Conservation Laws For Viscous and Inviscid Flows in Helical, Plane and Rotational Symmetry

Alexei Cheviakov / Alexey Shevyakov¹

¹University of Saskatchewan, Canada

March 25, 2013

A. Cheviakov (U. Saskatchewan)

Conservation Laws for Helical Flows

Image: A math a math

Outline

Collaborators

2 Introduction

- Helical Flows
- Incompressible Fluid Flow Equations
- Local Conservation Laws

Helically Invariant Fluid Flow Equations

- Helical Coordinates
- Helically Invariant Navier-Stokes/Euler Equations
- Vorticity Formulation

4 Conservation Laws

- Local Divergence-Type Conservation Laws & Applications
- Direct Construction

Solution New Conservation Laws for Helically Symmetric Flows

- Inviscid Case
- Viscous Case
- Two-Component Flows

6 Results and Open Problems

Image: A match the second s

- M. Oberlack, Chair of Fluid Dynamics, TU Darmstadt, Germany
- O. Kelbin, Ph.D. student, TU Darmstadt, Germany

• Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

• Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]

Image: A math a math

• Helical water flow past a propeller

< ロ > < 回 > < 回 > < 回 >

• Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997]

• Helical blood flow patterns in the aortic arch [Kilner et al, 1993]

・ロト ・回ト ・ ヨト

• Helical plasma flows in tokamaks

イロト イヨト イヨト イヨト

• Helical plasma structures in astrophysics

・ロト ・回ト ・ヨト

• Collimated helical plasma jet formation in a plasma discharge

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} - \nu \nabla^2 \mathbf{u} = 0.$$

- Euler/inviscid: $\nu = 0$.
- Constant-density (WLOG $\rho = 1$).

・ロン ・回 と ・ ヨン・

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

- Euler/inviscid: $\nu = 0$.
- Constant-density (WLOG $\rho = 1$).

・ロト ・回ト ・ ヨト

Conservation laws

Independent variables: $\mathbf{x} = (t, x, y, ...)$; dependent variables: $\mathbf{q} = (q^1, q^2, ...)$.

Local conservation law:

$$\mathrm{D}_t\Theta+\operatorname{div}_{x,y,\ldots}\Phi=0.$$

Density: $\Theta(\mathbf{x}, \mathbf{q}, ...)$. Spatial fluxes: $\Phi = (\Phi^1(\mathbf{x}, \mathbf{q}, ...), \Phi^2(\mathbf{x}, \mathbf{q}, ...), \cdots)$.

Conserved quantities

$$D_t \int_V \Theta \ dV = 0.$$

Material conservation laws

For incompressible flows with velocity field ${\bf u}, ~{\rm div}\, {\bf u}=0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Theta \equiv \mathrm{D}_t\Theta + \mathbf{u}\cdot\nabla\Theta = \mathrm{D}_t\Theta + \dim_{x,y,\dots}\left(\Theta\mathbf{u}\right) = \mathbf{0}.$$

A. Cheviakov (U. Saskatchewan)

イロン 不得 とく ヨン イ

Euler equations in 3 + 1 dimensions

$$abla \cdot \mathbf{u} = \mathbf{0},$$
 $\mathbf{u}_t + (\mathbf{u} \cdot
abla)\mathbf{u} +
abla \mathbf{p} = \mathbf{0}$

Basic conservation laws:

- Kinetic energy: $\Theta = \frac{1}{2}\mathbf{u}^2$.
- Momentum / generalized momentum: $\Theta = f(t)u^i$, i = 1, 2, 3.
- Angular momentum: $\Theta = (\mathbf{r} \times \mathbf{u})^i$, i = 1, 2, 3.

イロト イヨト イヨト イ

Conservation of Helicity

Euler Equations in vorticity formulation:

$$abla \cdot \mathbf{u} = \mathbf{0}, \quad \boldsymbol{\omega} = \nabla \times \mathbf{u},$$
 $\boldsymbol{\omega}_t + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) = \mathbf{0}.$

• Vorticity is conserved:
$$\Theta = \omega^{i}$$
, $i = 1, 2, 3$.

