Narrow Escape and Narrow Capture problems in 3D, asymptotic solutions, optimal trap configurations

Alexei Cheviakov

University of Saskatchewan, Saskatoon, Canada

April 18, 2019

・ロト ・回ト ・ヨト ・

- Michael Ward, UBC, Vancouver, Canada
- Ashton Reimer, Daniel Zawada, Daniel Gomez, Wesley Ridgway, U. Saskatchewan, Canada
- Jason Gilbert, U. Saskatchewan, Canada

<ロト </p>

Outline

The Global Optimization Problem

2 The Narrow Escape problem

- Global optimization
- Dilute trap fraction limit
- Geometrical features
- Global and local minima
- Non-equal traps
- Non-spherical domains

The Narrow Capture problem

- Exact and asymptotic solutions
- Global optimization

Image: A math a math

Outline

1 The Global Optimization Problem

2 The Narrow Escape problem

- Global optimization
- Dilute trap fraction limit
- Geometrical features
- Global and local minima
- Non-equal traps
- Non-spherical domains

The Narrow Capture problem

- Exact and asymptotic solutions
- Global optimization

-

・ロト ・回ト ・ヨト ・

Problem:

• Global optimization of some objective function that depends on positions of small "particles", or "pores", or "traps", on the surface of a 3D domain:

min $\mathcal{H}(x_1,\ldots,x_N), \qquad x_i \in \partial V, \qquad V \subset \mathbb{R}^3.$

イロト イヨト イヨト イヨト

Example: the Thomson problem

• Total Coulombic interaction energy:

$$\mathcal{H}_{\mathcal{C}}(x_1,\ldots,x_N) = \sum_{i=1}^{N} \sum_{j=i+1}^{N} h(x_i,x_j)$$

- Pairwise energy function: $h(x_i, x_j) = \frac{1}{|x_i x_j|}$
- In this talk: global optimization problems arising from Narrow Escape and Narrow Capture problems.

イロト イヨト イヨト イヨ

Chemical exchange through nuclear pores:

- mRNA, protein, smaller molecule transfer.
- \sim 1000 translocations per complex per second.
- Typical nucleus size: $\sim 6 \times 10^{-6}$ m.
- ~ 2000 nuclear pore complexes in a typical nucleus.
- Pore size $\sim 10^{-8}$ m.
- $\bullet\,$ Pore separation $\sim 5\times 10^{-7}\,$ m.

• • • • • • • • • • • • •

Synaptic receptors on dendrites:

イロト イヨト イヨト イヨト

Narrow Escape problem: the Math setup

The setup:

- A Brownian particle confined in a domain $\Omega \in \mathbb{R}^3.$
- Initial position: $x \in \Omega$.
- Mean First Passage Time (MFPT): v(x).
- Domain boundary: $\partial \Omega = \partial \Omega_r$ (reflecting) $\cup \partial \Omega_a$ (absorbing).
- $\partial \Omega_a = \bigcup_{i=1}^N \partial \Omega_{\varepsilon_i}$: small absorbing traps (size $\sim \varepsilon$).

イロン イ部ン イヨン イヨ

Narrow Escape problem: the Math setup

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]:

$$\begin{cases} \Delta v = -\frac{1}{D}, \quad x \in \Omega, \\ v = 0, \quad x \in \partial \Omega_a; \quad \partial_n v = 0, \quad x \in \partial \Omega_r. \end{cases}$$

Average MFPT: $\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x) dx = \text{const.}$

イロト イヨト イヨト イヨト

Narrow Escape problem: the Math setup

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]:

$$\begin{cases} \bigtriangleup v = -\frac{1}{D}, & x \in \Omega, \\ v = 0, & x \in \partial \Omega_a; & \partial_n v = 0, & x \in \partial \Omega_r. \end{cases}$$

Linear

- Strongly Heterogeneous Dirichlet/Neumann BCs
- Singularly perturbed: $\varepsilon \to 0^+ \Rightarrow v \to +\infty$ a.e.

