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Notation

Notation

∂u

∂x
≡ ux .
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Fig. 1. Material and Eulerian coordinates.

The actual position x of a material point labeled by X ∈ Ω0 at time t is given by
x = φ (X, t) , xi = φi (X, t) .

Coordinates X in the reference configuration are commonly referred to as Lagrangian coordinates, and actual coordinates
x as Eulerian coordinates. The deformed body occupies an Eulerian domain Ω = φ(Ω0) ⊂ R3 (Fig. 1). The velocity of a
material point X is given by

v (X, t) =
dx
dt

≡
dφ
dt

.

Themappingφmust be sufficiently smooth (the regularity conditions depending on the particular problem). The Jacobian
matrix of the coordinate transformation is given by the deformation gradient

F(X, t) = ∇φ, (1)
which is an invertible matrix with components

F i
j =

∂φi

∂X j
= Fij. (2)

(Throughout the paper, we use Cartesian coordinates and flat space metric tensor g ij
= δij, therefore indices of all tensors

can be raised or lowered freely as needed.) The transformation satisfies the orientation preserving condition
J = det F > 0.

Forces and stress tensors
By the well-known Cauchy theorem, the force (per unit area) acting on a surface element S within or on the boundary of

the solid body is given in the Eulerian configuration by
t = σn,

where n is a unit normal, and σ = σ(x, t) is Cauchy stress tensor (see Fig. 1). The Cauchy stress tensor is symmetric:
σ = σT , which is a consequence of the conservation of angular momentum. For an elastic medium undergoing a smooth
deformation under the action of prescribed surface and volumetric forces, the existence and uniqueness of the Cauchy stress
σ follows from the conservation ofmomentum (cf. [29, Section 2.2]). The force acting on a surface element S0 in the reference
configuration is given by the stress vector

T = PN,

where P is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through

P = JσF−T . (3)
In (3), (F−T )ij ≡ (F−1)ji is the transpose of the inverse of the deformation gradient.

Hyperelastic materials
A hyperelastic (or Green elastic)material is an ideally elasticmaterial forwhich the stress–strain relationship follows from

a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response
of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by P = P (X, F). A hyperelastic material
assumes the existence of a scalar valued volumetric strain energy function W = W (X, F) in the reference configuration,
encapsulating all information regarding the material behavior, and related to the stress tensor through

P = ρ0
∂W
∂F

, P ij
= ρ0

∂W
∂Fij

, (4)

where ρ0 = ρ0(X) is the time-independent body density in the reference configuration. The actual density in Eulerian
coordinates ρ = ρ(X, t) is time-dependent and is given by

ρ = ρ0/J.

Material picture

A solid body occupies the reference (Lagrangian) volume Ω0 ⊂ R3.

Actual (Eulerian) configuration: Ω ⊂ R3.

Material points are labelled by X ∈ Ω0.

The actual position of a material point: x = φ (X, t) ∈ Ω.
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where ρ0 = ρ0(X) is the time-independent body density in the reference configuration. The actual density in Eulerian
coordinates ρ = ρ(X, t) is time-dependent and is given by

ρ = ρ0/J.

Material picture

Velocity of a material point X: v (X, t) =
dx

dt
.

Jacobian matrix (deformation gradient):

F(X, t) = ∇φ; J = det F > 0;

F = {Fij} = {F i
j}.
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Material picture

Boundary force (per unit area) in Eulerian configuration: t = σn.

Boundary force (per unit area) in Lagrangian configuration: T = PN.

σ = σ(x, t) is the Cauchy stress tensor.

P = JσF−T is the first Piola-Kirchhoff tensor.
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Material picture

Density in reference configuration: ρ0 = ρ0(X) (time-independent).

Density in actual configuration:

ρ = ρ(X, t) = ρ0/J.
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Governing Equations for Hyperelastic Materials

Equations of motion (no dissipation, purely elastic setting):

ρ0xtt = div(X )P + ρ0R, (1)

R = R(X, t): total body force per unit mass.

(div(X )P)i =
∂P ij

∂X j
.

Cauchy stress tensor symmetry (conservation of angular momentum):

FPT = PFT ⇔ σ = σT . (2)

The first Piola-Kirchhoff stress tensor:

P = ρ0
∂W

∂F
, P ij = ρ0

∂W

∂Fij
. (3)

W = W (X,F): a scalar strain energy density function.
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Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3).