Helicity:

$$h = \mathbf{u} \cdot \boldsymbol{\omega}$$

Conservation of Helicity

Euler Equations in vorticity formulation:

$$abla \cdot \mathbf{u} = 0, \quad \boldsymbol{\omega} = \nabla \times \mathbf{u},$$
 $\boldsymbol{\omega}_t + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) = 0.$

• Vorticity is conserved:
$$\Theta = \omega^i$$
, $i = 1, 2, 3$.

Helicity:

 $h = \mathbf{u} \cdot \boldsymbol{\omega}.$

Conservation:

$$D_t(h) + \nabla \cdot (\mathbf{u} \times \nabla E + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0,$$

where total energy density is

$$E = \frac{1}{2} |\mathbf{u}|^2 + p = \frac{1}{2} \left((u^r)^2 + (u^\eta)^2 + (u^\xi)^2 \right) + p.$$

Conservation of Enstrophy

Euler classical two-component plane flow:

$$u^{z} = \omega^{x} = \omega^{y} = 0;$$

$$\begin{cases} (u^{x})_{x} + (u^{y})_{y} = 0, \\ (u^{x})_{t} + u^{x}(u^{x})_{x} + u^{y}(u^{x})_{y} = -p_{x}, \\ (u^{y})_{t} + u^{x}(u^{y})_{x} + u^{y}(u^{y})_{y} = -p_{y}; \end{cases}$$

$$\begin{cases} \omega^{z} + (u^{x})_{y} - (u^{y})_{x} = 0, \\ (\omega^{z})_{t} + u^{x}(\omega^{z})_{x} + u^{y}(\omega^{z})_{y} = 0. \end{cases}$$

Euler classical two-component plane flow:

$$\omega^z = \omega^x = \omega^y = 0;$$

$$\begin{cases} (u^{x})_{x} + (u^{y})_{y} = 0, \\ (u^{x})_{t} + u^{x}(u^{x})_{x} + u^{y}(u^{x})_{y} = -p_{x}, \\ (u^{y})_{t} + u^{x}(u^{y})_{x} + u^{y}(u^{y})_{y} = -p_{y}; \end{cases} \\ \begin{cases} \omega^{z} + (u^{x})_{y} - (u^{y})_{x} = 0, \\ (\omega^{z})_{t} + u^{x}(\omega^{z})_{x} + u^{y}(\omega^{z})_{y} = 0. \end{cases}$$

Enstrophy Conservation

• Enstrophy:
$$\mathcal{E} = |\boldsymbol{\omega}|^2 = (\omega^z)^2$$
.

• Material conservation law:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E} = \mathrm{D}_t \ \mathcal{E} + \mathrm{D}_x \ (u^{\mathsf{x}}\mathcal{E}) + \mathrm{D}_y \ (u^{\mathsf{y}}\mathcal{E}) = \mathbf{0}.$$

• Was only known to hold for plane flows, (2+1)-dimensions.

<ロト </p>

Navier-Stokes Equations equations in 3 + 1 dimensions

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} - \nu \nabla^2 \mathbf{u} = 0.$$

Vorticity formulation:

$$abla \cdot \mathbf{u} = \mathbf{0}, \quad \boldsymbol{\omega} =
abla imes \mathbf{u},$$
 $\boldsymbol{\omega}_t +
abla imes (\boldsymbol{\omega} imes \mathbf{u}) -
u
abla^2 \boldsymbol{\omega} = \mathbf{0}.$

Basic conservation laws:

- Momentum / generalized momentum: $\Theta = f(t)u^i$, i = 1, 2, 3.
- Angular momentum: $\Theta = (\mathbf{r} \times \mathbf{u})^i$, i = 1, 2, 3.
- Vorticity: $\Theta = \omega^i$, i = 1, 2, 3.

Helical Coordinates

• Cylindrical coordinates: (r, φ, z) . Helical coordinates: (r, η, ξ)

$$\xi = az + b\varphi, \quad \eta = a\varphi - b\frac{z}{r^2}, \qquad a, b = \text{const}, \quad a^2 + b^2 > 0.$$

Orthogonal Basis

$$\mathbf{e}_r = \frac{\nabla r}{|\nabla r|}, \quad \mathbf{e}_{\xi} = \frac{\nabla \xi}{|\nabla \xi|}, \quad \mathbf{e}_{\perp \eta} = \frac{\nabla_{\perp} \eta}{|\nabla_{\perp} \eta|} = \mathbf{e}_{\xi} \times \mathbf{e}_r.$$

