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The Global Optimization Problem

Problem:

Global optimization of some objective function that depends on positions of small
“particles”, or “pores”, or ”traps”, on the surface of a 3D domain:

min H(x1, . . . , xN ), xi ∈ ∂V , V ⊂ R3.
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Example: the Thomson problem

Total Coulombic interaction energy:

HC (x1, . . . , xN ) =
N∑

i=1

N∑
j=i+1

h(xi , xj )

Pairwise energy function: h(xi , xj ) =
1

|xi − xj |

In this talk: global optimization problems arising from Narrow Escape and
Narrow Capture problems.
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The Narrow Escape problem: motivation

Chemical exchange through nuclear pores:

mRNA, protein, smaller
molecule transfer.

∼ 1000 translocations per
complex per second.

Typical nucleus size:
∼ 6× 10−6 m.

∼ 2000 nuclear pore
complexes in a typical nucleus.

Pore size ∼ 10−8 m.

Pore separation ∼ 5× 10−7 m.
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The Narrow Escape problem: motivation (ctd.)

Synaptic receptors on dendrites:
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Narrow Escape problem: the Math setup

The setup:

A Brownian particle confined in a domain Ω ∈ R3.

Initial position: x ∈ Ω.

Mean First Passage Time (MFPT): v(x).

Domain boundary: ∂Ω = ∂Ωr (reflecting) ∪ ∂Ωa (absorbing).

∂Ωa =
⋃N

i=1 ∂Ωεi : small absorbing traps (size ∼ ε).

A. Cheviakov (UofS, Canada) Narrow Escape and Narrow Capture Problems IMCAS 2019 9 / 31



Narrow Escape problem: the Math setup

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Average MFPT: v̄ =
1

|Ω|

∫
Ω

v(x) dx = const.
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Narrow Escape problem: the Math setup

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Linear

Strongly Heterogeneous Dirichlet/Neumann BCs

Singularly perturbed: ε→ 0+ ⇒ v → +∞ a.e.
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Some general Narrow Escape results: one trap

 

xj 

x 

Unit sphere; one trap of radius ε � 1 [Singer et al (2006)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]

Arbitrary 3D domain with smooth boundary; one small trap [Singer et al (2009)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
H: mean curvature at the center of the trap.
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Matched Asymptotic Expansions (Illustration for the Unit Sphere)

 

xj 

Outer expansion 

Inner expansion 

Matching 

Outer expansion, defined at O(1) distances from traps:

vout ∼ ε−1v0(x) + v1(x) + ε log
( ε

2

)
v2(x) + εv3(x) + · · · .

Inner expansion of solution near trap centered at xj uses scaled coordinates y :

vin ∼ ε−1w0(y) + log
( ε

2

)
w1(y) + w2(y) + · · · .

Matching condition: when x → xj and y = ε−1(x − xj )→∞,

vin ∼ vout .
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A higher-order asymptotic MFPT formula for the unit sphere

Setup:

A unit sphere with N traps located at {xj}.
Traps of different radii: rj = ajε, j = 1, . . . ,N; capacitances (disk): cj = 2aj/π.

Traps are small (ε� 1), well-separated.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs (x ; xj ) +O(ε log ε)

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc (x1, . . . , xN )− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Gs (x ; xj ): spherical Neumann Green’s function (known).

c̄: average capacitance; κj = const.

pc (x1, . . . , xN ): trap interaction term involving Gs (xi ; xj ).
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Narrow Escape Problem for the sphere: N equal traps

Asymptotic assumptions:

Domain: a unit sphere

D = const

N equal traps of radius ε� 1

The asymptotic average MFPT including trap position/interaction terms:

v̄ ∼ |Ω|
4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
HMFPT

)]
;

HMFPT (x1, . . . , xN ) =
N∑

i=1

N∑
j=i+1

h(xi , xj ),

h(xi , xj ) =
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

Fast and precise MFPT computations

Global optimization problem
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Global optimization

HMFPT (x1, . . . , xN ) =
N∑

i=1

N∑
j=i+1

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)

A high-dimensional problem; ∼ 2N degrees of freedom in R3 (2N − 3 for S2).

