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Examples of Helical Flows in Nature

Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

the two blades at different pitch angles, the two tip

vortex spirals appear to have each their own path and

transport velocity. After a few revolutions, one tip

vortex catches up with the other and the two spirals

become entwined into one. Unluckily, there are no

recordings of this phenomena.

During the full scale experiment of NREL at the

NASA-Ames wind tunnel, also flow visualisation were

performed with smoke emanated from the tip (see

Fig. 7). With this kind of smoke trails, it is not clear

whether the smoke trail reveals the path of the tip vortex

or some streamline in the tip region. Also, these

experiments have been performed at very low thrust

values, so there is hardly any wake expansion.

A different set-up to visually reveal some properties of

the wake was utilised by Shimizu [12] with a tufts screen

(see Fig. 8).

Visualisation of the flow pattern over the blade is

mostly done with tufts. This is a well-known technique

and applied to both indoor and field experiments (see

[16–20,25–27]), however since blade aerodynamics is

ARTICLE IN PRESS

Fig. 3. Axial force coefficient as function of tip-speed ratio, l;
with tip pitch angle, Y; as a parameter (from [15]).

Fig. 4. Flow visualisation with smoke, revealing the tip vortices

(from [16]).

Fig. 5. Flow visualisation with smoke, revealing smoke trails

being ‘sucked’ into the vortex spirals (from [16]).

Fig. 6. Flow visualisation experiment at TUDelft, showing two

revolutions of tip vortices for a two-bladed rotor (from [24]).

Fig. 7. Flow visualisation with smoke grenade in tip, revealing

smoke trails for the NREL turbine in the NASA-Ames wind

tunnel (from Hand [13]).

L.J. Vermeer et al. / Progress in Aerospace Sciences 39 (2003) 467–510474
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Examples of Helical Flows in Nature

Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]
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Examples of Helical Flows in Nature

Helical water flow past a propeller
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Examples of Helical Flows in Nature

Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997]
AIAA-2002-2968 

10 
 

a) b)

c) d)

e)

a)a) b)b)

c)c) d)d)

e)

 
Fig. 9: Detached Eddy Simulation results of the 70° delta wing at α = 27° and Rec = 1.56x106 for five different grids. Iso-
surfaces of vorticity colored by spanwise vorticity component are presented.  a) Coarse Grid-1.2M cells, b) Medium Grid-2.7M 
cells, c) Fine Grid-6.7M cells, d) Real Fine Grid-10.7M cells, e) Adavtive Mesh Refinement Grid-3.2M cells. 
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Examples of Helical Flows in Nature

Helical blood flow patterns in the aortic arch [Kilner et al, 1993]

2238 Circulation Vol 88, No 5, Part 1 November 1993

FIG 2. Temporal development of flow depicted by three different types of cine image. The four images in each line span
the systolic period in subject 4, the numbers representing the gating delay in milliseconds from the R wave. Upper row,
Cine images in which brightness is proportional to signal intensity. Brightest signal is seen where fresh blood moves into
the slice. There is only slight local signal loss in the region of inflow from the aortic root in early systole and after peak
systole in regions with steep velocity gradients in the upper and distal arch. Middle row, Velocity vector maps, which
display combined data from vertical and horizontal velocity maps. Highest axial flow velocities first appear close to the
inner curvature (left-hand frame), but they migrate outward through the course of systole, until at end systole, a
retrograde stream (labeled "R") arises from relatively slow blood close to the inner curvature. Right-handed rotational
flow can be identified in late systole in the right pulmonary artery. Bottom row, Through-plane velocity maps show that
helical flow in the upper arch begins after forward flow and persists after it has ceased. In the descending aorta, the third
(late systolic) frame shows a central region of flow away from the viewer (light) with darker regions on either side, toward
the viewer, indicating paired, counter-rotating helices. The inner helical movement must arise through blood curling
forward from the farther wall to fill the space left by separation of streamlines from the inner curvature. By the end of
systole, this inner helix has come to dominate, resulting in slight anticlockwise (from above) rotation in the descending
aorta.

