Vorticity-Type Equations: Conservation Laws and Applications

Alexei F. Cheviakov

(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, Canada

June 25, 2016

Collaborators

M. Oberlack, TU Darmstadt, Germany

Outline

- The Vorticity-Type Equations and Their Applications
- 2 Local Conservation Laws
- 3 Geometric Structure of Vorticity-Type Equations
- Potential Systems
- Discussion

Outline

- The Vorticity-Type Equations and Their Applications
- Local Conservation Laws
- Geometric Structure of Vorticity-Type Equations
- Potential Systems
- Discussion

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3, \qquad M = M(t, x, y, z) \in \mathbb{R}^3.$$

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3$$
, $M = M(t, x, y, z) \in \mathbb{R}^3$.

Euler and Navier-Stokes equations of fluid flow:

div
$$\mathbf{V} = 0$$
, $\mathbf{V}_t + (\mathbf{V} \cdot \nabla)\mathbf{V} + \text{grad } \mathbf{p} = \nu \Delta \mathbf{V}$

• Vorticity dynamics equations: $\omega = \operatorname{curl} \mathbf{V}$,

$$\operatorname{div} \boldsymbol{\omega} = 0, \qquad \boldsymbol{\omega}_t + \operatorname{curl} \left(\boldsymbol{\omega} \times \mathbf{V} - \nu \, \Delta \mathbf{V} \right) = 0.$$

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3, \qquad M = M(t, x, y, z) \in \mathbb{R}^3.$$

Magnetohydrodynamic (MHD) equations:

$$\rho_t + \operatorname{div} \rho \mathbf{V} = 0, \qquad \boxed{\operatorname{div} \mathbf{B} = 0,}$$

$$\rho \mathbf{V}_t + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} = -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} P + \mu_1 \Delta \mathbf{V},$$

$$\mathbf{B}_t = \operatorname{curl}(\mathbf{V} \times \mathbf{B}) + \eta \Delta \mathbf{B}.$$

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3$$
, $M = M(t, x, y, z) \in \mathbb{R}^3$.

Magnetohydrodynamic (MHD) equations:

$$\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t = \operatorname{curl}(\mathbf{V} \times \mathbf{B}) + \eta \Delta \mathbf{B}.$$

- $\Delta \mathbf{B} = -\operatorname{curl}(\operatorname{curl} \mathbf{B});$
- Plasma electric current density and conductivity:

$$\mathbf{J} = (1/\mu) \operatorname{curl} \mathbf{B}, \qquad \sigma = 1/(\mu \eta).$$

Obtain:

$$\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t + \operatorname{curl} \left(\mathbf{B} \times \mathbf{V} + (1/\sigma) \mathbf{J} \right) = 0.$$

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3, \qquad M = M(t, x, y, z) \in \mathbb{R}^3.$$

Dimensionless Maxwell's equations:

$$\operatorname{div} \mathbf{B} = 0, \qquad \mathbf{B}_t + \operatorname{curl} \mathbf{E} = 0,$$

$$\operatorname{div} \mathbf{E} = \rho, \quad \mathbf{E}_t - \operatorname{curl} \mathbf{B} = -\mathbf{J}.$$

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0,$$

$$N = N(t, x, y, z) \in \mathbb{R}^3, \qquad M = M(t, x, y, z) \in \mathbb{R}^3.$$

Vacuum Maxwell's equations:

$$\operatorname{div} \mathbf{B} = 0, \quad \mathbf{B}_t + \operatorname{curl} \mathbf{E} = 0,$$

• Second "vorticity-type" subsystem:

$$\operatorname{div} \mathbf{E} = \rho, \quad \mathbf{E}_t - \operatorname{curl} \mathbf{B} = \mathbf{0}.$$

Outline

- The Vorticity-Type Equations and Their Applications
- 2 Local Conservation Laws
- 3 Geometric Structure of Vorticity-Type Equations
- Potential Systems
- Discussion

Notation

Variables:

- Independent: $\mathbf{x} = (x^1, x^2, ..., x^n)$ or $(t, x^1, x^2, ...)$ or (t, x, y, ...).
- Dependent: $\mathbf{u} = (u^1(\mathbf{x}), u^2(\mathbf{x}), ..., u^m(\mathbf{x}))$ or $(u(\mathbf{x}), v(\mathbf{x}), ...)$.

