## Vorticity-Type Equations: Conservation Laws and Applications

Alexei F. Cheviakov<br>(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics,
University of Saskatchewan, Saskatoon, Canada

June 25, 2016

## Collaborators

## M. Oberlack, TU Darmstadt, Germany

## Outline

(1) The Vorticity-Type Equations and Their Applications
(2) Local Conservation Laws
(3) Geometric Structure of Vorticity-Type Equations

4 Potential Systems
(5) Discussion

## Outline

(1) The Vorticity-Type Equations and Their Applications
(2) Local Conservation Laws
(3) Geometric Structure of Vorticity-Type Equations

4 Potential Systems
(5) Discussion

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

$$
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3}
$$

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\begin{gathered}
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0, \\
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3} .
\end{gathered}
$$

Euler and Navier-Stokes equations of fluid flow:

$$
\operatorname{div} \mathbf{V}=0, \quad \mathbf{V}_{t}+(\mathbf{V} \cdot \nabla) \mathbf{V}+\operatorname{grad} p=\nu \Delta \mathbf{V}
$$

- Vorticity dynamics equations: $\boldsymbol{\omega}=\operatorname{curl} \mathbf{V}$,

$$
\operatorname{div} \boldsymbol{\omega}=0, \quad \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{V}-\nu \Delta \mathbf{V})=0
$$

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0,
$$

$$
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3} .
$$

Magnetohydrodynamic (MHD) equations:

$$
\begin{gathered}
\rho_{t}+\operatorname{div} \rho \mathbf{V}=0, \quad \operatorname{div} \mathbf{B}=0, \\
\rho \mathbf{V}_{t}+\rho(\mathbf{V} \cdot \nabla) \mathbf{V}=-\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B}-\operatorname{grad} P+\mu_{1} \Delta \mathbf{V} \\
\mathbf{B}_{t}=\operatorname{curl}(\mathbf{V} \times \mathbf{B})+\eta \Delta \mathbf{B} .
\end{gathered}
$$

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\begin{gathered}
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0, \\
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3} .
\end{gathered}
$$

Magnetohydrodynamic (MHD) equations:

$$
\operatorname{div} \mathbf{B}=0, \quad \mathbf{B}_{t}=\operatorname{curl}(\mathbf{V} \times \mathbf{B})+\eta \Delta \mathbf{B} .
$$

- $\Delta \mathbf{B}=-\operatorname{curl}(\operatorname{curl} \mathbf{B})$;
- Plasma electric current density and conductivity:

$$
\mathbf{J}=(1 / \mu) \operatorname{curl} \mathbf{B}, \quad \sigma=1 /(\mu \eta) .
$$

- Obtain:

$$
\operatorname{div} \mathbf{B}=0, \quad \mathbf{B}_{t}+\operatorname{curl}(\mathbf{B} \times \mathbf{V}+(1 / \sigma) \mathbf{J})=0 .
$$

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\begin{gathered}
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0, \\
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3} .
\end{gathered}
$$

Dimensionless Maxwell's equations:

$$
\begin{array}{ll}
\operatorname{div} \mathbf{B}=0, & \mathbf{B}_{t}+\operatorname{curl} \mathbf{E}=0, \\
\operatorname{div} \mathbf{E}=\rho, & \mathbf{E}_{t}-\operatorname{curl} \mathbf{B}=-\mathbf{J}
\end{array}
$$

## The Vorticity-Type Equations and Their Applications

## Vorticity-type equations:

$$
\begin{gathered}
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0, \\
\mathbf{N}=\mathbf{N}(t, x, y, z) \in \mathbb{R}^{3}, \quad \mathbf{M}=\mathbf{M}(t, x, y, z) \in \mathbb{R}^{3} .
\end{gathered}
$$

## Vacuum Maxwell's equations:

$$
\operatorname{div} \mathbf{B}=0, \quad \mathbf{B}_{t}+\operatorname{curl} \mathbf{E}=0
$$