Flow vector components in planes aligned with and
transecting the upper arch were mapped by magnetic
resonance, as described above. Both continuous flow
and pulsatile flow experiments were performed through
flat and twisted arrangements of the arch. For cine
imaging of the cycle of pulsatile flow, gating (equivalent
to cardiac gating) was achieved through an electric
circuit closed at each contact of the driving rotor arm
with a second conductor. Sixteen frames were acquired
per cycle.

Continuous flow was maintained at a rate of 12 L/min.
Pulsation was superimposed at a rate of 30 beats per
minute, adjusted to give a peak of forward flow rising to

28 L/min (flat arch experiment) and 22 L/min (twisted
arch experiment), with a slight reversal of net flow in the
diastolic phase. Peak axial velocities during the systolic
phase of pulsatile flow reached 0.5 m/s.

Results
The images in Figs 1 through 6 have been selected to

illustrate the principle in vivo flow findings, some of
which are schematically drawn in Fig 7. Before we
describe them, however, we will draw attention to
certain anatomic features and define the terms that we
use to describe arch anatomy and patterns of flow.

 at University of Oregon on March 20, 2013http://circ.ahajournals.org/Downloaded from 

Kilner et al Helical Aortic Flows Mapped by Magnetic Resonance 2241

FIG 6. Left ventricular outflow and ascending aorta, viewed from the front (subject 1). Through-plane velocities are
shown above (dark toward, light away; PT, pulmonary trunk). In-plane vectors are shown below, in three late to end-
systolic frames (numbers represent gating delays in milliseconds from R wave). Through-plane (helical) flow is not
obvious in the ventricular outflow tract but develops in the ascending aorta, with a light stream sweeping away from the
viewer along the inner curvature. This is also the location of a retrograde movement at end systole (labeled R). Local
recirculation can be identified in the left coronary cusp, with the retrograde stream extending down to this cusp in the final
frame.

The term skewed will be used to refer to an asym-
metric axial velocity profile in which the peak axial
velocity is located closer to one wall than the other.

Streamlines are imaginary lines through the flow field
at a given moment in time, aligned at all points with the
local velocity vector.

FIG 7. Schematic drawings to illustrate typical aortic arch flow development. a, Early systole. During acceleration,
highest axial velocities begin along the shortest flow path, close to the inner curvature (cylindrical arrows). Axially directed
flows through the remainder of the arch and its branches have not been drawn. b, Mid to late systole. The highest velocity
stream migrates outward, and secondary helical flows develop. Where streamlines separate from the inner wall of the
distal arch, the separation zone is filled by oblique retrograde streamlines, curling back toward the viewer from the further
wall. c, End systole. Combinations of rotational and recirculating secondary flows persist after aortic valve closure. The
drawing is intended to indicate averaged streamlines, although instability of flow and beat-to-beat variation is likely at end
systole.

 at University of Oregon on March 20, 2013http://circ.ahajournals.org/Downloaded from 
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Examples of Helical Flows in Nature

Helical plasma flows in tokamaks
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Examples of Helical Flows in Nature

Helical plasma structures in astrophysics

UW, 22 Nov.2005 6

Astrophysical and terrestrial applications of plasma

Astrophysical / geophysical applications

 Star formation, accretion disks, jets

 Astrophysical jets

 Solar flares; solar wind

 Earth magnetosheath

M87 Energetic Jet 

Length: 5,000 light-years

Star accretion disk & jet 

Earth magnetosphere 
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Examples of Helical Flows in Nature

Collimated helical plasma jet formation in a plasma discharge

UW, 22 Nov.2005 5

Astrophysical and terrestrial applications of plasma

Laboratory plasmas

 E.g.: Collimated jet formation 

S. You et al, PRL 95, 045002 (2005)
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Incompressible Fluid Flow Equations

Navier-Stokes Equations

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Euler/inviscid: ν = 0.

Constant-density (WLOG ρ = 1).Google Image Result for http://www.knowabouthealth.com/wp-content/up... http://www.google.ca/imgres?um=1&hl=en&client=firefox-a&rls=org.moz...

1 of 1 23/03/2013 10:00 AM
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Incompressible Fluid Flow Equations

Navier-Stokes Equations

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Euler/inviscid: ν = 0.

Constant-density (WLOG ρ = 1).