May be hard to distinguish equivalent configurations.

“Black box” software: standard approaches (genetic algorithms, simulated
annealing, dynamical systems, etc.)

Potential- and domain-specific software.

In the literature, putative numerical global minima are presented; virtually no works
discuss local minima [Erber & Hockney (1996)].
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Low-N optimal MFPT for the unit sphere

Globally optimal configurations for N = 4...12 [A.C., M.Ward, R.Straube (2010)]:
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Table 4.3
Spherical coordinates (θ, φ) of the optimal locations of 3 ≤ N ≤ 12 traps. These arrangements

simultaneously minimize the discrete energy (2.51b) and the two classical discrete energies in (4.1).

N Spherical coordinates of optimal trap locations

3 θ 0.000 2.094 2.094

φ 0.000 0.000 3.142

4 θ 0.000 1.911 1.911 1.911

φ 0.000 0.000 2.094 4.189

5 θ 0.000 1.571 1.571 1.571 3.142

φ 0.000 0.000 2.094 4.189 0.000

6 θ 0.000 1.571 1.571 1.571 1.571 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.000

7 θ 0.000 1.570 1.570 1.570 1.570 1.570 3.142

φ 0.000 0.000 2.513 5.027 1.257 3.770 0.000

8 θ 0.000 1.251 1.251 1.399 1.399 1.952 2.497 2.497

φ 0.000 1.445 3.565 0.000 5.010 2.505 0.706 4.304

9 θ 0.000 1.207 1.207 1.325 1.325 1.561 2.361 2.415 2.415

φ 0.000 0.000 2.369 3.639 5.013 1.185 4.326 2.369 0.000

10 θ 0.000 1.134 1.134 1.134 1.134 2.007 2.007 2.007 2.007 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.785 2.356 3.927 5.498 0.000

11 θ 0.000 1.041 1.019 1.192 1.254 1.399 1.906 2.095 2.056 2.272 2.799

φ 0.000 0.000 2.516 3.862 5.047 1.041 1.948 3.194 6.044 4.576 1.042

12 θ 0.000 1.107 1.107 1.107 1.107 1.107 2.035 2.035 2.035 2.035 2.035 3.142

φ 0.000 0.628 1.885 3.142 4.398 5.655 0.000 1.257 2.513 3.770 5.026 2.132

(a) N = 4 (b) N = 5 (c) N = 6 (d) N = 7

Fig. 4.3. Minimal energy trap configurations for N = 4, 5, 6, 7 traps, common for the three
discrete energy functions.

(a) N = 8 (b) N = 9 (c) N = 10 (d) N = 12

Fig. 4.4. Minimal energy trap configurations for N = 8, 9, 10, 12 traps, common for the three
discrete energy functions.

which yields cos θ0 = 1 − 2/N . For N � 1, we use cos θ0 ≈ 1 − θ20/2, to obtain
θ0 ≈

√
4/N , as was given in [3].

Next, the interaction energy of the north-pole charge with the remaining charges
is approximated by

(4.3) ε1 =

∫ 2π

0

∫ π

θ0

P (θ, φ)E
(1)
1i sin θ dθ dφ ,

which can be calculated analytically as ε1 = −N
[
sin

(
N−1/2

)
− 1

]
. From a Taylor

series expansion, valid for large N , we can approximate the total energy of the particle
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Universally optimal configurations

Some monotone repelling pairwise potentials:

hc (r) =
1

|r | , hp(r) =
1

|r |p ,

hlog(r) = − log |r |, hMFPT(r) =
1

|r | −
1

2
log |r | − 1

2
log (2 + |r |)

Universally optimal configurations in R3:

antipodal points (N = 2)

an equilateral triangle (N = 3)

a tetrahedron (N = 4)

an octahedron (N = 6)

an icosahedron (N = 12)

Not much is known
analytically in other
situations...