- Second "vorticity-type" subsystem:

$$
\operatorname{div} \mathbf{E}=\rho, \quad \mathbf{E}_{t}-\operatorname{curl} \mathbf{B}=0
$$

## Outline

## (1) The Vorticity-Type Equations and Their Applications

(2) Local Conservation Laws

3 Geometric Structure of Vorticity-Type Equations
(4) Potential Systems
(5) Discussion

## Notation

## Variables:

- Independent: $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ or $\left(t, x^{1}, x^{2}, \ldots\right)$ or $(t, x, y, \ldots)$.
- Dependent: $\mathbf{u}=\left(u^{1}(\mathrm{x}), u^{2}(\mathrm{x}), \ldots, u^{m}(\mathrm{x})\right)$ or $(u(\mathrm{x}), v(\mathrm{x}), \ldots)$.


## Partial derivatives:

- Notation:

$$
\frac{\partial u^{k}}{\partial x^{m}}=u_{x^{m}}^{k}=\partial_{x^{m}} u^{k}
$$

- E.g.,

$$
\frac{\partial}{\partial t} u(x, y, t)=u_{t}=\partial_{t} u
$$

## Notation

## Variables:

- Independent: $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ or $\left(t, x^{1}, x^{2}, \ldots\right)$ or $(t, x, y, \ldots)$.
- Dependent: $\mathbf{u}=\left(u^{1}(\mathrm{x}), u^{2}(\mathrm{x}), \ldots, u^{m}(\mathrm{x})\right)$ or $(u(\mathrm{x}), v(\mathrm{x}), \ldots)$.


## Partial derivatives:

- Notation:

$$
\frac{\partial u^{k}}{\partial x^{m}}=u_{x^{m}}^{k}=\partial_{x^{m}} u^{k}
$$

- E.g.,

$$
\frac{\partial}{\partial t} u(x, y, t)=u_{t}=\partial_{t} u
$$

## Total derivative operators:

$$
\mathrm{D}_{i}=\frac{\partial}{\partial x^{i}}+u_{i}^{\mu} \frac{\partial}{\partial u^{\mu}}+u_{i i_{1}}^{\mu} \frac{\partial}{\partial u_{i_{1}}^{\mu}}+u_{i i_{1} i_{2}}^{\mu} \frac{\partial}{\partial u_{i i_{2}}^{\mu}}+\cdots .
$$

## Local Conservation Laws

## Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathbf{i}}[\mathbf{u}]=0
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0
$$

- $\Theta[\mathbf{u}]$ : conserved density; $\Psi[\mathbf{u}]$ : flux vector.


## Local Conservation Laws

## Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathbf{i}}[\mathbf{u}]=0
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \mathbf{\Psi}[\mathbf{u}]=0
$$

- $\Theta[\mathbf{u}]$ : conserved density; $\boldsymbol{\Psi}[\mathbf{u}]$ : flux vector.


## Globally Conserved Quantities

- When the total flux vanishes, $\oint_{\partial V} \Psi[\mathbf{u}] \cdot d \mathbf{S}=0$, one has $\frac{d}{d t} \int_{V} \Theta[\mathbf{u}] d V=0$.
- Other applications.


## Local Conservation Laws

## Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathbf{i}}[\mathbf{u}]=0
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \mathbf{\Psi}[\mathbf{u}]=0
$$

- $\Theta[\mathbf{u}]$ : conserved density; $\boldsymbol{\Psi}[\mathbf{u}]$ : flux vector.


## Direct CL construction

- For a PDE system $R^{\sigma}[\mathbf{u}] \equiv R^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N$, one may seek local CLs as follows:

$$
\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=\Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}]=0
$$

- Unknown multipliers / characteristics: $\left\{\Lambda_{\sigma}[\mathbf{u}]\right\}$.