[K.M.T. Kleefsman,
MARIN, U. Groningen]
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Local Divergence-type Conservation Laws

Conservation laws

Independent variables: x = (t, x , y , ...); dependent variables: q = (q1, q2, ...).

Local conservation law: DtΘ + div
x,y,...

Φ = 0.

Density: Θ(x,q, ...). Spatial fluxes: Φ = (Φ1(x,q, ...),Φ2(x,q, ...), · · · ).

Conserved quantities

Dt

∫
V

Θ dV = 0.

Material conservation laws

For incompressible flows with velocity field u, divu = 0:

d

dt
Θ ≡ DtΘ + u · ∇Θ = DtΘ + div

x,y,...

(
Θu
)

= 0.
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Conservation Laws of Euler Equations

Euler equations in 3 + 1 dimensions

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Basic conservation laws:

Kinetic energy: Θ = 1
2
u2.

Momentum / generalized momentum: Θ = f (t)ui , i = 1, 2, 3.

Angular momentum: Θ = (r× u)i , i = 1, 2, 3.
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Conservation of Helicity

Euler Equations in vorticity formulation:

∇ · u = 0, ω = ∇× u,

ωt +∇× (ω × u) = 0.

Vorticity is conserved: Θ = ωi , i = 1, 2, 3.

Helicity:

h = u · ω.
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Conservation of Helicity

Euler Equations in vorticity formulation:

∇ · u = 0, ω = ∇× u,

ωt +∇× (ω × u) = 0.

Vorticity is conserved: Θ = ωi , i = 1, 2, 3.

Helicity:

h = u · ω.

Conservation:

Dt (h) +∇ · (u×∇E + (ω × u)× u) = 0,

where total energy density is

E =
1

2
|u|2 + p =

1

2

(
(ur )2 + (uη)2 +

(
uξ
)2
)

+ p.
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Conservation of Enstrophy

Euler classical two-component plane flow:

uz = ωx = ωy = 0;


(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ;{
ωz + (ux )y − (uy )x = 0,
(ωz )t + ux (ωz )x + uy (ωz )y = 0.

From Wikipedia, the free encyclopedia

No higher resolution available.
Vorticity_Figure_03_c.png (200 × 200 pixels, file size: 10 KB, MIME type: image/png)

This is a file from the Wikimedia Commons. Information from its description page there is
shown below.

Commons is a freely licensed media file repository. You can help.

Description English: Relative velocities around a point in File:Vorticity Figure 03 a-m

Date 2 October 2012, 10:52:42

Source Own work

Author Jorge Stolfi

I, the copyright holder of this work, hereby publish it under the following license:

This file is licensed under the Creative Commons Attribution-Share Alike
3.0 Unported (//creativecommons.org/licenses/by-sa/3.0/deed.en) license.

You are free:
to share – to copy, distribute and transmit the work
to remix – to adapt the work

Under the following conditions:
attribution – You must attribute the work in the manner
specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).
share alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

File:Vorticity Figure 03 c.png - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/File:Vorticity_Figure_03_c.png

1 of 2 23/03/2013 3:57 PM
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Conservation of Enstrophy

Euler classical two-component plane flow:

uz = ωx = ωy = 0;


(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ;{
ωz + (ux )y − (uy )x = 0,
(ωz )t + ux (ωz )x + uy (ωz )y = 0.

Enstrophy Conservation

Enstrophy: E = |ω|2 = (ωz )2.

Material conservation law:

d

dt
E = Dt E + Dx (uxE) + Dy (uyE) = 0.

Was only known to hold for plane flows, (2 + 1)-dimensions.
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Conservation Laws of Navier-Stokes Equations

Navier-Stokes Equations equations in 3 + 1 dimensions

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Vorticity formulation:
∇ · u = 0, ω = ∇× u,

ωt +∇× (ω × u)− ν∇2ω = 0.

Basic conservation laws:

Momentum / generalized momentum: Θ = f (t)ui , i = 1, 2, 3.

Angular momentum: Θ = (r× u)i , i = 1, 2, 3.

