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Narrow escape problems

@ A Brownian particle escapes from a bounded domain through small windows.

o Examples: Pores of cell nuclei; synaptic receptors on dendrites, ...

Nuclear envelope

Nucleolus
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Narrow escape problems

@ A Brownian particle escapes from a bounded domain through small windows.

Typical nucleus size: ~ 6 x 107 m

@ Pore size ~ 1078 m

@ ~ 2000 nuclear pore complexes in a typical nucleus
@ mRNA, proteins, smaller molecules

@ ~ 1000 translocations per complex per second

Trap separation ~ 5 x 107" m
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Continuum formulation

611]

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

o A Brownian particle confined in a domain Q € R®.

Initial position: x € Q.

@ Mean First Passage Time (MFPT): v(x).

Domain boundary: 9Q2 = 99, (reflecting) U 99, (absorbing).
99, = Y, 09., : small absorbing traps (size ~ ¢).
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Continuum formulation

611]

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)):

sz—%, x €,

v=0, x€0Q; 0Owv=0, xe€oai,.

Average MFPT: 7 = ﬁ/ v(x) dx = const.
Q
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The continuum model

Continuum problem for the

MFPT:

v=0, x€0Q =UL 09,

anVZO, x € 09),.

Boundary value problem-based model:

@ Linear;

o Strongly heterogeneous
Dirichlet/Neumann BCs;

o Singularly perturbed:

0oe—0F = v—+4oo ae
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Some general results

Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

Vo~ %[—Iogs—k@(l)]

Unit sphere; one trap [Singer et al (2006)]

Lt P
o~ 42 1= Zose o]

Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

Vo~ 4|Qg [1 - fHIoge—&— (9(5)]

H: mean curvature at the center of the trap.
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Higher-order asymptotic MFPT for the sphere

Matched asymptotic expansions for:

@ Sphere with N traps.

o Trap radii: r; = aje, j=1,...,N; capacitances: ¢; = 2a;/m.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

v(x) = V—Lm E ¢ Gs(x; x7) + O(elog e)
N 2 N
_ || 2\ 2= G 2me € »
=12 |14clog(Z Oty ) = = S g |
"'~ 2reDNe +elog € 2Ne ne P (a x) N — citj + O(e” loge)

o Gs(x;x;): spherical Neumann Green's function (known);
@ C: average capacitance; x; = const;

® pc(x1,...,xn): energy-like trap interaction term.
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MFEPT for the sphere with N equal traps

N equal traps of radius e:
o Average MFPT:

_ |Q| £ 2 £ _% a § i
V~zeon P T x ~log -)t o +2(N = 2)log2 + 5 + THla,...xw) )|

@ Interaction energy:

M 1 1 1
H(le"'va):ZZ |X'—X|_§|Og|X’ | Iog(2+|X1_XJD
i=1 j=i+1 | ' , ——
Canllsmi Logarithmic
W
Optimal arrangements
@ min v < min H(x,...,xn), a global optimization problem.

“Thomson problem”: optimal arrangements for the Coulomb potential.

@ Optimal arrangements minimizing v for N < 100: general software (e.g., LGO).

A\
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The Narrow Capture (NC) problem and the PDE model

Trapping reactions: whenever a diffusing particle hits a trap, it is immediately and
permanently trapped.

@ exciton trapping Av(x) = ,% . x € Q\Q.,

o fluorescence quenching 9w =0, x€d9,

@ spin relaxation processes v=0, x€0Q,= UJ'-Vzl 0.,
@ mean first-passage time: v(x) 1

@ narrow capture: small trap size V= @ o v(x) d"x
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Unit sphere - exact and asymptotic solutions

@ Exact solution when a single trap (radius=e) is at the origin:

v(r)—i e+2 r+2 o _ 1 e+2 18
T eD | e T e 5

6D

@ Multiple traps: repel from each other and their own ‘“reflections” in the boundary

@ Asymptotic solutions: small, well-separated traps, far from the boundary; include an
interaction term [A.C., M. Ward, 2011]

e [, |
e wmieDs | 47T€JZICJ i) + NE 2 pe(Er, o ) + O(2)
Va = & 4me ,

" 4xNEDe 1+ Nz Pc(Xl, '“7XN) + O(E )

@ Expressed in terms of the Green's functions G(x, &) computed on trap pairs, and
their regular parts R(), and trap capacitances ¢;.
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Exact and asymptotic solutions

@ Capacitance depends on trap shape and size.

@ Green's function:

1 1
F068) = 6008 = =g ¥ il - q
1 2 , 7
+E'°g(1—|><|\g\cosa+|x||x/— |) ar X H1ER) — 1
! 2

o Every trap (&) interacts with other traps (x) and their images (x'): xx' = r* =
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Exact and asymptotic solutions

@ Capacitance depends on trap shape and size.

@ Green's function:

e _ 1 1
M) = 6008 = =g  ampbo = q
1 2 , 7
#4108 (s e e K - g

@ Every trap () interacts with other traps (x) and their images (x'): xx' = r* = 1.

o Green's function regular part:

o _ 1 1 1 S
69 = RO G * a5 () *ar 100

e Trap interaction term:

pe(6ry . bn) = ZZc,cJ (&,&)

i=1 j=1
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Some optimization results

o Asymptotic MFPT formulas tested vs. exact/numerical: work far beyond limits
[J. Gilbert and A.C., 2019).

Putative locally optimal configurations for 1 < N < 100 computed.
Traps often lie close to spherical shells.

There may or may not be a trap at the center.
Example: N = 24
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Global optimization: traps (approximately) on shells
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Projects and collaborators

o with Michael Ward and R. Straube (2010):
Asymptotic mean first passage time (MFPT), NE, sphere with small surface traps

o with Michael Ward (2010):
Asymptotic MFPT, NC, sphere with small interior traps

o with Ashton Reimer and Michael Ward (2012):
NE asymptotic vs. numerical MFPT; applicability limits of asymptotic solutions

@ with Daniel Zawada (2013):
NE, unit sphere: homogenization limit and optimal arrangements of N >> 1 traps, the N2
conjecture

o with Daniel Gomez (2015):
NE, nonspherical 3D domains, effects of boundary curvature

o with Wesley Ridgway (2018, 2019):
Locally and globally optimal arrangements of particles repelling on the unit sphere surface.
Results for NE and NC problems

e with Jason Gilbert (2019, ongoing):
Globally optimal trap arrangements for NC in unit sphere. Optimal NC trap configurations
in an ellipse

o with Vaibhava Srivastava (finishing up):
Full Brownian simulations for NE in a sphere; comparison with PDE MFPT /asymptotic
results; study of boundary effects & anisotropic diffusion
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Finally...

Thanks everyone for listening!.. and...

\\ \ "\.
l 'ﬁ)":\l" P \

Happy birthday Michael!
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