• Scaling factors: $H_r = 1, H_\eta = r, H_\xi = B(r), \qquad B(r) = \frac{r}{\sqrt{a^2r^2 + b^2}}.$

Vector expansion

$$\mathbf{u} = u^r \mathbf{e}_r + u^{\varphi} \mathbf{e}_{\varphi} + u^z \mathbf{e}_z = u^r \mathbf{e}_r + u^{\eta} \mathbf{e}_{\perp \eta} + u^{\xi} \mathbf{e}_{\xi}.$$
$$u^{\eta} = \mathbf{u} \cdot \mathbf{e}_{\perp \eta} = B\left(au^{\varphi} - \frac{b}{r}u^z\right), \qquad u^{\xi} = \mathbf{u} \cdot \mathbf{e}_{\xi} = B\left(\frac{b}{r}u^{\varphi} + au^z\right).$$

Helical invariance: generalizes axal and translational invariance

- Helical coordinates: r, $\xi = az + b\varphi$, $\eta = a\varphi bz/r^2$.
- General helical symmetry: $f = f(r, \xi)$, $a, b \neq 0$.
- Axial: a = 1, b = 0. *z*-Translational: a = 0, b = 1.

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} - \nu \nabla^2 \mathbf{u} = 0.$$

Continuity:

$$\frac{1}{r}u^{r}+(u^{r})_{r}+\frac{1}{B}(u^{\xi})_{\xi}=0$$

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

r-momentum:

$$(u')_{t} + u'(u')_{r} + \frac{1}{B}u^{\xi}(u')_{\xi} - \frac{B^{2}}{r}\left(\frac{b}{r}u^{\xi} + au^{\eta}\right)^{2} = -p_{r}$$
$$+ \nu \left[\frac{1}{r}(r(u')_{r})_{r} + \frac{1}{B^{2}}(u')_{\xi\xi} - \frac{1}{r^{2}}u' - \frac{2bB}{r^{2}}\left(a(u^{\eta})_{\xi} + \frac{b}{r}(u^{\xi})_{\xi}\right)\right]$$

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

η -momentum:

$$(u^{\eta})_{t} + u^{r}(u^{\eta})_{r} + \frac{1}{B}u^{\xi}(u^{\eta})_{\xi} + \frac{a^{2}B^{2}}{r}u^{r}u^{\eta}$$

= $\nu \left[\frac{1}{r}(r(u^{\eta})_{r})_{r} + \frac{1}{B^{2}}(u^{\eta})_{\xi\xi} + \frac{a^{2}B^{2}(a^{2}B^{2}-2)}{r^{2}}u^{\eta} + \frac{2abB}{r^{2}}\left((u^{r})_{\xi} - \left(Bu^{\xi}\right)_{r}\right)\right]$

イロト イヨト イヨト イ

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

ξ -momentum:

$$(u^{\xi})_{t} + u^{r}(u^{\xi})_{r} + \frac{1}{B}u^{\xi}(u^{\xi})_{\xi} + \frac{2abB^{2}}{r^{2}}u^{r}u^{\eta} + \frac{b^{2}B^{2}}{r^{3}}u^{r}u^{\xi} = -\frac{1}{B}p_{\xi}$$
$$+ \nu \left[\frac{1}{r}(r(u^{\xi})_{r})_{r} + \frac{1}{B^{2}}(u^{\xi})_{\xi\xi} + \frac{a^{4}B^{4} - 1}{r^{2}}u^{\xi} + \frac{2bB}{r}\left(\frac{b}{r^{2}}(u^{r})_{\xi} + \left(\frac{aB}{r}u^{\eta}\right)_{r}\right)\right]$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