Vorticity: Θ = ωi , i = 1, 2, 3.
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Helical Coordinates
New conservation laws for helical flows 5
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical Coordinates

Cylindrical coordinates: (r , ϕ, z). Helical coordinates: (r , η, ξ)

ξ = az + bϕ, η = aϕ− b
z

r 2
, a, b = const, a2 + b2 > 0.
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Helical Coordinates
New conservation laws for helical flows 5
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Orthogonal Basis

er =
∇r
|∇r | , eξ =

∇ξ
|∇ξ| , e⊥η =

∇⊥η

|∇⊥η|
= eξ × er .

Scaling factors: Hr = 1,Hη = r ,Hξ = B(r), B(r) =
r√

a2r 2 + b2
.
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Vector expansion

u = ur er + uϕeϕ + uz ez = ur er + uηe⊥η + uξeξ.

uη = u · e⊥η = B

(
auϕ − b

r
uz

)
, uξ = u · eξ = B

(
b

r
uϕ + auz

)
.
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over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical invariance: generalizes axal and translational invariance

Helical coordinates: r , ξ = az + bϕ, η = aϕ− bz/r 2.

General helical symmetry: f = f (r , ξ), a, b 6= 0.

Axial: a = 1, b = 0. z-Translational: a = 0, b = 1.
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Continuity:

1

r
ur + (ur )r +

1

B
(uξ)ξ = 0
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

r -momentum:

(ur )t + ur (ur )r +
1

B
uξ(ur )ξ − B2

r

(
b

r
uξ + auη

)2

= −pr

+ ν

[
1

r
(r(ur )r )r +

1

B2
(ur )ξξ − 1

r 2
ur − 2bB

r 2

(
a(uη)ξ +

b

r
(uξ)ξ

)]
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

η-momentum:

(uη)t + ur (uη)r +
1

B
uξ(uη)ξ +

a2B2

r
uruη

= ν

[
1

r
(r(uη)r )r +

1

B2
(uη)ξξ +

a2B2(a2B2 − 2)

r 2
uη +

2abB

r 2

(
(ur )ξ −

(
Buξ

)
r

)]
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

ξ-momentum:

(uξ)t + ur (uξ)r +
1

B
uξ(uξ)ξ +

2abB2

r 2
uruη +

b2B2

r 3
uruξ = − 1

B
pξ

+ ν

[
1

r
(r(uξ)r )r +

1

B2
(uξ)ξξ +

a4B4 − 1

r 2
uξ +

2bB

r

(
b

r 2
(ur )ξ +

(
aB

r
uη
)

r

)]
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.
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Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

Vorticity definition:

ωr = − 1

B
(uη)ξ,

ωη =
1

B
(ur )ξ − 1

r

(
ruξ
)

r
− 2abB2

r 2
uη +

a2B2

r
uξ,

ωξ = (uη)r +
a2B2

r
uη
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(ωr )t + ur (ωr )r +
1

B
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1

B
ωξ(ur )ξ

+ ν
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1

r
(r(ωr )r )r +
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

η-Momentum:

(ωη)t + ur (ωη)r +
1

B
uξ(ωη)ξ

− a2B2

r
(urωη − uηωr ) +

2abB2

r 2
(uξωr − urωξ) = ωr (uη)r +

1

B
ωξ(uη)ξ

+ ν

[
1

r
(r(ωη)r )r +

1

B2
(ωη)ξξ +

a2B2(a2B2 − 2)

r 2
ωη +

2abB

r 2

(
(ωr )ξ −

(
Bωξ

)
r
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(ωξ)t + ur (ωξ)r +
1

B
uξ(ωξ)ξ

+
1− a2B2

r
(uξωr − urωξ) = ωr (uξ)r +

1

B
ωξ(uξ)ξ

+ ν

[
1

r
(r(ωξ)r )r +

1

B2
(ωξ)ξξ +

a4B4 − 1

r 2
ωξ +

2bB

r

(
b

r 2
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Local Divergence-type Conservation Laws

Conservation laws

Independent variables: x = (t, x , y , ...); dependent variables: q = (q1, q2, ...).

Local conservation law: DtΘ + div
x,y,...

Φ = 0.

Density: Θ(x,q, ...). Spatial fluxes: Φ = (Φ1(x,q, ...),Φ2(x,q, ...), · · · ).

