Constitutive Relations, Natural States, and Travelling Waves in Two-Dimensional Nonlinear Elastodynamics

Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

June 03, 2014

Outline

(1) Introduction

- Notation; Material Picture
- Governing Equations for Hyperelastic Materials
- Constitutive Relations
(2) Ciarlet-Mooney-Rivlin Solids in Two Dimensions
- Details of the Model
- Reduction of Number of Parameters
(3) C-M-R Elasticity Equations in 2D
(4) Symmetry Analysis
- Symmetries of Differential Equations
- Applications of Symmetries
- General 2D Case
- Traveling Wave Coordinates
- Examples of Exact Solutions
(5) Conclusions and Open Problems

Collaborators

J.-F. Ganghoffer, LEMTA - ENSEM, Université de Lorraine, Nancy, France

Notation

Notation

$$
\frac{\partial u}{\partial x} \equiv u_{x}
$$

Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- A solid body occupies the reference (Lagrangian) volume $\Omega_{0} \subset \mathbb{R}^{3}$.
- Actual (Eulerian) configuration: $\Omega \subset \mathbb{R}^{3}$.
- Material points are labelled by $\mathbf{X} \in \Omega_{0}$.
- The actual position of a material point: $\mathbf{x}=\phi(\mathbf{X}, t) \in \Omega$.

Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Velocity of a material point $\mathbf{X}: \mathbf{v}(\mathbf{X}, t)=\frac{d \mathbf{x}}{d t}$.
- Jacobian matrix (deformation gradient):

$$
\begin{gathered}
\mathbf{F}(\mathbf{X}, t)=\nabla \phi ; \quad J=\operatorname{det} \mathbf{F}>0 ; \\
\mathbf{F}=\left\{F_{i j}\right\}=\left\{F^{i}{ }_{j}\right\} .
\end{gathered}
$$

Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Boundary force (per unit area) in Eulerian configuration: $\mathbf{t}=\boldsymbol{\sigma} \mathbf{n}$.
- Boundary force (per unit area) in Lagrangian configuration: $\mathbf{T}=\mathbf{P N}$.
- $\boldsymbol{\sigma}=\boldsymbol{\sigma}(\mathrm{x}, t)$ is the Cauchy stress tensor.
- $\mathbf{P}=J \sigma \mathbf{F}^{-T}$ is the first Piola-Kirchhoff tensor.

Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Density in reference configuration: $\rho_{0}=\rho_{0}(\mathbf{X})$ (time-independent).
- Density in actual configuration:

$$
\rho=\rho(\mathbf{X}, t)=\rho_{0} / J .
$$

Governing Equations for Hyperelastic Materials

Equations of motion (no dissipation, purely elastic setting):

$$
\begin{equation*}
\rho_{0} \mathbf{x}_{t t}=\operatorname{div}_{(X)} \mathbf{P}+\rho_{0} \mathbf{R}, \tag{1}
\end{equation*}
$$

- $\mathbf{R}=\mathbf{R}(\mathbf{X}, t)$: total body force per unit mass.
- $\left(\operatorname{div}_{(X)} \mathbf{P}\right)^{i}=\frac{\partial P^{i j}}{\partial X^{j}}$.

Cauchy stress tensor symmetry (conservation of angular momentum):

$$
\begin{equation*}
\mathbf{F P}^{T}=\mathbf{P F}^{T} \quad \Leftrightarrow \quad \boldsymbol{\sigma}=\boldsymbol{\sigma}^{T} . \tag{2}
\end{equation*}
$$

The first Piola-Kirchhoff stress tensor:

$$
\begin{equation*}
\mathbf{P}=\rho_{0} \frac{\partial W}{\partial \mathbf{F}}, \quad P^{i j}=\rho_{0} \frac{\partial W}{\partial F_{i j}} . \tag{3}
\end{equation*}
$$

- $W=W(\mathbf{X}, \mathbf{F})$: a scalar strain energy density function.

Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(I_{1}, I_{2}, I_{3}\right) .
$$

- For the left Cauchy-Green strain tensor $\mathbf{B}=\mathbf{F F}^{\top}$,

$$
\begin{align*}
& I_{1}=\operatorname{Tr} \mathbf{B}=F_{k}^{i} F^{i}{ }_{k}, \\
& I_{2}=\frac{1}{2}\left[(\operatorname{Tr} \mathbf{B})^{2}-\operatorname{Tr}\left(\mathbf{B}^{2}\right)\right]=\frac{1}{2}\left(I_{1}^{2}-B^{i k} B^{k i}\right), \tag{4}\\
& I_{3}=\operatorname{det} \mathbf{B}=J^{2} .
\end{align*}
$$

Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(I_{1}, l_{2}, l_{3}\right) .
$$

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

Type	Neo-Hookean	Mooney-Rivlin
Standard	$W=a I_{1}$,	$W=a l_{1}+b l_{2}$,
	$a>0$.	$a, b>0$
Generalized	$W=a \bar{I}_{1}+c(J-1)^{2}$,	$W=a \bar{I}_{1}+b \bar{I}_{2}+c(J-1)^{2}$
	$a, c>0$.	$a, b, c>0$
Generalized (Ciarlet)	$W=a I_{1}+\Gamma(J)$,	$W=a l_{1}+b I_{2}+\Gamma(J)$
"compressible"	$\Gamma(q)=c q^{2}-d \log q, a, c, d>0$	$\Gamma(q)=c q^{2}-d \log q, a, b, c, d>0$

Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain matrix invariants:

$$
W=U\left(I_{1}, I_{2}, I_{3}\right) .
$$

Example: the Neo-Hookean Case

- Strain energy density: $W=a I_{1}, \quad a=$ const.
- Equations of motion are linear and decoupled:

$$
\begin{aligned}
& \left(x^{k}\right)_{t t}=a\left(\frac{\partial^{2}}{\partial\left(X^{1}\right)^{2}}+\frac{\partial^{2}}{\partial\left(X^{2}\right)^{2}}+\frac{\partial^{2}}{\partial\left(X^{3}\right)^{2}}\right) x^{k} \\
& k=1,2,3
\end{aligned}
$$

Outline

(1) Introduction

- Notation; Material Picture
- Governing Equations for Hyperelastic Materials
- Constitutive Relations
(2) Ciarlet-Mooney-Rivlin Solids in Two Dimensions
- Details of the Model
- Reduction of Number of Parameters
(3) C-M-R Elasticity Equations in 2D

4 Symmetry Analysis

- Symmetries of Differential Equations
- Applications of Symmetries
- General 2D Case
- Traveling Wave Coordinates
- Examples of Exact Solutions
(5. Conclusions and Open Problems

Ciarlet-Mooney-Rivlin solids in 2D: Governing equations

General equations:

$$
\begin{aligned}
& \rho_{0} \mathbf{x}_{t t}=\operatorname{div}_{(X)} \mathbf{P}+\rho_{0} \mathbf{R}, \\
& \mathbf{F P}^{T}=\mathbf{P F}^{T} \\
& \mathbf{P}=\rho_{0} \partial W / \partial \mathbf{F}
\end{aligned}
$$

Assumptions:

- Two-dimensional: $x^{1,2}=x^{1,2}\left(X^{1}, X^{2}, t\right)$; the third coordinate $x^{3}=X^{3}$ is fixed.
- Ciarlet-Mooney-Rivlin constitutive relation (4 parameters):

$$
\begin{equation*}
W=a l_{1}+b l_{2}-c l_{3}-\frac{1}{2} d \log l_{3}, \quad a>0, \quad b, c, d \geq 0 \tag{4}
\end{equation*}
$$

$$
\mathbf{F}=\left[\begin{array}{ccc}
F_{11} & F_{12} & 0 \\
F_{21} & F_{22} & 0 \\
0 & 0 & 1
\end{array}\right], \quad \rho_{0}\left(x^{1}\right)_{t t}-\frac{\partial P^{11}}{\partial X^{1}}-\frac{\partial P^{12}}{\partial X^{2}}-\rho_{0} R^{1}=0,
$$

Equivalence Transformations. Reduction of Number of Parameters

Ciarlet-Mooney-Rivlin constitutive relation:

$$
W=a l_{1}+b l_{2}-c l_{3}-\frac{1}{2} d \log l_{3}, \quad a>0, \quad b, c, d \geq 0
$$

