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Notation

Derivatives

Independent variables: x = (x1, . . . , xn) = (x , y , z , . . .).

Dependent variables: u = (u1(x), . . . , um(x)) = (u, v ,w , . . .).

Partial derivatives:
∂uj

∂x
= uj

x = u1;
∂2uj

∂x∂y
= uj

xy = uj
12.

All 1st-order and kth-order partial derivatives:

∂u = u
1
, ∂ku = u

k
.

Total derivative (chain rule)

Let F = F (x , u, ∂u, . . . , ∂qu).

Total derivative: DiF =
∂

∂x i
+ uµi

∂

∂uµ
+ uµii1

∂

∂uµi1
+ uµii1 i2

∂

∂uµi1 i2

+ · · ·

Summation assumed here and in many other places.
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Conservation Laws and Potential Systems in 2D

Given PDE system:

Rσ[u] = Rσ(x , t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

A conservation law:

div(t,x)(Θ[u],Φ[u]) ≡ Dt(Θ[u]) + Dx (Φ[u]) = 0.

The corresponding potential system:

vx = Θ[u], vt = −Φ[u].
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Example

Example:

u = u(x , t),

the nonlinear wave equation utt = (c2(u)ux )x .

A couple of conservation laws:

Dt(ut)− Dx (c2(u)ux ) = 0, Dt(tut − u)− Dx (tc2(u)ux ) = 0.

Potential systems:
v 1

x = ut , v 2
x = tut − u,

v 1
t = c2(u). v 2

t = tc2(u)ux .
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Conservation Laws and Potential Systems in 2D – Differential-Geometric
Notation

Given PDE system: u = u(x , t);

Rσ[u] = Rσ(x , t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

Definition

A conservation law is a differential form ω(r)[U] whose exterior derivative vanishes on
solutions U = u of {Rσ[u] = 0}.

ω(1)[U] = Θ[U] dx − Φ[U] dt → Ω(2) = dω(1) = (Dt(Θ[U]) + Dx (Φ[U])) dt ∧ dx .

On solutions, Ω(2)[u] = dω(1)[u] = 0, hence locally, ω(1)[u] = dω̃(0):

ω̃(0) = v(x , t); dω̃(0) = vxdx + vtdt = ω(1)[u] = Θ[u]dx + (−Φ[u])dt.

The potential system: vx = Θ[u], vt = −Φ[u].
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Conservation Laws and Potential Systems in 2D – Differential-Geometric
Notation

Given PDE system: u = u(x , t);

Rσ[u] = Rσ(x , t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

ω̃(0) = v(x , t): potential(s).

ω(1)[u] = Θ[u] dx − Φ[u] dt: density/flux(es).

Ω(2)[u] = (DtΘ + Dx Φ) dt ∧ dx : conserved form.

ω̃(0) d→ ω(1)[u]
d→ Ω(2)[u]

d→ 0.
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Conservation Laws and Potential Systems in 3D

Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(a) Divergence-type conservation laws:

divΦ[u] = Φ1
x [u] + Φ2

y [u] + Φ3
z [u] = 0.

Potential equations:
curlΓ(x , y , z) = Φ[u].

Gauge freedom:
Γ→ Γ + grad φ(x , y , z)

⇒ under-determined potential system.
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Conservation Laws and Potential Systems in 3D

Theorem (Anco, Bluman (1997))

Every local symmetry of an under-determined potential system projects onto a local
symmetry of the given PDE system.

Some common gauge constraints in n = 3 dimensions:

Divergence (Coulomb) gauge: div Γ ≡ Γ1
x + Γ2

y + Γ3
z = 0.

Spatial gauge: Γk = 0, k = 1 or 2 or 3.

Poincaré gauge: xΓ1 + yΓ2 + zΓ3 = 0.

For time-dependent systems in 2+1 dimensions, x = (t, x , y):

Lorentz gauge: Γ1
t − Γ2

x − Γ3
y = 0.

Cronstrom gauge: tΓ1 − xΓ2 − yΓ3 = 0.
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Conservation Laws and Potential Systems in 3D

Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(a) Divergence-type conservation laws:

divΦ[u] = Φ1
x [u] + Φ2

y [u] + Φ3
z [u] = 0.

