries satisfy

i 2
98 _ 9 _o i—1,....n

ou ~ Ou?

Suppose L[u] = F(x) is a scalar linear ODE (i.e., N = m = n=1) of order k > 3. Then
components &, 1 of its point symmetries satisfy
o6 9%

u o Y
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Linear DEs: Ovsiannikov's conjecture

[3 Ovsiannikov, L. V. (1982).
Group Analysis of Differential Equations, Academic Press.

Ovsiannikov's “linear DE conjecture”

For a linear DE system L?[u] = F°(x), components & 7* of any point symmetry
; 0 . 7]
X = 5 (Xﬂu)ax,' +77 (x>u)m
satisfy
o _, Pt _ _
e Bu”u'\_o’ i=1,....n pv,A=1...,m. )

@ It is stated to hold for the “majority of linear DEs” (that is, PDE and ODE systems).
o Is it true?

A. Cheviakov (UofS, Canada) Symmetries of DEs April 2018 16 / 28



Conjecture verification and use

Ovsiannikov's “linear DE conjecture”

For a linear DE system L%[u)] = F?(x), components £, 7" of any point symmetry
i J » 0
X = 5 (X, u)ax,' +n (X, u)ﬁ
satisfy
o¢ Pt . _
auu—O7 A = i=1,....n prv,A=1...,m. |

@ The conjecture can be verified symbolically: use <> capability of rifsimp.
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Point Symmetries: Computational Examples

© Symmetries of the linear homogeneous heat equation:

@ Symmetries of the linear non-homogeneous heat equation: | uy = ux + (x).

© Symmetries of the linear wave equation: | vy = C2(X)UXX.
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© A Nonlinear Example — a 2D Hyperelastic Model
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Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

@ A solid body occupies the reference (Lagrangian) volume Qo C R®.
o Actual (Eulerian) configuration: Q C R.

@ Material points are labelled by X € Q.

@ The actual position of a material point: x = ¢ (X, t) € Q.
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Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

d
@ Velocity of a material point X: v (X, t) = x

I.
@ Jacobian matrix (deformation gradient):

F(X,t) = V¢ J=detF >0;

F={F} = {F}}

A. Cheviakov (UofS, Canada)

v
Symmetries of DEs

April 2018 20 / 28



Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

@ Boundary force (per unit area) in Eulerian configuration: t = on.

@ Boundary force (per unit area) in Lagrangian configuration: T = PN.
@ o = o(x,t) is the Cauchy stress tensor.

o P = JoF~ 7 is the first Piola-Kirchhoff tensor.

April 2018 20 / 28
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Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

@ Density in reference configuration: po = po(X) (time-independent).

@ Density in actual configuration:

p=p(X,t)=po/J.
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Governing equations for hyperelastic materials

Equations of motion (no dissipation, purely elastic setting):

PoXtr = diV(X)P + poR,

o R =R(X,t): total body force per unit mass.
oPY

o (divP) =

o W = W (X,F): a scalar strain energy density function.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials
@ Strain energy density W depends only on certain matrix invariants:
W = U(h, b, ) = U(h, b, k).
@ For the left Cauchy-Green strain tensor B = FF ',
h=TrB=F,F, =X +X+)\,
b = 3[(TrB)® — Te(B?)] = A3 + A3A5 + A3,
I =detB = J2 = A\I\2)\3.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

@ Strain energy density W depends only on certain matrix invariants:

W = U(h, b, ) = U(h, b, k).

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

Type Neo-Hookean Mooney-Rivlin
Standard W = ah, W = ah + bh,
a> 0. a,b>0
Generalized W = al, + c(J— 1)2, W = al + bh + c(J — 1)2
a,c > 0. a,b,c>0
Generalized (Ciarlet) | W = aly + ' (J), W = ah + bl +T(J)
“compressible” r(g) = cq® —dlogq, a,c,d>0 | I'(q)=cq®>—dlogq, a,b,c,d>0
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

@ Strain energy density W depends only on certain matrix invariants:

W = U(h, b, ) = U(h, b, k).

| N\

Example: the Neo-Hookean Case
o Strain energy density: W = al, a= const.

