On Conservation Laws and Potential Systems of Vorticity-Type Equations

Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

June 18, 2014

A. Cheviakov (U.Saskatchewan, Canada) [Vorticity-Type Equations](#page-55-0) GADEIS VII, Cyprus, June 2014 1 / 32

4 0 8 4

 Ω

Outline

[Introduction](#page-2-0)

2 [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **o** *n* [Dimensions](#page-22-0)

³ [Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

⁴ [Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

⁵ [An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

⁶ [Conclusions and Open Problems](#page-52-0)

 Ω

4 ロ 4 伊

重

 299

メロメ メ御 メメ ミメ メ ヨメ

K ロ ▶ K 御 ▶ K 경 ▶ K 경

 299

 299

Notation

Derivatives

- Independent variables: $x = (x^1, \dots, x^n) = (x, y, z, \dots)$.
- Dependent variables: $u = (u^1(x), \ldots, u^m(x)) = (u, v, w, \ldots).$
- **Partial derivatives:**

$$
\frac{\partial u^j}{\partial x} = u^j_x = u_1; \quad \frac{\partial^2 u^j}{\partial x \partial y} = u^j_{xy} = u^j_{12}.
$$

• All 1st-order and kth-order partial derivatives:

$$
\partial u = u, \qquad \partial^k u = u.
$$

Total derivative (chain rule)

\n- Let
$$
F = F(x, u, \partial u, \dots, \partial^q u)
$$
.
\n- Total derivative: $D_i F = \frac{\partial}{\partial x^i} + u_i^{\mu} \frac{\partial}{\partial u^{\mu}} + u_{ii_1}^{\mu} \frac{\partial}{\partial u_{i_1}^{\mu}} + u_{ii_1 i_2}^{\mu} \frac{\partial}{\partial u_{i_1 i_2}^{\mu}} + \dots$
\n

• Summation assumed here and in many other places.

 Ω

K ロ ▶ K 何 ▶ K 手

Outline

[Introduction](#page-2-0)

2 [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **o** *n* [Dimensions](#page-22-0)

[Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

[Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

[An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

[Conclusions and Open Problems](#page-52-0)

 Ω

← ロ ▶ → イ 同

Given PDE system:

$$
R^{\sigma}[u]=R^{\sigma}(x,t,u,\partial u,\ldots,\partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

• A conservation law:

$$
\mathsf{div}_{(t,x)}(\Theta[u],\Phi[u]) \equiv \boxed{D_t(\Theta[u]) + D_x(\Phi[u])} = 0.
$$

• The corresponding potential system:

$$
v_x = \Theta[u], \quad v_t = -\Phi[u].
$$

∢ ロ ▶ 《 何

 QQ

Example

Example:

- $u = u(x, t)$,
- the nonlinear wave equation $u_{tt}=(c^2(u)u_x)_x.$

B \sim

∢ ロ ≯ (伊)

 299

活

Example

Example:

- $u = u(x, t)$,
- the nonlinear wave equation $u_{tt}=(c^2(u)u_x)_x.$
- A couple of conservation laws:

 $D_t(u_t) - D_x(c^2(u)u_x) = 0,$ $D_t(tu_t - u) - D_x(tc^2(u)u_x) = 0.$

∢ ロ ▶ 《 何

 299

Example

Example:

- $u = u(x, t)$,
- the nonlinear wave equation $u_{tt}=(c^2(u)u_x)_x.$
- A couple of conservation laws:

 $D_t(u_t) - D_x(c^2(u)u_x) = 0,$ $D_t(tu_t - u) - D_x(tc^2(u)u_x) = 0.$

• Potential systems:

$$
v_x^1 = u_t
$$
, $v_x^2 = tu_t - u$,
\n $v_t^1 = c^2(u)$, $v_t^2 = tc^2(u)u_x$.

∢ ロ ▶ 《 何

 QQ

Conservation Laws and Potential Systems in 2D – Differential-Geometric Notation

• Given PDE system: $u = u(x, t)$;

$$
R^{\sigma}[u]=R^{\sigma}(x,t,u,\partial u,\ldots,\partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

Definition

A conservation law is a differential form $\omega^{(r)}[U]$ whose exterior derivative vanishes on solutions $U = u$ of $\{R^{\sigma}[u] = 0\}$.

$$
\omega^{(1)}[U] = \Theta[U] \, \mathrm{d}x - \Phi[U] \, \mathrm{d}t \quad \rightarrow \quad \Omega^{(2)} = \mathrm{d}\omega^{(1)} = (D_t(\Theta[U]) + D_x(\Phi[U])) \, \mathrm{d}t \wedge \mathrm{d}x.
$$

On solutions, $\Omega^{(2)}[u] = d\omega^{(1)}[u] = 0$, hence locally, $\omega^{(1)}[u] = d\widetilde{\omega}^{(0)}$:

$$
\widetilde{\omega}^{(0)} = v(x, t); \quad d\widetilde{\omega}^{(0)} = v_x dx + v_t dt = \omega^{(1)}[u] = \Theta[u]dx + (-\Phi[u])dt.
$$

• The potential system: $v_x = \Theta[u]$, $v_t = -\Phi[u]$.

