Two approximate symmetry frameworks for nonlinear DEs with a small parameter. Comparisons, relations, approximate solutions

Alexey Shevyakov
(alt. spelling Alexei Cheviakov)

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

Symmetry, Invariants, and their Applications A celebration of Peter Olver's $70^{\text {th }}$ birthday

August 5, 2022

Collaborators

- Mahmood Tarayrah, Ph.D. (04/2022), University of Saskatchewan
- Brian Pitzel, NSERC USRA student, University of Saskatchewan

Outline

(1) Perturbed DEs
(2) Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries
(4) BGI vs. FS : a computational comparison
(5) Approximate solutions from approximate symmetries

6 Discussion
(7) Appendix: some models with small parameters

Outline

(1) Perturbed DEs

(2) Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries

4 BGI vs. FS: a computational comparison
(5) Approximate solutions from approximate symmetries
6) Discussion
(7) Appendix: some models with small parameters

Perturbed DEs

Regular perturbation of an ODE

- Original (unperturbed) ODE:

$$
y^{(n)}(x)=f_{0}[y] \equiv f_{0}\left(x, y(x), \ldots, y^{(n-1)}(x)\right)
$$

- Small parameter: ϵ of an ODE: the leading derivative(s) does not change.
- Perturbed ODE:

$$
y^{(n)}(x)=f_{0}[y]+\epsilon f_{1}[y]+o(\epsilon)
$$

ODE systems, PDEs, PDE systems

- Same idea: a regular perturbation where $O(\epsilon)$ terms do not break the structure of the solved form; DEs still have the same leading derivatives.

Difficulty:

- Analytical structure of the unperturbed model may be lost under perturbation.

A simple example: lost point symmetries

Consider a nonlinear wave-type equation on $u=u(x, t)$:

$$
\begin{equation*}
u_{t t}=u_{x} u_{x x} \tag{1}
\end{equation*}
$$

Exact point symmetry generator:

$$
X^{0}=\xi_{0}^{1}(x, t, u) \frac{\partial}{\partial x}+\xi_{0}^{2}(x, t, u) \frac{\partial}{\partial t}+\eta_{0}(x, t, u) \frac{\partial}{\partial u}
$$

Final result: the PDE (1) admits six point symmetries given by

$$
\begin{align*}
& X_{1}^{0}=\frac{\partial}{\partial u}, \quad X_{2}^{0}=t \frac{\partial}{\partial u}, \quad X_{3}^{0}=\frac{\partial}{\partial t}, \quad X_{4}^{0}=\frac{\partial}{\partial x}, \tag{2}\\
& X_{5}^{0}=u \frac{\partial}{\partial u}-\frac{t}{2} \frac{\partial}{\partial t}, \quad X_{6}^{0}=t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}+u \frac{\partial}{\partial u},
\end{align*}
$$

corresponding to three translations (X_{1}^{0}, X_{3}^{0} and X_{4}^{0}), the Galilei group (X_{2}^{0}), and two scalings (X_{5}^{0} and X_{6}^{0}).

A simple example: lost point symmetries

A perturbed PDE:

$$
\begin{equation*}
u_{t t}+\epsilon u u_{t}=u_{x} u_{x x} \tag{3}
\end{equation*}
$$

- The perturbation term distorts symmetry structure. Exact point symmetries of (3) are generated by

$$
\begin{align*}
& Y_{1}=X_{3}^{0}=\frac{\partial}{\partial t} \\
& Y_{2}=X_{4}^{0}=\frac{\partial}{\partial x} \tag{4}\\
& Y_{3}=\frac{4}{3} X_{5}^{0}-\frac{1}{3} X_{6}^{0}=-t \frac{\partial}{\partial t}-\frac{x}{3} \frac{\partial}{\partial x}+u \frac{\partial}{\partial u},
\end{align*}
$$

a three-dimensional subalgebra of the six-dimensional Lie algebra of point symmetries (2).

- Where did the other three go? Stable vs. unstable symmetries.
- Can unstable symmetries re-appear as, in some sense, "approximate" symmetries of the perturbed PDE (3)?