Unit sphere; one trap of radius $\varepsilon \ll 1$ [Singer et al (2006)]

$$ar{m{
u}} \sim rac{|\Omega|}{4arepsilon D} \left[1 - rac{arepsilon}{\pi} \log arepsilon + \mathcal{O}\left(arepsilon
ight)
ight]$$

Arbitrary 3D domain with smooth boundary; one small trap [Singer et al (2009)]

$$ar{v} \sim rac{\left|\Omega
ight|}{4arepsilon D} \left[1 - rac{arepsilon}{\pi} H\logarepsilon + \mathcal{O}\left(arepsilon
ight)
ight]$$

H: mean curvature at the center of the trap.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Matched Asymptotic Expansions (Illustration for the Unit Sphere)

• Outer expansion, defined at $\mathcal{O}(1)$ distances from traps:

$$\mathbf{v}_{out}\sim arepsilon^{-1}\mathbf{v}_0(x)+\mathbf{v}_1(x)+arepsilon\log\left(rac{arepsilon}{2}
ight)\mathbf{v}_2(x)+arepsilon\mathbf{v}_3(x)+\cdots.$$

• Inner expansion of solution near trap centered at x_j uses scaled coordinates y:

$$v_{in} \sim \varepsilon^{-1} w_0(y) + \log\left(\frac{\varepsilon}{2}\right) w_1(y) + w_2(y) + \cdots$$

• Matching condition: when $x \to x_j$ and $y = \varepsilon^{-1}(x - x_j) \to \infty$,

 $v_{in} \sim v_{out}$.

イロト イヨト イヨト イヨ

Setup:

- A unit sphere with N traps located at $\{x_j\}$.
- Traps of different radii: $r_j = a_j \varepsilon$, j = 1, ..., N; capacitances (disk): $c_j = 2a_j/\pi$.
- Traps are small ($\varepsilon \ll 1$), well-separated.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

$$v(x) = \bar{v} - \frac{|\Omega|}{DN\bar{c}} \sum_{j=1}^{N} c_j G_s(x; x_j) + \mathcal{O}(\varepsilon \log \varepsilon)$$

$$\bar{\nu} = \frac{|\Omega|}{2\pi\varepsilon DN\bar{c}} \left[1 + \varepsilon \log\left(\frac{2}{\varepsilon}\right) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\varepsilon}{N\bar{c}} p_c(x_1, \dots, x_N) - \frac{\varepsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j + \mathcal{O}(\varepsilon^2 \log \varepsilon) \right]$$

- $G_s(x; x_j)$: spherical Neumann Green's function (known).
- \bar{c} : average capacitance; $\kappa_j = \text{const.}$
- $p_c(x_1, \ldots, x_N)$: trap interaction term involving $G_s(x_i; x_j)$.

イロン イロン イヨン イヨ

Asymptotic assumptions:

- Domain: a unit sphere
- D = const
- N equal traps of radius $\varepsilon \ll 1$
- The asymptotic average MFPT including trap position/interaction terms:

$$\bar{\nu} \sim \frac{|\Omega|}{4\varepsilon DN} \left[1 + \frac{\varepsilon}{\pi} \log\left(\frac{2}{\varepsilon}\right) + \frac{\varepsilon}{\pi} \left(-\frac{9N}{5} + 2(N-2)\log 2 + \frac{3}{2} + \frac{4}{N} \mathcal{H}_{MFPT} \right) \right];$$

$$\mathcal{H}_{MFPT}(x_1,\ldots,x_N) = \sum_{i=1}^N \sum_{j=i+1}^N h(x_i,x_j),$$

$$h(x_i, x_j) = \frac{1}{|x_i - x_j|} - \frac{1}{2} \log |x_i - x_j| - \frac{1}{2} \log (2 + |x_i - x_j|)$$

- Fast and precise MFPT computations
- Global optimization problem

• • • • • • • • • • • •

$$\mathcal{H}_{MFPT}(x_1, \dots, x_N) = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(\frac{1}{|x_i - x_j|} - \frac{1}{2} \log |x_i - x_j| - \frac{1}{2} \log (2 + |x_i - x_j|) \right)$$

- A high-dimensional problem; $\sim 2N$ degrees of freedom in \mathbb{R}^3 (2N 3 for S²).
- May be hard to distinguish equivalent configurations.
- "Black box" software: standard approaches (genetic algorithms, simulated annealing, dynamical systems, etc.)
- Potential- and domain-specific software.
- In the literature, putative numerical global minima are presented; virtually no works discuss local minima [*Erber & Hockney (1996)*].

イロト イヨト イヨト イヨト

• Globally optimal configurations for N = 4...12 [A.C., M.Ward, R.Straube (2010)]:

FIG. 4.3. Minimal energy trap configurations for N = 4, 5, 6, 7 traps, common for the three discrete energy functions.