 Ω

←ロ ▶ ← イ 同 →

Conservation Laws and Potential Systems in 2D – Differential-Geometric Notation

• Given PDE system:
$$
u = u(x, t)
$$
;

$$
R^{\sigma}[u] = R^{\sigma}(x, t)
$$

$$
R^{\sigma}[u]=R^{\sigma}(x,t,u,\partial u,\ldots,\partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

- $\widetilde{\omega}^{(0)} = v(x,t)$: potential(s).
- $\omega^{(1)}[u] = \Theta[u] \; \mathrm{d}x \Phi[u] \; \mathrm{d}t$: density/flux(es).
- $\Omega^{(2)}[u]=(D_t\Theta+D_{\rm x}\Phi)\;{\rm d}t\wedge{\rm d}x\!\!:$ conserved form.

$$
\widetilde{\omega}^{(0)} \stackrel{\mathrm{d}}{\rightarrow} \omega^{(1)}[u] \stackrel{\mathrm{d}}{\rightarrow} \Omega^{(2)}[u] \stackrel{\mathrm{d}}{\rightarrow} 0.
$$

4 0 8 1

 299

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(a) Divergence-type conservation laws:

$$
\operatorname{div} \mathbf{\Phi}[u] = \Phi_x^1[u] + \Phi_y^2[u] + \Phi_z^3[u] = 0.
$$

Potential equations:

$$
\operatorname{curl} \Gamma(x, y, z) = \Phi[u].
$$

Gauge freedom:

$$
\Gamma \to \Gamma + \text{grad } \phi(x, y, z)
$$

⇒ under-determined potential system.

4 0 8 4

 $2Q$

Theorem (Anco, Bluman (1997))

Every local symmetry of an under-determined potential system projects onto a local symmetry of the given PDE system.

- Some common gauge constraints in $n = 3$ dimensions:
	- Divergence (Coulomb) gauge: div $\Gamma \equiv \Gamma_x^1 + \Gamma_y^2 + \Gamma_z^3 = 0$.
	- Spatial gauge: $\Gamma^k = 0$, $k = 1$ or 2 or 3.
	- Poincaré gauge: $x\Gamma^1 + y\Gamma^2 + z\Gamma^3 = 0$.
- For time-dependent systems in 2+1 dimensions, $x = (t, x, y)$:
	- Lorentz gauge: $\Gamma_t^1 \Gamma_x^2 \Gamma_y^3 = 0$.
	- Cronstrom gauge: $t\Gamma^1 x\Gamma^2 y\Gamma^3 = 0$.

 Ω

K ロ ▶ K 何 ▶

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(a) Divergence-type conservation laws:

$$
\operatorname{div} \mathbf{\Phi}[u] = \mathbf{\Phi}_x^1[u] + \mathbf{\Phi}_y^2[u] + \mathbf{\Phi}_z^3[u] = 0.
$$

\n- \n
$$
\widetilde{\omega}^{(1)} = \Gamma^1 \, dx + \Gamma^2 \, dy + \Gamma^3 \, dz
$$
: potential.\n
\n- \n $\omega^{(2)}[u] = \Phi^1 \, dy \wedge dz + \Phi^2 \, dz \wedge dx + \Phi^3 \, dx \wedge dy$: fluxes.\n
\n- \n $\Omega^{(3)}[u] = (\Phi_x^1 + \Phi_y^2 + \Phi_z^3) \, dx \wedge dy \wedge dz$: conserved form.\n
\n

$$
\widetilde{\omega}^{(1)} \quad \stackrel{\text{d}}{\rightarrow} \quad \omega^{(2)}[u] \quad \stackrel{\text{d}}{\rightarrow} \quad \Omega^{(3)}[u] \quad \stackrel{\text{d}}{\rightarrow} \quad 0.
$$

∢ ロ ▶ 《 何

 299

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(a) Divergence-type conservation laws:

$$
\operatorname{div} \mathbf{\Phi}[u] = \mathbf{\Phi}_x^1[u] + \mathbf{\Phi}_y^2[u] + \mathbf{\Phi}_z^3[u] = 0.
$$

$$
\bullet \ \widetilde{\omega}^{(1)} = \Gamma^1 \, dx + \Gamma^2 \, dy + \Gamma^3 \, dz
$$
: potential.

•
$$
\omega^{(2)}[u] = \Phi^1 dy \wedge dz + \Phi^2 dz \wedge dx + \Phi^3 dx \wedge dy
$$
: fluxes.

- $\Omega^{(3)} [u] = (\Phi^1_x + \Phi^2_y + \Phi^3_z) \ \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z$: conserved form.
- Potential equations: $d\widetilde{\omega}^{(1)} = \omega^{(2)}[u] \Rightarrow \operatorname{curl} \mathbf{\Gamma} = \mathbf{\Phi}[u].$

$$
\Gamma_y^3 - \Gamma_z^2 = \Phi^1, \quad \Gamma_z^1 - \Gamma_x^3 = \Phi^2, \quad \Gamma_x^2 - \Gamma_y^1 = \Phi^3.
$$

Ğ.