Equivalence Transformations:

$$
\begin{aligned}
& \tilde{t}=e^{\varepsilon_{2}} t+\varepsilon_{1}, \quad \widetilde{x}^{1}=e^{2 \varepsilon_{2}} x^{1}, \quad \widetilde{x}^{2}=e^{2 \varepsilon_{2}} x^{2}, \\
& \widetilde{X}^{1}=e^{\varepsilon_{3}}\left(X^{1} \cos \varepsilon_{7}-X^{2} \sin \varepsilon_{7}\right)+\varepsilon_{4}, \quad \widetilde{X}^{2}=e^{\varepsilon_{3}}\left(X^{1} \sin \varepsilon_{7}+X^{2} \sin \varepsilon_{7}\right)+\varepsilon_{5}, \\
& \widetilde{\rho}_{0}=e^{\varepsilon_{6}} \rho_{0}, \quad \widetilde{R}^{1}=R^{1}, \quad \widetilde{R}^{2}=R^{2}, \\
& \widetilde{a}=-b+e^{2 \varepsilon_{3}-2 \varepsilon_{2}}(a+b), \quad \widetilde{b}=b, \quad \widetilde{c}=-b+e^{4 \varepsilon_{3}-6 \varepsilon_{2}}(b+c), \quad \widetilde{d}=e^{2 \varepsilon_{2}} d .
\end{aligned}
$$

Equivalence Transformations. Reduction of Number of Parameters

Ciarlet-Mooney-Rivlin constitutive relation:

$$
W=a l_{1}+b l_{2}-c l_{3}-\frac{1}{2} d \log l_{3}, \quad a>0, \quad b, c, d \geq 0 .
$$

Principal Result 1:

- The model essentially depends on three constitutive parameters:

$$
A=2(a+b) \geq 0, \quad B=2(b+c) \geq 0, \quad d
$$

- the two-dimensional first Piola-Kirchhoff stress tensor is given by

$$
\mathbf{P}_{2}=\rho_{0}\left[A \mathbf{F}_{2}+B J \mathbf{C}_{2}-\frac{d}{J} \mathbf{C}_{2}\right],
$$

where

$$
\begin{gathered}
\mathbf{F}_{2}=\left[\begin{array}{cc}
F_{1}^{1} & F_{2}^{1} \\
F_{1}^{2} & F_{2}^{2}
\end{array}\right], \quad \mathbf{C}_{2}=\left[\begin{array}{cc}
F_{2}^{2} & -F_{1}^{2} \\
-F_{2}^{1} & F_{1}^{1}
\end{array}\right], \\
\mathbf{F}_{2}=\nabla_{(X)} \mathbf{x}, \quad \mathbf{x}=\left[x^{1}(\mathbf{X}, t), x^{2}(\mathbf{X}, t)\right]^{T}
\end{gathered}
$$

Outline

(1) Introduction

- Notation; Material Picture
- Governing Equations for Hyperelastic Materials
- Constitutive Relations
(5) Ciarlet-Mooney-Rivlin Solids in Two Dimensions
- Details of the Model
- Reduction of Number of Parameters
(3) C-M-R Elasticity Equations in 2D
(4) Symmetry Analysis
- Symmetries of Differential Equations
- Applications of Symmetries
- General 2D Case
- Traveling Wave Coordinates
- Examples of Exact Solutions
(5) Conclusions and Open Problems

General 2D Case, No Forcing

Governing equations:

- No forcing: $R^{1}=R^{2}=0$.
- Dynamic equations:

$$
\begin{aligned}
& \rho_{0}\left(x^{1}\right)_{t t}-\frac{\partial P^{11}}{\partial X^{1}}-\frac{\partial P^{12}}{\partial X^{2}}=0 \\
& \rho_{0}\left(x^{2}\right)_{t t}-\frac{\partial P^{21}}{\partial X^{1}}-\frac{\partial P^{22}}{\partial X^{2}}=0 .
\end{aligned}
$$

- C-M-R constitutive relation:

$$
\begin{gathered}
\mathbf{P}_{2}=\rho_{0}\left[A \mathbf{F}_{2}+B J \mathbf{C}_{2}-\frac{d}{J} \mathbf{C}_{2}\right] \\
\mathbf{F}_{2}=\left[\begin{array}{cc}
F_{1}^{1} & F_{2}^{1} \\
F_{1}^{2} & F_{2}^{2}
\end{array}\right], \quad \mathbf{C}_{2}=\left[\begin{array}{cc}
F_{2}^{2} & -F_{1}^{2} \\
-F_{2}^{1} & F_{1}^{1}
\end{array}\right] \\
\mathbf{F}_{2}=\nabla_{(X)} \mathbf{x}, \quad \mathbf{x}=\left[x^{1}(\mathbf{X}, t), x^{2}(\mathbf{X}, t)\right]^{T}
\end{gathered}
$$

