On Symmetries of Linear and Nonlinear PDEs

Alexei Cheviakov
(Alt. English spelling: Alexey Shevyakov)
Department of Mathematics and Statistics,
University of Saskatchewan, Saskatoon, Canada

April 2018

Outline

(1) Point Symmetries of PDEs
(2) Infinite Symmetries of Linear PDEs
(3) Linearization by a point transformation
(4) Point Symmetry Structure of Linear PDEs
(5) A Nonlinear Example - a 2D Hyperelastic Model

Outline

(1) Point Symmetries of PDEs
(2) Infinite Symmetries of Linear PDEs
(3) Linearization by a point transformation

44 Point Symmetry Structure of Linear PDEs
(5) A Nonlinear Example - a 2D Hyperelastic Model

Point Symmetries of PDEs

Model equations

- A given system of PDEs of order k :

$$
R^{\sigma}[\mathbf{u}]=R^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N
$$

- Higher-order symmetries are rather uncommon (though important). We will talk about point symmetries in this lecture.

Point symmetries

- A one-parameter Lie group of point transformations preserving the model:

$$
\begin{aligned}
& \left(x^{i}\right)^{*}=f^{i}(\mathbf{x}, \mathbf{u} ; \varepsilon)=x^{i}+\varepsilon \xi^{i}(\mathbf{x}, \mathbf{u})+O\left(\varepsilon^{2}\right) \\
& \left(u^{\mu}\right)^{*}=g^{\mu}(\mathbf{x}, \mathbf{u} ; \varepsilon)=u^{\mu}+\varepsilon \eta^{\mu}(\mathbf{x}, \mathbf{u})+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

- The corresponding infinitesimal generator (tangent vector field):

$$
\mathrm{X}=\xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\eta^{\mu}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\mu}}
$$

Possible symmetry group dimensions

- Finite-dimensional group - general case for nonlinear PDEs.
- Infinite-dimensional group (parameterized by arbitrary function(s) with of fewer arguments than \# of independent variables) - occurs for nonlinear models (e.g., Galilei group).
- Infinite-dimensional group (parameterized by arbitrary function(s), \# arguments = \# independent variables) - common for linear PDEs, and PDEs that may be linearized by a point transformation.

Outline

(1) Point Symmetries of PDEs

(2) Infinite Symmetries of Linear PDEs

(3) Linearization by a point transformation
(4) Point Symmetry Structure of Linear PDEs
(5) A Nonlinear Example - a 2D Hyperelastic Model

Infinite symmetries - linear PDEs

- If the given PDE system

$$
R^{\sigma}[\mathbf{u}]=R^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N
$$

is linear, then the evolutionary symmetry components are arbitrary solutions of the linearized equations (linear homogeneous PDEs)

$$
\mathcal{L}\{R\}_{\mu}^{\sigma}[\mathbf{u}] \zeta^{\mu}=0, \quad \sigma=1, \ldots, N
$$

- Example: $u=u(x, t)$,

$$
u_{t}=u_{x x}
$$

has an infinite point symmetry group with $\mathrm{X}=g(x, t) \frac{\partial}{\partial u}$,

$$
x^{*}=x, \quad t^{*}=t, \quad u^{*}=u+g(x, t)
$$

where $g_{t}=g_{x x}$.

Outline

(1) Point Symmetries of PDEs

(2) Infinite Symmetries of Linear PDEs
(3) Linearization by a point transformation

44 Point Symmetry Structure of Linear PDEs
(5) A Nonlinear Example - a 2D Hyperelastic Model

George W. Bluman

Alexei F. Cheviakov
Stephen C. Anco

Applications of Symmetry Methods to Partial Differential Equations

Springer

Infinite symmetries - linearization by a point transformation

Theorem 2.4.1 (Necessary conditions for the existence of an invertible linearization mapping of a nonlinear PDE system). If there exists an invertible mapping μ of a given nonlinear PDE system $\mathbf{R}\{x ; u\}(m \geq 2)$ to some linear PDE system $\mathbf{S}\{z ; w\}$, then
(i) μ is a point transformation of the form

$$
\begin{align*}
z^{j} & =\phi^{j}(x, u), \tag{2.61a}\\
w^{\gamma} & =\psi^{\gamma}(x, u), \tag{2.61b}
\end{align*} \quad \gamma=1, \ldots, m ;
$$