 299

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(b) Curl-type conservation laws:

$$
\mathrm{curl}\, \mathbf{B}[\boldsymbol{u}] = 0.
$$

Potential equations:

$$
\text{grad }\phi(x,y,z)=\mathbf{B}[u].
$$

• No gauge freedom: scalar potential.

$$
\phi \to \phi + \text{const.}
$$

4000

⇒ determined potential system.

 Ω

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(b) Curl-type conservation laws:

$$
\operatorname{curl} \mathbf{B}[u] = 0.
$$

•
$$
\widetilde{\omega}^{(0)} = \phi
$$
: potential.

$$
\bullet \ \omega^{(1)}[u] = B^1 \, dx + B^2 \, dy + B^3 \, dz
$$
: fluxes.

 $\Omega^{(2)}[u]=(\mathop{\rm{D}}\nolimits_y B^3 - \mathop{\rm{D}}\nolimits_z B^2) \mathrm{d}y \wedge \mathrm{d}z + (\mathop{\rm{D}}\nolimits_z B^1 - \mathop{\rm{D}}\nolimits_x B^3) \mathrm{d}z \wedge \mathrm{d}x + (\mathop{\rm{D}}\nolimits_x B^2 - \mathop{\rm{D}}\nolimits_y B^1) \mathrm{d}x \wedge \mathrm{d}y$ conserved form.

$$
\widetilde{\omega}^{(0)} \stackrel{\rm d}{\rightarrow} \omega^{(1)}[u] \stackrel{\rm d}{\rightarrow} \Omega^{(2)}[u].
$$

 Ω

4 0 8 1

• Given PDE system:
$$
u = u(x, y, z)
$$
,

$$
R^{\sigma}[u]=R^{\sigma}(x,y,z, u, \partial u, \ldots, \partial^k u)=0, \quad \sigma=1,\ldots,N.
$$

(b) Curl-type conservation laws:

$$
\mathrm{curl}\, \mathbf{B}[\boldsymbol{u}]=0.
$$

- Curl-type conservation laws in applications:
	- Irrotational flows: curl $V = 0$.
	- Ideal MHD equilibrium equations: curl $(V \times B) = 0$.

 Ω

4 0 8 4

Conservation Laws and Potential Systems in n Dimensions

$$
\bullet \ \ x=(x^1,\ldots,x^n)\in\mathbb{R}^n, \quad u=u(x).
$$

- Conservation laws of degree $k = 1, ..., n 1$, given by $\omega^{(k)}[u]$, may exist.
- $\widetilde{\omega}^{(k-1)}$: potential(s).
- $\Omega^{(k+1)}[u]$: conserved form.

CL degree

1 $\widetilde{\omega}^{(0)} \rightarrow \omega^{(1)} \rightarrow \Omega^{(2)}$ 2 $\tilde{\omega}$ $\begin{array}{ccc} \text{\tiny{(1)}} \rightarrow & \omega^{(2)} \rightarrow & \Omega^{(3)} \end{array}$ $n-1$... $\widetilde{\omega}$ $\mu^{(n-2)} \rightarrow \omega^{(n-1)} \rightarrow \Omega^{(n)}$

イロト イ母 トイヨ トイヨ トー

 QQ

Outline

[Introduction](#page-2-0)

² [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **n** [Dimensions](#page-22-0)

³ [Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

[Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

[An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

[Conclusions and Open Problems](#page-52-0)

 Ω

← ロ ▶ → イ 同

"Vorticity-type Equations":

- Independent variables: t, x, y, z .
- Vector fields: $N, M \in \mathbb{R}^3$.

$$
\operatorname{div} \mathbf{N} = 0, \quad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0.
$$

Some applications:

- Maxwell equations;
- Hydrodynamics/vorticity equations;
- Plasma dynamics / Magnetohydrodynamics (MHD).

 Ω

K ロ ト K 何 ト

The Vorticity System as a Lower-Degree Conservation Law

- Denote the four scalar PDEs $\overline{\text{div }\mathbf{N}} = 0$, $\mathbf{N}_t + \text{curl }\mathbf{M} = 0$ by $E^1 = N_x^1 + N_y^2 + N_z^3$, $E^2 = N_t^1 + M_y^3 - M_z^2$, $E^3 = N_t^2 + M_z^1 - M_x^3$, $E^4 = N_t^3 + M_x^2 - M_y^1$.
- Consider a differential two-form

$$
\omega^{(2)} = -M^1 dt \wedge dx - M^2 dt \wedge dy - M^3 dt \wedge dz
$$

$$
+N^3 dx \wedge dy + N^2 dz \wedge dx + N^1 dy \wedge dz.
$$

Then the exterior derivative $\Omega^{(3)} = \mathrm{d}\omega^{(2)}$ (off solutions) is given by

$$
\Omega^{(3)} = E^1 dx \wedge dy \wedge dz + E^2 dy \wedge dz \wedge dt
$$

$$
-E^3 dz \wedge dt \wedge dx + E^4 dt \wedge dx \wedge dy,
$$

On solutions, $\Omega^{(3)} = d\omega^{(2)} = 0$, hence one has a conservation law of degree two.