Partial derivatives:

Notation:

$$\frac{\partial u^k}{\partial x^m} = u^k_{x^m} = \partial_{x^m} u^k.$$

• E.g.,

$$\frac{\partial}{\partial t}u(x,y,t)=u_t=\partial_t u.$$

Notation

Variables:

- Independent: $\mathbf{x} = (x^1, x^2, ..., x^n)$ or $(t, x^1, x^2, ...)$ or (t, x, y, ...).
- Dependent: $\mathbf{u} = (u^1(\mathbf{x}), u^2(\mathbf{x}), ..., u^m(\mathbf{x}))$ or $(u(\mathbf{x}), v(\mathbf{x}), ...)$.

Partial derivatives:

Notation:

$$\frac{\partial u^k}{\partial x^m} = u^k_{x^m} = \partial_{x^m} u^k.$$

• E.g.,

$$\frac{\partial}{\partial t}u(x,y,t)=u_t=\partial_t u.$$

Total derivative operators:

$$D_{i} = \frac{\partial}{\partial x^{i}} + u_{i}^{\mu} \frac{\partial}{\partial u^{\mu}} + u_{ii_{1}}^{\mu} \frac{\partial}{\partial u_{i_{1}}^{\mu}} + u_{ii_{1}i_{2}}^{\mu} \frac{\partial}{\partial u_{i_{1}i_{2}}^{\mu}} + \cdots$$

Local Conservation Laws

Conservation laws

• A local conservation law: a divergence expression equal to zero,

$$\mathrm{D}_{\it i}\Psi^{\it i}[\mathbf{u}]\equiv \mathsf{div}\,\Psi^{\bf i}[\mathbf{u}]=0.$$

For models involving time:

$$D_t \Theta[\mathbf{u}] + \mathsf{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

ullet $\Theta[u]$: conserved density; $\Psi[u]$: flux vector.

Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

$$D_i \Psi^i[\mathbf{u}] \equiv \operatorname{div} \Psi^i[\mathbf{u}] = 0.$$

• For models involving time:

$$D_t \Theta[\mathbf{u}] + \mathsf{div}_{\mathbf{x}} \ \Psi[\mathbf{u}] = 0.$$

 $\bullet \ \Theta[u] \hbox{: conserved density; } \quad \Psi[u] \hbox{: flux vector.}$

Globally Conserved Quantities

• When the total flux vanishes, $\oint_{\partial V} \Psi[\mathbf{u}] \cdot d\mathbf{S} = 0$, one has $\frac{d}{dt} \int_{V} \Theta[\mathbf{u}] \ dV = 0$.

• Other applications.

Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

$$D_i \Psi^i[\mathbf{u}] \equiv \operatorname{div} \Psi^i[\mathbf{u}] = 0.$$

For models involving time:

$$D_t \Theta[\mathbf{u}] + \mathsf{div}_{\mathbf{x}} \ \Psi[\mathbf{u}] = 0.$$

ullet $\Theta[u]$: conserved density; $\Psi[u]$: flux vector.

Direct CL construction

• For a PDE system $R^{\sigma}[\mathbf{u}] \equiv R^{\sigma}(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{k} \mathbf{u}) = 0, \quad \sigma = 1, \dots, N$, one may seek local CLs as follows:

$$D_i \Phi^i[\mathbf{u}] = \Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}] = 0.$$

• Unknown multipliers / characteristics: $\{\Lambda_{\sigma}[\mathbf{u}]\}$.

The Infinite Set of Conservation Laws

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0.$$

Theorem (Principal Result 1)

The set of vorticity-type equations admits an infinite family of local conservation laws given by

$$(\mathbf{N} \cdot \nabla F)_t + \operatorname{div}(\mathbf{M} \times \nabla F - F_t \mathbf{N}) = 0,$$

depending on an arbitrary function F = F(t, x, y, z). In particular,

$$\Lambda^1 = -F_t$$
, $\Lambda^2 = F_x$, $\Lambda^3 = F_y$, $\Lambda^4 = F_z$.

• F may be a differential function of the dependent variables.

