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@ Classical PDEs of Fluid Dynamics

© The Two-Fluid Model

© The Governing Equations

@ Some Properties of the CC Model

© The ODE Governing Traveling Wave Solutions

e Exact Solutions: Cnoidal and Solitary Traveling Waves
@ Exact Solutions: Cnoidal and Kink Traveling Waves

© Discussion
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@ Classical PDEs of Fluid Dynamics
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

pt + le(pV) = 07

p(vei+ (v -V)v)+gradp=1f + puAv.

@ ... add an equation of state.

1757 & 1822

Velocity v(t,x) = (u,v,w)

Pressure p(t,x)

Density p(t,x)

Viscosity u
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

pt + le(pV) = 07

p(vei+ (v -V)v)+gradp=1f + puAv.

@ Appropriate for the description of a wide range of physical phenomena...
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

pt + le(pV) = 07

p(vei+ (v -V)v)+gradp=1f + puAv.

@ ... including turbulence.
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

pt + le(pV) = 07

p(vei+ (v -V)v)+gradp=1f + puAv.

o Multiple open questions, of physical and mathematical nature (e.g., solution
existence, regularity, stability...).

o Direct numerical simulations: high cost, low precision.

@ Knowledge of analytical properties and any exact or approximate solutions is of
importance.

o Geometric reductions & various simplified models are common.
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© The Two-Fluid Model
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

o W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

(e — o2

e . - B SO |

o W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

o Models a stratified system of two non-mixing fluids of different densities.

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018



Two Stratified Non-Mixing Fluids in a Horizontal Channel

(e — o2
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o W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

o Models a stratified system of two non-mixing fluids of different densities.

e A (1+1)-dimensional asymptotic model based on incompressible Euler equations.
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

o W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

o Models a stratified system of two non-mixing fluids of different densities.
e A (1+1)-dimensional asymptotic model based on incompressible Euler equations.

@ Describes nonlinear internal/interfacial waves, propagating in both directions.
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

Models a stratified system of two non-mixing fluids of different densities.
A (1+1)-dimensional asymptotic model based on incompressible Euler equations.

Describes nonlinear internal/interfacial waves, propagating in both directions.

Provides good agreement with experiment and Euler-based DNS.
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

Models a stratified system of two non-mixing fluids of different densities.
A (1+1)-dimensional asymptotic model based on incompressible Euler equations.
Describes nonlinear internal/interfacial waves, propagating in both directions.

Provides good agreement with experiment and Euler-based DNS.

Reduces to shallow-water and KdV models in limiting cases.
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© The Governing Equations
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The Governing Equations

Euler equations of incompressible constant-density flow in gravity field, 3D

1
vi+ (v:-V)v= —;gradp—g,

div v =0, g = —gk.

o Here v = (u(t,x),0,w(t,x)); p= p(t,x); p = const.
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The Governing Equations

Two-dimensional Euler equations in the (x, z)-plane

Ux + W; = 0>
us + uux + wuy = —py/p,

We 4+ uwy + ww; = —p;/p — g.
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The Governing Equations

Boundary conditions

o No-leak: wa(t,x, h) = wa(t,x, —h2) =0.
@ At the interface z = ((t, x):

G+l =wi, (i+ wlx=wz, p1=p2.
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Asymptotic Assumptions and the CC Model

@ Fluid depth < characteristic length: hi/L =€ < 1.
o Continuity equation — w;/u; = O(hi/L) = O(e) < 1.
o Finite-amplitude waves: ( < h;.

ui/Us = O(¢/hi) = O(1), Up=(gH)"?, H=h+h,.
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Asymptotic Assumptions and the CC Model

o Actual fluid layer thicknesses: m1 = h1 —(, m2 = ho + (.
o Layer-average (depth-mean) horizontal velocities:

1 h 1 ¢
Vi = — ui(t, x,z) dz, va = —/ ur(t, x,z) dz.
m Je¢ 2 J—h,
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Asymptotic Assumptions and the CC Model

The Choi-Camassa (CC) model:

77it+(77iVi)x:0a i:1527
R

3 (T]?G,‘)X + 0(64), Gi = Vi + ViVi — (V;X)2.

Py
Vit + Vivix + 8¢« = o +
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@ Some Properties of the CC Model
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

Py 1
Vit + Vivix + 86 = —— +
pi 3mi

Variables, unknowns, order

@ (141) — dimensional.