Conserved quantities

Dt

∫
V

Θ dV = 0.

Material conservation laws

For incompressible flows with velocity field u, divu = 0:

d

dt
Θ ≡ DtΘ + u · ∇Θ = DtΘ + div

x,y,...

(
Θu
)

= 0.
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Divergence-type Conservation Laws. Applications

Applications to PDEs

Direct physical meaning. Constants of motion.

Analysis: existence, uniqueness, stability.

Nonlocally related PDE systems, exact solutions. Potentials, stream functions, etc.

An infinite number of conservation laws can indicate integrability / linearization.

Fully conserved form of equations is required by modern numerical methods, e.g.,
Discontinuous Galerkin.
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Direct Construction of Local Divergence-Type Conservation Laws

Direct Construction Method [Anco, Bluman (1997,2002)]

Given: a PDE system Rσ[u] = Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

Specify dependence of multipliers: Λσ = Λσ(x,U, ...), σ = 1, ...,N.

Solve the determining equations for arbitrary U(x) (off of solutions)

EU j (Λσ[U]Rσ[U]) ≡ 0, j = 1, . . . ,m.

Find the corresponding fluxes Φi (x,U, ...) satisfying ΛσR
σ ≡ Di Φ

i .

Each set multipliers yields a local conservation law holding on solutions u(x):

Di Φ
i (x,u, ...) = 0.

The Direct Method is complete for PDE systems that can be written in a solved
form.
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Conservation Laws for Helically Symmetric Flows

For helically symmetric flows:

Seek local conservation laws

∂Θ

∂t
+∇ ·Φ ≡ ∂Θ

∂t
+

1

r

∂

∂r
(rΦr ) +

1

B

∂Φξ

∂ξ
= 0

using divergence expressions

∂Γ1

∂t
+
∂Γ2

∂r
+
∂Γ3

∂ξ
= r

[
∂

∂t

(
Γ1

r

)
+

1

r

∂

∂r

(
r

Γ2

r

)
+

1

B

∂

∂ξ

(
B

r
Γ3

)]
= 0,

i.e.,

Θ ≡ Γ1

r
, Φr ≡ Γ2

r
, Φξ ≡ B

r
Γ3.

1st-order multipliers in primitive variables.

0th-order multipliers in vorticity formulation.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Primitive variables - EP1 - Kinetic energy

Θ = K , Φr = ur (K + p), Φξ = uξ(K + p), K =
1

2
|u|2.

Primitive variables - EP2 - z-momentum

Θ = B

(
−b

r
uη + auξ

)
= uz , Φr = uruz , Φξ = uξuz + aBp.

Primitive variables - EP3 - z-angular momentum

Θ = rB

(
auη +

b

r
uξ
)

= ruϕ, Φr = ruruϕ, Φξ = ruξuϕ + bBp.

Primitive variables - EP4 - Generalized momenta/angular momenta (NEW)

Θ = F
( r

B
uη
)
, Φr = urF

( r

B
uη
)
, Φξ = uξF

( r

B
uη
)
,

where F (·) is an arbitrary function.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV1 - Conservation of helicity

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

The conservation law:

Θ = h,

Φr = ωr

(
E − (uη)2 −

(
uξ
)2
)

+ ur (h − urωr ) ,

Φξ = ωξ
(
E − (ur )2 − (uη)2

)
+ uξ

(
h − uξωξ

)
,

where

E =
1

2
|u|2 + p =

1

2

(
(ur )2 + (uη)2 +

(
uξ
)2
)

+ p

is the total energy density. In vector notation:

∂

∂t
h +∇ · (u×∇E + (ω × u)× u) = 0.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV2 - Generalized helicity (NEW)

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

∂

∂t

(
h H

( r

B
uη
))

+∇·
[
H
( r

B
uη
)

[u×∇E + (ω × u)× u] + Euηe⊥η ×∇H
( r

B
uη
)]

= 0

for an arbitrary function H = H (·).
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV3 - Vorticity conservation laws (NEW)

Θ =
Q(t)

r
ωϕ,

Φr =
1

r

(
Q(t)[urωϕ − ωruϕ] + Q ′(t)uz) ,

Φξ = −aB

r

(
Q(t)

