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The Global Optimization Problem

Problem:

Global optimization of some objective function that depends on positions of small
“particles”, or “pores”, or ”traps”, on the surface of a 3D domain:

min H(x1, . . . ,xN ), xi ∈ ∂V , V ⊂ R3.
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Motivation: Example 1, Thomson problem

Example 1: Thomson problem
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Motivation: Example 1, Thomson problem

Example 1: Thomson problem

Total Coulombic interaction energy:

HC (x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

h(xi ,xj )

Pairwise energy function:

h(xi ,xj ) =
1

|xi − xj |
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Motivation: Example 2, Narrow Escape Problems

Example 2: Chemical exchange through nuclear pores
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Motivation: Example 2, Narrow Escape Problems

Example 2: Chemical exchange through nuclear pores

Typical nucleus size: ∼ 6× 10−6 m; pore size ∼ 10−8 m.

∼ 2000 nuclear pore complexes in a typical nucleus

mRNA, proteins, smaller molecules

∼ 1000 translocations per complex per second

Trap separation ∼ 5× 10−7 m

A Narrow Escape Problem:

Diffusion / Brownian motion;

High passage rates;

Well-separated small surface traps.

Similar mechanisms for ion pumps, like Na+-K+ pumps, etc.
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The MFPT Problem

The setup:

A Brownian particle confined in a domain Ω ∈ R3.

Initial position: x ∈ Ω.

Mean First Passage Time (MFPT): v(x).

Domain boundary: ∂Ω = ∂Ωr (reflecting) ∪ ∂Ωa (absorbing).

∂Ωa =
⋃N

i=1 ∂Ωεi : small absorbing traps (size ∼ ε).
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The MFPT Problem

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Average MFPT: v̄ =
1

|Ω|

∫
Ω

v(x) dx = const.
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Escape Problems and Brownian Dynamics: Some References

Z. Schuss, Theory and applications of stochastic processes: an analytical approach.
Springer (2009).

Z. Schuss, Brownian dynamics at boundaries and interfaces. Physics, Chemistry, and
Biology. Springer (2013).

D. Holcman and Z. Schuss Escape Through a Small Opening: Receptor Trafficking
in a Synaptic Membrane, J. Stat. Phys. 117 (2004).

A. Singer, Z. Schuss, and D. Holcman, Narrow Escape, Part I; Part II; Part III, J.
Stat. Phys. 122 (3) (2006).

A. Cheviakov, M. Ward, and R. Straube, An Asymptotic Analysis of the Mean First
Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model.
Simul. 8 (3) (2010).

A. Cheviakov and M. Ward, Optimizing the principal eigenvalue of the Laplacian in
a sphere with interior traps. Math. and Comp. Mod., 53(7) (2011).

A. Cheviakov, W. Ridgway (UofS, Canada) Optimal Particle Locations on the Sphere SIAM DS17 8 / 25



An Asymptotic Solution of the MFPT Problem for the Sphere

Asymptotic assumptions:

D = const;

Domain: a unit sphere;

N equal traps of radius ε� 1.

An asymptotic result for the average MFPT [A.C., M.Ward, R.Straube (2010)]:

v̄ ∼ |Ω|
4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
HMFPT

)]
;

HMFPT (x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

h(xi ,xj ),

h(xi ,xj ) =
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

Similar results exist for non-spherical domains, non-equal traps;

An asymptotic formula for the actual MFPT v = v(x) is also known.
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Motivation: Example 3, Power and Logarithmic Interactions

General power pairwise interaction potentials, same particles:

Hn(x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

h(xi ,xj ), h(xi ,xj ) = |xi − xj |−n.

Logarithmic potential:

Hlog (x1, . . . ,xN ) = −
N∑

i=1

N∑
j=i+1

log |xi − xj |.

Various applications, including the study of vortex defects in a liquid crystal confined
to a closed surface with spherical topology [Bergersen et al (1994) and references
therein].
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Results: a Very Brief Overview

Problem:

Global optimization of some objective function that depends on positions of small
“particles”, or “pores”, or ”traps”, on the surface of a 3D domain:

min H(x1, . . . ,xN ), xi ∈ ∂V , V ⊂ R3.

The vast majority of results pertain to the 2-sphere ∂V = S2 (“spherical designs”).

Virtually all results describe optimal configurations of identical particles.

In some works, scaling laws are derived for a fixed total trap area as N →∞.

A. Cheviakov, W. Ridgway (UofS, Canada) Optimal Particle Locations on the Sphere SIAM DS17 12 / 25



Results: a Very Brief Overview

Problem:

Global optimization of some objective function that depends on positions of small
“particles”, or “pores”, or ”traps”, on the surface of a 3D domain:

min H(x1, . . . ,xN ), xi ∈ ∂V , V ⊂ R3.

The global optimization problem: features and progress

A high-dimensional problem; 2N degrees of freedom in R3 (2N − 3 for S2).

No exact solutions except for cases with high symmetry, in particular, sphere in
n > 3 dimensions [e.g., Cohn & Kumar (2006)];

“Black box” software: standard approaches (genetic algorithms, simulated
annealing, dynamical systems, etc.)