(ii) $\mathbf{R}\{x ; u\}$ has an infinite set of point symmetries given by an infinitesimal generator

$$
\begin{equation*}
\mathrm{X}=\xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\eta^{\nu}(x, u) \frac{\partial}{\partial u^{\nu}} \tag{2.62}
\end{equation*}
$$

with infinitesimals $\xi_{i}(x, u), \eta^{\nu}(x, u)$ of the form

$$
\begin{align*}
& \xi^{i}(x, u)=\alpha_{\sigma}^{i}(x, u) F^{\sigma}(x, u), \tag{2.63a}\\
& \eta^{\nu}(x, u)=\beta_{\sigma}^{\nu}(x, u) F^{\sigma}(x, u) \tag{2.63b}
\end{align*}
$$

where $\alpha_{\sigma}^{i}(x, u), \beta_{\sigma}^{\nu}(x, u), i=1, \ldots, n ; \nu ; \sigma=1, \ldots, m$, are specific functions of x and u, and where $F=\left(F^{1}, \ldots, F^{m}\right)$ is an arbitrary solution of some linear PDE system

$$
\begin{equation*}
\mathrm{L}[X] F=0 \tag{2.64}
\end{equation*}
$$

in terms of some linear differential operator $\mathrm{L}[X]$ and specific independent variables $X=\left(X^{1}(x, u), \ldots, X^{n}(x, u)\right)=\left(\phi^{1}, \ldots, \phi^{n}\right)$.

Infinite symmetries - linearization by a point transformation

- Some PDE systems can be linearized by a nonlocal transformation (have a sufficiently large set of nonlocal symmetries).
- E.g. Burgers equation: $u_{t}+u u_{x}-u_{x x}=0, u=u(x, t)$: finitely many point/contact symmetries.
- Potential equations $v_{x}=2 u, v_{t}=2 u_{x}-u^{2}$ have an infinite number of point symmetries given by the infinitesimal generator

$$
\mathrm{X}=e^{v / 4}\left\{[2 h(x, t)+g(x, t) u] \frac{\partial}{\partial u}+4 g(x, t) \frac{\partial}{\partial v}\right\}
$$

where $(g(x, t), h(x, t))$ is an arbitrary solution of the linear PDE system

$$
h=g_{x}, \quad h_{x}=g_{t}
$$

- As a result, the Hopf-Cole transformation $u=2 y_{x} / y$ maps (non-invertibly) the Burgers equation into a linear diffusion equation:

$$
\frac{\partial}{\partial x}\left(\frac{2}{y}\left(y_{t}-y_{x x}\right)\right)=0
$$

Outline

(1) Point Symmetries of PDEs

(2) Infinite Symmetries of Linear PDEs
(3) Linearization by a point transformation

4 Point Symmetry Structure of Linear PDEs

(5) A Nonlinear Example - a 2D Hyperelastic Model

Point symmetry structure of linear PDEs

- We will mostly follow this paper:

Cheviakov, A. (2010).
Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differential equations. Mathematics in Computer Science, 4(2-3), 203-222.

Point symmetry structure of linear DEs: trivial linearity symmetries

- Consider a linear DE system

$$
L^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right)=F^{\sigma}(x), \quad \sigma=1, \ldots, N
$$

of order k, with $n \geq 2$ independent variables $x=\left(x^{1}, \ldots, x^{n}\right)$, and $m \geq 1$ dependent variables $u(x)=\left(u^{1}(x), \ldots, u^{m}(x)\right)$.

- Here each $L^{\sigma}[u]$ is a linear homogeneous differential expression in $u(x)$.
- If $u(x)$ is a solution of the linear system $L^{\sigma}[u]=F^{\sigma}(x)$, and $w(x)$ is a solution of the linear homogeneous system $L^{\sigma}[w]=0$, then

$$
\hat{u}(x)=u(x)+w(x)
$$

is also a solution of the linear system: $L^{\sigma}[\hat{u}]=F^{\sigma}(x)$.

- The transformation $u(x) \rightarrow u(x)+w(x)$ yields an infinite set of trivial Lie point symmetries

$$
\mathrm{X}_{t r}=w^{\mu}(x) \frac{\partial}{\partial u^{\mu}}
$$

Symmetries of linear ODEs and PDEs

Linear ODEs

- For linear ODEs, the dimension of Lie group is always finite, which is better from the point of view of symbolic computations.
- If the explicit form of the general solution of the linear homogeneous ODE is unknown, symbolic software would not be able to compute all point symmetries explicitly.