Outline

(1) Perturbed DEs

(2) Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries
(4) BGI vs. FS : a computational comparison
(5) Approximate solutions from approximate symmetries

6 Discussion
(7) Appendix: some models with small parameters

BGI approximate symmetries

- For simplicity, consider a single PDE on $u=u(x)=\left(x_{1}, \ldots, x_{n}\right)$.
- Original (unperturbed) PDE:

$$
\begin{equation*}
F_{0}[u]=0 \tag{5}
\end{equation*}
$$

- Perturbed DE (regular perturbation):

$$
\begin{equation*}
F_{0}[u]+\epsilon F_{1}[u]=0 \tag{6}
\end{equation*}
$$

- BGI approximate point symmetry generator:

$$
X=X^{0}+\epsilon X^{1}=\left(\xi_{0}^{i}(x, u)+\epsilon \xi_{1}^{i}(x, u)\right) \frac{\partial}{\partial x^{i}}+\left(\eta_{0}(x, u)+\epsilon \eta_{1}(x, u)\right) \frac{\partial}{\partial u}
$$

- Easier to work with characteristic forms which generalize to local symmetries:

$$
\hat{X}=\hat{X}^{0}+\epsilon \hat{X}^{1}=\left(\zeta_{0}[u]+\epsilon \zeta_{1}[u]\right) \frac{\partial}{\partial u}
$$

- Determining equations:

$$
\left.\left(\hat{X}^{0 \infty}+\epsilon \hat{X}^{1 \infty}\right)\left(F_{0}[u]+\epsilon F_{1}[u]\right)\right|_{F_{0}[u]+\epsilon F_{1}[u]=o(\epsilon)}=o(\epsilon)
$$

BGI approximate symmetries

- $O\left(\epsilon^{0}\right)$ part of the determining equations:

$$
\left.\hat{X}^{0 \infty} F_{0}[u]\right|_{F_{0}[u]=0}=0
$$

- Every BGI approximate point symmetry of the perturbed equation corresponds to an exact point symmetry $\hat{X}^{0 \infty}$ of the unperturbed equation.
- Opposite is not true (previous example).
- $O(\epsilon)$ part of the determining equations:

$$
\left.\hat{X}^{1 \infty} F_{0}[u]\right|_{F_{0}[u]=0}=H[u]
$$

where $H[u]$ is the $O(\epsilon)$ part of the expression

$$
-\left.\hat{X}^{0 \infty}\left(F_{0}[u]+\epsilon F_{1}[u]\right)\right|_{F_{0}[u]+\epsilon F_{1}[u]=o(\epsilon)}
$$

- These are extra conditions on \hat{X}^{0} that can make some symmetries unstable.

Outline

(1) Perturbed DEs

2 Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries

4 BGI vs. FS: a computational comparison
(5) Approximate solutions from approximate symmetries

6 Discussion
(7) Appendix: some models with small parameters

FS approximate symmetries

- Original (unperturbed) DE:

$$
\begin{equation*}
F_{0}[u]=0 \tag{7}
\end{equation*}
$$

- Perturbed DE (regular perturbation):

$$
\begin{equation*}
F_{0}[u]+\epsilon F_{1}[u]=0 \tag{8}
\end{equation*}
$$

- Seek solution as a regular perturbation

$$
u(x)=v(x)+\epsilon w(x)+o(\epsilon) .
$$

Split (8) into $O(1)$ and $O(\epsilon)$ parts (FS system):

$$
\begin{align*}
& G_{1}[v, w] \equiv F_{0}[v]=0, \\
& G_{2}[v, w] \equiv F_{0 v} w+F_{0_{v_{i}}} w_{i}+F_{0_{v_{i j}}} w_{i j}+\ldots+F_{0_{v_{i 12} \ldots i_{k}}} w_{i_{12} i_{2} \ldots i_{k}}+F_{1}[v]=0 \tag{9}
\end{align*}
$$

- Find usual point/local symmetries of (9): infinitesimal generators

$$
\hat{z}=\zeta_{0}[v, w] \frac{\partial}{\partial v}+\zeta_{1}[u, w] \frac{\partial}{\partial w}
$$

- Determining equations are again restrictive on ζ_{0}; can lead to stable or unstable local symmetries of (7), now in the FS sense.