Vorticity definition:

$$\omega^{r} = -\frac{1}{B}(u^{\eta})_{\xi},$$

$$\omega^{\eta} = \frac{1}{B}(u^{r})_{\xi} - \frac{1}{r}\left(ru^{\xi}\right)_{r} - \frac{2abB^{2}}{r^{2}}u^{\eta} + \frac{a^{2}B^{2}}{r}u^{\xi},$$

$$\omega^{\xi} = (u^{\eta})_{r} + \frac{a^{2}B^{2}}{r}u^{\eta}$$

イロト イヨト イヨト イ

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

r-Momentum:

$$(\omega')_t + u_r(\omega')_r + \frac{1}{B}u^{\xi}(\omega')_{\xi} = \omega'(u')_r + \frac{1}{B}\omega^{\xi}(u')_{\xi} + \nu \left[\frac{1}{r}(r(\omega')_r)_r + \frac{1}{B^2}(\omega')_{\xi\xi} - \frac{1}{r^2}\omega' - \frac{2bB}{r^2}\left(a(\omega^{\eta})_{\xi} + \frac{b}{r}(\omega^{\xi})_{\xi}\right)\right]$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

η -Momentum:

$$\begin{aligned} (\omega^{\eta})_{t} + u^{r}(\omega^{\eta})_{r} + \frac{1}{B}u^{\xi}(\omega^{\eta})_{\xi} \\ &- \frac{a^{2}B^{2}}{r}(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}) + \frac{2abB^{2}}{r^{2}}(u^{\xi}\omega^{r} - u^{r}\omega^{\xi}) = \omega^{r}(u^{\eta})_{r} + \frac{1}{B}\omega^{\xi}(u^{\eta})_{\xi} \\ &+ \nu \left[\frac{1}{r}(r(\omega^{\eta})_{r})_{r} + \frac{1}{B^{2}}(\omega^{\eta})_{\xi\xi} + \frac{a^{2}B^{2}(a^{2}B^{2} - 2)}{r^{2}}\omega^{\eta} + \frac{2abB}{r^{2}}\left((\omega^{r})_{\xi} - \left(B\omega^{\xi}\right)_{r}\right)\right] \end{aligned}$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

ξ -Momentum:

$$(\omega^{\xi})_{t} + u^{r}(\omega^{\xi})_{r} + \frac{1}{B}u^{\xi}(\omega^{\xi})_{\xi} + \frac{1 - a^{2}B^{2}}{r}(u^{\xi}\omega^{r} - u^{r}\omega^{\xi}) = \omega^{r}(u^{\xi})_{r} + \frac{1}{B}\omega^{\xi}(u^{\xi})_{\xi} + \nu\left[\frac{1}{r}(r(\omega^{\xi})_{r})_{r} + \frac{1}{B^{2}}(\omega^{\xi})_{\xi\xi} + \frac{a^{4}B^{4} - 1}{r^{2}}\omega^{\xi} + \frac{2bB}{r}\left(\frac{b}{r^{2}}(\omega^{r})_{\xi} + \left(\frac{aB}{r}\omega^{\eta}\right)_{r}\right)\right]$$

Conservation laws

Independent variables: $\mathbf{x} = (t, x, y, ...)$; dependent variables: $\mathbf{q} = (q^1, q^2, ...)$.

Local conservation law:

$$\mathrm{D}_t\Theta+\operatorname{div}_{x,y,\ldots}\Phi=0.$$

Density: $\Theta(\mathbf{x}, \mathbf{q}, ...)$. Spatial fluxes: $\Phi = (\Phi^1(\mathbf{x}, \mathbf{q}, ...), \Phi^2(\mathbf{x}, \mathbf{q}, ...), \cdots)$.

Conserved quantities

$$D_t \int_V \Theta \ dV = 0.$$

Material conservation laws

For incompressible flows with velocity field ${\bf u}, ~{\rm div}\, {\bf u}=0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Theta \equiv \mathrm{D}_t\Theta + \mathbf{u}\cdot\nabla\Theta = \mathrm{D}_t\Theta + \dim_{x,y,\dots}\left(\Theta\mathbf{u}\right) = \mathbf{0}.$$

A. Cheviakov (U. Saskatchewan)

イロン 人間 とくほとく

Applications to PDEs

- Direct physical meaning. Constants of motion.
- Analysis: existence, uniqueness, stability.
- Nonlocally related PDE systems, exact solutions. Potentials, stream functions, etc.
- An infinite number of conservation laws can indicate integrability / linearization.
- Fully conserved form of equations is required by modern numerical methods, e.g., Discontinuous Galerkin.