Linear PDEs

- For linear PDEs, the dimension of point symmetry Lie algebra is infinity.
- Trivial symmetry components are general solutions of linear homogeneous PDE(s).
- These PDEs do not have closed-form solutions, so symbolic software is not able to compute these symmetries explicitly.

Linear DEs: symmetry structure theorems

- The following helpful theorems has been established in this paper:

Bluman, G. (1990).
Simplifying the form of Lie groups admitted by a given differential equation. Journal of mathematical analysis and applications, 145(1), 52-62.

Theorem

Suppose $L[u]=F(x)$ is a scalar linear PDE (i.e., $N=m=1, n \geq 2$) of order $k \geq 2$. Then components ξ^{i}, η of its point symmetries satisfy

$$
\frac{\partial \xi^{i}}{\partial u}=\frac{\partial^{2} \eta}{\partial u^{2}}=0, \quad i=1, \ldots, n
$$

Theorem

Suppose $L[u]=F(x)$ is a scalar linear ODE (i.e., $N=m=n=1$) of order $k \geq 3$. Then components ξ, η of its point symmetries satisfy

$$
\frac{\partial \xi}{\partial u}=\frac{\partial^{2} \eta}{\partial u^{2}}=0
$$

Linear DEs: Ovsiannikov's conjecture

O Ovsiannikov, L. V. (1982).
Group Analysis of Differential Equations, Academic Press.

Ovsiannikov's "linear DE conjecture"

For a linear DE system $L^{\sigma}[\mathbf{u}]=F^{\sigma}(\mathbf{x})$, components ξ^{i}, η^{μ} of any point symmetry

$$
\mathrm{X}=\xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\eta^{\mu}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\mu}}
$$

satisfy

$$
\frac{\partial \xi^{i}}{\partial u^{\nu}}=0, \quad \frac{\partial^{2} \eta^{\mu}}{\partial u^{\nu} u^{\lambda}}=0, \quad i=1, \ldots, n, \quad \mu, \nu, \lambda=1, \ldots, m
$$

- It is stated to hold for the "majority of linear DEs" (that is, PDE and ODE systems).
- Is it true?

Conjecture verification and use

Ovsiannikov's "linear DE conjecture"

For a linear DE system $\left.L^{\sigma}[\mathbf{u})\right]=F^{\sigma}(\mathbf{x})$, components ξ^{i}, η^{μ} of any point symmetry

$$
\mathrm{X}=\xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\eta^{\mu}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\mu}}
$$

satisfy

$$
\frac{\partial \xi^{i}}{\partial u^{\nu}}=0, \quad \frac{\partial^{2} \eta^{\mu}}{\partial u^{\nu} u^{\lambda}}=0, \quad i=1, \ldots, n, \quad \mu, \nu, \lambda=1, \ldots, m
$$

- The conjecture can be verified symbolically: use <> capability of rifsimp.

Point Symmetries: Computational Examples

(1) Symmetries of the linear homogeneous heat equation: $u_{t}=u_{x x}$.
(2) Symmetries of the linear non-homogeneous heat equation: $u_{t}=u_{x x}+f(x)$.

- Symmetries of the linear wave equation: $u_{t t}=c^{2}(x) u_{x x}$.

Outline

(1) Point Symmetries of PDEs

(2) Infinite Symmetries of Linear PDEs
(3) Linearization by a point transformation
4. Point Symmetry Structure of Linear PDEs
(5) A Nonlinear Example - a 2D Hyperelastic Model

Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- A solid body occupies the reference (Lagrangian) volume $\Omega_{0} \subset \mathbb{R}^{3}$.
- Actual (Eulerian) configuration: $\Omega \subset \mathbb{R}^{3}$.
- Material points are labelled by $\mathbf{X} \in \Omega_{0}$.
- The actual position of a material point: $\mathbf{x}=\phi(\mathbf{X}, t) \in \Omega$.

Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Velocity of a material point $\mathbf{X}: \mathbf{v}(\mathbf{X}, t)=\frac{d \mathbf{x}}{d t}$.
- Jacobian matrix (deformation gradient):

$$
\begin{gathered}
\mathbf{F}(\mathbf{X}, t)=\nabla \phi ; \quad J=\operatorname{det} \mathbf{F}>0 ; \\
\mathbf{F}=\left\{F_{i j}\right\}=\left\{F_{j}^{i}\right\} .
\end{gathered}
$$

Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Boundary force (per unit area) in Eulerian configuration: $\mathbf{t}=\boldsymbol{\sigma} \mathbf{n}$.
- Boundary force (per unit area) in Lagrangian configuration: $\mathbf{T}=\mathbf{P N}$.
- $\sigma=\boldsymbol{\sigma}(\mathrm{x}, t)$ is the Cauchy stress tensor.
- $\mathbf{P}=J \boldsymbol{\sigma} \mathbf{F}^{-T}$ is the first Piola-Kirchhoff tensor.

Notation; material picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Density in reference configuration: $\rho_{0}=\rho_{0}(\mathbf{X})$ (time-independent).
- Density in actual configuration:

$$
\rho=\rho(\mathbf{X}, t)=\rho_{0} / J
$$

Governing equations for hyperelastic materials

Equations of motion (no dissipation, purely elastic setting):

$$
\rho_{0} \mathbf{x}_{t t}=\operatorname{div}_{(X)} \mathbf{P}+\rho_{0} \mathbf{R}
$$

- $\mathbf{R}=\mathbf{R}(\mathbf{X}, t)$: total body force per unit mass.
- $\left(\operatorname{div}_{(X)} \mathbf{P}\right)^{i}=\frac{\partial P^{i j}}{\partial X^{j}}$.

Cauchy stress tensor symmetry (conservation of angular momentum):

$$
\mathbf{F P}^{T}=\mathbf{P F}^{T} \Leftrightarrow \boldsymbol{\sigma}=\boldsymbol{\sigma}^{T} .
$$

The first Piola-Kirchhoff stress tensor:

$$
\mathbf{P}=\rho_{0} \frac{\partial W}{\partial \mathbf{F}}, \quad P^{i j}=\rho_{0} \frac{\partial W}{\partial F_{i j}} .
$$

- $W=W(\mathbf{X}, \mathbf{F})$: a scalar strain energy density function.

Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(l_{1}, l_{2}, l_{3}\right)=\bar{U}\left(\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}\right) .
$$

- For the left Cauchy-Green strain tensor $\mathbf{B}=\mathbf{F F}^{\top}$,

$$
\begin{aligned}
& I_{1}=\operatorname{Tr} \mathbf{B}=F^{i}{ }_{k} F^{i}{ }_{k}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}, \\
& I_{2}=\frac{1}{2}\left[(\operatorname{Tr} \mathbf{B})^{2}-\operatorname{Tr}\left(\mathbf{B}^{2}\right)\right]=\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}+\lambda_{1}^{2} \lambda_{3}^{2}, \\
& I_{3}=\operatorname{det} \mathbf{B}=J^{2}=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} .
\end{aligned}
$$

Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(I_{1}, I_{2}, I_{3}\right)=\bar{U}\left(\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}\right) .
$$

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

Type	Neo-Hookean	Mooney-Rivlin
Standard	$W=a l_{1}$, $a>0$.	$W=a l_{1}+b l_{2}$, $a, b>0$
Generalized	$W=a \bar{I}_{1}+c(J-1)^{2}$, $a, c>0$.	$W=a \bar{I}_{1}+b \bar{I}_{2}+c(J-1)^{2}$ $a, b, c>0$
Generalized (Ciarlet)	$W=a l_{1}+\Gamma(J)$, "compressible"	(q)

Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(l_{1}, l_{2}, l_{3}\right)=\bar{U}\left(\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}\right) .
$$

Example: the Neo-Hookean Case

- Strain energy density: $W=a I_{1}, \quad a=$ const.
- Equations of motion are linear and decoupled:

$$
\begin{aligned}
& \left(x^{k}\right)_{t t}=a\left(\frac{\partial^{2}}{\partial\left(X^{1}\right)^{2}}+\frac{\partial^{2}}{\partial\left(X^{2}\right)^{2}}+\frac{\partial^{2}}{\partial\left(X^{3}\right)^{2}}\right) x^{k} \\
& k=1,2,3
\end{aligned}
$$