FIG. 4.4. Minimal energy trap configurations for N = 8, 9, 10, 12 traps, common for the three discrete energy functions.

イロト イヨト イヨト イヨ

Universally optimal configurations

• Some monotone repelling pairwise potentials:

$$egin{aligned} h_c(r) &= rac{1}{|r|}, \quad h_p(r) &= rac{1}{|r|^p}, \ h_{
m log}(r) &= -\log |r|, \quad h_{
m MFPT}(r) &= rac{1}{|r|} - rac{1}{2}\log |r| - rac{1}{2}\log (2 + |r|) \end{aligned}$$

• Universally optimal configurations in \mathbb{R}^3 :

- antipodal points (N = 2)
- an equilateral triangle (N = 3)
- a tetrahedron (N = 4)
- an octahedron (N = 6)
- an icosahedron (N = 12)
- Not much is known analytically in other situations...

Dilute trap fraction limit of homogenization theory

- $N \gg 1$ small boundary traps, distributed "homogeneously" over the sphere.
- Assumptions: $N \gg 1$, $\varepsilon \ll 1$, Total trap area fraction $\sigma = \pi \varepsilon^2 N/(4\pi) = N \varepsilon^2/4 \ll 1$.
- Approximate the mixed Dirichlet-Neumann Narrow Escape problem by a Robin problem: $v(x) \simeq_h v(x)$:

$$\begin{cases} \Delta v = -\frac{1}{D}, \quad x \in \Omega, \\ v = 0, \quad x \in \partial \Omega_{\mathfrak{s}}; \quad \partial_{n} v = 0, \quad x \in \partial \Omega_{r} \end{cases} \rightarrow \begin{cases} \Delta v_{h} = -\frac{1}{D}, \quad \rho = |x| < 1; \\ f(\varepsilon)\partial_{r} v_{h} + \kappa(\sigma)v_{h} = 0, \quad \rho = 1. \end{cases}$$

• Functions $f(\varepsilon)$, $\kappa(\sigma)$ can be estimated using the asymptotic formulas:

$$f(\varepsilon) = \varepsilon - rac{\varepsilon^2}{\pi} \log \varepsilon + rac{\varepsilon^2}{\pi} \log 2, \quad \kappa(\sigma) = rac{4\sigma}{\pi - 4\sqrt{\sigma}}.$$

• A simple formula for the homogeneous Robin solution:

$$v_h(
ho) = rac{f(arepsilon)}{3D\kappa(\sigma)} + rac{1-
ho^2}{6D}, \qquad ar v_h = rac{f(arepsilon)}{3D\kappa(\sigma)} + rac{1}{15D},$$

Example: N = 802 traps of radius ε = 0.0005. Comparison of asymptotic and homogenization solution.

A. Cheviakov (UofS, Canada)

Dilute Trap Fraction Limit of Homogenization Theory

IMCAS 2019 18 / 31

436 traps

- How to "uniformly mesh" a sphere (or another closed surface)?
- How does one distinguish between two similar/close configurations?

イロト イヨト イヨト

488

Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential, showing the appearance of scars.

- Coordination number c_i of a particle: number of neighbours (usually $c_i = 6$).
- Topological constraints: Euler's Theorem, V E + F = 2; can show that

$$\sum_i (6-c_i)=12,$$

where $(6 - c_i)$ is the "topological charge" of a "defect".

488

Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential, showing the appearance of scars.

- At least 12 particles with five-fold coordination (soccer ball!)
- A scar: a cluster of particles where $c_i \neq 6$.
- For the same N, different configurations may or may not have different scar pictures.
- Applications: 2D matter; crystalline particle packings.

(ロ) (回) (三) (三)

DEFECT MOTIFS FOR SPHERICAL TOPOLOGIES

PHYSICAL REVIEW B 79, 224115

Narrow Escape and Narrow Capture Problems

IMCAS 2019 19 / 31

A numerical method for local and global optimization

- Optimization in literature: random starting positions; global minima are usually sought.
- . 2019 : based on trap insertions, dynamical system flow, exclusion of redundant configurations.

- Implemented mainly in Matlab.
- Start from N = 4: tetrahedron.

イロト イヨト イヨト イヨ

• Starting configurations: Introduce, one by one, triangle middles. Remove redundant configurations.

イロト イヨト イヨト イヨト

- For each starting configuration, perform local optimization (C++).
- Remove redundant configurations (using pairwise distances).
- Remove saddle points (Maple).
- Repeat $N \rightarrow N+1$.
- Applied to various potentials [W.Ridgway and A.C. 2018, 2019].