[
uηωξ − uξωη

]
+ Q ′(t)ur

)
,

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - Vorticity conservation law (NEW)

Θ = −rB
(
a3ωη − b3

r 3
ωξ
)
,

Φr = −2a2uruz − a3Br (urωη − uηωr ) +
Bb3

r 2

(
urωξ − uξωr

)
,

Φξ = a3B
[
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

)]
+

2a2bB

r
uηuξ.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV5 - Vorticity conservation law (NEW)

Θ =− B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr =a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
− a4r 4 + a2r 2b2 + b4

r
√
a2r 2 + b2

(
urωξ − uξωr

)
,

Φξ =− a3bB
(

(ur )2 + (uη)2 − (uξ)2 + r
(
uηωξ − uξωη

))
+ 2a4rBuηuξ.

Vorticity formulation - EV6 - Vorticity conservation law (NEW)

∇ ·Φ = 0, Φr = Nωr − 1

B
Nξu

η, Φξ = Nωξ,

for an arbitrary N(t, ξ).

Generalization of the obvious divergence expression ∇ · (G(t)ω) = 0.
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Conservation Laws for Helically Symmetric Viscous Flows

Primitive variables - NSP1 - z-momentum.

Θ = uz , Φr = uruz − ν(uz )r , Φξ = uξuz + aBp − ν

B
(uz )ξ.

Primitive variables - NSP2 - generalized momentum (NEW)

Θ =
r

B
uη,

Φr =
r

B
uruη − ν

[
−2aB

(
auη + 2

b

r
uξ
)

+
( r

B
uη
)

r

]
=

r

B
uruη − ν

[
−2auϕ +

( r

B
uη
)

r

]
,

Φξ =
r

B
uηuξ − ν 1

B

[
2abB2

r
ur +

( r

B
uη
)
ξ

]
.
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV1 - Family of vorticity conservation laws (NEW)

Θ =
Q(t)

r
B

(
aωη +

b

r
ωξ
)

=
Q(t)

r
ωϕ,

Φr =
1

r

{
Q(t)

[
urB

(
aωη +

b

r
ωξ
)
− ωrB

(
auη +

b

r
uξ
)]

+ Q ′(t)B

(
−b

r
uη + auξ

)
−Q(t)ν

[
aB

r
ωη +

b2B

r (a2r 2 + b2)

(
aωη +

b

r
ωξ
)

+ B

(
aωηr +

b

r
ωξr

)]}
,

Φξ = −B

r

{
aQ(t)

[
uηωξ − uξωη

]
+ aQ ′(t)ur

+
Q(t)

r 3
ν

[
r 3

B

(
aωηξ +

b

r
ωξξ

)
+ 2brωr

]}
,

for an arbitrary function where Q(t).
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV2 - Vorticity conservation law (NEW)

Θ = −rB
(
a3ωη − b3

r 3
ωξ
)
,

Φr = −B

r 2

(
a3r 3 (urωη − uηωr )− b3

(
urωξ − uξωr

))
− 2a2Bur

(
−b

r
uη + auξ

)
−B

r 2
ν

[
r 2

B2

(
aωη +

b

r
ωξ
)
− r 3

(
a3ωηr −

b3

r 3
ωξr

)
+ abB2r

(
b3

r 3
ωη + a3ωξ

)]
,

Φξ = a3B
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+

2a2bB

r
uηuξ

+
2a2bB

r
ν

[(
1− b2

a2r 2

)
ωr +

r 2

2a2bB

(
a3ωηξ −

b3

r 3
ωξξ

)]
.
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV3 - Vorticity conservation law (NEW)

Θ = −B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr = a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
−a4r 4 + a2r 2b2 + b4

r
√
a2r 2 + b2

(
urωξ − uξωr

)
+ν

[
4a3B

(
auη +

b

r
uξ
)
− a3brB(ωη)r +

B

r 3

(
b4 − a4r 4 − a6r 6

a2r 2 + b2

)
ωξ

+
B

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)r +

ab

B

(
2 +

a4r 4

(a2r 2 + b2)2

)
ωη
]
,

Φξ = −a3bB
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+ 2a4rBuηuξ

+ν

[
1

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)ξ − a3br(ωη)ξ − 4a3bB

r
ur +

2b4B

r 3
ωr

]
.
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Some Conservation Laws for Two-Component Flows

Generalized enstrophy for inviscid plane flow (known)

Θ = N(ωz ), Φx = uxN(ωz ), Φy = uyN(ωz ),

for an arbitrary N(·), equivalent to a material conservation law

d

dt
N(ωz ) = 0.