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r

-1

0

1

2

3

4

5

Coulomb

Inverse-Square Law

Logarithmic

MFPT

NC

Figure 3: Pairwise energies for each potential (2.8) - (2.7), (2.14), and (2.15). Over the unit sphere,
the pairwise distance, r is at most 2 (Color online).

3 Numerical Computation of Optimal Configurations

In this section, we describe briefly the optimization algorithm employed to compute putatively
optimal configurations. Details are given in [18]. The algorithm consists broadly of three steps.

1. Generation of initial configurations as starting points for optimization

2. Energy minimization via modified steepest descent

3. Removal of meta-stable states

The algorithm generates N -particle starting configurations by computing a triangulation of pre-
viously known (N − 1)-particle optimal configurations. The N th particle is inserted at the center
of mass of one of the triangles on the convex hull of the triangulation and projected onto the
surface of the sphere. This procedure is performed for each triangle center, thus for each triangle
center one obtains a starting configuration. Due to the possible symmetry of the (N − 1)-particle
configuration, some of the resulting starting configurations may be identical due to rotational and
reflection invariance of the energy. The redundant configurations are identified and excluded by
calculating pairwise distances between particles.

Local optimization is accomplished by a modified steepest descent algorithm. Define forces, acting
on particle i according to

Fi = −∇iH(x1, ...,xN ), (3.16)

where ∇i is the gradient operator with respect to the coordinates of particle i. At each step of the
energy minimization, the position of the ith particle, xi is updated according to

xi →
xi − γFτi
|xi − γFτi |

, (3.17)

where Fτi is the component of Fi in the tangential direction and γ is a constant given by

γ =
βa0

F τinit
. (3.18)

6
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Dilute trap fraction limit of homogenization theory

N � 1 small boundary traps, distributed “homogeneously” over the sphere.

Assumptions: N � 1, ε� 1, Total trap area fraction
σ = πε2N/(4π) = Nε2/4� 1.

Approximate the mixed Dirichlet-Neumann Narrow Escape problem by a
Robin problem: v(x) 'h v(x): 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr

→

 4vh = − 1

D
, ρ = |x | < 1;

f (ε)∂rvh + κ(σ)vh = 0, ρ = 1.

Functions f (ε), κ(σ) can be estimated using the asymptotic formulas:

f (ε) = ε− ε2

π
log ε+

ε2

π
log 2, κ(σ) =

4σ

π − 4
√
σ
.

A simple formula for the homogeneous Robin solution:

vh(ρ) =
f (ε)

3Dκ(σ)
+

1− ρ2

6D
, v̄h =

f (ε)

3Dκ(σ)
+

1

15D
.

Example: N = 802 traps of radius ε = 0.0005. Comparison of asymptotic and
homogenization solution.
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Dilute Trap Fraction Limit of Homogenization Theory

ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

one makes the homogenization MFPT v̄h (5.5) become

v̄h = πε

12Dσ
+ 1

15D
, (5.9)

which contains the correct first and third terms of the
asymptotic MFPT (5.7).

In order to match additional terms of (5.7), one can consider
the coefficients f (ε) and κ(σ ) of the extended form

f (ε) = ε + αε2 log ε + βε2, κ(σ ) = 4σ

π + γ
√

σ
.

(5.10)

The homogenization MFPT (5.5) consequently becomes

v̄h = πε

12Dσ
+ πε2

12Dσ
(β + α log ε) + 1

15D

+ γ ε

12D
√

σ
+ Q(ε,σ ), (5.11)

where

Q(ε,σ ) = γ ε2

12Dσ
(β + α log ε). (5.12)

The form (5.11) of the homogenization MFPT can be used to
match the first four leading terms of (5.7) upon choosing

α = − 1

π
, β = 1

π
log 2, γ = 8b1. (5.13)

A direct computation shows that under the choice of
parameters (5.13), the additional term Q(ε,σ ) (5.12) is small
compared to both of the higher-order terms A(ε,σ ) and B(ε,σ )
in the limit ε → 0, N � O(log ε). We have thus arrived at the
following result.