ω̃(1) = Γ1 dx + Γ2 dy + Γ3 dz : potential.

ω(2)[u] = Φ1 dy ∧ dz + Φ2 dz ∧ dx + Φ3 dx ∧ dy : fluxes.

Ω(3)[u] = (Φ1
x + Φ2

y + Φ3
z ) dx ∧ dy ∧ dz : conserved form.

ω̃(1) d→ ω(2)[u]
d→ Ω(3)[u]

d→ 0.
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Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(a) Divergence-type conservation laws:

divΦ[u] = Φ1
x [u] + Φ2

y [u] + Φ3
z [u] = 0.

ω̃(1) = Γ1 dx + Γ2 dy + Γ3 dz : potential.

ω(2)[u] = Φ1 dy ∧ dz + Φ2 dz ∧ dx + Φ3 dx ∧ dy : fluxes.

Ω(3)[u] = (Φ1
x + Φ2

y + Φ3
z ) dx ∧ dy ∧ dz : conserved form.

Potential equations: dω̃(1) = ω(2)[u] ⇒ curlΓ = Φ[u].

Γ3
y − Γ2

z = Φ1, Γ1
z − Γ3

x = Φ2, Γ2
x − Γ1

y = Φ3.
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Conservation Laws and Potential Systems in 3D

Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(b) Curl-type conservation laws:

curlB[u] = 0.

Potential equations:
grad φ(x , y , z) = B[u].

No gauge freedom: scalar potential.

φ→ φ+ const.

⇒ determined potential system.
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Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(b) Curl-type conservation laws:

curlB[u] = 0.

ω̃(0) = φ: potential.

ω(1)[u] = B1 dx + B2 dy + B3 dz : fluxes.

Ω(2)[u] = (DyB
3−DzB

2)dy ∧dz + (DzB
1−DxB

3)dz ∧dx + (DxB
2−DyB

1)dx ∧dy :
conserved form.

ω̃(0) d→ ω(1)[u]
d→ Ω(2)[u].
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Conservation Laws and Potential Systems in 3D

Given PDE system: u = u(x , y , z),

Rσ[u] = Rσ(x , y , z , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N.

(b) Curl-type conservation laws:

curlB[u] = 0.

Curl-type conservation laws in applications:

Irrotational flows: curl V = 0.

Ideal MHD equilibrium equations: curl (V × B) = 0.
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Conservation Laws and Potential Systems in n Dimensions

x = (x1, . . . , xn) ∈ Rn, u = u(x).

Conservation laws of degree k = 1, . . . , n − 1, given by ω(k)[u], may exist.

ω̃(k−1): potential(s).

Ω(k+1)[u]: conserved form.

CL degree

1 ω̃(0) → ω(1) → Ω(2)

2 ω̃(1) → ω(2) → Ω(3)

. . . . . . . . . . . .

n− 1 . . . ω̃(n−2) → ω(n−1) → Ω(n)
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Vorticity-type Equations

“Vorticity-type Equations”:

Independent variables: t, x , y , z .

Vector fields: N,M ∈ R3.

divN = 0, Nt + curlM = 0.

Some applications:

Maxwell equations;

Hydrodynamics/vorticity equations;

Plasma dynamics / Magnetohydrodynamics (MHD).
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The Vorticity System as a Lower-Degree Conservation Law

Denote the four scalar PDEs divN = 0, Nt + curlM = 0 by

E 1 = N1
x + N2

y + N3
z , E 2 = N1

t + M3
y −M2

z ,

E 3 = N2
t + M1

z −M3
x , E 4 = N3

t + M2
x −M1

y .

Consider a differential two-form

ω(2) = −M1 dt ∧ dx −M2 dt ∧ dy −M3 dt ∧ dz

+N3 dx ∧ dy + N2 dz ∧ dx + N1 dy ∧ dz .