For the left Cauchy-Green strain tensor B = FFT ,

I1 = TrB = F i
kF

i
k ,

I2 = 1
2
[(TrB)2 − Tr(B2)] = 1

2
(I 2

1 − B ikBki ),

I3 = det B = J2.

(4)
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Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3).

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

Type Neo-Hookean Mooney-Rivlin

Standard W = aI1, W = aI1 + bI2,

a > 0. a, b > 0

Generalized W = aĪ1 + c(J − 1)2, W = aĪ1 + bĪ2 + c(J − 1)2

a, c > 0. a, b, c > 0

Generalized (Ciarlet) W = aI1 + Γ(J), W = aI1 + bI2 + Γ(J)

“compressible” Γ(q) = cq2 − d log q, a, c, d > 0 Γ(q) = cq2 − d log q, a, b, c, d > 0
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Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

Strain energy density W depends only on certain matrix invariants:

W = U(I1, I2, I3).

Example: the Neo-Hookean Case

Strain energy density: W = a I1, a = const.

Equations of motion are linear and decoupled:

(xk )tt = a

(
∂2

∂(X 1)2
+

∂2

∂(X 2)2
+

∂2

∂(X 3)2

)
xk ,

k = 1, 2, 3.
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Ciarlet-Mooney-Rivlin solids in 2D: Governing equations

General equations:

ρ0xtt = div(X )P + ρ0R,

FPT = PFT ,

P = ρ0 ∂W /∂F.

Assumptions:

Two-dimensional: x1,2 = x1,2(X 1,X 2, t); the third coordinate x3 = X 3 is fixed.

Ciarlet-Mooney-Rivlin constitutive relation (4 parameters):

W = aI1 + bI2 − cI3 −
1

2
d log I3, a > 0, b, c, d ≥ 0, (4)

F =

 F11 F12 0
F21 F22 0
0 0 1

 , ρ0(x1)tt −
∂P11

∂X 1
− ∂P12

∂X 2
− ρ0R

1 = 0,

ρ0(x2)tt −
∂P21

∂X 1
− ∂P22

∂X 2
− ρ0R

2 = 0.
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Equivalence Transformations. Reduction of Number of Parameters

Ciarlet-Mooney-Rivlin constitutive relation:

W = aI1 + bI2 − cI3 −
1

2
d log I3, a > 0, b, c, d ≥ 0.

Equivalence Transformations:

t̃ = eε2t + ε1, x̃1 = e2ε2x1, x̃2 = e2ε2x2,

X̃ 1 = eε3
(
X 1 cos ε7 − X 2 sin ε7

)
+ ε4, X̃ 2 = eε3

(
X 1 sin ε7 + X 2 sin ε7

)
+ ε5,

ρ̃0 = eε6ρ0, R̃1 = R1, R̃2 = R2,

ã = −b + e2ε3−2ε2 (a + b), b̃ = b, c̃ = −b + e4ε3−6ε2 (b + c), d̃ = e2ε2d .
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Equivalence Transformations. Reduction of Number of Parameters

Ciarlet-Mooney-Rivlin constitutive relation:

W = aI1 + bI2 − cI3 −
1

2
d log I3, a > 0, b, c, d ≥ 0.

Principal Result 1:

The model essentially depends on three constitutive parameters:

A = 2(a + b) ≥ 0, B = 2(b + c) ≥ 0, d .

the two-dimensional first Piola-Kirchhoff stress tensor is given by

P2 = ρ0

[
AF2 + B J C2 −

d

J
C2

]
,

where

F2 =

[
F 1

1 F 1
2

F 2
1 F 2

2

]
, C2 =

[
F 2

2 −F 2
1

−F 1
2 F 1

1

]
,

F2 = ∇(X ) x, x = [x1(X, t), x2(X, t)]T .
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General 2D Case, No Forcing

Governing equations:

No forcing: R1 = R2 = 0.

Dynamic equations:

ρ0(x1)tt −
∂P11

∂X 1
− ∂P12

∂X 2
= 0,

ρ0(x2)tt −
∂P21

∂X 1
− ∂P22

∂X 2
= 0.

C-M-R constitutive relation:

P2 = ρ0

[
AF2 + B J C2 −

d

J
C2

]
,

F2 =

[
F 1

1 F 1
2

F 2
1 F 2

2

]
, C2 =

[
F 2

2 −F 2
1

−F 1
2 F 1

1

]
,

F2 = ∇(X ) x, x = [x1(X, t), x2(X, t)]T .
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Specific Forms of Equations
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Symmetries of Differential Equations

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

with variables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Definition

A transformation
x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),
u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equations are the same
in new variables x∗, u∗.
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x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),
u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equations are the same
in new variables x∗, u∗.