(”?G")w Gi = Vige + ViViex — (Vix)z‘

@ Independent: x, t.
o Dependent: vi, v, P, (.

om=mh—C( m=h+(

@ 4 PDEs, two third-order, mixed space-time derivatives.
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

1
3

Px
Vie + Vivix + 8¢ = o + (U?G")w Gi = Vi + Vivis — (Vix)*-

Asymptotic horizontal velocity estimates

\

One can show that in terms of the mean velocity of each fluid layer, the corresponding
horizontal velocities ui(t, x, z) are given by

ui(t,x,z) = vi + (%17,-2 -3@zF h,-)2) Vio + O(€%).
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

Py 1
Vit + Vivix + 86 = —— +
pi 3mi

An average velocity relationship

From the first two PDEs,

(”?G")w Gi = Vige + ViViex — (Vix)z‘

0
&(Thvl +mw)=0, = mvit+mwv=(nmv+mnn)+te -

@ In the case of no velocity shear boundary condition, vi|+c = V2|+c0 = 0, one has

ve__m

@ We don't assume this is the case.
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

Py 1
Vit + Vivix + 86 = —— +
pi 3mi

Symmetry properties

@ Translations and the Galilei group:

(”?G")w Gi = Vige + ViViex — (Vix)z‘

x* = x+xo + Ct, t* =t+ to, (vi)*=vi+C,
P* = P + Po(t,mvi + mava2),
Xo, to, C = const.

@ Time inversion:
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The Quality of Approximation

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

1
317,‘

Px
Vie + Vivix + 8¢ = o + (U?G")w Gi = Vi + Vivis — (Vix)*-

Two-dimensional Euler equations in the (x, z)-plane

Ux + W, = 07
ur + uux + wu; = —px/p,

We + uwy + ww, = —p;/p — g.

e p=ypi, i=12.
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The Quality of Approximation

@ Choi and Camassa (1999): semi-numerical solitary wave solutions.
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x/h,

FIGURE 4. Solitary wave solutions ( ) of (3.51) for py/p = 0.63, hy/hy = 5.09 and a/h, =(0.5,
1, 1.5, 2) compared with KdV solitary waves (— — —) of the same amplitude given by (3.39). Here
and in the following figure of wave profiles, the waves are symmetric with respect to reflections
X — —X and only half of the wave profile is shown.

o Wave amplitude vs. effective wavelength: CC model solutions provide a “better”
agreement with Euler dynamics than, e.g., Korteweg - de Vries (KdV) solitons,

Ut + Ulx + U = 0.
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The Quality of Approximation

0.02 0.05 0.1 0.2 0.5 1.0 2.0
alh,

FIGURE 5. Effective wavelength 4; versus wave amplitude a curves compared with experimental data
(symbols, reproduced with permission from Cambridge University Press) by Koop & Butler (1981)
for pi1/pa = 0.63 and hy/h, = 5.09 : ——, fully nonlinear theory given by (3.62); — — —, weakly
nonlinear (KdV) theory given by (3.67); - - - e - -, numerical solutions of the full Euler equations by
Grue et al. (1997).
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:
Nie + (mivi)x =0, =12,

Py 1
Vit + Vivix + 86 = —— +
pi 3mi

(”?G")w Gi = Vige + ViViex — (Vix)z‘

Old and new variables

@ Original form: five constant physical parameters: g, p1, p2, hi, ho.

o Total channel depth: H = h1 + hs.
o Density ratio: S = p1/p2, 0< S < 1.
o Relative depth of the top fluid level (dimensionless):

hl—CE

A 71
Z = -
H H’

0<Z<1.
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:

Nie + (Mivi)x =0, =12,

+ + &8¢ L.
Vi ViVix x = —
‘ pi 3m

Dimensionless forms of other variables

t=Q1t x=Qk%  P(t,x)= QP %),  vi(t,x) = Qu(t %),

i=1,2,

(”?G")w Gi = Vige + ViViex — (Vix)z‘

where the scaling factors are chosen to remove most of the constant coefficients:

@n=H, Qt:\/Ea Q=@ =+gH, Qp=pigH.
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:
Nie + (mivi)x =0, =12,

Py 1
Vit + Vivix + 86 = —— +
pi 3mi

(”?G")w Gi = Vige + ViViex — (Vix)z‘

The dimensionless Miyata-Choi-Camassa system

Zi+(Zn)z =0, Zi +(Zn)s — (2)s =0

g+ 0lig — Zx + Py — 22,61 — 122612 = 0,
Vgi + Dabos — Zz + SPy — 1(1 = 2)2Gos + (1 - 2) 232 = 0,
Gi = Vo + UiVia — (0i2)%, i=1,2.

o Loss of “symmetry” between layers (though there was no actual symmetry!)