BGI vs. FS approximate symmetry forms

- Point:

$$
\begin{gathered}
X=\left(\xi_{0}^{i}(x, u)+\epsilon \xi_{1}^{i}(x, u)\right) \frac{\partial}{\partial x^{i}}+\left(\eta_{0}(x, u)+\epsilon \eta_{1}(x, u)\right) \frac{\partial}{\partial u} \\
Z=\lambda^{i}(x, v, w) \frac{\partial}{\partial x^{i}}+\phi_{1}(x, v, w) \frac{\partial}{\partial v}+\phi_{2}(x, v, w) \frac{\partial}{\partial w}
\end{gathered}
$$

- General local, characteristic form:

$$
\begin{gathered}
\hat{X}=\hat{X}^{0}+\epsilon \hat{X}^{1}=\left(\zeta_{0}[u]+\epsilon \zeta_{1}[u]\right) \frac{\partial}{\partial u} \\
\hat{Z}=\zeta_{0}[v, w] \frac{\partial}{\partial v}+\zeta_{1}[u, w] \frac{\partial}{\partial w}
\end{gathered}
$$

Which is more general?
In both BGI and FS approximate symmetries, the following kinds arise.

- Directly inherited from the original PDE: $\zeta_{0}=\zeta_{0}[u], \zeta_{1}=0$
- Genuine approximate: $\zeta_{0}, \zeta_{1} \neq 0$
- "Trivial" approximate: $\zeta_{0}=0$ ("trivial" = "'always appear")

Outline

(1) Perturbed DEs

(2) Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries
(4) BGI vs. FS : a computational comparison
(5) Approximate solutions from approximate symmetries
6) Discussion
(7) Appendix: some models with small parameters

BGI vs. FS: a computational comparison

- Unperturbed and perturbed PDEs, $u=u(x, t)$:

$$
u_{t t}=u_{x} u_{x x} \quad u_{t t}+\epsilon F_{1}\left(u, u_{t}\right)=u_{x} u_{x x}
$$

- Six point symmetries of the unperturbed PDE:

$$
\begin{aligned}
& X_{1}^{0}=\frac{\partial}{\partial u}, \quad X_{2}^{0}=t \frac{\partial}{\partial u}, \quad X_{3}^{0}=\frac{\partial}{\partial t}, \quad X_{4}^{0}=\frac{\partial}{\partial x}, \\
& X_{5}^{0}=u \frac{\partial}{\partial u}-\frac{t}{2} \frac{\partial}{\partial t}, \quad X_{6}^{0}=t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}+u \frac{\partial}{\partial u},
\end{aligned}
$$

- Which of these are stable (as point symmetries) when $F_{1} \neq 0$, in BGI and/or FS frameworks?
- Classify with respect to inequivalent forms of $F_{1}\left(u, u_{t}\right)$.

BGI vs. FS: a computational comparison

$\begin{aligned} & \hat{X}_{1}^{0} \\ & =\frac{\partial}{\partial u} \end{aligned}$	$\begin{aligned} & F_{1}=Q_{1}\left(u_{t}\right)+a_{1} u u_{t}+a_{2} u \\ & \hat{X}_{1}=\left(1-\epsilon\left(\frac{a_{1}}{10} t\left(t u_{t}+4 u\right)+\frac{a_{2}}{2} t^{2}\right)\right) \frac{\partial}{\partial u} \end{aligned}$	- $F_{1}=e^{a_{3} v} Q_{4}\left(v_{t}\right)+a_{2} v_{t}+a_{1}$, $\hat{Z}_{1}=\frac{\partial}{\partial v}+a_{3}\left(\frac{a_{2}}{10} t\left(t v_{t}+4 v\right)+w+\frac{a_{1}}{2} t^{2}\right) \frac{\partial}{\partial w}$ - $F_{1}=Q_{4}\left(v_{t}\right)+a_{1} v v_{t}+a_{2} v$, $\hat{Z}_{1}=\frac{\partial}{\partial v}-\left(\frac{a_{1}}{10} t\left(t v_{t}+4 v\right)+\frac{a_{2}}{2} t^{2}\right) \frac{\partial}{\partial w}$
$\begin{aligned} & \hat{X}_{2}^{0} \\ & =t \frac{\partial}{\partial u} \end{aligned}$	$\begin{aligned} & F_{1}=a_{1} u_{t}^{2}+a_{2} u_{t}+a_{3} u+a_{4} \\ & \hat{X}_{2}=\left(t-\epsilon\left(\frac{a_{1}}{5} t\left(t u_{t}+4 u\right)+\frac{1}{6} t^{2}\left(a_{3} t+3 a_{2}\right)\right)\right) \frac{\partial}{\partial u} \end{aligned}$	$\begin{aligned} & \text { - } F_{1}=a_{1} v_{t}^{2}+a_{2} v_{t}+a_{3} v+a_{4} \\ & \hat{Z}_{2}=t \frac{\partial}{\partial v}-\left(\frac{a_{1}}{5} t\left(t v_{t}+4 v\right)+\frac{1}{6} t^{2}\left(a_{3} t+3 a_{2}\right)\right) \frac{\partial}{\partial w} \\ & \text { - } F_{1}=a_{3} e^{a_{4} v_{t}}+a_{2} v_{t}+a_{1} \\ & \hat{Z}_{2}=t \frac{\partial}{\partial v}+\left(\frac{a_{2} a_{4}}{10} t\left(t v_{t}+4 v\right)+\frac{a_{1} a_{4}-a_{2}}{2} t^{2}+a_{4} w\right) \frac{\partial}{\partial w} \end{aligned}$
$\begin{aligned} & \hat{X}_{3}^{0} \\ & =u_{t} \frac{\partial}{\partial u} \end{aligned}$	$F_{1}=F_{1}\left(u, u_{t}\right), \quad \hat{X}_{3}=u_{t} \frac{\partial}{\partial u}$	$F_{1}=F_{1}\left(v, v_{t}\right), \quad \hat{Z}_{3}=v_{t} \frac{\partial}{\partial v}+w_{t} \frac{\partial}{\partial w}$