## The Infinite Set of Conservation Laws

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

## Theorem (Principal Result 1)

The set of vorticity-type equations admits an infinite family of local conservation laws given by

$$
(\mathbf{N} \cdot \nabla F)_{t}+\operatorname{div}\left(\mathbf{M} \times \nabla F-F_{t} \mathbf{N}\right)=0
$$

depending on an arbitrary function $F=F(t, x, y, z)$. In particular,

$$
\Lambda^{1}=-F_{t}, \quad \Lambda^{2}=F_{x}, \quad \Lambda^{3}=F_{y}, \quad \Lambda^{4}=F_{z}
$$

- F may be a differential function of the dependent variables.


## Physical Examples

## Euler and Navier-Stokes equations of fluid flow:

## - PDEs:

$$
\begin{array}{ll}
\operatorname{div} \mathbf{V}=0, & \mathbf{V}_{t}+(\mathbf{V} \cdot \nabla) \mathbf{V}+\operatorname{grad} p=\nu \Delta \mathbf{V} \\
\operatorname{div} \boldsymbol{\omega}=0, & \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{V}-\nu \Delta \mathbf{V})=0
\end{array}
$$

- An infinite CL set:

$$
(\boldsymbol{\omega} \cdot \nabla F)_{t}+\operatorname{div}\left(\left[\boldsymbol{\omega} \times \mathbf{V}-\nu \nabla^{2} \mathbf{V}\right] \times \nabla F-F_{t} \boldsymbol{\omega}\right)=0
$$

- $F=F(t, x, y, z)$.
- All well-known CLs of fluid dynamics that are linear in $\boldsymbol{\omega}$ arise from this family.


## Physical Examples

## Magnetohydrodynamic equations:

## - PDEs:

$$
\begin{gathered}
\rho_{t}+\operatorname{div} \rho \mathbf{V}=0, \quad \operatorname{div} \mathbf{B}=0, \\
\rho \mathbf{V}_{t}+\rho(\mathbf{V} \cdot \nabla) \mathbf{V}=-\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B}-\operatorname{grad} P+\mu_{1} \Delta \mathbf{V}, \\
\mathbf{B}_{t}=\operatorname{curl}(\mathbf{V} \times \mathbf{B})+\eta \Delta \mathbf{B} .
\end{gathered}
$$

- An infinite CL set:

$$
(\mathbf{B} \cdot \nabla F)_{t}+\operatorname{div}\left(\left[\mathbf{B} \times \mathbf{V}+\frac{1}{\sigma} \mathbf{J}\right] \times \nabla F-F_{t} \mathbf{B}\right)=0
$$

- $F=F(t, x, y, z)$.


## Physical Examples

Dimensionless Maxwell's equations:

## - PDEs:

$$
\operatorname{div} \mathbf{B}=0, \quad \mathbf{B}_{t}+\operatorname{curl} \mathbf{E}=0
$$

$$
\operatorname{div} \mathbf{E}=\rho, \quad \mathbf{E}_{t}-\operatorname{curl} \mathbf{B}=-\mathbf{J}
$$

- An infinite "magnetic CL" set:

$$
(\mathbf{B} \cdot \nabla F)_{t}+\operatorname{div}\left(\mathbf{E} \times \nabla F-F_{t} \mathbf{B}\right)=0
$$

- $F=F(t, x, y, z)$.


## Vacuum Maxwell's equations:

- For $\mathbf{J}, \rho=0$, additionally, an "electric $C L$ " with $G=G(t, x, y, z)$ :

$$
(\mathbf{E} \cdot \nabla G)_{t}-\operatorname{div}\left(\mathbf{B} \times \nabla G-G_{t} \mathbf{E}\right)=0
$$

## Outline

## (1) The Vorticity-Type Equations and Their Applications

(2) Local Conservation Laws
(3) Geometric Structure of Vorticity-Type Equations

4 Potential Systems
(5) Discussion

## An Example in $\mathbb{R}^{3}$

## Divergence-type conservation laws in $\mathbb{R}^{3}$ :

- $\mathbf{x}=(x, y, z), \quad \Psi=\left(\Psi^{1}, \Psi^{2}, \Psi^{3}\right) ;$
- CL: $\operatorname{div} \boldsymbol{\Psi}[\mathbf{u}]=0$.
- Potential equations: $\boldsymbol{\Psi}[\mathbf{u}]=\operatorname{curl} \mathbf{A}[\mathbf{u}]$.