Image: A match the second s

Direct Construction of Local Divergence-Type Conservation Laws

Direct Construction Method [Anco, Bluman (1997,2002)]

- Given: a PDE system $R^{\sigma}[\mathbf{u}] = R^{\sigma}(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{k}\mathbf{u}) = 0, \ \sigma = 1, \dots, N.$
- Specify dependence of multipliers: $\Lambda_{\sigma} = \Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, ...), \ \sigma = 1, ..., N.$
- Solve the determining equations for arbitrary $\mathbf{U}(\mathbf{x})$ (off of solutions) $\mathbf{E}_{U^j}(\Lambda_{\sigma}[\mathbf{U}]R^{\sigma}[\mathbf{U}]) \equiv 0, \quad j = 1, \dots, m.$
- Find the corresponding fluxes $\Phi^i(\mathbf{x}, \mathbf{U}, ...)$ satisfying $\Lambda_{\sigma} R^{\sigma} \equiv D_i \Phi^i$.
- \bullet Each set multipliers yields a local conservation law holding on solutions $\mathbf{u}(\mathbf{x})$:

$$D_i \Phi^i(\mathbf{x}, \mathbf{u}, ...) = \mathbf{0}.$$

• The Direct Method is **complete** for PDE systems that can be written in a **solved form**.

・ロン ・日 ・ ・ 日 ・ ・ 日

For helically symmetric flows:

• Seek local conservation laws

$$\frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{\Phi} \equiv \frac{\partial \Theta}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \Phi^r \right) + \frac{1}{B} \frac{\partial \Phi^{\xi}}{\partial \xi} = 0$$

using divergence expressions

$$\frac{\partial\Gamma^{1}}{\partial t} + \frac{\partial\Gamma^{2}}{\partial r} + \frac{\partial\Gamma^{3}}{\partial\xi} = r \left[\frac{\partial}{\partial t} \left(\frac{\Gamma^{1}}{r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\Gamma^{2}}{r} \right) + \frac{1}{B} \frac{\partial}{\partial\xi} \left(\frac{B}{r} \Gamma^{3} \right) \right] = 0,$$
$$\Theta \equiv \frac{\Gamma^{1}}{r}, \quad \Phi^{r} \equiv \frac{\Gamma^{2}}{r}, \quad \Phi^{\xi} \equiv \frac{B}{r} \Gamma^{3}.$$

- 1st-order multipliers in primitive variables.
- Oth-order multipliers in vorticity formulation.

i.e.,

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Primitive variables - EP1 - Kinetic energy

$$\Theta = K, \quad \Phi^r = u^r(K+p), \quad \Phi^{\xi} = u^{\xi}(K+p), \qquad K = \frac{1}{2}|\mathbf{u}|^2.$$

Primitive variables - EP2 - z-momentum

$$\Theta = B\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) = u^{z}, \quad \Phi^{r} = u^{r}u^{z}, \quad \Phi^{\xi} = u^{\xi}u^{z} + aBp.$$

Primitive variables - EP3 - z-angular momentum

$$\Theta = rB\left(au^{\eta} + \frac{b}{r}u^{\xi}\right) = ru^{\varphi}, \quad \Phi^{r} = ru^{r}u^{\varphi}, \quad \Phi^{\xi} = ru^{\xi}u^{\varphi} + bBp.$$

Primitive variables - EP4 - Generalized momenta/angular momenta (NEW)

$$\Theta = F\left(\frac{r}{B}u^{\eta}\right), \quad \Phi^{r} = u^{r}F\left(\frac{r}{B}u^{\eta}\right), \quad \Phi^{\xi} = u^{\xi}F\left(\frac{r}{B}u^{\eta}\right),$$

where $F(\cdot)$ is an arbitrary function.

Vorticity formulation - EV1 - Conservation of helicity

Helicity:

$$h = \mathbf{u} \cdot \boldsymbol{\omega} = u^r \boldsymbol{\omega}^r + u^\eta \boldsymbol{\omega}^\eta + u^\xi \boldsymbol{\omega}^\xi.$$