Principal result 2. Consider an arrangement of N �
1 equal small traps on a unit sphere. Suppose that this
arrangement is optimal, i.e., it minimizes the interaction energy
(2.8). Then, in an asymptotic limit ε → 0, N � O(log ε), the
asymptotic expression for the MFPT v(x) (2.1) and the average
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FIG. 7. (Color online) MFPT comparison plots for N = 802 traps with ε = 0.0005. (a) The putative optimal trap arrangement. (b) The
equatorial cross section (z = 0) of the asymptotic MFPT v(x) (2.1). (c) The equatorial cross section of the homogenization MFPT vh(ρ) (5.4).
(d) The absolute difference |vh(ρ) − v(x)|.
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Geometrical features

436 traps

How to “uniformly mesh” a sphere (or another closed surface)?

How does one distinguish between two similar/close configurations?
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Geometrical features

and pentagonal buttons (m¼ 5) in another. The dislocation spacing decreases the

further a dislocation is from the central disclination.
An overview of results involving grain boundary scars is presented in Figure 18.

If a disclination is placed on a perfect crystal, no additional defects will appear if the

disclination is located on the tip of a cone with total Gaussian curvature equal to the

disclination charge. If a disclination is forced into a flat monolayer, then m low-angle

grain boundaries, with constant spacing between dislocations as shown in Figure 18

and grains going all the way to the boundary, will be favoured (see [112] for

a detailed discussion). In the intermediate situation where a finite Gaussian curvature

is spread over a finite area, as in the case of a spherical cap, a disclination arises

at the centre of the cap and finite length grain boundaries stretched out over an area

of (�/3)R2 with variable spacing dominate, again as illustrated in Figure 18.
Additional results may be obtained for the number of arms within the grain

boundary, the actual variable spacing between dislocations within the grain and the

length of the grains as a function of the number of particles.
When grain boundary scars appear, one can estimate the number of excess

dislocations which decorate each of the 12 curvature-induced disclinations on the

sphere using ideas from [73]. This estimate is in reasonable agreement with

experiments probing equilibrated assemblies of polystyrene beads on water

droplets [92]. Consider the region surrounding one of the 12 excess disclinations,

with charge s¼ 2�/6, centred on the north pole. As discussed in [73], one expects the

stresses and strains at a fixed geodesic distance r from the pole on a sphere of radius

R to be controlled by an effective disclination charge

seffðrÞ ¼ s�

Z 2�

0

d�

Z r

0

dr0
ffiffiffi
g
p

K

¼
�

3
� 4� sin2

r

2R

 �
:

ð94Þ

Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential,
showing the appearance of scars.
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Coordination number ci of a particle: number of neighbours (usually ci = 6).

Topological constraints: Euler’s Theorem, V − E + F = 2; can show that∑
i

(6− ci ) = 12,

where (6− ci ) is the “topological charge” of a “defect”.
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Geometrical features

and pentagonal buttons (m¼ 5) in another. The dislocation spacing decreases the

further a dislocation is from the central disclination.
An overview of results involving grain boundary scars is presented in Figure 18.