@ A single constitutive parameter: S.
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© The ODE Governing Traveling Wave Solutions
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The ODE Governing Traveling Wave Solutions

Dimensionless Choi-Camassa PDEs:
2@ + (201)2 =0,

~

Vi + bz — Zi 4+ Py — 22,6y — %22@19 =0,

\721. + ing — 2& + SIS;( = %(1 = 2)26;2; + (1 = 2)2&@2 =0,
Gi = Ve + Ui — (Uix)?, i=1,2.

Traveling wave coordinate

@ Point symmetry generator:

. 0 0

o Dimensionless traveling wave coordinate and the ansatz:

A. Shevyakov (Math & Stat)

A Fully Nonlinear Two-Fluid Model

IPM Seminar, June 28, 2018



The ODE Governing Traveling Wave Solutions

Zi+(Zn)s =0,  Zi+(Z%)s — (%)z =0,
g+ g — Z+ Pr— 22,61 — 122G = 0,
Vg + Valoz — Zx + SPr — 1(1 - 2)2Gax + (1 — 2)Z: G2 = 0,

A A A ~ 2 s
G,' = v;tx—l-v,-v,-xx—(v,-;) 5 I = 1,2.
v

First two equations; velocity expressions

7' =(Zn) =(Z0) -9, =

n==c¢+ =, G, G, = const.
1-7

o Galilei invariance, WLOG ¢ = 0.
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The ODE Governing Traveling Wave Solutions

Zi+(Zn)s =0,  Zi+(Z%)s — (%)z =0,
g+ g — Z+ Pr— 22,61 — 122G = 0,
Vg + Valoz — Zx + SPr — 1(1 - 2)2Gax + (1 — 2)Z: G2 = 0,

A A A ~ 2 s
G,' = v;tx—l-v,-v,-xx—(v,-;) 5 I = 1,2.
v

Third equation; pressure

G

622

PPt -

(222” —(Z' + 3), Po = const.
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The ODE Governing Traveling Wave Solutions

 Dimensionless Choi-Camassa PDEs:
Z; +(Zin)z =0, Z + (Z0)x — ()z = 0,
Wi+ g — Ze+ Po— 22,6 — 22619:0’
\72?4-\'72\'72&—2&-%-5/5;_%(1_2)26;2?"‘(1_2)2‘@2:0’

~ _ A A A A 2 o
Gi = Viee + Uil — (Viz)7, i=1,2.

Fourth equation: V5; +... =0

@ 3rd-order, complicated-looking ODE for 2(?): E4[2] =0.

o Seek integrating factors (conservation law multipliers): A([Z]Es[Z] = %Cbk[z]

o Find two factors assuming Ay = Ax(?, Z) (GeM symbolic software):

M=271-2)  M=27-2)
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The ODE Governing Traveling Wave Solutions (ctd.)

@ Two respective constants of motion (first integrals):

R 1 N N . .
¢1[Z] = —m[22(1—2)(a12+a0)2"

—|—(a0(1 —22) - alzz) (3 - (2')2) +6(1—5)23(1 - 2)2]
= Kj = const,
1

®,[2] = 250 3y [22(1 — )2 + a0)2"

+(a12(1 —22) + ao(2 - 32)) (3 - (2’)2) +3(1-5)2%(1— 2)2]
= K, = const.
@ Solve for 2, Z' in terms of Z: obtain a 1st-order autonomous ODE on Z.

