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Narrow escape problems

A Brownian particle escapes from a bounded domain through small windows.

Examples: Pores of cell nuclei; synaptic receptors on dendrites, ...
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Narrow escape problems

A Brownian particle escapes from a bounded domain through small windows.

Typical nucleus size: ∼ 6× 10−6 m

Pore size ∼ 10−8 m

∼ 2000 nuclear pore complexes in a typical nucleus

mRNA, proteins, smaller molecules

∼ 1000 translocations per complex per second

Trap separation ∼ 5× 10−7 m
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Continuum formulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Given:

A Brownian particle confined in a domain Ω ∈ R3.

Initial position: x ∈ Ω.

Mean First Passage Time (MFPT): v(x).

Domain boundary: ∂Ω = ∂Ωr (reflecting) ∪ ∂Ωa (absorbing).

∂Ωa =
⋃N

i=1 ∂Ωεi : small absorbing traps (size ∼ ε).
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Continuum formulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Average MFPT: v̄ =
1

|Ω|

∫
Ω

v(x) dx = const.
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The continuum model

Boundary value problem-based model:

Linear;

Strongly heterogeneous
Dirichlet/Neumann BCs;

Singularly perturbed:

ε→ 0+ ⇒ v → +∞ a.e.

Continuum problem for the
MFPT:


4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa = ∪N
j=1∂Ωεj ,

∂nv = 0, x ∈ ∂Ωr .
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Some general results

 

xj 

x 

Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

v̄ ∼ |Ω|
πD

[− log ε+O (1)]

Unit sphere; one trap [Singer et al (2006)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]
Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
H: mean curvature at the center of the trap.
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Higher-order asymptotic MFPT for the sphere

Matched asymptotic expansions for:

Sphere with N traps.

Trap radii: rj = ajε, j = 1, . . . ,N; capacitances: cj = 2aj/π.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs(x ; xj) +O(ε log ε)

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c2

j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN)− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Gs(x ; xj): spherical Neumann Green’s function (known);

c̄: average capacitance; κj = const;

pc(x1, . . . , xN): energy-like trap interaction term.
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MFPT for the sphere with N equal traps

N equal traps of radius ε:

Average MFPT:

v̄ ∼ |Ω|
4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN)

)]
.

Interaction energy:

H(x1, . . . , xN) =
N∑
i=1

N∑
j=i+1

 1

|xi − xj |︸ ︷︷ ︸
Coulomb

− 1

2
log |xi − xj |︸ ︷︷ ︸
Logarithmic

−1

2
log (2 + |xi − xj |)

 .

Optimal arrangements

min v̄ ⇔ min H(x1, . . . , xN), a global optimization problem.

“Thomson problem”: optimal arrangements for the Coulomb potential.

Optimal arrangements minimizing v̄ for N . 100: general software (e.g., LGO).
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The Narrow Capture (NC) problem and the PDE model

Trapping reactions: whenever a diffusing particle hits a trap, it is immediately and
permanently trapped.

exciton trapping

fluorescence quenching

spin relaxation processes

mean first-passage time: v(x)

narrow capture: small trap size


∆v(x) = − 1

D
, x ∈ Ω\Ωa,

∂nv = 0 , x ∈ ∂Ω,
v = 0 , x ∈ ∂Ωa = ∪N

j=1 ∂Ωεj

v̄ =
1

|Ω|

∫
Ω

v(x) dnx

where ∆ is the Laplacian operator, D is the diffusivity of the Brownian motion, Ωa ⊂ Ω is the
set of absorbing traps, ∂nv denotes the normal derivative on the surface ∂Ω of Ω, and ∂Ωε is the
surface of a trap. The average mean first-passage time (AMFPT) is defined as

v̄ =
1

|Ω|

∫

Ω
v(x) dnx (1.2)

where |Ω| is the measure, volume or area, of the domain.

In this work we consider the narrow capture problem in a three-dimensional spherical domain.
The narrow capture problem is a first-passage problem characterized by the presence of localized
absorbing traps within the domain, where the volume occupied by the traps is asymptotically small
in some parameter. A schematic of the problem is shown in Figure 1.1. The narrow capture problem
has applications in the modelling of biophysical phenomena [9], simple particle reactions [8], and
solid state physics [10,11]. For recent results on the narrow capture problem, see Refs. [12–15].
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Figure 1.1: (a) A two-dimensional narrow capture problem in the unit disk having internal traps
with absorbing boundaries {∂Ωεj}. (b) A three-dimensional narrow capture problem, a sample
Brownian particle trajectory, leading to a capture in a trap denoted by purple color (color online).

Except for the very simplest cases, exact explicit solutions of the narrow capture problem (1.1)
are not known. In order to compute the MFPT v(x) and/or the AMFPT v̄ in a generic domain
with volume traps, one has to either retreat to a full numerical solution of (1.1), or perform
computations using simulated Brownian motion starting from a given point of the domain. Being
highly computationally expensive, such approaches do not provide explicit information about the
structure of the problem, such as the dependence of MFPT and AMFPT on trap locations in the
domain Ω, on trap sizes, orientations, etc.; in order to study such dependencies, the problem (1.1)
would require a new numerical solution for each infinitesimal configuration change. In particular,
‘global’ questions, such as the calculation of optimal trap positions in a given domain that would
minimize MFPT (AMFPT), can only be addressed if some kind of an explicit formula for the MFPT
is known.