If a disclination is placed on a perfect crystal, no additional defects will appear if the

disclination is located on the tip of a cone with total Gaussian curvature equal to the

disclination charge. If a disclination is forced into a flat monolayer, then m low-angle

grain boundaries, with constant spacing between dislocations as shown in Figure 18

and grains going all the way to the boundary, will be favoured (see [112] for

a detailed discussion). In the intermediate situation where a finite Gaussian curvature

is spread over a finite area, as in the case of a spherical cap, a disclination arises

at the centre of the cap and finite length grain boundaries stretched out over an area

of (�/3)R2 with variable spacing dominate, again as illustrated in Figure 18.
Additional results may be obtained for the number of arms within the grain

boundary, the actual variable spacing between dislocations within the grain and the

length of the grains as a function of the number of particles.
When grain boundary scars appear, one can estimate the number of excess

dislocations which decorate each of the 12 curvature-induced disclinations on the

sphere using ideas from [73]. This estimate is in reasonable agreement with

experiments probing equilibrated assemblies of polystyrene beads on water

droplets [92]. Consider the region surrounding one of the 12 excess disclinations,

with charge s¼ 2�/6, centred on the north pole. As discussed in [73], one expects the

stresses and strains at a fixed geodesic distance r from the pole on a sphere of radius

R to be controlled by an effective disclination charge

seffðrÞ ¼ s�

Z 2�

0

d�

Z r

0

dr0
ffiffiffi
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K

¼
�

3
� 4� sin2
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Figure 16. Results of a minimization of 500 particles interacting with a Coulomb potential,
showing the appearance of scars.
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At least 12 particles with five-fold coordination (soccer ball!)

A scar: a cluster of particles where ci 6= 6.

For the same N, different configurations may or may not have different scar pictures.

Applications: 2D matter; crystalline particle packings.
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Geometrical features

three runs were started from different random starting con-
figurations and continued until all three runs had located the
same lowest minimum. This procedure required up to
200 000 basin-hopping steps in some cases. Previous expe-
rience with many different systems, including cross valida-
tion of basin-hopping results by other methods, suggests that
the resulting structures are good candidates for the true glo-
bal minima. However, we note that exceptions could arise for
multifunnel potential energy surfaces, as documented in pre-
vious work.42,43,55 The results are recorded in Table I and
selected structures are illustrated in Fig. 1. Nine of these
structures improve upon previous results51 by between 10−4

and 18 a.u. No isolated disclinations are found in this data set
for N�520. It is also noteworthy that most global minima
have nontrivial point groups, in agreement with the sugges-
tion that higher-symmetry structures are generally associated
with particularly high or particularly low energies.44,56,57 We
expect this trend to extend to larger systems with defects
separating into 12 distinct groups related by exact or
approximate44,56,57 symmetry operations. This pattern may
also help to minimize strain, in an analogous fashion to the
pentagon “repulsion” rule for fullerenes.58

Most of the defects for N=1152 are again twinned grain
boundaries, but we also see a defect with an alternating ar-

FIG. 2. �Color online� Voronoi representations of the lowest minima located for selected sizes at which local minima with I or Ih

symmetry exist for structures with 12 rosettes. The pentagons, hexagons, and heptagons are colored red �medium gray�, green �light gray�,
and blue �dark gray�, respectively.

DEFECT MOTIFS FOR SPHERICAL TOPOLOGIES PHYSICAL REVIEW B 79, 224115 �2009�

224115-5

From Wales et al (2009).
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A numerical method for local and global optimization

Optimization in literature: random starting positions; global minima are usually
sought.

W.Ridgway and A.C. 2018, 2019 : based on trap insertions, dynamical system flow, exclusion of redundant
configurations.

Excluding Redundant Configurations

Geometrically Equivalent Configurations

Some equivalent starting configurations

M starting configurations → M
configurations after local opt.

Many are identical through
rotation/reflection

Classify Minima Using Geometrical Invariants

H invariant under rotation/reflection - but different local minima have
nearly identical energies

Pairwise distances - better

Implemented mainly in Matlab.

Start from N = 4: tetrahedron.
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A numerical method for local and global optimization

where n is user specified and should be an array (see appendix B). Note that the choice is
not required to be the same as the potential used in the optimization algorithm. Thus each
configuration has a vector of pairwise energies, each element of which corresponds to a choice
of n. Denote the kth vector in a given cluster as E(k).