Specific Forms of Equations

$$
\begin{aligned}
x 1_{t, t} & =\frac{1}{\left(x 1_{X 1} x 2_{X 2}-x 1_{X 2} x 2_{X 1}\right)^{2}}\left(x 2_{X 1, X 2} x 1_{X 2}{ }^{3} x 2_{X 1}{ }^{3} B\right. \\
& +x 1_{X 2, X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{4} B+x 1_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} A \\
& +x 1_{X 2, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} A+x 1_{X 1, X 1} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} A \\
& +x 1_{X 2, X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} A+x 2_{X 1, X 2} x 1_{X 1} x 2_{X 2} d+x 2_{X 1, X 2} x 1_{X 2} x 2_{X 1} d \\
& -2 x 1_{X 1, X 2} x 2_{X 2} x 2_{X 1} d-x 2_{X 1, X 1} x 2_{X 2} x 1_{X 2} d+x 1_{X 1, X 1} x 2_{X 2}{ }^{2} d \\
& +x 1_{X 2, X 2} x 2_{X 1}{ }^{2} d-x 2_{X 2, X 2} x 1_{X 1}{ }^{3} x 2_{X 2}{ }^{2} x 2_{X 1} B \\
& -x 2_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{3} x 1_{X 2} B-2 x 1_{X 1, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{3} x 2_{X 1} B \\
& +x 1_{X 2, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} x 2_{X 1}{ }^{2} B-x 2_{X 2, X 2} x 1_{X 1} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{3} B \\
& +x 1_{X 1, X 1} x 2_{X 2}{ }^{2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} B-x 2_{X 1, X 1} x 2_{X 2} x 1_{X 2}{ }^{3} x 2_{X 1}{ }^{2} B \\
& -2 x 1_{X 1, X 2} x 2_{X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{3} B-x 2_{X 2, X 2} x 1_{X 1} x 2_{X 1} d \\
& -2 x 1_{X 2, X 2} x 1_{X 1} x 2_{X 2} x 1_{X 2} x 2_{X 1} A-x 2_{X 1, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} x 1_{X 2} x 2_{X 1} B \\
& +2 x 2_{X 2, X 2} x 1_{X 1}{ }^{2} x 2_{X 2} x 1_{X 2} x 2_{X 1}{ }^{2} B \\
& -2 x 1_{X 1, X 1} x 1_{X 1} x 2_{X 2}{ }^{3} x 1_{X 2} x 2_{X 1} B \\
& +2 x 2_{X 1, X 1} x 1_{X 1} x 2_{X 2}{ }^{2} x 1_{X 2}{ }^{2} x 2_{X 1} B \\
& +4 x 1_{X 1, X 2} x 1_{X 1} x 2_{X 2}{ }^{2} x 1_{X 2} x 2_{X 1}{ }^{2} B-x 2_{X 1, X 2} x 1_{X 1} x 2_{X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} B \\
& -2 x 1_{X 2, X 2} x 1_{X 1} x 2_{X 2} x 1_{X 2} x 2_{X 1}^{3} B-2 x 1_{X 1, X 1} x 1_{X 1} x 2_{X 2} x 1_{X 2} x 2_{X 1} A \\
& \left.+x 2_{X 1, X 2} x 1_{X 1}{ }^{3} x 2_{X 2}{ }^{3} B+x 1_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}^{4} B{ }^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
x 2_{t, t} & =\frac{1}{\left(x 1_{X 2} x 2_{X 1}-x 1_{X 1} x 2_{X 2}\right)^{2}}\left(x 2_{X 1, X 1} x 1_{X 2}{ }^{2} d+x 2_{X 2, X 2} x 1_{X 1}{ }^{2} d\right. \\
& -2 x 2_{X 1, X 1} x 1_{X 1} x 2_{X 2} x 1_{X 2}{ }^{3} x 2_{X 1} B-x 1_{X 1, X 2} x 1_{X 1} x 2_{X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} B \\
& +4 x 2_{X 1, X 2} x 1_{X 1}{ }^{2} x 2_{X 2} x 1_{X 2}{ }^{2} x 2_{X 1} B \\
& +2 x 1_{X 1, X 1} x 1_{X 1} x 2_{X 2}{ }^{2} x 1_{X 2}{ }^{2} x 2_{X 1} B \\
& +2 x 1_{X 2, X 2} x 1_{X 1}{ }^{2} x 2_{X 2} x 1_{X 2} x 2_{X 1}{ }^{2} B \\
& -2 x_{X 2, X 2} x 1_{X 1}{ }^{3} x 2_{X 2} x 1_{X 2} x 2_{X 1} B-x 1_{X 1, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} x 1_{X 2} x 2_{X 1} B \\
& -2 x 2_{X 1, X 1} x 1_{X 1} x 2_{X 2} x 1_{X 2} x 2_{X 1} A-2 x 2_{X 2, X 2} x 1_{X 1} x 2_{X 2} x 1_{X 2} x 2_{X 1} A \\
& +x 2_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} x 1_{X 2}{ }^{2} B-2 x 2_{X 1, X 2} x 1_{X 1} x 1_{X 2}{ }^{3} x 2_{X 1}{ }^{2} B \\
& -x 1_{X 1, X 1} x 2_{X 2} x 1_{X 2}{ }^{3} x 2_{X 1}{ }^{2} B-x 1_{X 2, X 2} x 1_{X 1} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{3} B \\
& +x 2_{X 2, X 2} x 1_{X 1}{ }^{2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} B-2 x 2_{X 1, X 2} x 1_{X 1}{ }^{3} x 2_{X 2}{ }^{2} x 1_{X 2} B \\
& -x 1_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{3} x 1_{X 2} B-x 1_{X 2, X 2} x 1_{X 1}{ }^{3} x 2_{X 2}{ }^{2} x 2_{X 1} B \\
& -x 1_{X 1, X 1} x 2_{X 2} x 1_{X 2} d-22_{X 1}{ }_{X 2} x 1_{X 1} x 1_{X 2} d+x 1_{X 1, X 2} x 1_{X 1} x 2_{X 2} d \\
& +x 1_{X 1, X 2} x 1_{X 2} x 2_{X 1} d-x 1_{X 2, X 2} x 1_{X 1} x 2_{X 1} d+x 2_{X 1, X 1} x 1_{X 2}{ }^{4} x 2_{X 1}{ }^{2} B \\
& +x 1_{X 1, X 2} x 1_{X 2}{ }^{3} x 2_{X 1}{ }^{3} B+x 2_{X 2, X 2} x 1_{X 1}{ }^{4} x 2_{X 2}{ }^{2} B \\
& +x 1_{X 1, X 2} x 1_{X 1}{ }^{3} x 2_{X 2}{ }^{3} B+x 2_{X 1, X 1} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} A \\
& +x 2_{X 1, X 1} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} A+x 2_{X 2, X 2} x 1_{X 2}{ }^{2} x 2_{X 1}{ }^{2} A \\
& \left.+x 2_{X 2, X 2} x 1_{X 1}{ }^{2} x 2_{X 2}{ }^{2} A\right)
\end{aligned}
$$