## An Example in $\mathbb{R}^{3}$

Divergence-type conservation laws in $\mathbb{R}^{3}$ :

- $\mathbf{x}=(x, y, z), \quad \Psi=\left(\Psi^{1}, \Psi^{2}, \Psi^{3}\right)$;
- CL: $\quad \operatorname{div} \Psi[\mathbf{u}]=0$.
- Potential equations: $\boldsymbol{\Psi}[\mathbf{u}]=\operatorname{curl} \mathbf{A}[\mathbf{u}]$.

Curl-type (lower-degree) conservation laws in $\mathbb{R}^{3}$ :

- $\boldsymbol{\Phi}=\left(\Phi^{1}, \Phi^{2}, \Phi^{3}\right) ;$
- CL: $\operatorname{curl} \mathbf{\Phi}[\mathbf{u}]=0$.
- Potential equations: $\boldsymbol{\Phi}[\mathbf{u}]=\operatorname{grad} \phi[\mathbf{u}]$.


## Conservation Laws in $\mathbb{R}^{n}$

- A differential $r$-form:

$$
\omega^{(r)}=\frac{1}{r!} \omega_{\mu_{1} \ldots \mu_{r}} \mathrm{~d} x^{\mu_{1}} \wedge \ldots \wedge \mathrm{~d} x^{\mu_{r}}
$$

## Definition

A conservation law of degree $r(1 \leq r \leq n-1)$ of a PDE system is an $r$-form $\omega^{(r)}[\mathbf{U}]$, such that its exterior derivative

$$
\Omega^{(r+1)}[\mathbf{u}]=\mathrm{d} \omega^{(r)}[\mathbf{u}]=0
$$

on all solutions $\mathbf{U}=\mathbf{u}(\mathbf{x})$ of the PDE system.

- A conservation law of degree $n-1$ : divergence-type, $\mathrm{D}_{i} \psi^{i}[\mathbf{u}]=0$.
- One may consider $\binom{n}{r}$ potential equations

$$
\omega_{\mu_{1} \ldots \mu_{r}}[\mathbf{u}]=\sum_{i=1}^{r}(-1)^{i-1} \frac{\partial}{\partial x^{\mu_{i}}} \widetilde{\omega}_{\mu_{1} \ldots \overline{\mu_{i}} \ldots \mu_{r}}[\mathbf{u}]
$$

for $\binom{n}{r-1}$ potential variables given by the independent components of $\widetilde{\omega}^{(r-1)}[\mathbf{u}]$.

## The Lower-Degree CL Structure of Vorticity-type Equations

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

## Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables $t, x, y, z$.

## The Lower-Degree CL Structure of Vorticity-type Equations

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

## Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables $t, x, y, z$.

- Denote these four scalar PDEs by

$$
\begin{array}{lc}
E^{1}=N_{x}^{1}+N_{y}^{2}+N_{z}^{3}, & E^{2}=N_{t}^{1}+M_{y}^{3}-M_{z}^{2} \\
E^{3}=N_{t}^{2}+M_{z}^{1}-M_{x}^{3}, & E^{4}=N_{t}^{3}+M_{x}^{2}-M_{y}^{1}
\end{array}
$$

## The Lower-Degree CL Structure of Vorticity-type Equations

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

## Theorem

The vorticity-type PDEs are equivalent to a lower-degree (degree two) conservation law in the four-dimensional space of variables $t, x, y, z$.