Physical Examples

Euler and Navier-Stokes equations of fluid flow:

PDEs:

div
$$\mathbf{V} = \mathbf{0}$$
, $\mathbf{V}_t + (\mathbf{V} \cdot \nabla)\mathbf{V} + \text{grad } p = \nu \Delta \mathbf{V}$;

$$\operatorname{div} \boldsymbol{\omega} = 0, \qquad \boldsymbol{\omega}_t + \operatorname{curl} \left(\boldsymbol{\omega} \times \mathbf{V} - \nu \, \Delta \mathbf{V} \right) = 0.$$

• An infinite CL set:

$$(\boldsymbol{\omega}\cdot\nabla\boldsymbol{\mathit{F}})_{t}+\operatorname{div}\left(\left[\boldsymbol{\omega}\times\boldsymbol{\mathsf{V}}-\boldsymbol{\nu}\,\nabla^{2}\boldsymbol{\mathsf{V}}\right]\times\nabla\boldsymbol{\mathit{F}}-\boldsymbol{\mathit{F}}_{t}\,\boldsymbol{\omega}\right)=0.$$

- F = F(t, x, y, z).
- ullet All well-known CLs of fluid dynamics that are linear in ω arise from this family.

Physical Examples

Magnetohydrodynamic equations:

PDEs:

$$\begin{split} \rho_t + \operatorname{div} \rho \mathbf{V} &= 0, \qquad \operatorname{div} \mathbf{B} = 0, \\ \rho \mathbf{V}_t + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} &= -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} P + \mu_1 \Delta \mathbf{V}, \\ \mathbf{B}_t &= \operatorname{curl} (\mathbf{V} \times \mathbf{B}) + \eta \Delta \mathbf{B}. \end{split}$$

• An infinite CL set:

$$(\mathbf{B} \cdot \nabla F)_t + \operatorname{div} \left(\left[\mathbf{B} \times \mathbf{V} + \frac{1}{\sigma} \mathbf{J} \right] \times \nabla F - F_t \, \mathbf{B} \right) = 0.$$

• F = F(t, x, y, z).

Physical Examples

Dimensionless Maxwell's equations:

PDEs:

$$\operatorname{div} \mathbf{B} = 0, \qquad \mathbf{B}_t + \operatorname{curl} \mathbf{E} = 0,$$

$$\operatorname{div} \mathbf{E} = \rho, \qquad \mathbf{E}_t - \operatorname{curl} \mathbf{B} = -\mathbf{J}.$$

An infinite "magnetic CL" set:

$$(\mathbf{B} \cdot \nabla F)_t + \operatorname{div} (\mathbf{E} \times \nabla F - F_t \mathbf{B}) = 0.$$

• F = F(t, x, y, z).

Vacuum Maxwell's equations:

• For $J, \rho = 0$, additionally, an "electric CL" with G = G(t, x, y, z):

$$(\mathbf{E} \cdot \nabla G)_t - \operatorname{div} (\mathbf{B} \times \nabla G - G_t \mathbf{E}) = 0.$$

Outline

- The Vorticity-Type Equations and Their Applications
- 2 Local Conservation Laws
- Geometric Structure of Vorticity-Type Equations
- 4 Potential Systems
- Discussion

An Example in \mathbb{R}^3

Divergence-type conservation laws in \mathbb{R}^3 :

•
$$\mathbf{x} = (x, y, z), \quad \Psi = (\Psi^1, \Psi^2, \Psi^3);$$

- $\bullet \ \mathsf{CL} \colon \ \mathrm{div} \ \Psi[\mathbf{u}] = \mathsf{0}.$
- ullet Potential equations: $\Psi[\mathbf{u}] = \mathrm{curl}\ \mathbf{A}[\mathbf{u}].$

An Example in \mathbb{R}^3

Divergence-type conservation laws in \mathbb{R}^3 :

- $\mathbf{x} = (x, y, z), \quad \Psi = (\Psi^1, \Psi^2, \Psi^3);$
- CL: $\operatorname{div} \Psi[\mathbf{u}] = 0$.
- ullet Potential equations: $\Psi[\mathbf{u}] = \mathrm{curl}\ \mathbf{A}[\mathbf{u}].$

Curl-type (lower-degree) conservation laws in \mathbb{R}^3 :

- $\Phi = (\Phi^1, \Phi^2, \Phi^3);$
- CL: $\operatorname{curl} \Phi[\mathbf{u}] = 0$.
- Potential equations: $\Phi[\mathbf{u}] = \operatorname{grad} \phi[\mathbf{u}].$

Conservation Laws in \mathbb{R}^n

A differential r-form:

$$\omega^{(r)} = \frac{1}{r!} \omega_{\mu_1 \dots \mu_r} \mathrm{d} x^{\mu_1} \wedge \dots \wedge \mathrm{d} x^{\mu_r}.$$

Definition

A conservation law of degree r $(1 \le r \le n-1)$ of a PDE system is an r-form $\omega^{(r)}[\mathbf{U}]$, such that its exterior derivative

$$\Omega^{(r+1)}[\mathbf{u}] = \mathrm{d}\omega^{(r)}[\mathbf{u}] = 0$$

on all solutions $\mathbf{U} = \mathbf{u}(\mathbf{x})$ of the PDE system.