Outline

(1) Introduction

- Notation; Material Picture
- Governing Equations for Hyperelastic Materials
- Constitutive Relations
(2) Ciarlet-Mooney-Rivlin Solids in Two Dimensions
- Details of the Model
- Reduction of Number of Parameters
(3) C-M-R Elasticity Equations in 2D

4 Symmetry Analysis

- Symmetries of Differential Equations
- Applications of Symmetries
- General 2D Case
- Traveling Wave Coordinates
- Examples of Exact Solutions
(5) Conclusions and Open Problems

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[u]=R^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $x=\left(x^{1}, \ldots, x^{n}\right), \quad u=u(x)=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A transformation

$$
\begin{aligned}
x^{*} & =f(x, u ; a)=x+a \xi(x, u)+O\left(a^{2}\right) \\
u^{*} & =g(x, u ; a)=u+a \eta(x, u)+O\left(a^{2}\right)
\end{aligned}
$$

depending on a parameter a is a point symmetry of $R^{\sigma}[u]$ if the equations are the same in new variables x^{*}, u^{*}.

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[u]=R^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $x=\left(x^{1}, \ldots, x^{n}\right), \quad u=u(x)=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A transformation

$$
\begin{aligned}
& x^{*}=f(x, u ; a)=x+a \xi(x, u)+O\left(a^{2}\right), \\
& u^{*}=g(x, u ; a)=u+a \eta(x, u)+O\left(a^{2}\right) .
\end{aligned}
$$

depending on a parameter a is a point symmetry of $R^{\sigma}[u]$ if the equations are the same in new variables x^{*}, u^{*}.