Then the exterior derivative Ω(3) = dω(2) (off solutions) is given by

Ω(3) = E 1 dx ∧ dy ∧ dz + E 2 dy ∧ dz ∧ dt

−E 3 dz ∧ dt ∧ dx + E 4 dt ∧ dx ∧ dy ,

On solutions, Ω(3) = dω(2) = 0, hence one has a conservation law of degree two.
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The Vorticity System as a Lower-Degree Conservation Law

Denote the four scalar PDEs divN = 0, Nt + curlM = 0 by

E 1 = N1
x + N2

y + N3
z , E 2 = N1

t + M3
y −M2

z ,

E 3 = N2
t + M1

z −M3
x , E 4 = N3

t + M2
x −M1

y .

Consider a differential two-form

ω(2) = −M1 dt ∧ dx −M2 dt ∧ dy −M3 dt ∧ dz

+N3 dx ∧ dy + N2 dz ∧ dx + N1 dy ∧ dz .

The “vorticity tensor” (parallel to the “electromagnetic tensor”):

ωµν =


0 −M1 −M2 −M3

M1 0 N3 −N2

M2 −B3 0 N1

M3 N2 −N1 0

 .
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The Vorticity System as a Lower-Degree Conservation Law

Denote the four scalar PDEs divN = 0, Nt + curlM = 0 by

E 1 = N1
x + N2

y + N3
z , E 2 = N1

t + M3
y −M2

z ,

E 3 = N2
t + M1

z −M3
x , E 4 = N3

t + M2
x −M1

y .

Consider a differential two-form

ω(2) = −M1 dt ∧ dx −M2 dt ∧ dy −M3 dt ∧ dz

+N3 dx ∧ dy + N2 dz ∧ dx + N1 dy ∧ dz .

On solutions, Ω(3) = dω(2) = 0, hence ω(2) = dω̃(1) for the potential 1-form

ω̃(1) = θt(t, x , y , z) dt + θx (t, x , y , z) dx + θy (t, x , y , z) dy + θz (t, x , y , z)dz .

Potential equations:

−M1 = θx
t − θt

x , −M2 = θy
t − θt

y , −M3 = θz
t − θt

z ,
N1 = θz

y − θy
z , N2 = θx

z − θz
x , N3 = θy

x − θx
y .
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The Potentials for the Vorticity System

Result:

The vorticity PDEs divN = 0, Nt + curlM = 0 form a conservation law of degree
two.

The potential equations are given by

−M1 = θx
t − θt

x , −M2 = θy
t − θt

y , −M3 = θz
t − θt

z ,
N1 = θz

y − θy
z , N2 = θx

z − θz
x , N3 = θy

x − θx
y .

Note

The potential equations are under-determined. Gauge symmetry:

θ → θ + df

for an arbitrary scalar function f (t, x , y , z).
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Example A: Maxwell’s Equations

The dimensionless PDE system of Maxwell’s equations:

divB = 0, Bt = − curlE,

Et = curlB− J, divE = ρ,

the charge density ρ, the magnetic field, the electric field and the current density
B,E, J ∈ R3 are functions of t, x , y , z .

In the required form divN = 0, Nt + curlM = 0,

N = B, M = E.
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Example A: Maxwell’s Equations

The dimensionless PDE system of Maxwell’s equations:

divB = 0, Bt = − curlE,

Et = curlB− J, divE = ρ,

the charge density ρ, the magnetic field, the electric field and the current density
B,E, J ∈ R3 are functions of t, x , y , z .

Electromagnetic field tensor F in the 4D Minkowski spacetime
(x0, x1, x2, x3) = (t, x , y , z):

Fµν =


0 −E 1 −E 2 −E 3

E 1 0 B3 −B2

E 2 −B3 0 B1

E 3 B2 −B1 0

 .

The blue equations ⇔ dF = 0.
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Example A: Maxwell’s Equations

The dimensionless PDE system of Maxwell’s equations:

divB = 0, Bt = − curlE,

Et = curlB− J, divE = ρ,

the charge density ρ, the magnetic field, the electric field and the current density
B,E, J ∈ R3 are functions of t, x , y , z .

Potential equations F = d ω̃(1):

ω̃(1) = θt dt + θx dx + θy dy + θz dz .

(θt , θx , θy , θz ) = (Θ,A)

B = curlA, gradΘ(t, x , y , z) = At + E.
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Example A2: Vacuum Maxwell’s Equations

The dimensionless PDE system of Vacuum Maxwell’s equations:

divB = 0, Bt = − curlE,

Et = curlB, divE = 0.