Generalized enstrophy for inviscid axisymmetric flow (NEW)

Θ = S

(
1

r
ωϕ
)
, Φr = urS

(
1

r
ωϕ
)
, Φz = uzS

(
1

r
ωϕ
)

for arbitrary S(·).

Several additional new conservation laws for plane and axisymmetric, inviscid and
viscous flows (details in paper).
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Some Conservation Laws for Two-Component Flows

18 O. Kelbin, A.F. Cheviakov, M. Oberlack,

z

x

y

r

u»

ur

» = const

´!

Figure 2. A schematic of a two-component helically invariant flow, with zero velocity component
in the invariant η-direction: uη = 0. Conversely, the vorticity has only one nonzero component
ωη 6= 0.

Note that the equation (6.2c) vanishes when νab = 0, i.e., for inviscid flows, and
for viscous flows with axial or planar symmetry. For other cases when the equation
(6.2c) does not vanish, it imposes an additional differential constraint on the velocity
components ur, uξ. Such a restriction may lead to lack of solution existence for boundary
value problems, and hence below we only consider the inviscid case with a, b 6= 0 and
both viscous and inviscid cases when a = 0 or b = 0.

6.1. Additional conservation laws for general inviscid two-component helically invariant
flows

We now consider two-component helically invariant Euler flows satisfying (6.1). The
three governing equations in primitive variables are given by (6.2a), (6.2b), and (6.2d),
with ν = 0. Employing first-order conservation law multipliers, we find that the energy
conservation law EP1 (4.1) is carried over without change; the conservation laws EP2
(4.2) and EP3 (4.3) collapse to one, given by

Θ = Buξ, Φr = Buruξ, Φξ = B((uξ)2 + p);

the conservation law EP4 (4.4) vanishes. No additional conservation laws arise in the
above multiplier ansatz.

In the vorticity formulation, equations in primitive variables are appended with the
definition of vorticity and the vorticity transport equations. For the two-component case,
from (6.1), it follows that ωξ = ωr = 0 (cf. Figure 2). The remaining vorticity component
ωη is given by

ωη =
1

B
(ur)ξ −

1

r

∂

∂r
(ruξ) +

a2B2

r
uξ. (6.3)

The vorticity transport equations in r− and ξ−directions vanish identically, and the
remaining equation reads

(ωη)t +
1

r

∂

∂r
(rurωη) +

1

B

∂

∂ξ
(uξωη)− a2B2

r
urωη = 0. (6.4)

Physically it is important to note that the reduction due to (6.1) gives rise to the elim-
ination of the vortex stretching term in equation (2.13e). Hence, similar to the plane
two-component case, (6.4) corresponds to pure helical vorticity convection. This vanish-

Generalized enstrophy for general inviscid helical 2-component flow (NEW)

Θ = T

(
B

r
ωη
)
, Φr = urT

(
B

r
ωη
)
, Φξ = uξT

(
B

r
ωη
)
,

for an arbitrary T (·), equivalent to a material conservation law

d

dt
T

(
B

r
ωη
)

= 0.
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Results and Open Problems

Helically-Invariant Equations

Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

Two-component reductions.

New Conservation Laws

Three-component Euler:
Generalized momenta. Generalized helicity. Additional vorticity CLs.

Three-component Navier-Stokes:
New CLs in primitive and vorticity formulation.

Two-component flows:
Infinite set of enstrophy-related vorticity CLs (inviscid case).
New CLs in viscous and inviscid case, for plane and axisymmetric flows.

Open problems

Understand the nature of the new CLs.

Explore the usefulness of the new CLs for numerical simulation and analysis (e.g.,
computing stability conditions for equilibria).
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Thank you for your attention!
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