@ Equations of motion are linear and decoupled:

. 0 02 o .
- <a<x1)2 o a(X3)2> =
k=1,2,3.
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Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

@ Strain energy density W depends only on certain matrix invariants:

W = U(h, b, ) = U(h, b, k).

| N\

General compressible framework
@ Strain energy density: R
W = U(h, b, I5).
o Barred invariants:
h=J72h h=J"PL h=J
@ Piola-Kirchhoff stress tensor — incompressible case:

ow

Pl =—p(F 'Y +por.
p( )+p°8F,y

N
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2D incompressible Mooney-Rivlin hyperelastic materials

o A 2D setting:

12 (XI’X2’ ) 3= X3,
Rb?3 0, po = const
@ Derivative notation:
Pxt oxt Px* ., Pp
o — ™ ax2 =% axiax: — M gxear Pt

@ Equations of motion:

Rl[x,p]zl—J—l— (X X22—X21X12) =0,

RQ[Xyp] = X — [ (Xu + X 2) 1X2 + P2X1}

R3[XaP] = X — [ (Xn + X22) paxi + Plxz]

where oo = 2(a + b) = const > 0 is a material parameter.

A. Cheviakov (UofS, Canada) Symmetries of DEs April 2018 23/



Lagrangian form

@ The model has a classical Lagrangian:
L=—-K+W-p(J-1),

where
1

K= () + (<))

is the kinetic energy density,
2 2 2 2
w=5 () + () + (4)"+ (4))
is the and potential (strain) energy density.

o A Lagrangian density equivalent to the above (up to a total divergence) can be
obtained using a homotopy formula

1
L :/ u- R[Au] dA.
0

The Mooney-Rivlin equations arise as Euler-Lagrange equations under the actions of
the Euler operators:

E, L = R'[x, p], Eu £ = R’[x, p], E. L = R[x, p].
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Extended Kovalevskaya form

@ The above 2D equations admit an extended Kovalevskaya form:

~ —1
Rixpl=xt = () sl ¥ =0,

- -1

R*[x, p = xi1 — (*Xz% +a! [xft —px + 2 (%) S[XI,XZID =0,

§3[x7 pl=p— M[x} %% { (x22)2 (x21xt2t — 22xt1t) + (xlzN[xl,x2] + x21) X2 P2
+a [ NIX, X7 = x3xE — (BNIx', %]+ x¢) <] } =0,
where
1.2 1\2 22 1.2 1 _27-1 (_2) 2
N[va]:(XZ) +(X2) ; M[X,X]:N[X,X] (X2) s
5[x1,x2] = (1 —|—x21x12) .

o The leading derivatives: {x{, x&, p1}.
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Point symmetries

The two-dimensional Mooney-Rivlin equations are invariant under an infinite-dimensional

group of Lie point transformations given by the infinitesimal generators

Rl
B =
R® =
R =
R® =

R° =

where Fi(t), Fx(t),

9 pgr_ 0 ps_ O
ot’ Tooxt’ Toox2’
9 ) ) )
2 oyl 5 __ A Y A Y
X Xt axi N =X ga " X ga
i_ 1 1£
F]-(t) Ix1 1 (t)X 8[) ’
9O a2 9
Fz(t) 8X2 F2 (t)X 8p7
9
F3(t)37p7
9 10 2 0 40 20
tae T X ax ok T a T X a0

and F3(t) are arbitrary functions of time.

v
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Maple computation, etc.

@ Maple/GeM computation

@ Evolutionary forms and Noether theorem: next slide.
[A Cheviakov, A. and St. Jean, S. (2015).

A comparison of conservation law construction approaches for the two-dimensional
incompressible Mooney-Rivlin hyperelasticity model. JMP 56, 121505.
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