@ Here we denoted oy = C125, ap = sz — Q.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

5 AsZt 4 A2+ A2+ AZ+ A 5
(Z')2: 4 3 +A 2£° + A1l + Ao — Q(2)
a1 Z + ap

@ Relationships between parameters:
As=3(1-15), As=2Ki— As,
A = =2(Ki+ Kz), Ai=2K>+3ai, Ao=3a.
@ Four independent constant parameters. For example, one may choose
ap >0, a1 > —ap,A,A3 €ER
as arbitrary constants. Then

Ar=3c1 — (Ao+ A3+ As), ao+a1 >0, A;>0.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

A AsZ* + AsZ3 + A Z? + AZ + A A
(Z')2: 4 3 } 2 1 0o _. Q2)
a1Z + oo

@ The above ODE has not been generally studied.

o Implicit solution — not so practical:
z
i/ Q(s) Y?ds=r—n,

e Transformation Y(#) = (Z — ap/a1)~* maps the above ODE to an ODE with the
5th-degree polynomial right-hand side

:&y5+ﬂy4+&y3+éy2+ﬂ
a1 [e%1 aq (e31 a1

(Y')? Y.

o If a3 =0, 4th-degree polynomial right-hand side.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

5 AsZt 4 A2+ A2+ AZ+ A 5
(Z')2: 4 3 +A 2£° + A1l + Ao — Q(2)
a1 Z + ap

Classical ODEs with polynomial right-hand side:

o Weierstrass ODE (cubic RHS) — Weierstrass function g();
@ KdV reduction (cubic RHS) — sech?();

@ Jacobi elliptic ODEs (4th degree polynomial RHS)

— Jacobi elliptic functions cn(), sn(), dn().
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e Exact Solutions: Cnoidal and Solitary Traveling Waves
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(2/)2 _ A424 I A323 ar A222 + Alz —+ AO
oaZ + ag

@ The following theorem is proven by a direct substitution.
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(2/)2 _ A424 I A323 ar A222 + Alz —+ AO
oaZ + ag

Theorem

| A\

The above family of ODEs admits exact solutions in the form
Z(?) = Bisn®(y 7, k) + Ba,

for arbitrary constants k, B, Bo. The remaining constants v and a1, are given by one of
the following relationships.

v

o Case 1:

_ ABs

Qg = —(1 = 2 = A4Bl'
3k2

- 4k2a1 '

(B1 + B2)(B1 + B2k?),
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(2/)2 _ A424 I A323 ar A222 + Alz —+ AO
oaZ + ag

Theorem

| A\

The above family of ODEs admits exact solutions in the form
Z(?) = Bisn®(y 7, k) + Ba,

for arbitrary constants k, B, Bo. The remaining constants v and a1, are given by one of
the following relationships.

v

o Case 2:
As

ao:0, alz_ﬁ(

ALB
Bz—l)(Bl+BZ_1)(Bl+k2(B2 _1))3 ’72 = 4/:20[11'
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(2/)2 _ A424 I A323 ar A222 + Alz —+ AO
oaZ + ag

Theorem

| A\

The above family of ODEs admits exact solutions in the form
Z(?) = Bisn®(y 7, k) + Ba,

for arbitrary constants k, B, Bo. The remaining constants v and a1, are given by one of
the following relationships.

v

. h . . . . .
o Natural choice: B, = ﬁl — Bi. Then the dimensional interface displacement is

C(x, t) = HBy cn®(y #(x, t), k).
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

o Cnoidal traveling wave: Z(?) = By sn?(y#, k) + Ba.
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

o Cnoidal traveling wave: Z(?) = By sn?(y#, k) + Ba.

o Layer-average velocities, Case 1:

vi(x,t) = gH <€ + By snl( /ao/ > . va(x, t) = &\/gH = const,

v P(x,t), k) + B>
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

o Cnoidal traveling wave: Z(?) = By sn?(y#, k) + Ba.

o Layer-average velocities, Case 1:

vi(x,t) =+/gH | e+ /0/S , va(x,t) = &y/gH = const,
By sn?(~y

#(x, ), k) + B

o Layer-average velocities, Case 2:

vi(x,t) = &/gH = const, vo(x, t) = /gH (?: + 1= Byon( \/A?T;’ O B2> .
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

o Cnoidal traveling wave: Z(?) = By sn?(y#, k) + Ba.

o Layer-average velocities, Case 1:

vi(x,t) = gH <€ + By snl( /ao/ > . va(x, t) = &\/gH = const,

v P(x,t), k) + B>

o Layer-average velocities, Case 2:

vi(x,t) = &/gH = const, vo(x, t) = /gH (?::I: lfBlsn2(\/“071 : > .

@ Signs can be chosen independently.
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

o Cnoidal traveling wave: Z(?) = By sn?(y#, k) + Ba.

o Layer-average velocities, Case 1:

vi(x,t) = gH <€ + By snl( /ao/ > . va(x, t) = &\/gH = const,

v P(x,t), k) + B>

o Layer-average velocities, Case 2:

vi(x, t) = &1/gH = const, va(x, t) = \/gH (?: + 1= Bron?(y 7(x, D). k) — B2> .

