Local and Global Optimization of Particle Locations on the Sphere: Models, Applications, Mathematical Aspects, and Computations

Alexei F. Cheviakov, Wesley Ridgway

University of Saskatchewan, Saskatoon, Canada

May 25, 2017

Image: A match the second s

Problem and Motivation

- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results
- 6 Highlights and Open Problems

• • • • • • • • • • • •

Problem and Motivation

- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results
- 6 Highlights and Open Problems

Problem:

• Global optimization of some objective function that depends on positions of small "particles", or "pores", or "traps", on the surface of a 3D domain:

min $\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N), \qquad \mathbf{x}_i \in \partial V, \qquad V \subset \mathbb{R}^3.$

• Example 1: Thomson problem

Motivation: Example 1, Thomson problem

- Example 1: Thomson problem
- Total Coulombic interaction energy:

$$\mathcal{H}_{C}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N})=\sum_{i=1}^{N}\sum_{j=i+1}^{N}h(\mathbf{x}_{i},\mathbf{x}_{j})$$

• Pairwise energy function:

$$h(\mathbf{x}_i,\mathbf{x}_j) = rac{1}{|x_i - x_j|}$$

・ロン ・回 と ・ ヨン・

Motivation: Example 2, Narrow Escape Problems

• Example 2: Chemical exchange through nuclear pores

- Example 2: Chemical exchange through nuclear pores
- Typical nucleus size: $\sim 6 \times 10^{-6}$ m; pore size $\sim 10^{-8}$ m.
- $\bullet\,\sim$ 2000 nuclear pore complexes in a typical nucleus
- mRNA, proteins, smaller molecules
- $\bullet\,\sim$ 1000 translocations per complex per second
- $\bullet~\text{Trap}$ separation $\sim 5 \times 10^{-7}~\text{m}$

A Narrow Escape Problem:

- Diffusion / Brownian motion;
- High passage rates;
- Well-separated small surface traps.

• Similar mechanisms for ion pumps, like Na^+-K^+ pumps, etc.

The setup:

- A Brownian particle confined in a domain $\Omega \in \mathbb{R}^3.$
- Initial position: $x \in \Omega$.
- Mean First Passage Time (MFPT): v(x).
- Domain boundary: $\partial \Omega = \partial \Omega_r$ (reflecting) $\cup \partial \Omega_a$ (absorbing).
- $\partial \Omega_a = \bigcup_{i=1}^N \partial \Omega_{\varepsilon_i}$: small absorbing traps (size $\sim \varepsilon$).

<ロト </p>

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]:

$$\left\{ \begin{array}{ll} \bigtriangleup v = -\frac{1}{D} \,, \quad x \in \Omega \,, \\ v = 0, \quad x \in \partial \Omega_a; \quad \partial_n v = 0, \quad x \in \partial \Omega_r. \end{array} \right.$$

Average MFPT: $\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x) \, dx = \text{const.}$

<ロ> (日) (日) (日) (日) (日)

- Z. Schuss, *Theory and applications of stochastic processes: an analytical approach.* Springer (2009).
- Z. Schuss, Brownian dynamics at boundaries and interfaces. Physics, Chemistry, and Biology. Springer (2013).
- D. Holcman and Z. Schuss Escape Through a Small Opening: Receptor Trafficking in a Synaptic Membrane, J. Stat. Phys. **117** (2004).
- A. Singer, Z. Schuss, and D. Holcman, Narrow Escape, Part I; Part II; Part III, J. Stat. Phys. **122** (3) (2006).
- A. Cheviakov, M. Ward, and R. Straube, An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010).
- A. Cheviakov and M. Ward, Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps. Math. and Comp. Mod., 53(7) (2011).