BGI vs. FS: a computational comparison

\hat{X}_{4}^{0}		
$=u_{x} \frac{\partial}{\partial u}$	$F_{1}=F_{1}\left(u, u_{t}\right), \quad \hat{X}_{4}=u_{x} \frac{\partial}{\partial u}$	$F_{1}=F_{1}\left(v, v_{t}\right), \quad \hat{Z}_{4}=v_{x} \frac{\partial}{\partial v}+w_{x} \frac{\partial}{\partial w}$
$\hat{X}_{5}^{0}=(u$	$F_{1}=u^{2} Q_{2}\left(u_{t} / u^{3 / 2}\right)+a_{2} u_{t}+a_{1}$	
$\left.+\frac{t u_{t}}{2}\right) \frac{\partial}{\partial u}$	$\hat{X}_{5}=\left(u+\frac{t u_{t}}{2}+\epsilon\left(a_{1} t^{2}+\frac{a_{2}}{20} t\left(t u_{t}+4 u\right)\right)\right) \frac{\partial}{\partial u}$	$\hat{Z}_{5}=\left(v+\frac{t v_{t}}{2}\right) \frac{\partial}{\partial v}+\left(\left(a_{3}-1\right) w+\frac{t w_{t}}{2}\right.$
$\hat{X}_{6}^{0}=$ $\left(u-x u_{x}\right.$ $\left.-t u_{t}\right) \frac{\partial}{\partial u}$	$\hat{X}_{6}=\left(u-x u_{x}-t u_{t}\right.$ $\left.\left.-\epsilon\left(\frac{a_{2}}{10} t\left(t u_{t}+4 u\right)+\frac{a_{1}}{2} t^{2}\right)\right) \frac{\partial}{\partial u}\left(2 a_{3}-3\right) t\left(t v_{t}+4 v\right)+\frac{a_{1} a_{3}}{2} t^{2}\right) \frac{\partial}{\partial w}$	

Outline

(1) Perturbed DEs

(2) Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries

4 BGI vs. FS: a computational comparison
(5) Approximate solutions from approximate symmetries

6 Discussion
(7) Appendix: some models with small parameters

A nonlinear wave equation

- A class of nonlinear wave equations with a small parameter:

$$
u_{t t}=\left(1+\epsilon Q\left(u_{x}\right)\right) u_{x x}
$$

- FS system: $v_{t t}=v_{x x}, w_{t t}=w_{x x}+Q\left(v_{x}\right) v_{x x}$.
- Power nonlinearity $Q\left(v_{x}\right)=v_{x}^{s}(s \neq-1)$: genuine approximate FS symmetry

$$
Z=v \frac{\partial}{\partial v}+(s+1) w \frac{\partial}{\partial w}
$$

- "Large" and "small" solution components are scaled differently
- An approximately invariant solution:

$$
\frac{d t}{0}=\frac{d x}{0}=\frac{d v}{v}=\frac{d w}{(s+1) w}
$$

Take $v=g(x \pm t)$. Then $w=g^{s+1} \phi$, and

$$
g^{s+1}\left(\phi_{t t}-\phi_{x x}\right)+2(s+1) g^{s} g^{\prime}\left(\pm \phi_{t}-\phi_{x}\right)-\left(g^{\prime}\right)^{s} g^{\prime \prime}=0
$$

- $\phi=\phi(x, t)$, and so the approximate solution $u=v+\epsilon w$, can be found explicitly.