@ Signs can be chosen independently.

o Pressure: from appropriate formula that uses Z(?).
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Cnoidal Waves

@ Cnoidal waves in nature:

Two-Fluid Model



Jacobi Elliptic Functions

@ sn(x, k), cn(x, k), dn(x, k); 0 < k <1.

Doubly periodic meromorphic functions on the complex plane.

Related to elliptic integrals, elliptic curves.

@ Can be defined as solutions of special ODEs.
E.g., y =sn(x + c, k) is a general solution of

((‘;’ﬁ) — (1- )1 - k).

o ldentities, e.g.,
2 2 d
sn”(x, k) + cn’(x, k) = 1; ™ sn(x, k) = cn(x, k) dn(x, k).
Ix
@ Limits:
lim sn(x, k) =sin x; lim sn(x, k) = tanh x;
k—0+ k—1—
1
Pt enlx, k) = cos x; - en(x, k) cosh x
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Periods of Cnoidal Wave Solutions

@ Spatial period (wavelength) of the elliptic sine sn(x, k):

2w
T —
AGM(1,v1 — k?)

AGM(a, b) denoting the Gauss’ algebraic-geometric mean of a, b.

e a; = Vab, by = (a+b)/2,
o & =+Vaibh, b= (a1+h)/2

o lim a, = lim b, = AGM(a, b).
n—o0

n— oo
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Periods of Cnoidal Wave Solutions

— ct
o Wavelength of the cnoidal traveling wave ¢(x, t) = HB; cn? (fy x HC , k):

A= HA\

™

5\ == ’
vAGM(1, V1 — K2)

@ v, k are related.
o lim,_,;- X = +o0.

@ Dimensionless wavelength X as a function of k, for different Bi:

10
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Cnoidal Waves — Sample Plots

@ Sample exact solution parameters and wavelengths for the exact periodic cnoidal
wave solutions:

¢=1, S$=09, x=t=0,
hi=04m, h=06m H=1m, g=098m/s.

[ Case | &k B | Am [e=H/\]
1 0.9990 | -0.0300 | 15.7055 0.0637
0.9990 0.0300 90.4410 0.0111
0.9900 | -0.1000 6.8466 0.1461
0.9900 0.1000 22.0327 0.0454
0.9000 | -0.1800 3.2188 0.3107
0.9000 0.1800 7.1438 0.1400
0.8000 | -0.2500 1.9146 0.5223
0.8000 0.2500 3.1912 0.3134
0.9900 | -0.2500 5.2898 0.1890

HIN RN FENDRFRDN
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Cnoidal Waves — Sample Plots

o Case 1: solid black, negative amplitude. Case 2: dashed blue, positive amplitude.

1
=l
£
[
-1
-1.5
1 -0.5 0 0.5 1
z/A
13
13
1.25 . .
g 3N =
125 e FEm S TS ST S
12 Fo-7- NN RIS
[ g ~ ~
12 /’ \\\ ’/, \\
= 115 B L _ i
> 115
= ~
11 P
1.05 108
] g .
0.95 . L L 095 \ ) )
1 05 0 05 1 1 05 o 05 1
z/\ 2/A
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Cnoidal Waves — Sample Plots

Flood diagrams for the right-propagating cnoidal wave solutions:
e Case 1: kK =0.99,B; = —0.25.
e Case 2: k=0.99,B; =0.1.

¢/
G

2/

¢/
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Solitary Waves

@ For k =1, obtain solitary wave solutions (different in Cases 1,2):

Z(?) = (B1 4 By) — By cosh (7 7).

. . h
In particular, under the natural choice B, = ﬁl — Bi, one has

o _2 X — ct
¢(x,t) = HB, cosh (7 = ) .

@ Characteristic spike width:
H

As = ————.
7(317 B2)

o Depression-type waves: Case 1, By < 0.

o Elevation-type waves: Case 2, B; > 0.
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Solitary Waves

@ Case 1: solid black, depression-type. Case 2: dashed blue, elevation-type.
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Solitary Waves

o Flood diagrams for the right-propagating solitary waves: By = +0.3.

z/H

C/hl
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Solitary Waves — Velocity Shear?

o Interface displacement: ((x,t) = HB; cosh™? (’y x 7—ICt)'

@ Physical conditions: —hy < HB; < hy.