- Let

$$
\begin{aligned}
\omega= & -M^{1} \mathrm{~d} t \wedge \mathrm{~d} x-M^{2} \mathrm{~d} t \wedge \mathrm{~d} y-M^{3}[\mathbf{U}] \mathrm{d} t \wedge \mathrm{~d} z \\
& +N^{3} \mathrm{~d} x \wedge \mathrm{~d} y+N^{2} \mathrm{~d} z \wedge \mathrm{~d} x+N^{1} \mathrm{~d} y \wedge \mathrm{~d} z
\end{aligned}
$$

$$
\Omega[\mathbf{U}]=E^{1}[\mathbf{U}] \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z+E^{2}[\mathbf{U}] \mathrm{d} y \wedge \mathrm{~d} z \wedge \mathrm{~d} t-E^{3}[\mathbf{U}] \mathrm{d} z \wedge \mathrm{~d} t \wedge \mathrm{~d} x+E^{4}[\mathbf{U}] \mathrm{d} t \wedge \mathrm{~d} x \wedge \mathrm{~d} y .
$$

- Then $\Omega[\mathbf{U}]=\mathrm{d} \omega[\mathbf{U}]$.
- On solutions, $\mathrm{d} \omega[\mathbf{u}]=\Omega[\mathbf{u}]=0$.


## Outline

# (1) The Vorticity-Type Equations and Their Applications 

(2) Local Conservation Laws
(3) Geometric Structure of Vorticity-Type Equations

4 Potential Systems


## Potential Systems for Vorticity-type Equations

## Vorticity-type equations:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

- Degree two differential form:

$$
\begin{aligned}
\omega= & -M^{1} \mathrm{~d} t \wedge \mathrm{~d} x-M^{2} \mathrm{~d} t \wedge \mathrm{~d} y-M^{3}[\mathbf{U}] \mathrm{d} t \wedge \mathrm{~d} z \\
& +N^{3} \mathrm{~d} x \wedge \mathrm{~d} y+N^{2} \mathrm{~d} z \wedge \mathrm{~d} x+N^{1} \mathrm{~d} y \wedge \mathrm{~d} z
\end{aligned}
$$

- Equations: $\mathrm{d} \omega[\mathbf{u}]=\Omega[\mathbf{u}]=0$.
- Potential equations: $\omega[\mathbf{u}]=\mathrm{d} \theta[\mathbf{u}]$,

$$
\theta=\theta^{t}(t, x, y, z) \mathrm{d} t+\theta^{x}(t, x, y, z) \mathrm{d} x+\theta^{y}(t, x, y, z) \mathrm{d} y+\theta^{z}(t, x, y, z) \mathrm{d} z
$$

- In components:

$$
\begin{array}{lll}
-M^{1}[\mathbf{u}]=\theta_{t}^{x}-\theta_{x}^{t}, & -M^{2}[\mathbf{u}]=\theta_{t}^{y}-\theta_{y}^{t}, & -M^{3}[\mathbf{u}]=\theta_{t}^{z}-\theta_{z}^{t} \\
N^{1}[\mathbf{u}]=\theta_{y}^{z}-\theta_{z}^{y}, & N^{2}[\mathbf{u}]=\theta_{z}^{x}-\theta_{x}^{z}, & N^{3}[\mathbf{u}]=\theta_{x}^{y}-\theta_{y}^{x}
\end{array}
$$

## Potential Systems for the Physical Examples

## Euler and Navier-Stokes equations of fluid flow:

- PDEs:

$$
\begin{array}{ll}
\operatorname{div} \mathbf{V}=0, & \mathbf{V}_{t}+(\mathbf{V} \cdot \nabla) \mathbf{V}+\operatorname{grad} p=\nu \Delta \mathbf{V} \\
\operatorname{div} \boldsymbol{\omega}=0, & \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{V}-\nu \Delta \mathbf{V})=0
\end{array}
$$