<ロ> (日) (日) (日) (日) (日)

Asymptotic assumptions:

- D = const;
- Domain: a unit sphere;
- N equal traps of radius $\varepsilon \ll 1$.
- An asymptotic result for the average MFPT [A.C., M.Ward, R.Straube (2010)]:

$$ar{
u} \sim rac{|\Omega|}{4arepsilon DN} \left[1 + rac{arepsilon}{\pi} \log\left(rac{2}{arepsilon}
ight) + rac{arepsilon}{\pi} \left(-rac{9N}{5} + 2(N-2)\log 2 + rac{3}{2} + rac{4}{N} \mathcal{H}_{MFPT}
ight)
ight];$$

$$\mathcal{H}_{MFPT}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{i=1}^N \sum_{j=i+1}^N h(\mathbf{x}_i, \mathbf{x}_j),$$

 $h(\mathbf{x}_i, \mathbf{x}_j) = rac{1}{|x_i - x_j|} - rac{1}{2} \log |x_i - x_j| - rac{1}{2} \log (2 + |x_i - x_j|)$

- Similar results exist for non-spherical domains, non-equal traps;
- An asymptotic formula for the actual MFPT v = v(x) is also known.

Motivation: Example 3, Power and Logarithmic Interactions

• General power pairwise interaction potentials, same particles:

$$\mathcal{H}_n(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{i=1}^N \sum_{j=i+1}^N h(\mathbf{x}_i,\mathbf{x}_j), \qquad h(\mathbf{x}_i,\mathbf{x}_j) = |x_i - x_j|^{-n}.$$

• Logarithmic potential:

$$\mathcal{H}_{log}(\mathbf{x}_1,\ldots,\mathbf{x}_N) = -\sum_{i=1}^N \sum_{j=i+1}^N \log |x_i - x_j|.$$

• Various applications, including the study of vortex defects in a liquid crystal confined to a closed surface with spherical topology [*Bergersen et al (1994) and references therein*].

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem and Motivation

2 Geometry and Typical Results

3 Some Questions of Interest

4 Local and Global Optimization: a Numerical Method

5 Computational Results

6 Highlights and Open Problems

Problem:

• Global optimization of some objective function that depends on positions of small "particles", or "pores", or "traps", on the surface of a 3D domain:

min $\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N), \qquad \mathbf{x}_i \in \partial V, \qquad V \subset \mathbb{R}^3.$

- The vast majority of results pertain to the 2-sphere $\partial V = S^2$ ("spherical designs").
- Virtually all results describe optimal configurations of identical particles.
- In some works, scaling laws are derived for a fixed total trap area as $N \to \infty$.

<ロ> (日) (日) (日) (日) (日)

Problem:

• Global optimization of some objective function that depends on positions of small "particles", or "pores", or "traps", on the surface of a 3D domain:

min $\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N), \qquad \mathbf{x}_i \in \partial V, \qquad V \subset \mathbb{R}^3.$

The global optimization problem: features and progress

- A high-dimensional problem; 2N degrees of freedom in \mathbb{R}^3 (2N 3 for S^2).
- No exact solutions except for cases with high symmetry, in particular, sphere in n > 3 dimensions [e.g., *Cohn & Kumar (2006)*];
- "Black box" software: standard approaches (genetic algorithms, simulated annealing, dynamical systems, etc.)
- Potential- and domain-specific software.
- In the literature, putative numerical global minima are presented; virtually no works discuss local minima [*Erber & Hockney (1996)*].

イロン イ団 と イヨン イヨン

Geometrical Features and Questions

436 traps

- A long-standing problem of "uniformly meshing" a sphere (or another domain).
- How does one distinguish two similar/close configurations?
 - Energy values themselves are insufficient.
 - Particularly important in symmetric domains.
- Universally optimal configurations holding for a wide class of potentials? [Spheres in \mathbb{R}^n : e.g., *Cohn & Kumar (2006)*.]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometrical Features and Questions

488

Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential, showing the appearance of scars.

- Coordination number c_i of a particle: number of neighbours (usually $c_i = 6$).
- Topological constraints: Euler's Theorem, V E + F = 2; can show that

$$\sum_i (6-c_i) = 12,$$

where $(6 - c_i)$ is the "topological charge".

Geometrical Features and Questions

488

Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential, showing the appearance of scars.

- At least 12 particles with five-fold coordination.
- A scar: a cluster of particles where $c_i \neq 6$.
- For the same N, different configurations may or may not have different scar pictures.
- Applications: 2D matter; defects play an essential role in describing crystalline particle packings on the sphere.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

DEFECT MOTIFS FOR SPHERICAL TOPOLOGIES

PHYSICAL REVIEW B 79, 224115

A. Cheviakov, W. Ridgway (UofS, Canada)

Optimal Particle Locations on the Sphere

SIAM DS17 13 / 25

Problem and Motivation

- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results
- 6 Highlights and Open Problems

• How can one systematically compute local minima? $N \rightarrow N+1$?