- A conservation law of degree n-1: divergence-type, $D_i \Psi^i[\mathbf{u}] = 0$.
- One may consider $\binom{n}{r}$ potential equations

$$\omega_{\mu_1...\mu_r}[\mathbf{u}] = \sum_{i=1}^r (-1)^{i-1} \frac{\partial}{\partial x^{\mu_i}} \widetilde{\omega}_{\mu_1...\overline{\mu_i}...\mu_r}[\mathbf{u}]$$

for $\binom{n}{r-1}$ potential variables given by the independent components of $\widetilde{\omega}^{(r-1)}[\mathbf{u}]$.

The Lower-Degree CL Structure of Vorticity-type Equations

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = \mathbf{0}, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = \mathbf{0}.$$

Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables t, x, y, z.

The Lower-Degree CL Structure of Vorticity-type Equations

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = \mathbf{0}, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = \mathbf{0}.$$

Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables t, x, y, z.

Denote these four scalar PDEs by

$$\begin{split} E^1 &= N_x^1 + N_y^2 + N_z^3, & E^2 &= N_t^1 + M_y^3 - M_z^2, \\ E^3 &= N_t^2 + M_z^1 - M_x^3, & E^4 &= N_t^3 + M_x^2 - M_y^1. \end{split}$$

The Lower-Degree CL Structure of Vorticity-type Equations

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0.$$

Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables t, x, y, z.

Let

$$\omega = -M^{1} dt \wedge dx - M^{2} dt \wedge dy - M^{3} [\mathbf{U}] dt \wedge dz$$
$$+N^{3} dx \wedge dy + N^{2} dz \wedge dx + N^{1} dy \wedge dz,$$

$$\Omega[\mathbf{U}] = E^1[\mathbf{U}] \, \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z + E^2[\mathbf{U}] \, \mathrm{d}y \wedge \mathrm{d}z \wedge \mathrm{d}t - E^3[\mathbf{U}] \, \mathrm{d}z \wedge \mathrm{d}t \wedge \mathrm{d}x + E^4[\mathbf{U}] \, \mathrm{d}t \wedge \mathrm{d}x \wedge \mathrm{d}y.$$

- Then $\Omega[\mathbf{U}] = d\omega[\mathbf{U}]$.
- On solutions, $d\omega[\mathbf{u}] = \Omega[\mathbf{u}] = 0$.

Outline

- The Vorticity-Type Equations and Their Applications
- 2 Local Conservation Laws
- Geometric Structure of Vorticity-Type Equations
- Potential Systems
- Discussion

Potential Systems for Vorticity-type Equations

Vorticity-type equations:

$$\operatorname{div} \mathbf{N} = 0, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = 0.$$

Degree two differential form:

$$\omega = -M^{1} dt \wedge dx - M^{2} dt \wedge dy - M^{3} [\mathbf{U}] dt \wedge dz$$
$$+ N^{3} dx \wedge dy + N^{2} dz \wedge dx + N^{1} dy \wedge dz,$$

- Equations: $d\omega[\mathbf{u}] = \Omega[\mathbf{u}] = 0$.
- Potential equations: $\omega[\mathbf{u}] = \mathrm{d}\theta[\mathbf{u}]$,

$$\theta = \theta^t(t,x,y,z)\,\mathrm{d}t + \theta^x(t,x,y,z)\,\mathrm{d}x + \theta^y(t,x,y,z)\,\mathrm{d}y + \theta^z(t,x,y,z)\,\mathrm{d}z.$$