 Ω

The Vorticity System as a Lower-Degree Conservation Law

- Denote the four scalar PDEs $\overline{\text{div }\mathbf{N}} = 0$, $\mathbf{N}_t + \text{curl }\mathbf{M} = 0$ by $E^1 = N_x^1 + N_y^2 + N_z^3$, $E^2 = N_t^1 + M_y^3 - M_z^2$, $E^3 = N_t^2 + M_z^1 - M_x^3$, $E^4 = N_t^3 + M_x^2 - M_y^1$.
- Consider a differential two-form

$$
\omega^{(2)} = -M^1 dt \wedge dx - M^2 dt \wedge dy - M^3 dt \wedge dz
$$

$$
+N^3 dx \wedge dy + N^2 dz \wedge dx + N^1 dy \wedge dz.
$$

The "vorticity tensor" (parallel to the "electromagnetic tensor"):

$$
\omega_{\mu\nu} = \left(\begin{array}{cccc} 0 & -M^1 & -M^2 & -M^3 \\ M^1 & 0 & N^3 & -N^2 \\ M^2 & -B^3 & 0 & N^1 \\ M^3 & N^2 & -N^1 & 0 \end{array} \right).
$$

 Ω

4 0 8 4

The Vorticity System as a Lower-Degree Conservation Law

- Denote the four scalar PDEs $\overline{\text{div }\mathbf{N}} = 0$, $\mathbf{N}_t + \text{curl }\mathbf{M} = 0$ by $E^1 = N_x^1 + N_y^2 + N_z^3$, $E^2 = N_t^1 + M_y^3 - M_z^2$, $E^3 = N_t^2 + M_z^1 - M_x^3$, $E^4 = N_t^3 + M_x^2 - M_y^1$.
- **Consider a differential two-form**

$$
\omega^{(2)} = -M^1 dt \wedge dx - M^2 dt \wedge dy - M^3 dt \wedge dz
$$

$$
+N^3 dx \wedge dy + N^2 dz \wedge dx + N^1 dy \wedge dz.
$$

On solutions, $\Omega^{(3)} = d\omega^{(2)} = 0$, hence $\omega^{(2)} = d\widetilde{\omega}^{(1)}$ for the potential 1-form

$$
\widetilde{\omega}^{(1)} = \theta^t(t,x,y,z) dt + \theta^x(t,x,y,z) dx + \theta^y(t,x,y,z) dy + \theta^z(t,x,y,z) dz.
$$

Potential equations:

$$
\begin{array}{lll} -M^1=\theta_t^x-\theta_x^t, & -M^2=\theta_t^y-\theta_y^t, & -M^3=\theta_t^z-\theta_z^t, \\ N^1=\theta_y^z-\theta_z^y, & N^2=\theta_z^x-\theta_z^z, & N^3=\theta_x^y-\theta_y^y. \end{array}
$$

 Ω

4 0 8 4

Result:

The vorticity PDEs $\overline{\text{div } N} = 0$, $N_t + \text{curl } M = 0$ form a conservation law of degree two.

The potential equations are given by

$$
\begin{aligned}\n-M^1 &= \theta_t^x - \theta_x^t, & -M^2 &= \theta_t^y - \theta_y^t, & -M^3 &= \theta_t^z - \theta_z^t, \\
N^1 &= \theta_y^z - \theta_z^y, & N^2 &= \theta_x^x - \theta_x^z, & N^3 &= \theta_x^y - \theta_y^y.\n\end{aligned}
$$

Note

The potential equations are under-determined. Gauge symmetry:

$$
\theta \to \theta + \mathrm{d} f
$$

for an arbitrary scalar function $f(t, x, y, z)$.

 Ω

← ロ ▶ → イ 同

Outline

[Introduction](#page-2-0)

² [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **n** [Dimensions](#page-22-0)

[Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

⁴ [Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

[An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

[Conclusions and Open Problems](#page-52-0)

 Ω

∢ ロ ▶ 《 何

The dimensionless PDE system of Maxwell's equations:

$$
\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t = -\operatorname{curl} \mathbf{E},
$$

$$
\mathbf{E}_t = \text{curl } \mathbf{B} - \mathbf{J}, \quad \text{div } \mathbf{E} = \rho,
$$

the charge density ρ , the magnetic field, the electric field and the current density **B**, **E**, **J** $\in \mathbb{R}^3$ are functions of t, x, y, z .

- In the required form $\vert \text{div} \, \mathbf{N} = 0$, $\mathbf{N}_t + \text{curl} \, \mathbf{M} = 0$,
- \bullet N = B, M = E.

 Ω

∢ ロ ≯ - ∢ 何

The dimensionless PDE system of Maxwell's equations:

 $\text{div } \mathbf{B} = 0$, $\mathbf{B}_t = -\text{curl } \mathbf{E}$,

$$
\mathbf{E}_t = \text{curl } \mathbf{B} - \mathbf{J}, \quad \text{div } \mathbf{E} = \rho,
$$

the charge density ρ , the magnetic field, the electric field and the current density **B**, **E**, **J** $\in \mathbb{R}^3$ are functions of t, x, y, z .