The conservation law:

$$\begin{split} \Theta &= h, \\ \Phi^{r} &= \omega^{r} \left(E - (u^{\eta})^{2} - \left(u^{\xi} \right)^{2} \right) + u^{r} \left(h - u^{r} \omega^{r} \right), \\ \Phi^{\xi} &= \omega^{\xi} \left(E - (u^{r})^{2} - (u^{\eta})^{2} \right) + u^{\xi} \left(h - u^{\xi} \omega^{\xi} \right), \end{split}$$

where

$$E = \frac{1}{2} |\mathbf{u}|^2 + p = \frac{1}{2} \left((u^r)^2 + (u^\eta)^2 + (u^\xi)^2 \right) + p$$

is the total energy density. In vector notation:

$$\frac{\partial}{\partial t}h + \nabla \cdot (\mathbf{u} \times \nabla E + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0.$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Vorticity formulation - EV2 - Generalized helicity (NEW)

Helicity:

$$h = \mathbf{u} \cdot \boldsymbol{\omega} = u^r \boldsymbol{\omega}^r + u^\eta \boldsymbol{\omega}^\eta + u^\xi \boldsymbol{\omega}^\xi.$$

$$\frac{\partial}{\partial t}\left(hH\left(\frac{r}{B}u^{\eta}\right)\right) + \nabla \cdot \left[H\left(\frac{r}{B}u^{\eta}\right)\left[\mathbf{u}\times\nabla E + (\boldsymbol{\omega}\times\mathbf{u})\times\mathbf{u}\right] + Eu^{\eta}\mathbf{e}_{\perp\eta}\times\nabla H\left(\frac{r}{B}u^{\eta}\right)\right] = 0$$

for an arbitrary function $H = H(\cdot)$.

・ロン ・回 と ・ ヨン・

Vorticity formulation - EV3 - Vorticity conservation laws (NEW)

$$\begin{split} \Theta &= \frac{Q(t)}{r} \omega^{\varphi}, \\ \Phi^{r} &= \frac{1}{r} \left(Q(t) [u^{r} \omega^{\varphi} - \omega^{r} u^{\varphi}] + Q^{\prime}(t) u^{z} \right), \\ \Phi^{\xi} &= -\frac{aB}{r} \left(Q(t) \left[u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right] + Q^{\prime}(t) u^{r} \right) \end{split}$$

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - Vorticity conservation law (NEW)

$$\Theta = -rB\left(a^{3}\omega^{\eta} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right),$$

$$\Phi^{r} = -2a^{2}u^{r}u^{z} - a^{3}Br\left(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}\right) + \frac{Bb^{3}}{r^{2}}\left(u^{r}\omega^{\xi} - u^{\xi}\omega^{r}\right),$$

$$\Phi^{\xi} = a^{3}B\left[\left(u^{r}\right)^{2} + \left(u^{\eta}\right)^{2} - \left(u^{\xi}\right)^{2} + r\left(u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta}\right)\right] + \frac{2a^{2}bB}{r}u^{\eta}u^{\xi}.$$

Vorticity formulation - EV5 - Vorticity conservation law (NEW)

$$\begin{split} \Theta &= -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + a^3 r^4 \left(-\frac{b}{r} \omega^{\eta} + a \omega^{\xi} \right) \right) = -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + \frac{a^3 r^4}{B} \omega^z \right), \\ \Phi^r &= a^3 r B \left(2u^r \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) + b \left(u^r \omega^{\eta} - u^{\eta} \omega^r \right) \right) \\ &- \frac{a^4 r^4 + a^2 r^2 b^2 + b^4}{r \sqrt{a^2 r^2 + b^2}} \left(u^r \omega^{\xi} - u^{\xi} \omega^r \right), \\ \Phi^{\xi} &= -a^3 b B \left((u^r)^2 + (u^{\eta})^2 - (u^{\xi})^2 + r \left(u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right) \right) + 2a^4 r B u^{\eta} u^{\xi}. \end{split}$$

Vorticity formulation - EV6 - Vorticity conservation law (NEW)

$$abla \cdot \mathbf{\Phi} = \mathbf{0}, \quad \mathbf{\Phi}^r = \mathbf{N}\omega^r - \frac{1}{B}\mathbf{N}_{\xi}u^{\eta}, \quad \mathbf{\Phi}^{\xi} = \mathbf{N}\omega^{\xi},$$

for an arbitrary $N(t,\xi)$.

• Generalization of the obvious divergence expression $\nabla \cdot (G(t)\omega) = 0$.