・ロト ・回ト ・ヨト ・

New results:

- Improvements of global minima for some N.
- Numbers of local minima, energy values, particle configurations of local minima:

< □ > < ^[] >

Local and global optimization for the Narrow Escape potential

- N = 60: five local minima.
- *N* = 117: 265 local minima.

Three lowest: H = 1352.341, 1352.513, and 1352.514.

(a)

(b)

・ロト ・回ト ・ヨト ・

(c)

- For traps of different sizes, numerical computations are generally more complex.
- For example, two families of traps: for example, *N* having radius ε; *N* having radius αε, α > 1 [*A.C., A.Reimer, M.Ward* (2012)].
- N = 5, $\alpha = 10$. Global minimum (a): $\mathcal{H} = -198.80759$. Nearby local minima (b,c): $\mathcal{H} = -198.36939$, -197.76083.

イロン イ部ン イヨン イヨ

Non-spherical domains [D. Gomez and A.C., 2015]

- For surfaces that are a part of an orthogonal coordinate triple.
- Average MFPT for the unit sphere:

$$\bar{\nu} = \frac{|\Omega|}{2\pi\varepsilon DN\bar{c}} \left[1 - \varepsilon \log\left(\frac{\varepsilon}{2}\right) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\varepsilon}{N\bar{c}} p_c(x_1, \dots, x_N) - \frac{\varepsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j + \mathcal{O}(\varepsilon^2 \log \varepsilon) \right]$$

• Average MFPT for in a non-spherical domain:

$$\bar{\mathbf{v}} = \frac{|\Omega|}{2\pi D N \bar{\mathbf{c}} \varepsilon} \left[1 - \varepsilon \log\left(\frac{\varepsilon}{2}\right) \left(\frac{1}{2N \bar{\mathbf{c}}} \sum_{i=1}^{N} c_{i}^{2} H(\mathbf{x}_{i})\right) + \mathcal{O}(\varepsilon) \right]$$

• $H(x_i)$: the mean curvature of the boundary at x_i .

Some results for Narrow Escape problems in non-spherical domains

• Example: Biconvace disk – "blood cell" shape, N = 3 ad N = 5 traps of different sizes.

Outline

The Global Optimization Problem

2 The Narrow Escape problem

- Global optimization
- Dilute trap fraction limit
- Geometrical features
- Global and local minima
- Non-equal traps
- Non-spherical domains

The Narrow Capture problem

- Exact and asymptotic solutions
- Global optimization

・ロト ・日下・ ・日下・

The Narrow Capture problem

Trapping reactions: whenever a diffusing particle hits a trap, it is immediately and permanently trapped.

- exiton trapping
- fluorescence quenching
- spin relaxation processes
- mean first-passage time: v(x)
- narrow capture: small trap size

$$\begin{array}{l} \Delta v(x) = -\frac{1}{D} , \quad x \in \Omega \backslash \Omega_{a}, \\ \partial_{n}v = 0 , \quad x \in \partial \Omega, \\ v = 0 , \quad x \in \partial \Omega_{a} = \cup_{j=1}^{N} \partial \Omega_{\varepsilon_{j}} \end{array}$$

$$\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x) \, d^n x$$

Image: A math a math

• Exact solution when a single trap (radius= ε) is at the origin:

$$v_e(r) = \frac{1}{6D} \left[\frac{\varepsilon^3 + 2}{\varepsilon} - \frac{r^3 + 2}{r} \right], \quad \bar{v}_e = \frac{1}{6D} \left[\frac{\varepsilon^3 + 2}{\varepsilon} - \frac{18}{5} \right]$$

- Multiple traps: repel from each other and their own "reflections" in the boundary
- Asymptotic solutions: small, well-separated traps, far from the boundary; include an interaction term [A.C., M. Ward, 2011]

$$\begin{split} v_{A}(x) &= \frac{|\Omega|}{4\pi N \bar{c} D \varepsilon} \left[1 - 4\pi \varepsilon \sum_{j=1}^{N} c_{j} G(x; x_{j}) + \frac{4\pi \varepsilon}{N \bar{c}} p_{c}(\xi_{1}, ..., \xi_{N}) + \mathcal{O}(\varepsilon^{2}) \right] \\ \bar{v}_{A} &= \frac{|\Omega|}{4\pi N \bar{c} D \varepsilon} \left[1 + \frac{4\pi \varepsilon}{N \bar{c}} p_{c}(x_{1}, ..., x_{N}) + \mathcal{O}(\varepsilon^{2}) \right] \end{split}$$

 Expressed in terms of the Green's functions G(x, ξ) computed on trap pairs, and their regular parts R(ξ), and trap capacitances c_j.