- Denote

$$
\left(\theta^{x}, \theta^{y}, \theta^{z}\right)=\mathbf{V}, \quad \theta^{t}=-p
$$

- Potential equations: recover the momentum PDEs

$$
\mathbf{V}_{t}+\operatorname{grad} p=-(\boldsymbol{\omega} \times \mathbf{V}-\nu \Delta \mathbf{V})
$$

## Potential Systems for the Physical Examples

## Magnetohydrodynamic equations:

## - PDEs:

$$
\begin{gathered}
\rho_{t}+\operatorname{div} \rho \mathbf{V}=0, \quad \operatorname{div} \mathbf{B}=0 \\
\rho \mathbf{V}_{t}+\rho(\mathbf{V} \cdot \nabla) \mathbf{V}=-\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B}-\operatorname{grad} P+\mu_{1} \Delta \mathbf{V} \\
\mathbf{B}_{t}=\operatorname{curl}(\mathbf{V} \times \mathbf{B})+\eta \Delta \mathbf{B}
\end{gathered}
$$

- Denote

$$
\left(\theta^{x}, \theta^{y}, \theta^{z}\right)=\mathbf{A}, \quad \theta^{t}=-\Psi
$$

- Potential equations:

$$
\mathbf{B}=\operatorname{curl} \mathbf{A}, \quad \operatorname{grad} \Psi=\mathbf{V} \times \mathbf{B}-\mathbf{A}_{t}-\eta \operatorname{curl} \mathbf{B}
$$

- $\Psi(t, x, y, z)$ : generalization of the famous Galas-Bogoyavlenskij potential in plasma physics.


## Outline

# (1) The Vorticity-Type Equations and Their Applications 

(2) Local Conservation Laws
(3) Geometric Structure of Vorticity-Type Equations

4 Potential Systems
(5) Discussion

## Discussion

## Vorticity-type system:

$$
\operatorname{div} \mathbf{N}=0, \quad \mathbf{N}_{t}+\operatorname{curl} \mathbf{M}=0
$$

- By itself, is underdetermined.
- Is a part of important physical models.
- Has a special geometric structure of a lower-degree conservation law, $\mathrm{d} \omega[\mathbf{u}]=0$ :

$$
\begin{aligned}
\omega= & -M^{1} \mathrm{~d} t \wedge \mathrm{~d} x-M^{2} \mathrm{~d} t \wedge \mathrm{~d} y-M^{3}[\mathbf{U}] \mathrm{d} t \wedge \mathrm{~d} z \\
& +N^{3} \mathrm{~d} x \wedge \mathrm{~d} y+N^{2} \mathrm{~d} z \wedge \mathrm{~d} x+N^{1} \mathrm{~d} y \wedge \mathrm{~d} z
\end{aligned}
$$

- Has a corresponding differential identity $\mathrm{d}^{2} \omega[\mathbf{u}]=0$.
- Admits an infinite family of local divergence-type conservation laws

$$
(\mathbf{N} \cdot \nabla F)_{t}+\operatorname{div}\left(\mathbf{M} \times \nabla F-F_{t} \mathbf{N}\right)=0
$$

corresponding to that identity (cf. Noether's second theorem).

## Some references

A. C. (2014)

Conservation properties and potential systems of vorticity-type equations. J. Math. Phys. 55, 033508.
A. C. \& M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier Stokes equations. J. Fluid Mech. 760, 368-386.
O. I. Bogoyavlenskij (2001)

Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291(4), 256-264.

## Some references

A. C. (2014)

Conservation properties and potential systems of vorticity-type equations. J. Math. Phys. 55, 033508.
A. C. \& M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier Stokes equations. J. Fluid Mech. 760, 368-386.
O. I. Bogoyavlenskij (2001)

Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291(4), 256-264.

## Thank you for your attention!