 \bullet Electromagnetic field tensor F in the 4D Minkowski spacetime $(x^0, x^1, x^2, x^3) = (t, x, y, z)$:

$$
\mathcal{F}_{\mu\nu} = \left(\begin{array}{cccc} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & B^3 & -B^2 \\ E^2 & -B^3 & 0 & B^1 \\ E^3 & B^2 & -B^1 & 0 \end{array} \right).
$$

• The blue equations $\Leftrightarrow dF = 0$.

 Ω

∢ ロ ▶ 《 何

The dimensionless PDE system of Maxwell's equations:

$$
\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t = -\operatorname{curl} \mathbf{E},
$$

$$
\mathbf{E}_t = \text{curl } \mathbf{B} - \mathbf{J}, \quad \text{div } \mathbf{E} = \rho,
$$

the charge density ρ , the magnetic field, the electric field and the current density **B**, **E**, **J** $\in \mathbb{R}^3$ are functions of t, x, y, z .

Potential equations $\mathbf{F} = d \, \widetilde{\omega}^{(1)}$:

$$
\widetilde{\omega}^{(1)} = \theta^t \, dt + \theta^x \, dx + \theta^y \, dy + \theta^z \, dz.
$$

$$
(\theta^t, \theta^x, \theta^y, \theta^z) = (\Theta, \mathbf{A})
$$

$$
\mathbf{B} = \text{curl } \mathbf{A}, \quad \text{grad } \Theta(t, x, y, z) = \mathbf{A}_t + \mathbf{E}.
$$

4 D.K.

 Ω

The dimensionless PDE system of Vacuum Maxwell's equations:

$$
\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t = -\operatorname{curl} \mathbf{E},
$$

 $\mathsf{E}_t = \text{curl } \mathsf{B}$, div $\mathsf{E} = 0$.

- In an alternative required form $\vert \text{div} \, \mathbf{N} = 0$, $\mathbf{N}_t + \text{curl} \, \mathbf{M} = 0$,
- \bullet N = E, M = -B.

 Ω

← ロ ▶ → イ 同

The dimensionless PDE system of Vacuum Maxwell's equations:

 $\operatorname{div} \mathbf{B} = 0$, $\mathbf{B}_t = -\operatorname{curl} \mathbf{E}$.

 $\mathbf{E}_t = \text{curl } \mathbf{B}$, div $\mathbf{E} = 0$.

- An additional lower-degree conservation law $d * F = 0$.
- Dual electromagnetic field tensor:

$$
*F_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\alpha\beta} \eta^{\alpha\gamma} \eta^{\beta\delta} F_{\gamma\delta},
$$

$$
\eta^{\mu\nu} = \text{diag}(-1, 1, 1, 1).
$$

Vacuum Maxwell's equations are symmetrically written as two conservation laws of degree two

 $dF = 0$, $d * F = 0$.

 Ω

K ロ ▶ K 何 ▶ K 手

• Incompressible constant-density viscous fluid flow, no external forcing:

$$
\text{div } \mathbf{V} = 0,
$$

$$
\mathbf{V}_t + \text{curl } \mathbf{V} \times \mathbf{V} + \text{grad } \left(p + \frac{|\mathbf{V}|^2}{2} \right) = \nu \nabla^2 \mathbf{V}.
$$

 \bullet Vorticity formulation: $w = \text{curl } V$.

div
$$
\mathbf{w} = 0
$$
, $\mathbf{w}_t + \text{curl} (\mathbf{w} \times \mathbf{V} - \nu \nabla^2 \mathbf{V}) = 0$.

• In the required form $\vert \text{div} \, \mathbf{N} = 0$, $\mathbf{N}_t + \text{curl} \, \mathbf{M} = 0$,

•
$$
N_w = w
$$
, $M_w = w \times V - \nu \nabla^2 V$.

 Ω

4 0 8 4

• Incompressible constant-density viscous fluid flow, no external forcing:

$$
\text{div } \mathbf{V} = 0,
$$

$$
\mathbf{V}_t + \text{curl } \mathbf{V} \times \mathbf{V} + \text{grad } \left(p + \frac{|\mathbf{V}|^2}{2} \right) = \nu \nabla^2 \mathbf{V}.
$$

• Vorticity formulation: $w = \text{curl } V$.

$$
\text{div } \mathbf{w} = 0, \quad \mathbf{w}_t + \text{curl } (\mathbf{w} \times \mathbf{V} - \nu \nabla^2 \mathbf{V}) = 0.
$$

Conservation law of degree two: $d \omega_{fluid}^{(2)} = 0$,

$$
(\omega_{\textit{fluid}})_{\mu\nu} = \left(\begin{array}{cccc} 0 & -M^1_w & -M^2_w & -M^3_w \\ M^1_w & 0 & N^3_w & -N^2_w \\ M^2_w & -N^3_w & 0 & N^1_w \\ M^3_w & N^2_w & -N^1_w & 0 \end{array} \right).
$$