3. For each of the m clusters, sort each energy vector in ascending numerical order. Then
normalize each element following the same procedure as in algorithm 1. The resulting arrays
are denoted Ẽ(k).

4. For each of the m clusters found in 1), cluster the configurations within each based on en-
ergy. As in the first algorithm, the tolerance, δ can either be set explicitly by the user or
’automatically’ by the program. When set automatically, the tolerance is

δ = |tol| ×max
k
||Ẽ(k)||L2 (2.9)

where tol is again a parameter specified by the user (see appendix B). All configurations
within an energy cluster will be equivalent given a suitable tolerance.

As with algorithm 1, suitable tolerances are chosen through experimentation.

2.3 The Starting Configurations

The local optimization routine requires an initial configuration of particles. Previous work has
focused on using many trials with random starting configurations. This quickly becomes compu-
tationally expensive as the number of local minima is believed to increase exponentially [?] which
requires the number of random trials to increase quickly as well. A unique algorithm for generating
starting configurations was developed that significantly reduces the number of optimizations.

Particles

Triangle Middles

Figure 1: Globally optimal arrangement of 25 particles for the Coulomb potential with all triangle
middles shown.

The following steps are performed to generate a starting configuration to use with the local
optimization routine described in sec 2.1.

1. Initialize a matrix containing the the particle locations of a locally or globally optimal ar-
rangement of N − 1 particles.

5

Starting configurations: Introduce, one by one, triangle middles. Remove redundant
configurations.

A. Cheviakov (UofS, Canada) Narrow Escape and Narrow Capture Problems IMCAS 2019 20 / 31



A numerical method for local and global optimization

For each starting configuration, perform local optimization (C++).

Remove redundant configurations (using pairwise distances).

Remove saddle points (Maple).

Repeat N → N + 1.

Applied to various potentials [W.Ridgway and A.C. 2018, 2019].
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Local and global optimization for the Narrow Escape potential

New results:

Improvements of global minima for some N.

Numbers of local minima, energy values, particle configurations of local minima:
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Figure 4: Number of minima and saddle points found for the MFPT potential. Results are shown
before and after removal of saddle points. The best-fit curve, Eq. (4.19), is also shown.
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Local and global optimization for the Narrow Escape potential

N = 60: five local minima.

N = 117: 265 local minima.
Three lowest: H = 1352.341, 1352.513, and 1352.514.

(a) (b)

(c)

Figure 6: Examples of optimal configurations for N = 117 for which 232 local minima were found.
The global minimum is shown in a). Two local minima adjacent in energy are shown in b) and c).
The respective computed MFPT energies are approximately 1352.341, 1352.513, and 1352.514.
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Figure 7: Comparison of globally optimal MFPT energies with the asymptotic scaling law (4.23).
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Non-equal traps

For traps of different sizes, numerical computations are generally more complex.

For example, two families of traps: for example,
N having radius ε; N having radius αε, α > 1 [A.C., A.Reimer, M.Ward (2012)].

N = 5, α = 10.
Global minimum (a): H = −198.80759.
Nearby local minima (b,c): H = −198.36939, − 197.76083.
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Some results for Narrow Escape problems in non-spherical domains

Non-spherical domains [D. Gomez and A.C., 2015]

For surfaces that are a part of an orthogonal coordinate triple.

Average MFPT for the unit sphere:

v̄ =
|Ω|

2πεDNc̄

[
1−ε log

( ε
2

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc (x1, . . . , xN )− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Average MFPT for in a non-spherical domain:

v̄ =
|Ω|

2πDNc̄ε

[
1−ε log

( ε
2

)( 1

2Nc̄

N∑
i=1

c2
i H(xi )

)
+O(ε)

]

H(xi ): the mean curvature of the boundary at xi .
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Some results for Narrow Escape problems in non-spherical domains

Example: Biconvace disk – “blood cell” shape, N = 3 ad N = 5 traps of different
sizes.