Example 1: translations

The translation

$$
x^{*}=x+C, \quad t^{*}=t, \quad u^{*}=u
$$

leaves KdV invariant:

$$
u_{t}+u u_{x}+u_{x x x}=0=u_{t^{*}}^{*}+u^{*} u_{x^{*}}^{*}+u_{x^{*} x^{*} x^{*}}^{*}
$$

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[u]=R^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $x=\left(x^{1}, \ldots, x^{n}\right), \quad u=u(x)=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A transformation

$$
\begin{aligned}
& x^{*}=f(x, u ; a)=x+a \xi(x, u)+O\left(a^{2}\right), \\
& u^{*}=g(x, u ; a)=u+a \eta(x, u)+O\left(a^{2}\right) .
\end{aligned}
$$

depending on a parameter a is a point symmetry of $R^{\sigma}[u]$ if the equations are the same in new variables x^{*}, u^{*}.

Example 2: scaling

Same for the scaling:

$$
x^{*}=\alpha x, \quad t^{*}=\alpha^{3} t, \quad u^{*}=\alpha u .
$$

One has

$$
u_{t}+u u_{x}+u_{x x x}=0=u_{t^{*}}^{*}+u^{*} u_{x^{*}}^{*}+u_{x^{*} x^{*} x^{*}}^{*}
$$

Applications of Symmetries to Differential Equations

Nonlinear DEs

- Numerical solutions: resource/time consuming; lack generality.
- Solution methods for linear DEs do not work.
- Symmetry analysis: a general systematic framework leading to useful results.

Symmetries for ODEs

- Reduction of order / complete integration.
- All known methods of solution of specific classes of ODEs follow from symmetries!

Symmetries for PDEs

- Exact symmetry-invariant (e.g., self-similar) solutions.
- Transformations: solutions \Rightarrow new solutions.
- Mappings relating classes of equations; linearizations.
- Symmetry-preserving numerical methods.

Applications of Symmetries to Differential Equations

Computation of Symmetries

- Lie point symmetries and other types are computed systematically for any DE.
- Literature widely available.
- Symbolic software packages available.
- A popular approach to analyze complicated DEs arising in applied science:
- fluid and solid mechanics,
- rocket science,
- meteorology,
- biological applications, ...

General 2D Case, No Forcing - Symmetry Classification

Table 1: Point symmetry classification for the 2D Ciarlet-Mooney-Rivlin models with zero forcing and $\rho_{0}=$ const >0.

Case	Point symmetries
General	$\mathrm{Y}_{1}=\frac{\partial}{\partial t}, \mathrm{Y}_{2}=\frac{\partial}{\partial x^{1}}, \mathrm{Y}_{3}=\frac{\partial}{\partial x^{2}}, \mathrm{Y}_{4}=\frac{\partial}{\partial x^{1}}, \mathrm{Y}_{5}=\frac{\partial}{\partial x^{2}}, \mathrm{Y}_{6}=t \frac{\partial}{\partial x^{1}}, \mathrm{Y}_{7}=t \frac{\partial}{\partial x^{2}}$,
	$\mathrm{Y}_{8}=X^{2} \frac{\partial}{\partial x^{1}}-X^{1} \frac{\partial}{\partial x^{2}}, \mathrm{Y}_{9}=x^{2} \frac{\partial}{\partial x^{1}}-x^{1} \frac{\partial}{\partial x^{2}}$,
	$\mathrm{Y}_{10}=t \frac{\partial}{\partial t}+X^{1} \frac{\partial}{\partial x^{1}}+X^{2} \frac{\partial}{\partial x^{2}}+x^{1} \frac{\partial}{\partial x^{1}}+x^{2} \frac{\partial}{\partial x^{2}}$
$A=0$,	$\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}, \mathrm{Y}_{6}, \mathrm{Y}_{7}, \mathrm{Y}_{8}, \mathrm{Y}_{9}, \mathrm{Y}_{10}$,
B, d arbitrary	$\mathrm{Y}_{11}=f_{1}\left(X^{2}\right) \frac{\partial}{\partial X^{1}}, \mathrm{Y}_{12}=\left(\frac{\partial}{\partial x_{2}} f_{2}\left(X^{1}, X^{2}\right)\right) \frac{\partial}{\partial x^{1}}-\left(\frac{\partial}{\partial x_{1}} f_{2}\left(X^{1}, X^{2}\right)\right) \frac{\partial}{\partial x^{2}}$,
	$f_{1}\left(X^{2}\right), f_{2}\left(X^{1}, X^{2}\right)$ are arbitrary functions
$A=d=0$	$\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}, \mathrm{Y}_{6}, \mathrm{Y}_{7}, \mathrm{Y}_{8}, \mathrm{Y}_{9}, \mathrm{Y}_{10}, \mathrm{Y}_{11}, \mathrm{Y}_{12}$,
B arbitrary	$\mathrm{Y}_{13}=t \frac{\partial}{\partial t}+X^{1} \frac{\partial}{\partial X^{1}}$
$A=B=0$	$\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}, \mathrm{Y}_{6}, \mathrm{Y}_{7}, \mathrm{Y}_{8}, \mathrm{Y}_{9}, \mathrm{Y}_{10}, \mathrm{Y}_{11}, \mathrm{Y}_{12}$,
d arbitrary	$\mathrm{Y}_{14}=X^{1} \frac{\partial}{\partial X^{1}}$