Strain energy density for isotropic homogeneous hyperelastic materials

Isotropic homogeneous hyperelastic materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(l_{1}, l_{2}, l_{3}\right)=\bar{U}\left(\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}\right) .
$$

General compressible framework

- Strain energy density:

$$
W=\bar{U}\left(\bar{I}_{1}, \bar{I}_{2}, \bar{l}_{3}\right) .
$$

- Barred invariants:

$$
\bar{I}_{1}=J^{-2 / 3} l_{1}, \quad \bar{I}_{2}=J^{-4 / 3} l_{2}, \quad \bar{l}_{3}=J
$$

- Piola-Kirchhoff stress tensor - incompressible case:

$$
\mathbf{P}=-p \mathbf{F}^{-T}+\rho_{0} \frac{\partial W}{\partial \mathbf{F}}, \quad P^{i j}=-p\left(F^{-1}\right)^{j i}+\rho_{0} \frac{\partial W}{\partial F_{i j}} .
$$

2D incompressible Mooney-Rivlin hyperelastic materials

- A 2D setting:

$$
\begin{gathered}
x^{1,2}=x^{1,2}\left(X^{1}, X^{2}, t\right), \quad x^{3}=X^{3} \\
R^{1,2,3}=0, \quad \rho_{0}=\text { const. }
\end{gathered}
$$

- Derivative notation:

$$
\frac{\partial^{2} x^{1}}{\partial t^{2}} \equiv x_{t t}^{1}, \quad \frac{\partial x^{1}}{\partial X^{2}} \equiv x_{2}^{1}, \quad \frac{\partial^{2} x^{2}}{\partial X^{1} \partial X^{2}} \equiv x_{12}^{2}, \quad \frac{\partial^{2} p}{\partial X^{2} \partial t} \equiv p_{2 t}
$$

- Equations of motion:

$$
\begin{gathered}
R^{1}[x, p]=1-J=1-\left(x_{1}^{1} x_{2}^{2}-x_{2}^{1} x_{1}^{2}\right)=0 \\
R^{2}[x, p]=x_{t t}^{1}-\left[\alpha\left(x_{11}^{1}+x_{22}^{1}\right)-p_{1} x_{2}^{2}+p_{2} x_{1}^{2}\right]=0 \\
R^{3}[x, p]=x_{t t}^{2}-\left[\alpha\left(x_{11}^{2}+x_{22}^{2}\right)-p_{2} x_{1}^{1}+p_{1} x_{2}^{1}\right]=0
\end{gathered}
$$

where $\alpha=2(a+b)=$ const >0 is a material parameter.

Lagrangian form

- The model has a classical Lagrangian:

$$
\mathcal{L}=-K+W-p(J-1)
$$

where

$$
K=\frac{1}{2}\left(\left(x_{t}^{1}\right)^{2}+\left(x_{t}^{2}\right)^{2}\right)
$$

is the kinetic energy density,

$$
W=\frac{\alpha}{2}\left(\left(x_{1}^{1}\right)^{2}+\left(x_{2}^{1}\right)^{2}+\left(x_{1}^{2}\right)^{2}+\left(x_{2}^{2}\right)^{2}\right)
$$

is the and potential (strain) energy density.

- A Lagrangian density equivalent to the above (up to a total divergence) can be obtained using a homotopy formula

$$
\widehat{\mathcal{L}}=\int_{0}^{1} u \cdot R[\lambda u] d \lambda
$$

The Mooney-Rivlin equations arise as Euler-Lagrange equations under the actions of the Euler operators:

$$
\mathrm{E}_{p} \mathcal{L}=R^{1}[x, p], \quad \mathrm{E}_{x^{1}} \mathcal{L}=R^{2}[x, p], \quad \mathrm{E}_{x^{2}} \mathcal{L}=R^{3}[x, p]
$$