Primitive variables - NSP1 - z-momentum.

$$\Theta = u^z, \quad \Phi^r = u^r u^z - \nu(u^z)_r, \quad \Phi^{\xi} = u^{\xi} u^z + aBp - \frac{\nu}{B}(u^z)_{\xi}.$$

Primitive variables - NSP2 - generalized momentum (NEW)

$$\begin{split} \Theta &= \frac{r}{B} u^{\eta}, \\ \Phi^{r} &= \frac{r}{B} u^{r} u^{\eta} - \nu \left[-2aB \left(au^{\eta} + 2\frac{b}{r} u^{\xi} \right) + \left(\frac{r}{B} u^{\eta} \right)_{r} \right] \\ &= \frac{r}{B} u^{r} u^{\eta} - \nu \left[-2au^{\varphi} + \left(\frac{r}{B} u^{\eta} \right)_{r} \right], \\ \Phi^{\xi} &= \frac{r}{B} u^{\eta} u^{\xi} - \nu \frac{1}{B} \left[\frac{2abB^{2}}{r} u^{r} + \left(\frac{r}{B} u^{\eta} \right)_{\xi} \right]. \end{split}$$

イロト イヨト イヨト イ

Vorticity formulation - NSV1 - Family of vorticity conservation laws (NEW)

$$\begin{split} \Theta &= \quad \frac{Q(t)}{r} B\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) = \frac{Q(t)}{r}\omega^{\varphi}, \\ \Phi^{r} &= \quad \frac{1}{r} \left\{ Q(t) \left[u^{r} B\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) - \omega^{r} B\left(au^{\eta} + \frac{b}{r}u^{\xi}\right) \right] + Q'(t) B\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) \\ &\quad -Q(t)\nu \left[\frac{aB}{r}\omega^{\eta} + \frac{b^{2}B}{r(a^{2}r^{2} + b^{2})} \left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) + B\left(a\omega^{\eta}_{r} + \frac{b}{r}\omega^{\xi}_{r}\right) \right] \right\}, \\ \Phi^{\xi} &= \quad -\frac{B}{r} \left\{ aQ(t) \left[u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta} \right] + aQ'(t)u^{r} \\ &\quad + \frac{Q(t)}{r^{3}}\nu \left[\frac{r^{3}}{B} \left(a\omega^{\eta}_{\xi} + \frac{b}{r}\omega^{\xi}_{\xi}\right) + 2br\omega^{r} \right] \right\}, \end{split}$$

for an arbitrary function where Q(t).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vorticity formulation - NSV2 - Vorticity conservation law (NEW)

$$\begin{split} \Theta &= -rB\left(a^{3}\omega^{\eta} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right), \\ \Phi^{r} &= -\frac{B}{r^{2}}\left(a^{3}r^{3}\left(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}\right) - b^{3}\left(u^{r}\omega^{\xi} - u^{\xi}\omega^{r}\right)\right) - 2a^{2}Bu^{r}\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) \\ &- \frac{B}{r^{2}}\nu\left[\frac{r^{2}}{B^{2}}\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) - r^{3}\left(a^{3}\omega^{\eta}_{r} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right) + abB^{2}r\left(\frac{b^{3}}{r^{3}}\omega^{\eta} + a^{3}\omega^{\xi}\right)\right], \\ \Phi^{\xi} &= a^{3}B\left((u^{r})^{2} + (u^{\eta})^{2} - (u^{\xi})^{2} + r\left(u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta}\right)\right) + \frac{2a^{2}bB}{r}u^{\eta}u^{\xi} \\ &+ \frac{2a^{2}bB}{r}\nu\left[\left(1 - \frac{b^{2}}{a^{2}r^{2}}\right)\omega^{r} + \frac{r^{2}}{2a^{2}bB}\left(a^{3}\omega^{\eta}_{\xi} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right)\right]. \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vorticity formulation - NSV3 - Vorticity conservation law (NEW)