In an alternative required form divN = 0, Nt + curlM = 0,

N = E, M = −B.
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Example A2: Vacuum Maxwell’s Equations

The dimensionless PDE system of Vacuum Maxwell’s equations:

divB = 0, Bt = − curlE,

Et = curlB, divE = 0.

An additional lower-degree conservation law d ∗F = 0.

Dual electromagnetic field tensor:

∗Fµν =
1

2
εµναβη

αγηβδFγδ,

ηµν = diag(−1, 1, 1, 1).

Vacuum Maxwell’s equations are symmetrically written as two conservation laws of
degree two

dF = 0, d ∗F = 0.

A. Cheviakov (U.Saskatchewan, Canada) Vorticity-Type Equations GADEIS VII, Cyprus, June 2014 22 / 32



Example B: Vorticity Equations of Fluid Dynamics

Euler and Navier-Stokes Equations in 3D:

Incompressible constant-density viscous fluid flow, no external forcing:

div V = 0,

Vt + curlV × V + grad

(
p +
|V|2

2

)
= ν∇2V.

Vorticity formulation: w = curl V.

div w = 0, wt + curl (w × V − ν∇2V) = 0.

In the required form divN = 0, Nt + curlM = 0,

Nw = w, Mw = w × V − ν∇2V.
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Incompressible constant-density viscous fluid flow, no external forcing:

div V = 0,

Vt + curlV × V + grad

(
p +
|V|2

2

)
= ν∇2V.

Vorticity formulation: w = curl V.

div w = 0, wt + curl (w × V − ν∇2V) = 0.

Conservation law of degree two: dω
(2)
fluid = 0,

(ωfluid )µν =


0 −M1

w −M2
w −M3

w

M1
w 0 N3

w −N2
w

M2
w −N3

w 0 N1
w

M3
w N2

w −N1
w 0

 .
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Example B: Vorticity Equations of Fluid Dynamics

Euler and Navier-Stokes Equations in 3D:

Incompressible constant-density viscous fluid flow, no external forcing:

div V = 0,

Vt + curlV × V + grad

(
p +
|V|2

2

)
= ν∇2V.

Vorticity formulation: w = curl V.

div w = 0, wt + curl (w × V − ν∇2V) = 0.

Potential equations ω
(2)
fluid = d ω̃(1) = d (θt dt + θx dx + θy dy + θz dz .)

q := (θx , θy , θz );

curl q = w, ⇒ q = V + gradχ;

θt = −p − |V|2/2 + χt ⇒ Vt + grad (p + |V|2/2) = −(w × V − ν∇2V).

Potentialization ⇔ inversion of the spatial curl operator.
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Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

µ, µ1, η, σ = const.

Plasma parameters depend on t, x , y , z .

ρ: plasma density. V = (V 1,V 2,V 3): velocity.

B = (B1,B2,B3): magnetic field. P: pressure.
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MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

Adequate description of industrial/laboratory plasmas...
r002sj12641.jpg (JPEG Image, 1074 × 713 pixels) https://nimrodteam.org/graphics/r002sj12641.jpg

1 of 1 17/06/2014 6:37 PM
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Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

... as well as astrophysical ones.
Google Image Result for http://images.sciencedaily.com/2013/08/130822122530-large.jpg http://www.google.com.cy/imgres?imgurl=http://images.sciencedaily.com/2013/08/130822122...

1 of 1 17/06/2014 6:41 PM
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MHD equilibria, Bogoyavlenskij symmetries

Ideal MHD equilibrium equations:

divV = 0, divB = 0, curl(V × B) = 0,

ρV × curl V − 1

µ
B× curl B− grad P − ρ grad

|V2|
2

= 0,

Magnetic flux function: V × B = grad Ψ(x , y , z).

Magnetic surfaces: Ψ = const, B,V ⊥ grad Ψ(x , y , z).
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MHD equilibria, Bogoyavlenskij symmetries

Ideal MHD equilibrium equations:

divV = 0, divB = 0, curl(V × B) = 0,

ρV × curl V − 1

µ
B× curl B− grad P − ρ grad

|V2|
2

= 0,

Assume ρ is constant on both magnetic field lines and streamlines (grad ρ ⊥ V,B).