Traveling Wave Ansatz Along X^{1}

Traveling Wave Ansatz

- No forcing: $R^{1}=R^{2}=0$.
- Ansatz:

$$
\begin{aligned}
& x^{i}\left(X^{1}, X^{2}, t\right)=w^{i}\left(z, X^{2}\right), \quad z=X^{1}-s t, \quad i=1,2 ; \\
& \rho_{0}=\rho_{0}\left(X^{2}\right) .
\end{aligned}
$$

- s is the constant wave speed.

Symmetry Classification in Traveling Wave Coordinates

\#	Case	Point symmetries
1	General	$\mathrm{Y}_{1}=\frac{\partial}{\partial z}, \mathrm{Y}_{2}=\frac{\partial}{\partial w^{1}}, \mathrm{Y}_{3}=\frac{\partial}{\partial w^{2}}, \mathrm{Y}_{4}=w^{2} \frac{\partial}{\partial w^{1}}-w^{1} \frac{\partial}{\partial w^{2}}$
2	$\begin{aligned} & \rho_{0}\left(X^{2}\right)=\left(X^{2}+q_{1}\right)^{q_{2}}, q_{1}, q_{2}=\text { const } \\ & q_{2} \neq 0, A, B, d, \text { s arbitrary } \end{aligned}$	$\begin{aligned} & Y_{1}, Y_{2}, Y_{3}, Y_{4} \\ & Y_{5}=z \frac{\partial}{\partial z}+\left(X^{2}+q_{1}\right) \frac{\partial}{\partial X^{2}}+w^{1} \frac{\partial}{\partial w^{1}}+w^{2} \frac{\partial}{\partial w^{2}} \end{aligned}$
3 a	$\rho_{0}\left(X^{2}\right)=\exp \left(q_{1} X^{2}\right), q_{1}=\text { const } \neq 0$ A, B, d, s arbitrary	$\begin{aligned} & Y_{1}, Y_{2}, Y_{3}, Y_{4}, \\ & Y_{6}=\frac{\partial}{\partial x^{2}} \end{aligned}$
3b	$\rho_{0}\left(X^{2}\right)=\exp \left(q_{1} X^{2}\right), q_{1}=\text { const } \neq 0$ A, d arbitrary, $B=0, s^{2}=A$	$\begin{aligned} & \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \\ & \mathrm{Y}_{(1)}^{\infty}=-\left(\frac{1}{q_{1}} \frac{d}{d z} f_{1}(z)\right) \frac{\partial}{\partial x^{2}}+f_{1}(z) \frac{\partial}{\partial z} \end{aligned}$
4a	$\rho_{0}\left(X^{2}\right)>0$ arbitrary, A, B arbitrary, $d=0, s^{2}=A$	$\begin{aligned} & \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4} \\ & \mathrm{Y}_{7}=z \frac{\partial}{\partial z}+w^{1} \frac{\partial}{\partial w^{1}}+w^{2} \frac{\partial}{\partial w^{2}}, \mathrm{Y}_{8}=\left(\rho_{0} \int \frac{1}{\rho_{0}} d X^{2}\right) \frac{\partial}{\partial X^{2}} \end{aligned}$ $\mathrm{Y}_{(2)}^{\infty}=f_{2}(z) \rho_{0} \frac{\partial}{\partial x^{2}}, f_{2}(z)$ is an arbitrary function
4b	$\rho_{0}\left(X^{2}\right)>0$ arbitrary, A, d arbitrary, $B=0, s^{2}=A$	$\begin{aligned} & \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \\ & \mathrm{Y}_{9}=z \frac{\partial}{\partial z} \end{aligned}$
5a	$\rho_{0}=\text { const }$ A, B, d, s arbitrary	$\begin{aligned} & \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}\left(q_{1}=0\right), \mathrm{Y}_{6}, \\ & \mathrm{Y}_{10}=X^{2} \frac{\partial}{\partial z}-\frac{A z}{A-s^{2}} \frac{\partial}{\partial X^{2}} \end{aligned}$
5b	$\rho_{0}=\text { const, } s^{2}=A$ A, B, d arbitrary	$\begin{aligned} & Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}\left(q_{1}=0\right) \\ & Y_{(3)}^{\infty}=f_{3}(z) \frac{\partial}{\partial x^{2}}, f_{3}(z) \text { is an arbitrary function } \end{aligned}$
5c	$\rho_{0}=$ const, $s^{2}=A$, A, d arbitrary, $B=0$	$\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}\left(q_{1}=0\right), \mathrm{Y}_{9}, \mathrm{Y}_{(3)}^{\infty}$