• In components:

$$\begin{split} -M^1[\mathbf{u}] &= \theta_t^x - \theta_x^t, \quad -M^2[\mathbf{u}] = \theta_t^y - \theta_y^t, \quad -M^3[\mathbf{u}] = \theta_t^z - \theta_z^t, \\ N^1[\mathbf{u}] &= \theta_y^z - \theta_y^z, \qquad N^2[\mathbf{u}] = \theta_x^z - \theta_x^z, \qquad N^3[\mathbf{u}] = \theta_x^y - \theta_y^x. \end{split}$$

Potential Systems for the Physical Examples

Euler and Navier-Stokes equations of fluid flow:

PDEs:

div
$$\mathbf{V} = 0$$
, $\mathbf{V}_t + (\mathbf{V} \cdot \nabla)\mathbf{V} + \text{grad } \mathbf{p} = \nu \Delta \mathbf{V}$;

$$\operatorname{div} \boldsymbol{\omega} = 0, \qquad \boldsymbol{\omega}_t + \operatorname{curl} \left(\boldsymbol{\omega} \times \mathbf{V} - \nu \, \Delta \mathbf{V} \right) = 0.$$

Denote

$$(\theta^x, \theta^y, \theta^z) = \mathbf{V}, \qquad \theta^t = -p.$$

Potential equations: recover the momentum PDEs

$$\mathbf{V}_t + \operatorname{grad} \, \boldsymbol{p} = -(\boldsymbol{\omega} \times \mathbf{V} - \nu \Delta \mathbf{V}).$$

Potential Systems for the Physical Examples

Magnetohydrodynamic equations:

PDEs:

$$\begin{split} \rho_t + \operatorname{div} \rho \mathbf{V} &= 0, \qquad \operatorname{div} \mathbf{B} = 0, \\ \rho \mathbf{V}_t + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} &= -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} P + \mu_1 \Delta \mathbf{V}, \\ \mathbf{B}_t &= \operatorname{curl} (\mathbf{V} \times \mathbf{B}) + \eta \Delta \mathbf{B}. \end{split}$$

Denote

$$(\theta^{x}, \theta^{y}, \theta^{z}) = \mathbf{A}, \qquad \theta^{t} = -\Psi.$$

Potential equations:

$$\mathbf{B} = \operatorname{curl} \mathbf{A}, \quad \operatorname{grad} \mathbf{\Psi} = \mathbf{V} \times \mathbf{B} - \mathbf{A}_t - \eta \operatorname{curl} \mathbf{B}.$$

• $\Psi(t,x,y,z)$: generalization of the famous Galas-Bogoyavlenskij potential in plasma physics.

Outline

- The Vorticity-Type Equations and Their Applications
- 2 Local Conservation Laws
- Geometric Structure of Vorticity-Type Equations
- Potential Systems
- Discussion

Vorticity-type system:

$$\operatorname{div} \mathbf{N} = \mathbf{0}, \qquad \mathbf{N}_t + \operatorname{curl} \mathbf{M} = \mathbf{0}.$$

- By itself, is underdetermined.
- Is a part of important physical models.
- ullet Has a special geometric structure of a lower-degree conservation law, $\mathrm{d}\omega[\mathbf{u}]=0$:

$$\omega = -M^{1} dt \wedge dx - M^{2} dt \wedge dy - M^{3} [\mathbf{U}] dt \wedge dz + N^{3} dx \wedge dy + N^{2} dz \wedge dx + N^{1} dy \wedge dz,$$

- Has a corresponding differential identity $d^2\omega[\mathbf{u}] = 0$.
- Admits an infinite family of local divergence-type conservation laws

$$(\mathbf{N} \cdot \nabla F)_t + \operatorname{div}(\mathbf{M} \times \nabla F - F_t \mathbf{N}) = 0,$$

corresponding to that identity (cf. Noether's second theorem).

Some references

A. C. (2014)

Conservation properties and potential systems of vorticity-type equations. *J. Math. Phys.* **55**, 033508.

A. C. & M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier Stokes equations. *J. Fluid Mech.* **760**, 368–386.

O. I. Bogoyavlenskij (2001)

Infinite symmetries of the ideal MHD equilibrium equations. *Phys. Lett. A* **291**(4), 256–264.

Some references

A. C. (2014)

Conservation properties and potential systems of vorticity-type equations. *J. Math. Phys.* **55**, 033508.

A. C. & M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier Stokes equations. *J. Fluid Mech.* **760**, 368–386.

O. I. Bogoyavlenskij (2001)

Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291(4), 256–264.

Thank you for your attention!