Extended Kovalevskaya form

- The above 2D equations admit an extended Kovalevskaya form:

$$
\begin{gathered}
\widehat{R}^{1}[x, p]=x_{1}^{1}-\left(x_{2}^{2}\right)^{-1} S\left[x^{1}, x^{2}\right]=0, \\
\widehat{R}^{2}[x, p]=x_{11}^{2}-\left(-x_{22}^{2}+\alpha^{-1}\left[x_{t t}^{2}-p_{1} x_{2}^{1}+p_{2}\left(x_{2}^{2}\right)^{-1} S\left[x^{1}, x^{2}\right]\right]\right)=0, \\
\widehat{R}^{3}[x, p]=p_{1}-\quad M\left[x^{1}, x^{2}\right]\left\{\left(x_{2}^{2}\right)^{2}\left(x_{2}^{1} x_{t t}^{2}-x_{2}^{2} x_{t t}^{1}\right)+\left(x_{1}^{2} N\left[x^{1}, x^{2}\right]+x_{2}^{1}\right) x_{2}^{2} p_{2}\right. \\
\left.+\alpha\left[x_{2}^{2} x_{22}^{1} N\left[x^{1}, x^{2}\right]-x_{2}^{2} x_{12}^{2}-\left(x_{2}^{1} N\left[x^{1}, x^{2}\right]+x_{1}^{2}\right) x_{22}^{2}\right]\right\}=0,
\end{gathered}
$$

where

$$
\begin{gathered}
N\left[x^{1}, x^{2}\right]=\left(x_{2}^{1}\right)^{2}+\left(x_{2}^{2}\right)^{2}, \quad M\left[x^{1}, x^{2}\right]=N\left[x^{1}, x^{2}\right]^{-1}\left(x_{2}^{2}\right)^{-2}, \\
S\left[x^{1}, x^{2}\right]=\left(1+x_{2}^{1} x_{1}^{2}\right) .
\end{gathered}
$$

- The leading derivatives: $\left\{x_{1}^{1}, x_{11}^{2}, p_{1}\right\}$.

Point symmetries

Theorem

The two-dimensional Mooney-Rivlin equations are invariant under an infinite-dimensional group of Lie point transformations given by the infinitesimal generators

$$
\begin{aligned}
& \mathrm{R}^{1}=\frac{\partial}{\partial t}, \quad \mathrm{R}^{2}=\frac{\partial}{\partial X^{1}}, \quad \mathrm{R}^{3}=\frac{\partial}{\partial X^{2}} \\
& \mathrm{R}^{4}=X^{2} \frac{\partial}{\partial X^{1}}-X^{1} \frac{\partial}{\partial X^{2}}, \quad \mathrm{R}^{5}=x^{2} \frac{\partial}{\partial x^{1}}-x^{1} \frac{\partial}{\partial x^{2}} \\
& \mathrm{R}^{6}=F_{1}(t) \frac{\partial}{\partial x^{1}}-F_{1}^{\prime \prime}(t) x^{1} \frac{\partial}{\partial p} \\
& \mathrm{R}^{7}=F_{2}(t) \frac{\partial}{\partial x^{2}}-F_{2}^{\prime \prime}(t) x^{2} \frac{\partial}{\partial p} \\
& \mathrm{R}^{8}=F_{3}(t) \frac{\partial}{\partial p}, \\
& \mathrm{R}^{9}=t \frac{\partial}{\partial t}+X^{1} \frac{\partial}{\partial X^{1}}+X^{2} \frac{\partial}{\partial X^{2}}+x^{1} \frac{\partial}{\partial x^{1}}+x^{2} \frac{\partial}{\partial x^{2}}
\end{aligned}
$$

where $F_{1}(t), F_{2}(t)$, and $F_{3}(t)$ are arbitrary functions of time.

Maple computation, etc.

- Maple/GeM computation
- Evolutionary forms and Noether theorem: next slide.

Eheviakov, A. and St. Jean, S. (2015).
A comparison of conservation law construction approaches for the two-dimensional incompressible Mooney-Rivlin hyperelasticity model. JMP 56, 121505.

Some references

O Ovsiannikov, L. V. (1982)
Group Analysis of Differential Equations. Academic Press, New York.
Bluman, G. (1990).
Simplifying the form of Lie groups admitted by a given differential equation. Journal of mathematical Analysis and applications, 145(1), 52-62.

Cheviakov, A. (2004-now)
GeM for Maple: a symmetry/conservation law symbolic computation package.
http://math.usask.ca/~shevyakov/gem/
Cheviakov, A. (2010).
Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differential equations. Mathematics in Computer Science, 4(2-3), 203-222.
B
Cheviakov, A. and St. Jean, S. (2015).
A comparison of conservation law construction approaches for the two-dimensional incompressible Mooney-Rivlin hyperelasticity model. JMP 56, 121505.