 Ω

• Incompressible constant-density viscous fluid flow, no external forcing:

$$
\text{div } \mathbf{V} = 0,
$$

$$
\mathbf{V}_t + \text{curl } \mathbf{V} \times \mathbf{V} + \text{grad } \left(\rho + \frac{|\mathbf{V}|^2}{2} \right) = \nu \nabla^2 \mathbf{V}.
$$

• Vorticity formulation: $w = \text{curl } V$.

$$
\text{div } \mathbf{w} = 0, \quad \mathbf{w}_t + \text{curl } (\mathbf{w} \times \mathbf{V} - \nu \nabla^2 \mathbf{V}) = 0.
$$

- Potential equations $\omega_{fluid}^{(2)} = d \tilde{\omega}^{(1)} = d (\theta^t dt + \theta^x dx + \theta^y dy + \theta^z dz.)$
	- $\mathbf{q} := (\theta^{\mathsf{x}}, \theta^{\mathsf{y}}, \theta^{\mathsf{z}});$
	- curl $\mathbf{q} = \mathbf{w}$, $\Rightarrow \mathbf{q} = \mathbf{V} + \text{grad } \chi$;
	- $\theta^t = -p |\mathbf{V}|^2/2 + \chi_t \Rightarrow \mathbf{V}_t + \text{grad}(\mathbf{p} + |\mathbf{V}|^2/2) = -(\mathbf{w} \times \mathbf{V} \nu \nabla^2 \mathbf{V}).$
- Potentialization ⇔ inversion of the spatial curl oper[ato](#page-36-0)r[.](#page-38-0)

 Ω

MHD Equations in 3D:

$$
\rho_t + \text{div} \, \rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \, \text{curl} \, \mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \, \text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \, \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \, \nabla^2 \mathbf{B}.
$$

- \bullet μ , μ_1 , η , σ = const.
- Plasma parameters depend on t , x , y , z .
	- ρ : plasma density. $\mathbf{V} = (V^1, V^2, V^3)$: velocity.
	- $\mathbf{B} = (B^1, B^2, B^3)$: magnetic field. P: pressure.

イロト イ押ト イヨト イ

 299

MHD Equations in 3D:

$$
\rho_t + \text{div} \, \rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \, \text{curl} \, \mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \, \text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \, \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \, \nabla^2 \mathbf{B}.
$$

Adequate description of industrial/laboratory plasmas...

4 0 8 1

1 of 1 17/06/2014 6:37 PM A. Cheviakov (U.Saskatchewan, Canada) [Vorticity-Type Equations](#page-0-0) GADEIS VII, Cyprus, June 2014 24 / 32

 Ω

MHD Equations in 3D:

$$
\rho_t + \text{div} \, \rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \text{curl } \mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}.
$$

• ... as well as astrophysical ones.

4 0 8 1

 298

Ideal MHD equilibrium equations:

$$
\text{div } \mathbf{V} = 0, \quad \text{div } \mathbf{B} = 0, \quad \text{curl}(\mathbf{V} \times \mathbf{B}) = 0,
$$

$$
\rho \mathbf{V} \times \text{curl } \mathbf{V} - \frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \text{ grad } \frac{|\mathbf{V}^2|}{2} = 0,
$$

- Magnetic flux function: $\mathbf{V} \times \mathbf{B} = \text{grad } \Psi(x, y, z)$.
- Magnetic surfaces: $\Psi = \text{const}$, $\mathbf{B}, \mathbf{V} \perp \text{grad } \Psi(x, y, z)$.

← ロ ▶ → イ 同

 QQ

Ideal MHD equilibrium equations:

$$
\text{div } \mathbf{V} = 0, \quad \text{div } \mathbf{B} = 0, \quad \text{curl} (\mathbf{V} \times \mathbf{B}) = 0,
$$

$$
\rho \mathbf{V} \times \text{curl } \mathbf{V} - \frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \text{ grad } \frac{|\mathbf{V}^2|}{2} = 0,
$$

- \bullet Assume ρ is constant on both magnetic field lines and streamlines (grad $\rho \perp \mathbf{V}, \mathbf{B}$).
- Galas-Bogoyavlenskij symmetries:

$$
\mathbf{B}_1 = b\mathbf{B} + c\sqrt{\mu \rho} \mathbf{V}, \qquad \mathbf{V}_1 = \frac{c}{a\sqrt{\mu \rho}} \mathbf{B} + \frac{b}{a} \mathbf{V},
$$

\n
$$
\rho_1 = a^2(\mathbf{r})\rho, \qquad P_1 = \mathbf{C}P + (\mathbf{C}\mathbf{B}^2 - \mathbf{B}_1^2)/(2\mu).
$$

 \bullet Here a, b, c are functions of (x, y, z) constant on both magnetic field lines and streamlines,

$$
b^2 - c^2 = C = \text{const.}
$$

- An infinite set of nonlocal symmetries.
- Led to the construction of important classes of physi[ca](#page-41-0)l [so](#page-43-0)[lu](#page-40-0)[t](#page-41-0)[io](#page-42-0)[n](#page-43-0)[s.](#page-37-0)

 Ω

MHD Equations in 3D:

$$
\rho_t + \text{div}\,\rho \mathbf{V} = 0, \qquad \text{div}\,\mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \text{curl}\,\mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl}\,\mathbf{B} - \text{grad}\, P - \rho \text{grad}\, \frac{|\mathbf{V}|^2}{2} + \mu_1 \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}.
$$

← ロ ▶ → イ 同

 \sim œ. \sim 299

ŧ

MHD Equations in 3D:

$$
\rho_t + \text{div} \,\rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \,\text{curl} \,\mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \,\text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \,\nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \,\nabla^2 \mathbf{B}.
$$

•
$$
\mathbf{N}_m = \mathbf{B}
$$
, $\mathbf{M}_m = \mathbf{B} \times \mathbf{V} - \eta \nabla^2 \mathbf{A}$ $(\mathbf{B} = \text{curl } \mathbf{A})$.