0 0.5 1 1.5
-0.5

0

0.5

x

z

8.2

0.0

(a)

5.3

0.0
(b)

Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
1

hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0

N∑

j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:

v(x) =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
− 2πε

N∑

j=1

cjGs(x;xj)

+
ε

Nc̄

N∑

j=1

bj +
2πε

Nc̄

N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) +O(ε2 log ε)

]
,

(33)

and

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
+

ε

Nc̄

( N∑

j=1

bj+2π

N∑

j=1

∑

i6=j
cjciGs(xj ;xi)

)
+O(ε2 log ε)

]

(34)

The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) (35)
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Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.

19

A. Cheviakov (UofS, Canada) Narrow Escape and Narrow Capture Problems IMCAS 2019 23 / 31



Outline

1 The Global Optimization Problem

2 The Narrow Escape problem
Global optimization
Dilute trap fraction limit
Geometrical features
Global and local minima
Non-equal traps
Non-spherical domains

3 The Narrow Capture problem
Exact and asymptotic solutions
Global optimization

A. Cheviakov (UofS, Canada) Narrow Escape and Narrow Capture Problems IMCAS 2019 24 / 31



The Narrow Capture problem

Trapping reactions: whenever a diffusing particle hits a trap, it is immediately and
permanently trapped.

exiton trapping

fluorescence quenching

spin relaxation processes

mean first-passage time: v(x)

narrow capture: small trap size


∆v(x) = − 1

D
, x ∈ Ω\Ωa,

∂nv = 0 , x ∈ ∂Ω,
v = 0 , x ∈ ∂Ωa = ∪N

j=1 ∂Ωεj

v̄ =
1

|Ω|

∫
Ω

v(x) dnx

where ∆ is the Laplacian operator, D is the diffusivity of the Brownian motion, Ωa ⊂ Ω is the
set of absorbing traps, ∂nv denotes the normal derivative on the surface ∂Ω of Ω, and ∂Ωε is the
surface of a trap. The average mean first-passage time (AMFPT) is defined as

v̄ =
1

|Ω|

∫

Ω
v(x) dnx (1.2)

where |Ω| is the measure, volume or area, of the domain.

In this work we consider the narrow capture problem in a three-dimensional spherical domain.
The narrow capture problem is a first-passage problem characterized by the presence of localized
absorbing traps within the domain, where the volume occupied by the traps is asymptotically small
in some parameter. A schematic of the problem is shown in Figure 1.1. The narrow capture problem
has applications in the modelling of biophysical phenomena [9], simple particle reactions [8], and
solid state physics [10,11]. For recent results on the narrow capture problem, see Refs. [12–15].

 
 

𝝏𝛀𝝐𝟏  
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𝝏𝛀𝝐𝟐  
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𝝏𝛀 

(a) (b)

Figure 1.1: (a) A two-dimensional narrow capture problem in the unit disk having internal traps
with absorbing boundaries {∂Ωεj}. (b) A three-dimensional narrow capture problem, a sample
Brownian particle trajectory, leading to a capture in a trap denoted by purple color (color online).

Except for the very simplest cases, exact explicit solutions of the narrow capture problem (1.1)
are not known. In order to compute the MFPT v(x) and/or the AMFPT v̄ in a generic domain
with volume traps, one has to either retreat to a full numerical solution of (1.1), or perform
computations using simulated Brownian motion starting from a given point of the domain. Being
highly computationally expensive, such approaches do not provide explicit information about the
structure of the problem, such as the dependence of MFPT and AMFPT on trap locations in the
domain Ω, on trap sizes, orientations, etc.; in order to study such dependencies, the problem (1.1)
would require a new numerical solution for each infinitesimal configuration change. In particular,
‘global’ questions, such as the calculation of optimal trap positions in a given domain that would
minimize MFPT (AMFPT), can only be addressed if some kind of an explicit formula for the MFPT
is known.