@ The dimensionless velocity shear values at infinity |A¥|oc = |11 — U2|x=too:

N 1-S /(h
|AV|E>10): 5 (ﬁl—31> # 0,

1A0|@ = \/(1 _5) (% + Bl) £ 0.
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Outline

@ Exact Solutions: Cnoidal and Kink Traveling Waves

akov (Math & Stat) A Fully Nonlinear Two-Fluid Model



Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

The ODE family:

(2/)2 _ A424 I A323 ar A222 + Alz —+ AO
oaZ + ag

@ The following theorem is also proven by a direct substitution.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

S B
‘0= Srr 0T B

for arbitrary constants By, B>, S. The remaining constants v, k and a1,> are given by one
of the following relationships.

v

o Case 1:
oo = —a1 = —7'44813
0T T T T 6By (1— BY)
2:LB§ 2 _ (1*(31*32)2)
Bz’ By(2By — B2)(B? + (B1 — By)?) + (B1 — B)?

@ Here ap + a1 = (3 = 0, hence the mean velocity of the bottom layer
va(t, x) = const.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

S B
‘0= Srr 0T B

for arbitrary constants By, B>, S. The remaining constants v, k and a1,> are given by one
of the following relationships.

v

o Case 2:
oy — Ai(2B; — B1)(1 — (B1 — B2)?)

% =9, 6B,(1 — B2) ’

2 3B.1B; 2 -2
— . KR=B2
T T 2B~ B)(1— (B — By)?) 2

@ Here ag = C; = 0, which yields a constant mean velocity of the top layer,
vi(t,x) = const.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

B

A= sn(y 7, k) + Bs

for arbitrary constants By, B>, S. The remaining constants v, k and a1,> are given by one

of the following relationships.

v

o Case 3:
N: 1— (B — B’
- 3(1—322) 32(4—312—5Ble-i-2BQ2)—2B2—‘y-Bl7

2_ 3 B(2B1 - B))(Bf + (B1 = B2)*) + (B — By)®

(e%]

B? 1—(B1— B)?

)

a1:0,

k* =~72

@ For this case, both mean horizontal velocities are non-constant.
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Exact Traveling Wave Solutions: Second Cnoidal Family

B

o Cnoidal traveling wave: Z(?) = B
) 2
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Exact Traveling Wave Solutions: Second Cnoidal Family

B

o Cnoidal traveling wave: Z(?) = B
) 2

o Layer-average velocities and pressure: same formulas as before, through 2(?)
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Exact Traveling Wave Solutions: Second Cnoidal Family

B

o Cnoidal traveling wave: Z(?) = B
) 2

o Layer-average velocities and pressure: same formulas as before, through 2(?)

@ Dimensionless and dimensional wavelength:

A o .
A= . A=HA
~vAGM(1, V1 — K2)

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 30 /39



Exact Traveling Wave Solutions: Second Cnoidal Family

o Cnoidal traveling wave: Z(?) = sn(’y?Bkl) B
) 2

o Layer-average velocities and pressure: same formulas as before, through 2(?)

@ Dimensionless and dimensional wavelength:

5\ _ 27
yAGM(1,v1 - k2)’

o In Case 3, k=1/~, and

M k) = 2mk/AGM(1, /1 — k2),

0.2 0.4
A. Shevyakov (Math & Stat)

0.6

0.8
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Second Cnoidal Family — Sample Plots
o Case 3, sample parameters and wavelengths for the second cnoidal solution family:

&=1 x=t=0, S$=009,

h=3/Tm, h=4/Tm, H=1m,

g=9.8m/s.
B [B] k [ nm [<=H}]
23995 | 5 | 0.9950 | 20.4057 0.0980
23881 | 5 | 0.8996 | 11.3073 0.1769
23037 | 5 | 0.6000 | 5.5882 0.3579
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Second Cnoidal Family — Sample Plots

@ Solution plots: curve colors blue, black, and red correspond to the tree rows of the
above table.
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Second Cnoidal Family — Sample Plots

Sample flood diagram, for the solution parameters in the second row of the table:

118
116 =

1.14

T/
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

B

o Cnoidal traveling wave: Z(?) = B
) 2
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

B

o Cnoidal traveling wave: Z(?) = B
) 2

@ In the limit k — 17: sn(y,1) = tanhy.
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

B

o Cnoidal traveling wave: Z(?) = B
) 2

@ In the limit k — 17: sn(y,1) = tanhy.