Conservation law of degree two: $d \omega_{MHD}^{(2)} = 0$. The MHD tensor:

$$
(\omega_{MHD})_{\mu\nu} = \left(\begin{array}{cccc} 0 & -M_m^1 & -M_m^2 & -M_m^3 \\ M_m^1 & 0 & N_m^3 & -N_m^2 \\ M_m^2 & -N_m^3 & 0 & N_m^1 \\ M_m^3 & N_m^2 & -N_m^1 & 0 \end{array} \right).
$$

 298

← ロ ▶ → イ 同

MHD Equations in 3D:

$$
\rho_t + \text{div} \,\rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \,\text{curl} \,\mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \,\text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \,\nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \,\nabla^2 \mathbf{B}.
$$

Potential equations: $\omega_{MHD} = d \widetilde{\omega}^{(1)}$.

$$
\widetilde{\omega}^{(1)} = \theta^t \, dt + \theta^x \, dx + \theta^y \, dy + \theta^z \, dz.
$$

$$
(\theta^x, \theta^y, \theta^z) = \mathbf{A}, \quad \theta^t = -\Psi.
$$

 $\mathbf{B} = \text{curl } \mathbf{A}$, grad $\Psi = \mathbf{V} \times \mathbf{B} - \mathbf{A}_t - \eta \text{ curl } \mathbf{B}$.

 Ω

K ロ ト K 何 ト

MHD Equations in 3D:

$$
\rho_t + \text{div}\,\rho \mathbf{V} = 0, \qquad \text{div}\,\mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \text{curl}\,\mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl}\,\mathbf{B} - \text{grad}\, P - \rho \text{grad}\, \frac{|\mathbf{V}|^2}{2} + \mu_1 \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}.
$$

Potential equations: $\omega_{MHD} = d \widetilde{\omega}^{(1)}$.

$$
\widetilde{\omega}^{(1)} = \theta^t \, dt + \theta^x \, dx + \theta^y \, dy + \theta^z \, dz.
$$

$$
(\theta^x, \theta^y, \theta^z) = \mathbf{A}, \quad \theta^t = -\Psi.
$$

$$
\textbf{B} = \text{curl}\,\textbf{A}, \quad \underbrace{\text{grad}\,\Psi = \textbf{V}\times\textbf{B}}_{\text{Galas-Bogoyavlenskij}} - \textbf{A}_t - \eta \text{ curl}\,\textbf{B}.
$$

← ロ ▶ → イ 同

 299

Outline

[Introduction](#page-2-0)

² [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **n** [Dimensions](#page-22-0)

[Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

[Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

⁵ [An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

[Conclusions and Open Problems](#page-52-0)

 Ω

← ロ ▶ → イ 同

Another result (by Direct CL Construction):

- The vorticity PDEs $\left| \text{ div } N = 0, \quad N_t + \text{ curl } M = 0 \right|$.
- Admitted multipliers: $\Lambda^1 = -F_t$, $\Lambda^2 = F_x$, $\Lambda^3 = F_y$, $\Lambda^4 = F_z$.
- $F(t, x, y, z)$: arbitrary function.
- An infinite family of divergence-type conservation laws:

$$
(\mathbf{N} \cdot \nabla F)_t + \mathrm{div}(\mathbf{M} \times \nabla F - F_t \mathbf{N}) = 0.
$$

 Ω

←ロ ▶ ← イ 同 →

Another result (by Direct CL Construction):

- The vorticity PDEs $\vert \text{div} \, \mathbf{N} = 0$, $\mathbf{N}_t + \text{curl} \, \mathbf{M} = 0$.
- Admitted multipliers: $\Lambda^1 = -F_t$, $\Lambda^2 = F_x$, $\Lambda^3 = F_y$, $\Lambda^4 = F_z$.
- $F(t, x, y, z)$: arbitrary function.
- An infinite family of divergence-type conservation laws:

$$
\left[(\mathbf{N} \cdot \nabla F)_t + \mathrm{div}(\mathbf{M} \times \nabla F - F_t \mathbf{N}) \right] = 0.
$$

Discussion

- Parallel to the 2nd Noether's theorem, but for a non-variational system.
- Formally trivial, related to the abnormality of the given equations.
- Physical triviality?