Potential- and domain-specific software.

In the literature, putative numerical global minima are presented; virtually no works
discuss local minima [Erber & Hockney (1996)].
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Geometrical Features and Questions

436 traps

A long-standing problem of “uniformly meshing” a sphere (or another domain).

How does one distinguish two similar/close configurations?

Energy values themselves are insufficient.
Particularly important in symmetric domains.

Universally optimal configurations holding for a wide class of potentials? [Spheres in
Rn: e.g., Cohn & Kumar (2006).]
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Geometrical Features and Questions

and pentagonal buttons (m¼ 5) in another. The dislocation spacing decreases the

further a dislocation is from the central disclination.
An overview of results involving grain boundary scars is presented in Figure 18.

If a disclination is placed on a perfect crystal, no additional defects will appear if the

disclination is located on the tip of a cone with total Gaussian curvature equal to the

disclination charge. If a disclination is forced into a flat monolayer, then m low-angle

grain boundaries, with constant spacing between dislocations as shown in Figure 18

and grains going all the way to the boundary, will be favoured (see [112] for

a detailed discussion). In the intermediate situation where a finite Gaussian curvature

is spread over a finite area, as in the case of a spherical cap, a disclination arises

at the centre of the cap and finite length grain boundaries stretched out over an area

of (�/3)R2 with variable spacing dominate, again as illustrated in Figure 18.
Additional results may be obtained for the number of arms within the grain

boundary, the actual variable spacing between dislocations within the grain and the

length of the grains as a function of the number of particles.
When grain boundary scars appear, one can estimate the number of excess

dislocations which decorate each of the 12 curvature-induced disclinations on the

sphere using ideas from [73]. This estimate is in reasonable agreement with

experiments probing equilibrated assemblies of polystyrene beads on water

droplets [92]. Consider the region surrounding one of the 12 excess disclinations,

with charge s¼ 2�/6, centred on the north pole. As discussed in [73], one expects the

stresses and strains at a fixed geodesic distance r from the pole on a sphere of radius

R to be controlled by an effective disclination charge

seffðrÞ ¼ s�

Z 2�

0

d�

Z r

0

dr0
ffiffiffi
g
p

K

¼
�

3
� 4� sin2

r

2R


 �
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Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential,
showing the appearance of scars.
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Coordination number ci of a particle: number of neighbours (usually ci = 6).

Topological constraints: Euler’s Theorem, V − E + F = 2; can show that∑
i

(6− ci ) = 12,

where (6− ci ) is the “topological charge”.
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At least 12 particles with five-fold coordination.

A scar: a cluster of particles where ci 6= 6.

For the same N, different configurations may or may not have different scar pictures.

Applications: 2D matter; defects play an essential role in describing crystalline
particle packings on the sphere.
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Geometrical Features and Questions

three runs were started from different random starting con-
figurations and continued until all three runs had located the
same lowest minimum. This procedure required up to
200 000 basin-hopping steps in some cases. Previous expe-
rience with many different systems, including cross valida-
tion of basin-hopping results by other methods, suggests that
the resulting structures are good candidates for the true glo-
bal minima. However, we note that exceptions could arise for
multifunnel potential energy surfaces, as documented in pre-
vious work.42,43,55 The results are recorded in Table I and
selected structures are illustrated in Fig. 1. Nine of these
structures improve upon previous results51 by between 10−4

and 18 a.u. No isolated disclinations are found in this data set
for N�520. It is also noteworthy that most global minima
have nontrivial point groups, in agreement with the sugges-
tion that higher-symmetry structures are generally associated
with particularly high or particularly low energies.44,56,57 We
expect this trend to extend to larger systems with defects
separating into 12 distinct groups related by exact or
approximate44,56,57 symmetry operations. This pattern may
also help to minimize strain, in an analogous fashion to the
pentagon “repulsion” rule for fullerenes.58

Most of the defects for N=1152 are again twinned grain
boundaries, but we also see a defect with an alternating ar-

FIG. 2. �Color online� Voronoi representations of the lowest minima located for selected sizes at which local minima with I or Ih

symmetry exist for structures with 12 rosettes. The pentagons, hexagons, and heptagons are colored red �medium gray�, green �light gray�,
and blue �dark gray�, respectively.

DEFECT MOTIFS FOR SPHERICAL TOPOLOGIES PHYSICAL REVIEW B 79, 224115 �2009�

224115-5

From Wales et al (2009).
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Our motivation for this work

How can one systematically compute local minima? N → N + 1?

How many local minima can one expect for a given N and a given potential,
typically?

How do the energy spectra look?

What is the comparative scar geometry for various local and global minima?

The “simplest” domain: unit sphere. Not much is known!
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A Numerical Method for Local and Global OptimizationExcluding Redundant Configurations

Geometrically Equivalent Configurations

Some equivalent starting configurations

M starting configurations → M
configurations after local opt.

Many are identical through
rotation/reflection

Classify Minima Using Geometrical Invariants

H invariant under rotation/reflection - but different local minima have
nearly identical energies

Pairwise distances - better

Implemented mainly in Matlab.