Galas-Bogoyavlenskij symmetries:

B1 = bB + c
√
µρV, V1 = c

a
√
µρ

B + b
a
V,

ρ1 = a2(r)ρ, P1 = CP + (CB2 − B2
1)/(2µ).

Here a, b, c are functions of (x , y , z) constant on both magnetic field lines and
streamlines,

b2 − c2 = C = const.

An infinite set of nonlocal symmetries.

Led to the construction of important classes of physical solutions.
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(ctd.) Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.
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(ctd.) Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

Nm = B, Mm = B× V − η∇2A (B = curlA).

Conservation law of degree two: dω
(2)
MHD = 0. The MHD tensor:

(ωMHD )µν =


0 −M1

m −M2
m −M3

m

M1
m 0 N3

m −N2
m

M2
m −N3

m 0 N1
m

M3
m N2

m −N1
m 0

 .
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(ctd.) Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

Potential equations: ωMHD = d ω̃(1):

ω̃(1) = θt dt + θx dx + θy dy + θz dz .

(θx , θy , θz ) = A, θt = −Ψ.

B = curlA, gradΨ = V × B− At − η curlB.
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(ctd.) Example C: Magnetohydrodynamics Equations

MHD Equations in 3D:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

Potential equations: ωMHD = d ω̃(1):

ω̃(1) = θt dt + θx dx + θy dy + θz dz .

(θx , θy , θz ) = A, θt = −Ψ.

B = curlA, gradΨ = V × B︸ ︷︷ ︸
Galas-Bogoyavlenskij

−At − η curlB.
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An Infinite Set of Divergence-type Conservation Laws

Another result (by Direct CL Construction):

The vorticity PDEs divN = 0, Nt + curlM = 0 .

Admitted multipliers: Λ1 = −Ft , Λ2 = Fx , Λ3 = Fy , Λ4 = Fz .

F (t, x , y , z): arbitrary function.

An infinite family of divergence-type conservation laws:

(N · ∇F )t + div(M×∇F − Ft N) = 0.

Discussion

Parallel to the 2nd Noether’s theorem, but for a non-variational system.

Formally trivial, related to the abnormality of the given equations.

Physical triviality?
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Particular cases

Euler and Navier-Stokes Equations in 3D:

Incompressible constant-density viscous fluid flow, no external forcing:

div V = 0,

Vt + curlV × V + grad

(
p +
|V|2

2

)
= ν∇2V.

Vorticity formulation: w = curl V.

div w = 0, wt + curl (w × V − ν∇2V) = 0.

The conservation laws:

(w · ∇F )t + div
(

[w × V − ν∇2V]×∇F − Ft w
)

= 0,

holding for an arbitrary F = F (t, x , y , z).
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Particular cases

The MHD equations:

ρt + div ρV = 0, divB = 0,

ρVt + ρ curlV × V = − 1

µ
B× curl B− grad P − ρ grad |V|

2

2
+ µ1∇2V,

Bt = curl(V × B) + η∇2B.

The conservation laws:

(B · ∇F )t + div

([
B× V +

1

σ
J
]
×∇F − Ft B

)
= 0,

holding for an arbitrary F = F (t, x , y , z).

J =
1

µ
curlB, σ =

1

µ η
.

For ideal plasmas where σ → +∞, the conservation laws do not involve the current
density.
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Conclusions and Open Problems

Conclusions

The vorticity equations in 3+1 dimensions, divN = 0, Nt + curlM = 0 :

Are a part of important physical systems (Maxwell, Navier-Stokes, MHD...).

Yield a conservation law of degree two.

Lead to under-determined potential equations with four potential variables.

Admit an infinite set of local conservation laws given by

(N · ∇F )t + div(M×∇F − Ft N) = 0, F = F (t, x , y , z)

Galas-Bogoyavlenskij potential generalized to non-ideal, time-dependent MHD flows.

Future work:

Study properties and applications of the potential system, in particular, in the MHD
context.

Study meaning and usefulness of the infinite set of the divergence-type conservation
laws.
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