Recent work on the narrow capture problem [1] used matched asymptotic expansions to derive an
explicit approximation for the MFPT v(x) and the AMFPT v̄ for N small, well-separated traps in
the unit sphere (Section 2). In addition to depending on the trap information (size, number, and
shape information through the capacitance coefficient), these asymptotic formulas depend on trap
positions through the terms involving the Neumann Green’s function of the Poisson problem. This
provides a handle to examine the relationship between, for example, the average MFPT for the
Brownian particles travelling in the spherical domain, and the geometry of the trap arrangement.

The main objective of this paper is the study of optimal configurations of traps within the unit
sphere, that is, the arrangements of the traps that minimize the AMFPT. In the context of the
narrow capture problem, such an arrangement of traps can be thought of as the one which, on

2
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Unit sphere - exact and asymptotic solutions

Exact solution when a single trap (radius=ε) is at the origin:

ve(r) =
1

6D

[
ε3 + 2

ε
− r 3 + 2

r

]
, v̄e =

1

6D

[
ε3 + 2

ε
− 18

5

]
Multiple traps: repel from each other and their own “reflections” in the boundary

Asymptotic solutions: small, well-separated traps, far from the boundary; include an
interaction term [A.C., M. Ward, 2011]

vA(x) =
|Ω|

4πNc̄Dε

[
1− 4πε

N∑
j=1

cjG(x ; xj) +
4πε

Nc̄
pc(ξ1, ..., ξN) +O(ε2)

]

v̄A =
|Ω|

4πNc̄Dε

[
1 +

4πε

Nc̄
pc(x1, ..., xN) +O(ε2)

]
Expressed in terms of the Green’s functions G(x , ξ) computed on trap pairs, and
their regular parts R(ξ), and trap capacitances cj .
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Exact and asymptotic solutions

Capacitance depends on trap shape and size.

Green’s function:

Γ(x ; ξ) = G(x , ξ) =
1

4π|x − ξ| +
1

4π|x ||x ′ − ξ|

+
1

4π
log

(
2

1− |x ||ξ| cos θ + |x ||x ′ − ξ|

)
+

1

8π
(|x |2 + |ξ|2)− 7

10π

Every trap (ξ) interacts with other traps (x) and their images (x ′): xx ′ = r 2 = 1. 
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Exact and asymptotic solutions

Capacitance depends on trap shape and size.

Green’s function:

Γ(x ; ξ) = G(x , ξ) =
1

4π|x − ξ| +
1

4π|x ||x ′ − ξ|

+
1

4π
log

(
2

1− |x ||ξ| cos θ + |x ||x ′ − ξ|

)
+

1

8π
(|x |2 + |ξ|2)− 7

10π

Every trap (ξ) interacts with other traps (x) and their images (x ′): xx ′ = r 2 = 1.

Green’s function regular part:

Γ(ξ; ξ) = R(ξ) =
1

4π(1− |ξ|2)
+

1

4π
log

(
1

1− |ξ|2

)
+
|ξ|2

4π
− 7

10π

Trap interaction term:

pc(ξ1, ..., ξN) =
N∑
i=1

N∑
j=1

cicjΓ(ξi , ξj)

A. Cheviakov (UofS, Canada) Narrow Escape and Narrow Capture Problems in 3D May 13, 2021 13 / 18



Some optimization results

Asymptotic MFPT formulas tested vs. exact/numerical: work far beyond limits
[J. Gilbert and A.C., 2019].

Putative locally optimal configurations for 1 ≤ N ≤ 100 computed.

Traps often lie close to spherical shells.

There may or may not be a trap at the center.

Example: N = 24
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Global optimization: traps (approximately) on shells
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Projects and collaborators

with Michael Ward and R. Straube (2010):
Asymptotic mean first passage time (MFPT), NE, sphere with small surface traps

with Michael Ward (2010):
Asymptotic MFPT, NC, sphere with small interior traps

with Ashton Reimer and Michael Ward (2012):
NE asymptotic vs. numerical MFPT; applicability limits of asymptotic solutions

with Daniel Zawada (2013):
NE, unit sphere: homogenization limit and optimal arrangements of N � 1 traps, the N2

conjecture

with Daniel Gomez (2015):
NE, nonspherical 3D domains, effects of boundary curvature

with Wesley Ridgway (2018, 2019):
Locally and globally optimal arrangements of particles repelling on the unit sphere surface.

Results for NE and NC problems

with Jason Gilbert (2019, ongoing):
Globally optimal trap arrangements for NC in unit sphere. Optimal NC trap configurations

in an ellipse

with Vaibhava Srivastava (finishing up):
Full Brownian simulations for NE in a sphere; comparison with PDE MFPT/asymptotic

results; study of boundary effects & anisotropic diffusion
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Finally...

Thanks everyone for listening!.. and...

Happy birthday Michael!
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