Start from N = 4: tetrahedron.
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A Numerical Method for Local and Global Optimization

where n is user specified and should be an array (see appendix B). Note that the choice is
not required to be the same as the potential used in the optimization algorithm. Thus each
configuration has a vector of pairwise energies, each element of which corresponds to a choice
of n. Denote the kth vector in a given cluster as E(k).

3. For each of the m clusters, sort each energy vector in ascending numerical order. Then
normalize each element following the same procedure as in algorithm 1. The resulting arrays
are denoted Ẽ(k).

4. For each of the m clusters found in 1), cluster the configurations within each based on en-
ergy. As in the first algorithm, the tolerance, δ can either be set explicitly by the user or
’automatically’ by the program. When set automatically, the tolerance is

δ = |tol| ×max
k
||Ẽ(k)||L2 (2.9)

where tol is again a parameter specified by the user (see appendix B). All configurations
within an energy cluster will be equivalent given a suitable tolerance.

As with algorithm 1, suitable tolerances are chosen through experimentation.

2.3 The Starting Configurations

The local optimization routine requires an initial configuration of particles. Previous work has
focused on using many trials with random starting configurations. This quickly becomes compu-
tationally expensive as the number of local minima is believed to increase exponentially [?] which
requires the number of random trials to increase quickly as well. A unique algorithm for generating
starting configurations was developed that significantly reduces the number of optimizations.

Particles

Triangle Middles

Figure 1: Globally optimal arrangement of 25 particles for the Coulomb potential with all triangle
middles shown.

The following steps are performed to generate a starting configuration to use with the local
optimization routine described in sec 2.1.

1. Initialize a matrix containing the the particle locations of a locally or globally optimal ar-
rangement of N − 1 particles.

5

Starting configurations: Introduce, one by one, triangle middles. Remove redundant
configurations.
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A Numerical Method for Local and Global Optimization

For each starting configuration, perform local optimization (C++).

Remove redundant configurations.

Remove saddle points (Maple).

Repeat N → N + 1.
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Removing Redundant Configurations

Geometrical symmetries!

Coordinate-invariant characteristics of a configuration: energy; pairwise distances;
pairwise energies...

Many details will be given in the next talk.
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Computational Results: Coulomb Potential, N ≤ 65

0 10 20 30 40 50 60 70

N

1

2

3

4

5

6

7

8

N
um

be
r 

of
 L

oc
al

 M
in

im
a

Before extraction
After extraction

Number of locally optimal configurations found for the Coulomb potential.
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Computational Results: Coulomb Potential, N ≤ 65
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Computational Results: Logarithmic Potential, N ≤ 65
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Computational Results: Logarithmic Potential, N ≤ 65
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Computational Results: Inverse Square Law Potential, N ≤ 65
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Computational Results: Inverse Square Law Potential, N ≤ 65
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Computational Results: Inverse Square Law Potential, N ≤ 65

Six local minima for the inverse square law, N = 60.
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Some Highlights and Open Problems

Main findings

Local and global minima and respective configurations of identical particles for
Coulomb, Logarithmic, and Inverse Square Law potentials.

Coordination numbers and energy spectra computed.

No special scar picture characterizes global minima.

Saddles consistently arise in numerical dynamical system-based local optimization;
can be systematically excluded.

Ongoing & future work

Computations for higher N.

Similar computations for the MFPT potential.

Local minima for non-equal interacting particles?
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Some Highlights and Open Problems

Spherical trap configurations for 2N = 8 traps of two kinds with radius ratio 10.
The global minimum of the average MFPT v̄ . (b), (c): nearby local minima [C.,
Reimer, Ward (2012)].

A. Cheviakov, W. Ridgway (UofS, Canada) Optimal Particle Locations on the Sphere SIAM DS17 24 / 25



Some References

T. Erber and G. Hockney,

Equilibrium configurations of N equal charges on a sphere. J. Phys. A 24 (23) (1991).

B. Bergersen, D. Boal, and P. Palffy-Muhoray,

Equilibrium configurations of particles on a sphere: the case of logarithmic interactions. J. Phys. A 27 (7)
(1994).

D. Hardin and E. Saff,

Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004).

D. Holcman and Z. Schuss,

Escape Through a Small Opening: Receptor Trafficking in a Synaptic Membrane, J. Stat. Phys. 117
(2004).

A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III , J. Stat. Phys. 122 (3) (2006).

H. Cohn and A. Kumar,

Universally optimal distribution of points on spheres, J. of the AMS. Phys. 20 (1) (2007).

A. Cheviakov, M. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the
Sphere. Multiscale Model. Simul. 8 (3) (2010).

W. Ridgway and A. Cheviakov,

In preparation (2017).

A. Cheviakov, W. Ridgway (UofS, Canada) Optimal Particle Locations on the Sphere SIAM DS17 25 / 25


	Problem and Motivation
	Geometry and Typical Results
	Some Questions of Interest
	Local and Global Optimization: a Numerical Method
	Computational Results
	Highlights and Open Problems