Examples of Exact Solutions

Example:

- Case: $\rho_{0}=$ const, $\quad R^{1}=R^{2}=0, \quad A=s^{2}, \quad d=s^{2}+B$.
- A basic solution:

$$
w^{1}=z \quad \Leftrightarrow \quad x^{1}\left(X^{1}, X^{2}, t\right)=X^{1}-s t, \quad w^{2}=x^{2}\left(X^{1}, X^{2}, t\right)=X^{2}
$$

- A symmetry-transformed solution:

$$
\begin{array}{ll}
w^{1}=z & \Leftrightarrow \quad x^{1}\left(X^{1}, X^{2}, t\right)=X^{1}-s t, \\
w^{2}=X^{2}-f(z) & \Leftrightarrow \quad x^{2}\left(X^{1}, X^{2}, t\right)=X^{2}-f\left(X^{1}-s t\right)
\end{array}
$$

- Figure:
- (a) A rectangular grid in the reference configuration.
- (b) The propagating deformation, $f(z)=-\exp \left(-z^{2}\right)$.
- (c) The propagating deformation, $f(z)=-(1+\tanh z) / 2$.

Examples of Exact Solutions

Outline

(1) Introduction

- Notation; Material Picture
- Governing Equations for Hyperelastic Materials
- Constitutive Relations
(5) Ciarlet-Mooney-Rivlin Solids in Two Dimensions
- Details of the Model
- Reduction of Number of Parameters
(3) C-M-R Elasticity Equations in 2D

4 Symmetry Analysis

- Symmetries of Differential Equations
- Applications of Symmetries
- General 2D Case
- Traveling Wave Coordinates
- Examples of Exact Solutions
(5) Conclusions and Open Problems

Conclusions and Open Problems

Conclusions

- Symmetry properties of dynamic equations for 2D planar Ciarlet-Mooney-Rivlin materials were studied:
- in a general setting;
- in traveling wave coordinates.
- The number of essential constitutive parameters in the model were reduced through equivalence transformations.
- New traveling-wave type exact solutions were obtained for the nonlinear model.

Future/ongoing work

- Use computed symmetries to derive new exact solutions in 2D.
- Consider important non-planar two-dimensional reductions (including axial symmetry), and 3D.
- Generalize to other constitutive models, in particular, models of anisotropic materials.

Some references

国 Cheviakov, A.F., and Ganghoffer, J.-F. (2010).
Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Constitutive Models in Nonlinear Elastodynamics. J. Math. An. App. (2012).

Ciarlet, P. G. (1988).
Mathematical Elasticity. Volume I: Three-dimensional Elasticity. Elsevier.
Marsden, J. E. and Hughes, T. J. R. (1994).
Mathematical Foundations of Elasticity. Dover.

Hydon, P. E. (2000).
Symmetry Methods for Differential Equations: A Beginner's Guide.
Cambridge University Press.
Bluman, G. W., Cheviakov, A. F., and Anco, S. C. (2010).
Applications of Symmetry Methods to Partial Differential Equations.
Springer: Applied Mathematical Sciences, Vol. 168.

Some references

国 Cheviakov, A.F., and Ganghoffer, J.-F. (2010).
Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Constitutive Models in Nonlinear Elastodynamics. J. Math. An. App. (2012).

Ciarlet, P. G. (1988).
Mathematical Elasticity. Volume I: Three-dimensional Elasticity. Elsevier.
Marsden, J. E. and Hughes, T. J. R. (1994).
Mathematical Foundations of Elasticity. Dover.

Hydon, P. E. (2000).
Symmetry Methods for Differential Equations: A Beginner's Guide.
Cambridge University Press.
Bluman, G. W., Cheviakov, A. F., and Anco, S. C. (2010).
Applications of Symmetry Methods to Partial Differential Equations.
Springer: Applied Mathematical Sciences, Vol. 168.

Thank you for attention!