Example 1: translations

The translation
x∗ = x + C , t∗ = t, u∗ = u

leaves KdV invariant:

ut + uux + uxxx = 0 = u∗
t∗ + u∗u∗

x∗ + u∗
x∗x∗x∗ .
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Symmetries of Differential Equations

Consider a general DE system
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Definition

A transformation
x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),
u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equations are the same
in new variables x∗, u∗.

Example 2: scaling

Same for the scaling:
x∗ = αx , t∗ = α3t, u∗ = αu.

One has
ut + uux + uxxx = 0 = u∗

t∗ + u∗u∗
x∗ + u∗

x∗x∗x∗ .
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Applications of Symmetries to Differential Equations

Nonlinear DEs

Numerical solutions: resource/time consuming; lack generality.

Solution methods for linear DEs do not work.

Symmetry analysis: a general systematic framework leading to useful results.

Symmetries for ODEs

Reduction of order / complete integration.

All known methods of solution of specific classes of ODEs follow from symmetries!

Symmetries for PDEs

Exact symmetry-invariant (e.g., self-similar) solutions.

Transformations: solutions ⇒ new solutions.

Mappings relating classes of equations; linearizations.

Symmetry-preserving numerical methods.
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Applications of Symmetries to Differential Equations

Computation of Symmetries

Lie point symmetries and other types are computed systematically for any DE.

Literature widely available.

Symbolic software packages available.

A popular approach to analyze complicated DEs arising in applied science:

fluid and solid mechanics,

rocket science,

meteorology,

biological applications, ...
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General 2D Case, No Forcing – Symmetry Classification

Table 1: Point symmetry classification for the 2D Ciarlet-Mooney-Rivlin models with zero
forcing and ρ0 = const > 0.

Case Point symmetries

General Y1 = ∂
∂t ,Y2 = ∂

∂X 1 ,Y3 = ∂
∂X 2 ,Y4 = ∂

∂x1 ,Y5 = ∂
∂x2 ,Y6 = t ∂

∂x1 ,Y7 = t ∂
∂x2 ,

Y8 = X 2 ∂
∂X 1 − X 1 ∂

∂X 2 ,Y9 = x2 ∂
∂x1 − x1 ∂

∂x2 ,

Y10 = t ∂∂t + X 1 ∂
∂X 1 + X 2 ∂

∂X 2 + x1 ∂
∂x1 + x2 ∂

∂x2

A = 0, Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,

B, d arbitrary Y11 = f1(X 2) ∂
∂X 1 ,Y12 =

(
∂
∂X2

f2(X 1,X 2)
)

∂
∂X 1 −

(
∂
∂X1

f2(X 1,X 2)
)

∂
∂X 2 ,

f1(X 2), f2(X 1,X 2) are arbitrary functions

A = d = 0 Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,

B arbitrary Y13 = t ∂∂t + X 1 ∂
∂X 1

A = B = 0 Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,

d arbitrary Y14 = X 1 ∂
∂X 1
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Traveling Wave Ansatz Along X 1

Traveling Wave Ansatz

No forcing: R1 = R2 = 0.

Ansatz:
x i (X 1,X 2, t) = w i (z ,X 2), z = X 1 − st, i = 1, 2;

ρ0 = ρ0(X 2).

s is the constant wave speed.
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Symmetry Classification in Traveling Wave Coordinates

# Case Point symmetries

1 General Y1 = ∂
∂z ,Y2 = ∂

∂w1 ,Y3 = ∂
∂w2 ,Y4 = w 2 ∂

∂w1 − w 1 ∂
∂w2

2 ρ0(X 2) = (X 2 + q1)q2 , q1, q2 = const, Y1,Y2,Y3,Y4,

q2 6= 0, A,B, d, s arbitrary Y5 = z ∂
∂z + (X 2 + q1) ∂

∂X 2 + w 1 ∂
∂w1 + w 2 ∂

∂w2

3a ρ0(X 2) = exp(q1X 2), q1 = const 6= 0, Y1,Y2,Y3,Y4,

A,B, d, s arbitrary Y6 = ∂
∂X 2

3b ρ0(X 2) = exp(q1X 2), q1 = const 6= 0, Y1,Y2,Y3,Y4,

A, d arbitrary, B = 0, s2 = A Y∞(1) = −
(

1
q1

d
dz f1(z)