B

o Resulting exact solution: 2(?) = m.
nh(y? 7
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

B

Cnoidal traveling wave: Z(F) = B
) 2

In the limit k — 17: sn(y, 1) = tanhy.

B

Resulting exact solution: 2(?) = m.
nh(y? 7

HB;

tanh ('y x ;Ct

Dimensional interface displacement: ((x,t) = h1 —

)+Bz-
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

B

Cnoidal traveling wave: Z(F) = B
) 2

In the limit k — 17: sn(y, 1) = tanhy.

B

Resulting exact solution: 2(?) = m.
nh(y? 7

HB;
tanh ('y x—ct

Dimensional interface displacement: ((x,t) = h1 —

)+Bz-

Case 3: the dimensional amplitude and the characteristic wavelength:

a=H|B|™', A= g = H‘f;'.
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Kink/Anti-Kink Solutions — Sample Plots

o Case 3, sample parameters and wavelengths for the kink/anti-kink solutions:

¢=1, m=h=05m, H=1m, g=98m/s’, x=t=0, S$=09;

l B [ B> [ a [ A [ e=H/X\ ‘
2 4.2361 0.8660 1.1547 0.8660
5 10.0990 | 0.3464 | 2.8868 0.3464
15 30.0333 | 0.1155 8.6603 0.1155
-3 -6.1623 0.5774 1.7321 0.5774
-6 -12.0828 | 0.2887 3.4641 0.2887
-24 | -48.0208 | 0.2887 | 13.8564 0.0722
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Kink/Anti-Kink Solutions — Sample Plots

@ Solution plots: Black solid curves (large to small amplitude) correspond to the first
tree rows of the table (kink solutions). Blue dashed curves (large to small
amplitude) correspond to the rows 4-6 of the table (anti-kink solutions).

P/pigH

-20 -10 0 10 20
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Kink/Anti-Kink Solutions — Sample Plots

@ Sample flood diagram, for the solution parameters in the second row of the table:

¢/hy

z/H
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Kink Waves — Velocity Shear?

. HB
o Interface displacement: ((x,t) = h; — < —lct .
tanh ( )+8
nh (v H + b2
@ Can require |Av| = |vi — w| — 0 as x — 0o or x — —00.

@ Example: flood diagram for

¢=1, m/hh=3 H=1m, g=98m/s, S=06:

T T T T T 145
} 14
3 h S
e g 135
] 13
1 1
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Outline

© Discussion
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Summary: Results

@ A natural dimensionless form of the Choi-Camassa model is derived, involving a
single dimensionless physical parameter.

o Dimensionless traveling wave ODE; reduction of order via integrating factors.

o Exact traveling wave solutions of several important types, given by elementary
explicit formulas:

o periodic waves;
o solitary waves;
o kink/anti-kink.

@ Wave properties are independent of the wave speed (Galilei invariance).

@ The presented solutions are essentially different from semi-numerical solitary waves
of the original CC paper, where zero velocity shear at infinity was assumed.
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Summary: Methods

Asymptotic approximation and dimension reduction / averaging:

(t,x,y,z) — (t,x).

Equivalence transformations / non-dimensionalization — single dimensionless
parameter S = p1/p.

Symmetry reduction: PDE — ODE.

Conservation laws / integrating factors: 3rd-order ODE — 1st-order ODE.
o Exact solutions.

o Galilei transformations — arbitrary wave speed c.
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Some Further Questions

Stability of the traveling wave solutions?

Multi-layer generalization?

o R. Camassa: “Quality of approximation by the CC model may be related to the
conservation law structure similarity of the CC and Euler systems”.

o Conservation laws of PDE systems:

D:© +div¥ =0.

o Systematic conservation law construction, direct method.
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Some references

[3 Miyata, M. (1985)
An internal solitary wave of large amplitude. La Mer 23 (2), 43-48.

[3 Choi, W., & Camassa, R. (1999)
Fully nonlinear internal waves in a two-fluid system. JFM 396, 1-36.

@ Cheviakov, A. (2018)
Exact solutions of a fully nonlinear two-fluid model. Phys. D, accepted.
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@ Cheviakov, A. (2018)
Exact solutions of a fully nonlinear two-fluid model. Phys. D, accepted.

Thank you for your attention!
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