- How can one systematically compute local minima? N \rightarrow N+1?
- How many local minima can one expect for a given N and a given potential, typically?

- How can one systematically compute local minima? $N \rightarrow N+1$?
- How many local minima can one expect for a given N and a given potential, typically?
- How do the energy spectra look?

- How can one systematically compute local minima? $N \rightarrow N+1$?
- How many local minima can one expect for a given N and a given potential, typically?
- How do the energy spectra look?
- What is the comparative scar geometry for various local and global minima?

- How can one systematically compute local minima? $N \rightarrow N+1$?
- How many local minima can one expect for a given N and a given potential, typically?
- How do the energy spectra look?
- What is the comparative scar geometry for various local and global minima?
- The "simplest" domain: unit sphere. Not much is known!

- Problem and Motivation
- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results
- 6 Highlights and Open Problems

A Numerical Method for Local and Global Optimization

- Implemented mainly in Matlab.
- Start from N = 4: tetrahedron.

・ロト ・ 日 ・ ・ ヨ ト

• Starting configurations: Introduce, one by one, triangle middles. Remove redundant configurations.

- For each starting configuration, perform local optimization (C++).
- Remove redundant configurations.
- Remove saddle points (Maple).
- Repeat $N \rightarrow N+1$.

• Geometrical symmetries!

- Geometrical symmetries!
- Coordinate-invariant characteristics of a configuration: energy; pairwise distances; pairwise energies...

- Geometrical symmetries!
- Coordinate-invariant characteristics of a configuration: energy; pairwise distances; pairwise energies...
- Many details will be given in the next talk.

・ロン ・回 と ・ ヨン・

Problem and Motivation

- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results

6 Highlights and Open Problems

• Number of locally optimal configurations found for the Coulomb potential.

• Relative Coulomb energy spectrum.

A D > A B > A B >

• Number of locally optimal configurations found for the Logarithmic potential.

• Relative Logarithmic energy spectrum.

Image: A math a math

Number of locally optimal configurations found for the Inverse Square Law potential.

< □ > < ^[] >

• Relative Inverse Square Law energy spectrum.

Six local minima for the inverse square law, N = 60.

Problem and Motivation

- 2 Geometry and Typical Results
- Some Questions of Interest
- 4 Local and Global Optimization: a Numerical Method
- 5 Computational Results

6 Highlights and Open Problems

Main findings

- Local and global minima and respective configurations of identical particles for Coulomb, Logarithmic, and Inverse Square Law potentials.
- Coordination numbers and energy spectra computed.
- No special scar picture characterizes global minima.
- Saddles consistently arise in numerical dynamical system-based local optimization; can be systematically excluded.

Ongoing & future work

- Computations for higher N.
- Similar computations for the MFPT potential.
- Local minima for non-equal interacting particles?

< □ > < 同 > < 回 > < Ξ > < Ξ

Some Highlights and Open Problems

• Spherical trap configurations for 2N = 8 traps of two kinds with radius ratio 10. The global minimum of the average MFPT \bar{v} . (b), (c): nearby local minima [*C., Reimer, Ward (2012)*].

<ロト <回ト < 臣

Some References

T. Erber and G. Hockney,

Equilibrium configurations of N equal charges on a sphere. J. Phys. A 24 (23) (1991).

B. Bergersen, D. Boal, and P. Palffy-Muhoray,

Equilibrium configurations of particles on a sphere: the case of logarithmic interactions. J. Phys. A 27 (7) (1994).

D. Hardin and E. Saff,

Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004).

D. Holcman and Z. Schuss,

Escape Through a Small Opening: Receptor Trafficking in a Synaptic Membrane, J. Stat. Phys. 117 (2004).

A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III, J. Stat. Phys. 122 (3) (2006).

H. Cohn and A. Kumar,

Universally optimal distribution of points on spheres, J. of the AMS. Phys. 20 (1) (2007).

A. Cheviakov, M. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010).

W. Ridgway and A. Cheviakov,

In preparation (2017).

< □ > < 同 > < 回 > < Ξ > < Ξ