1D nonlinear waves in fiber-reinforced solids

- Motivation: biological and artificial elastic materials with families of aligned fibers
- Anisotropic elastodynamics

1D nonlinear waves in fiber-reinforced solids

Composite reinforced by collagen fibers arranged in helical structures

Helically arranged fiberreinforced medial layers

Bundles of collagen fibrils

1D nonlinear waves in fiber-reinforced solids

1D nonlinear waves in fiber-reinforced solids

- Fully nonlinear Eulerian shear displacements $u(x, t)$ (not small) in terms of material coordinate X
- Viscoelastic dynamics [A.S. and Ganghoffer (2015)]

$$
\begin{aligned}
u_{t t}= & \left(\alpha+3 \beta u_{x}^{2}\right) u_{x x} \\
& +\eta u_{x}\left(2\left(4 u_{x}^{2}+1\right) u_{x x} u_{t x}+\left(2 u_{x}^{2}+1\right) u_{x} u_{t x x}\right) \\
& +\zeta u_{x}^{3}\left(4\left(6 u_{x}^{2}+1\right) u_{x x} u_{t x}+\left(4 u_{x}^{2}+1\right) u_{x} u_{t x x}\right)
\end{aligned}
$$

- Possible small parameters: β, η, ζ
- Hyperelastic simplification:

$$
u_{t t}=\left(\alpha+3 \beta u_{x}^{2}\right) u_{x x} \rightarrow u_{t t}=\left(1+\epsilon u_{x}^{2}\right) u_{x x}
$$

- Member of the previous wave equation family with power nonlinearity $u^{s}, s=2$
- Produces "breaking waves:" finite-time singularity formation

1D nonlinear waves in fiber-reinforced solids

- Numerical solution, $\epsilon=0.5$:

1D nonlinear waves in fiber-reinforced solids

- One can show that the PDE $u_{t t}=\left(1+\epsilon u_{x}^{2}\right) u_{x x}$ can be reduced to the first-order characteristic form

$$
u_{t}= \pm \frac{1}{2 \sqrt{\epsilon}}\left(\sqrt{\epsilon} u_{x} \sqrt{1+\epsilon\left(u_{x}\right)^{2}}+\ln \left(\sqrt{\epsilon} u_{x}+\sqrt{1+\epsilon\left(u_{x}\right)^{2}}\right)\right)
$$

on the characteristic curves

$$
\frac{d x}{d t}= \pm \sqrt{1+\epsilon\left(u_{x}\right)^{2}} .
$$

1D nonlinear waves in fiber-reinforced solids

- Compare behaviour with the approximate solution

1D nonlinear waves in fiber-reinforced solids

- Wave breaking \sim formation of an extra inflection point on the approximate solution.
- Left: $u_{x x}$ for the numerical solution; right: same for the approximate solution

1D nonlinear waves in fiber-reinforced solids

- Estimate wave breaking times [Tarayrah, Pitzel, A.S.]

Outline

(1) Perturbed DEs

2 Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries
(4) BGI vs. FS : a computational comparison
(5) Approximate solutions from approximate symmetries
(6) Discussion
(7) Appendix: some models with small parameters

Discussion

- Approximate symmetries can be found using BGI and FS frameworks ("somewhat" related), and are useful.
- Approximate conservation laws can arise in a similar manner.
- PDE models with multiple small parameters?

Anisotropic dynamic vicoelasticity, shear waves

$$
\begin{aligned}
u_{t t}= & \left(\alpha+3 \beta u_{x}^{2}\right) u_{x x} \\
& +\eta u_{x}\left(2\left(4 u_{x}^{2}+1\right) u_{x x} u_{t x}+\left(2 u_{x}^{2}+1\right) u_{x} G_{t x x}\right) \\
& +\zeta u_{x}^{3}\left(4\left(6 u_{x}^{2}+1\right) u_{x x} u_{t x}+\left(4 u_{x}^{2}+1\right) u_{x} u_{t x x}\right)
\end{aligned}
$$

Serre-Su-Gardner-Green-Naghdi shallow water equations

$$
\begin{aligned}
& u_{t}+\epsilon u u_{x}^{*}+\eta_{x}=\frac{\delta^{2}}{3 h}\left(h^{3}\left(u_{x t}+\epsilon u u_{x x}-\epsilon u_{x}^{2}\right)\right)_{x} \\
& h_{t}+\epsilon(h u)_{x}=0
\end{aligned}
$$