 Ω

K ロ ▶ K 何 ▶ K 手

• Incompressible constant-density viscous fluid flow, no external forcing:

$$
\text{div }\mathbf{V} = 0,
$$

$$
\mathbf{V}_t + \text{curl }\mathbf{V} \times \mathbf{V} + \text{grad }\left(\rho + \frac{|\mathbf{V}|^2}{2}\right) = \nu \nabla^2 \mathbf{V}.
$$

• Vorticity formulation: $w = \text{curl } V$.

$$
\text{div } \mathbf{w} = 0, \quad \mathbf{w}_t + \text{curl } (\mathbf{w} \times \mathbf{V} - \nu \nabla^2 \mathbf{V}) = 0.
$$

The conservation laws:

$$
(\boldsymbol{w}\cdot\nabla F)_t+\operatorname{div}\left([\boldsymbol{w}\times\boldsymbol{V}-\nu\nabla^2\boldsymbol{V}]\times\nabla F-F_t\,\boldsymbol{w}\right)=0,
$$

holding for an arbitrary $F = F(t, x, y, z)$.

 Ω

←ロ ▶ ← イ 同 →

The MHD equations:

$$
\rho_t + \text{div} \, \rho \mathbf{V} = 0, \qquad \text{div } \mathbf{B} = 0,
$$

$$
\rho \mathbf{V}_t + \rho \, \text{curl } \mathbf{V} \times \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \text{curl } \mathbf{B} - \text{grad } P - \rho \, \text{grad } \frac{|\mathbf{V}|^2}{2} + \mu_1 \, \nabla^2 \mathbf{V},
$$

$$
\mathbf{B}_t = \text{curl}(\mathbf{V} \times \mathbf{B}) + \eta \, \nabla^2 \mathbf{B}.
$$

The conservation laws:

$$
(\mathbf{B}\cdot\nabla F)_t + \mathrm{div}\left(\left[\mathbf{B}\times\mathbf{V} + \frac{1}{\sigma}\mathbf{J}\right]\times\nabla F - F_t\,\mathbf{B}\right) = 0,
$$

holding for an arbitrary $F = F(t, x, y, z)$.

- $J=\frac{1}{\tau}$ $\frac{1}{\mu}$ curl **B**, $\sigma = \frac{1}{\mu}$; $\frac{1}{\mu \eta}$.
- For ideal plasmas where $\sigma \to +\infty$, the conservation laws do not involve the current density.

 Ω

← ロ ▶ → イ 同

Outline

[Introduction](#page-2-0)

² [Conservation Laws and Potential Systems](#page-8-0)

- **[Two Dimensions](#page-9-0)**
- **[Three Dimensions](#page-15-0)**
- **n** [Dimensions](#page-22-0)

[Vorticity-type Equations](#page-23-0)

[The Vorticity System as a Conservation Law of Degree Two](#page-25-0)

[Examples](#page-29-0)

- [A. Maxwell's Equations](#page-30-0)
- [B. Vorticity Equations of Fluid Dynamics](#page-35-0)
- [C. Magnetohydrodynamics Equations](#page-38-0)

[An Infinite Set of Divergence-type Conservation Laws](#page-47-0)

⁶ [Conclusions and Open Problems](#page-52-0)

← ロ ▶ → イ 同

 QQ

Conclusions

- The vorticity equations in 3+1 dimensions, $|\operatorname{div} \mathsf{N}=0$, $|\mathsf{N}_t+\operatorname{curl} \mathsf{M}=0|$:
	- Are a part of important physical systems (Maxwell, Navier-Stokes, MHD...).
	- Yield a conservation law of degree two.
	- Lead to under-determined potential equations with four potential variables.
	- Admit an infinite set of local conservation laws given by

 $(N \cdot \nabla F)_t + \text{div}(M \times \nabla F - F_t N) = 0$, $F = F(t, x, y, z)$

Galas-Bogoyavlenskij potential generalized to non-ideal, time-dependent MHD flows.

Future work:

- Study properties and applications of the potential system, in particular, in the MHD context.
- Study meaning and usefulness of the infinite set of the divergence-type conservation laws.

 QQ

メロト メ母 トメミト メミト

Some references

Anderson, I.M. and Torre, C.G (1996).

Asymptotic conservation laws in classical field theory. Phys. Rev. Lett. 77 (20), 4109–4113.

Galas, F. (1993).

Generalized symmetries for the ideal MHD equations. Physica D 63 (1), 87–98.

Bogoyavlenskij, O.I (2001).

Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291 (4), 256–264.

Cheviakov, A.F. (2014).

Conservation properties and potential systems of vorticity-type equations. JMP 55 (3), 033508.

∢ ロ ≯ - ∢ 何

 299

Some references

Anderson, I.M. and Torre, C.G (1996).

Asymptotic conservation laws in classical field theory. Phys. Rev. Lett. 77 (20), 4109–4113.

Galas, F. (1993).

Generalized symmetries for the ideal MHD equations. Physica D 63 (1), 87–98.

Bogoyavlenskij, O.I (2001).

Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291 (4), 256–264.

Cheviakov, A.F. (2014).

Conservation properties and potential systems of vorticity-type equations. JMP 55 (3), 033508.

Thank you for your attention!

 Ω

4 0 3 4