イロト イヨト イヨト イヨ

Exact and asymptotic solutions

- Capacitance depends on trap shape and size.
- Green's function:

$$\begin{split} \Gamma(x;\xi) &= G(x,\xi) = \frac{1}{4\pi |x-\xi|} + \frac{1}{4\pi |x| |x'-\xi|} \\ &+ \frac{1}{4\pi} \log \left(\frac{2}{1-|x| |\xi| \cos \theta + |x| |x'-\xi|} \right) + \frac{1}{8\pi} (|x|^2 + |\xi|^2) - \frac{7}{10\pi} \end{split}$$

• Every trap (ξ) interacts with other traps (x) and their images (x'): $xx' = r^2 = 1$.

イロン イ部ン イヨン イヨ

Exact and asymptotic solutions

- Capacitance depends on trap shape and size.
- Green's function:

$$\begin{split} \Gamma(x;\xi) &= G(x,\xi) = \frac{1}{4\pi |x-\xi|} + \frac{1}{4\pi |x| |x'-\xi|} \\ &+ \frac{1}{4\pi} \log \left(\frac{2}{1-|x| |\xi| \cos \theta + |x| |x'-\xi|} \right) + \frac{1}{8\pi} (|x|^2 + |\xi|^2) - \frac{7}{10\pi} \end{split}$$

- Every trap (ξ) interacts with other traps (x) and their images (x'): $xx' = r^2 = 1$.
- Green's function regular part:

$$\Gamma(\xi;\xi) = R(\xi) = \frac{1}{4\pi(1-|\xi|^2)} + \frac{1}{4\pi}\log\left(\frac{1}{1-|\xi|^2}\right) + \frac{|\xi|^2}{4\pi} - \frac{7}{10\pi}$$

• Trap interaction term:

$$p_c(\xi_1,...,\xi_N) = \sum_{i=1}^N \sum_{j=1}^N c_i c_j \Gamma(\xi_i,\xi_j)$$

・ロト ・回ト ・ヨト ・

Some optimization results

- Asymptotic MFPT formulas tested vs. exact/numerical: work far beyond limits [*J. Gilbert and A.C., 2019*].
- Putative locally optimal configurations for $1 \le N \le 100$ computed.
- Traps often lie close to spherical shells.
- There may or may not be a trap at the center.
- Example: N = 24

< □ > < 同 > < 回 > < Ξ > < Ξ

Global optimization: traps (approximately) on shells

A. Cheviakov (UofS, Canada)

IMCAS 2019 29 / 31

Narrow escape problems:

- Asymptotic solutions for spherical and non-spherical domains, dilute trap limits, scaling laws.
- 'Good' asymptotic formulas work beyond applicability limits.
- Global and local optimization "scars", interesting geometry.

Narrow capture problems:

- Brownian motion simulation.
- Asymptotic solutions for the sphere.
- Global optimization "shell" structure.

Open problems:

- Variable diffusivity?
- Moving traps?
- More complex domains?

イロト イヨト イヨト イヨ

References

S. Redner

A Guide to First-Passage Processes. Cambridge University Press (2001)

A. Singer, Z. Schuss, and D. Holcman

Narrow Escape, Part I; Part II; Part III, J. Stat. Phys. 122 (3) (2006)

A. Cheviakov, M. Ward, and R. Straube

An asymptotic analysis of the mean first passage time for narrow escape problems. Part II: the sphere. Multiscale Model. Simul. 8 (3), 836–870 (2010)

A. Cheviakov and M. Ward

Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps. Math.Comp. Model. **53**, 1394–1409 (2011)

D. Gomez and A. Cheviakov

Asymptotic analysis of narrow escape problems in nonspherical 3D domains. Phys. Rev. E 91, 012137 (2015)

W. Ridgway and A. Cheviakov

An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere. Comp. Phys. Comm. 233, 84–109 (2018)

J. Gilbert and A. Cheviakov

Globally optimal volume-trap arrangements for the narrow-capture problem inside a unit sphere. Phys. Rev. E 99, 012109 (2019)

<ロト < 回 > < 回 > < 回 > < 回 >