)
∂
∂X 2 + f1(z) ∂∂z

4a ρ0(X 2) > 0 arbitrary, Y1,Y2,Y3,Y4,

A,B arbitrary, d = 0, s2 = A Y7 = z ∂
∂z + w 1 ∂

∂w1 + w 2 ∂
∂w2 , Y8 =

(
ρ0

∫
1
ρ0

dX 2
)

∂
∂X 2 ,

Y∞(2) = f2(z)ρ0
∂
∂X 2 , f2(z) is an arbitrary function

4b ρ0(X 2) > 0 arbitrary, Y1,Y2,Y3,Y4,

A, d arbitrary, B = 0, s2 = A Y9 = z ∂
∂z

5a ρ0 = const Y1,Y2,Y3,Y4,Y5(q1 = 0),Y6,

A,B, d, s arbitrary Y10 = X 2 ∂
∂z −

Az
A−s2

∂
∂X 2

5b ρ0 = const, s2 = A , Y1,Y2,Y3,Y4,Y5(q1 = 0),

A,B, d arbitrary Y∞(3) = f3(z) ∂
∂X 2 , f3(z) is an arbitrary function

5c ρ0 = const, s2 = A , Y1,Y2,Y3,Y4,Y5(q1 = 0),Y9,Y
∞
(3),

A, d arbitrary, B = 0
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Examples of Exact Solutions

Example:

Case: ρ0 = const, R1 = R2 = 0, A = s2, d = s2 + B.

A basic solution:

w 1 = z ⇔ x1(X 1,X 2, t) = X 1 − st, w 2 = x2(X 1,X 2, t) = X 2,

A symmetry-transformed solution:

w 1 = z ⇔ x1(X 1,X 2, t) = X 1 − st,
w 2 = X 2 − f (z) ⇔ x2(X 1,X 2, t) = X 2 − f (X 1 − st)

Figure:
(a) A rectangular grid in the reference configuration.
(b) The propagating deformation, f (z) = − exp(−z2).
(c) The propagating deformation, f (z) = −(1 + tanh z)/2.

A. Cheviakov (UofS) 2D Nonlinear Elastodynamics CMSC 2014 20 / 23



Examples of Exact Solutions
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Figure 2: (a) A rectangular grid in the reference configuration. (b) (c) The deformation cor-
responding to the exact solutions (44) in the actual (Euler) configuration, in the frame of the
observer traveling with speed s, for the cases f(z) = − exp(−z2) and f(z) = −(1 + tanh z)/2,
respectively.

the parametric curves (w1(z, X2), w2(z, X2)) at z = const (vertical direction) and X2 = const
(horizontal direction). Sample graphs are given in Figure 2.

One may further use equivalence transformations (36) in order to get, for example, scaled
or rotated versions of solutions (44), and/or solutions corresponding to waves traveling with a
different speed s.

For example, consider a traveling wave-type exact solution of the type (44) in an elastic
medium with prescribed constitutive parameters A∗, B∗, d∗, propagating with speed s∗ =

√
A∗:

x1(X1, X2, t) = X1 − st, x2(X1, X2, t) = X2 + α exp(−β(X1 − st)2), (46)

where α, β are some fixed constants of appropriate physical dimensions. Using equivalence
transformations (36) with parameters

ε2 = −1
2 ln p, ε3 = −1

2 ln q, p, q > 0, ε1 = ε4 = · · · = ε8 = 0,

one arrives at an exact solution

x̃1(X̃1, X̃2, t̃) =

√
q

p

(
X̃1 − s

√
p

q
t̃

)
,

x̃2(X̃1, X̃2, t̃) =

√
q

p

(
X̃2 + α exp

[
−β

√
q

(
X̃1 − s

√
p

q
t̃

)]2
)

,

(47)

17
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Conclusions and Open Problems

Conclusions

Symmetry properties of dynamic equations for 2D planar Ciarlet-Mooney-Rivlin
materials were studied:

in a general setting;

in traveling wave coordinates.

The number of essential constitutive parameters in the model were reduced through
equivalence transformations.

New traveling-wave type exact solutions were obtained for the nonlinear model.

Future/ongoing work

Use computed symmetries to derive new exact solutions in 2D.

Consider important non-planar two-dimensional reductions (including axial
symmetry), and 3D.

Generalize to other constitutive models, in particular, models of anisotropic
materials.
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