$$\begin{split} \Theta &= -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + a^3 r^4 \left(-\frac{b}{r} \omega^{\eta} + a \omega^{\xi} \right) \right) = -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + \frac{a^3 r^4}{B} \omega^{z} \right), \\ \Phi^r &= a^3 r B \left(2u^r \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) + b \left(u^r \omega^{\eta} - u^{\eta} \omega^r \right) \right) \\ &- \frac{a^4 r^4 + a^2 r^2 b^2 + b^4}{r \sqrt{a^2 r^2 + b^2}} \left(u^r \omega^{\xi} - u^{\xi} \omega^r \right) \\ &+ \nu \left[4a^3 B \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) - a^3 b r B (\omega^{\eta})_r + \frac{B}{r^3} \left(b^4 - a^4 r^4 - \frac{a^6 r^6}{a^2 r^2 + b^2} \right) \omega^{\xi} \\ &+ \frac{B}{r^2} \left(a^4 r^4 + a^2 r^2 b^2 + b^4 \right) \left(\omega^{\xi} \right)_r + \frac{ab}{B} \left(2 + \frac{a^4 r^4}{(a^2 r^2 + b^2)^2} \right) \omega^{\eta} \right], \\ \Phi^{\xi} &= -a^3 b B \left((u^r)^2 + (u^{\eta})^2 - (u^{\xi})^2 + r \left(u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right) \right) + 2a^4 r B u^{\eta} u^{\xi} \\ &+ \nu \left[\frac{1}{r^2} \left(a^4 r^4 + a^2 r^2 b^2 + b^4 \right) \left(\omega^{\xi} \right)_{\xi} - a^3 b r (\omega^{\eta})_{\xi} - \frac{4a^3 b B}{r} u^r + \frac{2b^4 B}{r^3} \omega^r \right]. \end{split}$$

・ロン ・回 と ・ ヨン・

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

Generalized enstrophy for inviscid axisymmetric flow (NEW)

$$\Theta = S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{r} = u^{r}S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{z} = u^{z}S\left(\frac{1}{r}\omega^{\varphi}\right)$$

for arbitrary $S(\cdot)$.

イロト イヨト イヨト イヨ

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

Generalized enstrophy for inviscid axisymmetric flow (NEW)

$$\Theta = S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{r} = u^{r}S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{z} = u^{z}S\left(\frac{1}{r}\omega^{\varphi}\right)$$

for arbitrary $S(\cdot)$.

• Several additional new conservation laws for plane and axisymmetric, inviscid and viscous flows (details in paper).

イロト イヨト イヨト イヨト

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for general inviscid helical 2-component flow (NEW)

$$\Theta = T\left(\frac{B}{r}\omega^{\eta}\right), \quad \Phi^{r} = u^{r}T\left(\frac{B}{r}\omega^{\eta}\right), \quad \Phi^{\xi} = u^{\xi}T\left(\frac{B}{r}\omega^{\eta}\right),$$

for an arbitrary $T(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t} T\left(\frac{B}{r}\omega^{\eta}\right) = 0.$$

Image: A math a math

Helically-Invariant Equations

- Full three-component Euler and Navier-Stokes equations written in helically-invariant form.
- Two-component reductions.

New Conservation Laws

- Three-component Euler:
 - Generalized momenta. Generalized helicity. Additional vorticity CLs.
- Three-component Navier-Stokes:
 - New CLs in primitive and vorticity formulation.
- Two-component flows:
 - Infinite set of enstrophy-related vorticity CLs (inviscid case).
 - New CLs in viscous and inviscid case, for plane and axisymmetric flows.

Open problems

- Understand the nature of the new CLs.
- Explore the usefulness of the new CLs for numerical simulation and analysis (e.g., computing stability conditions for equilibria).

Some references

Batchelor, G.K. (2000).

An Introduction to Fluid Dynamics, Cambridge University Press.

Anco, S.C. and Bluman, G.W. (2002).

Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. *Eur. J. Appl. Math.* **13**, 545–566.

Cheviakov, A.F. (2007).

GeM software package for computation of symmetries and conservation laws of differential equations. *Comput. Phys. Commun.* **176**, 48–61.

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013).

New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. J. Fluid Mech. **721**, 340–366.

< ロ > < 同 > < 三 > < 三

Some references

Batchelor, G.K. (2000).

An Introduction to Fluid Dynamics, Cambridge University Press.

Anco, S.C. and Bluman, G.W. (2002).

Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. *Eur. J. Appl. Math.* **13**, 545–566.

Cheviakov, A.F. (2007).

GeM software package for computation of symmetries and conservation laws of differential equations. *Comput. Phys. Commun.* **176**, 48–61.

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013).

New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. J. Fluid Mech. **721**, 340–366.

Thank you for your attention!

• • • • • • • • • • • •