Recent work on the narrow capture problem [1] used matched asymptotic expansions to derive an
explicit approximation for the MFPT v(x) and the AMFPT v̄ for N small, well-separated traps in
the unit sphere (Section 2). In addition to depending on the trap information (size, number, and
shape information through the capacitance coefficient), these asymptotic formulas depend on trap
positions through the terms involving the Neumann Green’s function of the Poisson problem. This
provides a handle to examine the relationship between, for example, the average MFPT for the
Brownian particles travelling in the spherical domain, and the geometry of the trap arrangement.

The main objective of this paper is the study of optimal configurations of traps within the unit
sphere, that is, the arrangements of the traps that minimize the AMFPT. In the context of the
narrow capture problem, such an arrangement of traps can be thought of as the one which, on

2
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Exact and asymptotic solutions

Exact solution when a single trap (radius=ε) is at the origin:

ve(r) =
1

6D

[
ε3 + 2

ε
− r 3 + 2

r

]
, v̄e =

1

6D

[
ε3 + 2

ε
− 18

5

]
Multiple traps: repel from each other and their own “reflections” in the boundary

Asymptotic solutions: small, well-separated traps, far from the boundary; include an
interaction term [A.C., M. Ward, 2011]

vA(x) =
|Ω|

4πNc̄Dε

[
1− 4πε

N∑
j=1

cjG(x ; xj ) +
4πε

Nc̄
pc (ξ1, ..., ξN ) +O(ε2)

]

v̄A =
|Ω|

4πNc̄Dε

[
1 +

4πε

Nc̄
pc (x1, ..., xN ) +O(ε2)

]
Expressed in terms of the Green’s functions G(x , ξ) computed on trap pairs, and
their regular parts R(ξ), and trap capacitances cj .
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Exact and asymptotic solutions

Capacitance depends on trap shape and size.

Green’s function:

Γ(x ; ξ) = G(x , ξ) =
1

4π|x − ξ| +
1

4π|x ||x ′ − ξ|

+
1

4π
log

(
2

1− |x ||ξ| cos θ + |x ||x ′ − ξ|

)
+

1

8π
(|x |2 + |ξ|2)− 7

10π

Every trap (ξ) interacts with other traps (x) and their images (x ′): xx ′ = r 2 = 1. 
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Exact and asymptotic solutions

Capacitance depends on trap shape and size.

Green’s function:

Γ(x ; ξ) = G(x , ξ) =
1

4π|x − ξ| +
1

4π|x ||x ′ − ξ|

+
1

4π
log

(
2

1− |x ||ξ| cos θ + |x ||x ′ − ξ|

)
+

1

8π
(|x |2 + |ξ|2)− 7

10π

Every trap (ξ) interacts with other traps (x) and their images (x ′): xx ′ = r 2 = 1.

Green’s function regular part:

Γ(ξ; ξ) = R(ξ) =
1

4π(1− |ξ|2)
+

1

4π
log

(
1

1− |ξ|2

)
+
|ξ|2

4π
− 7

10π

Trap interaction term:

pc (ξ1, ..., ξN ) =
N∑

i=1

N∑
j=1

cicj Γ(ξi , ξj )
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Some optimization results

Asymptotic MFPT formulas tested vs. exact/numerical: work far beyond limits
[J. Gilbert and A.C., 2019].

Putative locally optimal configurations for 1 ≤ N ≤ 100 computed.

Traps often lie close to spherical shells.

There may or may not be a trap at the center.

Example: N = 24
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Global optimization: traps (approximately) on shells
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Some highlights and open problems

Narrow escape problems:

Asymptotic solutions for spherical and non-spherical domains, dilute trap limits,
scaling laws.

‘Good’ asymptotic formulas work beyond applicability limits.

Global and local optimization – “scars”, interesting geometry.

Narrow capture problems:

Brownian motion simulation.

Asymptotic solutions for the sphere.

Global optimization – “shell” structure.

Open problems:

Variable diffusivity?

Moving traps?

More complex domains?
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