Outline

(1) Perturbed DEs

2 Baikov-Gazizov-Ibragimov approximate symmetries
(3) Fushchich-Shtelen approximate symmetries
(4) BGI vs. FS : a computational comparison
(5) Approximate solutions from approximate symmetries

6 Discussion
(7) Appendix: some models with small parameters

Shallow water models

- $\delta=\frac{h_{0}}{\lambda}$: dispersion parameter; $\quad \varepsilon=\frac{A}{h_{0}}$: amplitude parameter
- Weakly nonlinear dispersionless equations, characterized by $\delta^{2} \ll \varepsilon \ll 1$. Example: shallow water equations

$$
\begin{aligned}
& u_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\varepsilon u^{*} u_{x^{*}}^{*}=0 \\
& h_{t}^{*}+\left(h^{*} u^{*}\right)_{x^{*}}=0
\end{aligned}
$$

Shallow water models

- $\delta=\frac{h_{0}}{\lambda}$: dispersion parameter; $\quad \varepsilon=\frac{A}{h_{0}}$: amplitude parameter
- Weakly nonlinear and weakly dispersive equations: Boussinesq regime $\delta^{2} \sim \varepsilon \ll 1$. Examples: the Boussinesq equation

$$
\eta_{t^{*} t^{*}}^{*}=\eta_{x^{*} x^{*}}^{*}+\frac{\varepsilon}{2}\left(\left(\left(\eta^{*}\right)^{2}\right)_{x^{*} x^{*}}+2\left(\left(u_{0}^{*}\right)^{2}\right)_{x^{*} x^{*}}\right)+\frac{\delta^{2}}{3} \eta_{x^{*} x^{*} x^{*} x^{*}}^{*}
$$

The KdV equation

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} x^{*}}^{*}=0
$$

Shallow water models

- $\delta=\frac{h_{0}}{\lambda}$: dispersion parameter; $\quad \varepsilon=\frac{A}{h_{0}}$: amplitude parameter
- Strongly nonlinear weakly dispersive models: $\delta^{2} \ll 1, \varepsilon=O(1)$. Example: the Su-Gardner equations

$$
\begin{aligned}
& u_{t^{*}}^{*}+\varepsilon u^{*} u_{x^{*}}^{*}+\eta_{x^{*}}^{*}=\frac{\delta^{2}}{3 h^{*}}\left(\left(h^{*}\right)^{3}\left(u_{x^{*} t^{*}}^{*}+\varepsilon^{*} u_{x^{*} x^{*}}^{*}-\varepsilon\left(u_{x^{*}}^{*}\right)^{2}\right)\right)_{x^{*}} \\
& h_{t^{*}}^{*}+\varepsilon\left(h^{*} u^{*}\right)_{x^{*}}=0
\end{aligned}
$$

Physical dimensionless vs. canonical forms

- KdV canonical: $u_{t}+6 u u_{x}+u_{x x x}=0$
- BBM canonical: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- KdV physical dimensionless:

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} x^{*}}^{*}=0
$$

- BBM physical dimensionless:

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}-\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} t^{*}}^{*}=0
$$

- Both in the Boussinesq regime $\delta^{2} \sim \varepsilon$
- Same order of approximation $o\left(\varepsilon^{2}\right)$, very different analytical properties.

PDE naming and the Arnold's principle

Arnold's principle

If a model bears a name, it is not the name of the person who discovered it.

Examples:

- Korteweg-de Vries \rightarrow Boussinesq (25 years earlier)
- Su-Gardner (Green-Naghdi) \rightarrow Serre (13 and 21 years earlier)
- Camassa-Holm \rightarrow Fokas and Fuchssteiner (12 years earlier)
- ...

Some references

Baikov, V. A., Gazizov, R. K., and N. H. Ibragimov (1993).
Approximate groups of transformations.
Differentsial'nye Uravneniya 29 (10), 72, 1712-1732.
囯 Fushchich, W. I. and W. M. Shtelen (1989).
On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter.
Journal of Physics A: Mathematical and General 22 (18), L887.
國 Cheviakov, A. F. and Ganghoffer, J. F. (2016).
One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes. Journal of the Mechanical Behavior of Biomedical Materials 58, 105-121.

