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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

ρt + div(ρv) = 0,

ρ(vt + (v · ∇)v) + grad p = f + µ∆v.

... add an equation of state.

1757 & 1822

Velocity v(t,x) = (u, v ,w)

Pressure p(t,x)

Density ρ(t,x)

Viscosity µ
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

ρt + div(ρv) = 0,

ρ(vt + (v · ∇)v) + grad p = f + µ∆v.

Appropriate for the description of a wide range of physical phenomena...
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

ρt + div(ρv) = 0,

ρ(vt + (v · ∇)v) + grad p = f + µ∆v.

... including turbulence.
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Classical PDEs of Gas & Fluid Dynamics

Euler and Navier-Stokes equations

ρt + div(ρv) = 0,

ρ(vt + (v · ∇)v) + grad p = f + µ∆v.

Multiple open questions, of physical and mathematical nature (e.g., solution
existence, regularity, stability...).

Direct numerical simulations: high cost, low precision.

Knowledge of analytical properties and any exact or approximate solutions is of
importance.

Geometric reductions & various simplified models are common.
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Two Stratified Non-Mixing Fluids in a Horizontal Channel

W. Choi & R. Camassa, “Fully nonlinear internal waves in a two-fluid system.”
[JFM, 1999]

Models a stratified system of two non-mixing fluids of different densities.

A (1+1)-dimensional asymptotic model based on incompressible Euler equations.

Describes nonlinear internal/interfacial waves, propagating in both directions.

Provides good agreement with experiment and Euler-based DNS.

Reduces to shallow-water and KdV models in limiting cases.
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The Governing Equations

 

 

 

 

      

                                                                                                                                                                      

                                                                                                                                                                           

               

 

 

 

 

 

  

ζ(t,x)          

v2(t,x)        

v1(t,x)        
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h2 
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x 

Euler equations of incompressible constant-density flow in gravity field, 3D

vt + (v · ∇)v = −1

ρ
grad p − g,

div v = 0, g = −gk.

Here v = (u(t,x), 0,w(t,x)); p = p(t,x); ρ = const.
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Two-dimensional Euler equations in the (x , z)-plane

ux + wz = 0,

ut + uux + wuz = −px/ρ,

wt + uwx + wwz = −pz/ρ− g .
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Boundary conditions

No-leak: w1(t, x , h1) = w2(t, x ,−h2) = 0.

At the interface z = ζ(t, x):

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2.
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Asymptotic Assumptions and the CC Model
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Fluid depth � characteristic length: hi/L = ε� 1.

Continuity equation → wi/ui = O(hi/L) = O(ε)� 1.

Finite-amplitude waves: ζ . hi .

ui/U0 = O(ζ/hi ) = O(1), U0 = (gH)1/2, H = h1 + h2.
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Actual fluid layer thicknesses: η1 = h1 − ζ, η2 = h2 + ζ.

Layer-average (depth-mean) horizontal velocities:

v1 =
1

η1

∫ h1

ζ

u1(t, x , z) dz , v2 =
1

η2

∫ ζ

−h2

u2(t, x , z) dz .
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The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x

+ O(ε4), Gi ≡ vi tx + vivi xx − (vi x)2.

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 10 / 39



Outline

1 Classical PDEs of Fluid Dynamics

2 The Two-Fluid Model

3 The Governing Equations

4 Some Properties of the CC Model

5 The ODE Governing Traveling Wave Solutions

6 Exact Solutions: Cnoidal and Solitary Traveling Waves

7 Exact Solutions: Cnoidal and Kink Traveling Waves

8 Discussion

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 11 / 39



Some Properties of the CC Model

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Variables, unknowns, order

(1+1) – dimensional.

Independent: x , t.

Dependent: v1, v2, P, ζ.

η1 = h1 − ζ, η2 = h2 + ζ.

4 PDEs, two third-order, mixed space-time derivatives.
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Asymptotic horizontal velocity estimates

One can show that in terms of the mean velocity of each fluid layer, the corresponding
horizontal velocities ui (t, x , z) are given by

ui (t, x , z) = vi +
(

1
6
η2
i − 1

2
(z ∓ hi )

2
)

vi xx + O(ε4).
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

An average velocity relationship

From the first two PDEs,

∂

∂x
(η1v1 + η2v2) = 0, ⇒ η1v1 + η2v2 = (η1v1 + η2v2)|±∞ .

In the case of no velocity shear boundary condition, v1|±∞ = v2|±∞ = 0, one has

v2

v1
= −η1

η2
.

We don’t assume this is the case.
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Some Properties of the CC Model

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Symmetry properties

Translations and the Galilei group:

x∗ = x + x0 + Ct, t∗ = t + t0, (vi )
∗ = vi + C ,

P∗ = P + P0(t, η1v1 + η2v2),

x0, t0,C = const.

Time inversion:

x∗ = x , t∗ = −t, (vi )
∗ = −vi , P∗ = P.
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The Quality of Approximation

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Two-dimensional Euler equations in the (x , z)-plane

ux + wz = 0,

ut + uux + wuz = −px/ρ,

wt + uwx + wwz = −pz/ρ− g .

ρ = ρi , i = 1, 2.
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The Quality of Approximation

Choi and Camassa (1999): semi-numerical solitary wave solutions.

Fully nonlinear internal waves 13

3.0

2.5

2.0

1.5

1.0

(a) (b)

0 0.5 1.0 1.5 2.0

a/h2

c
c0

Figure 3. Wave speed c versus wave amplitude a for ρ1/ρ2 = 0.63: ——–, fully nonlinear theory
given by (3.57); – – –, weakly nonlinear (KdV) theory given by (3.40). (a) h1/h2 = 0.2, (b) h1/h2 = 5.
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Figure 4. Solitary wave solutions (——) of (3.51) for ρ1/ρ2 = 0.63, h1/h2 = 5.09 and a/h2 =(0.5,
1, 1.5, 2) compared with KdV solitary waves (– – –) of the same amplitude given by (3.39). Here
and in the following figure of wave profiles, the waves are symmetric with respect to reflections
X → −X and only half of the wave profile is shown.

As figure 3 shows, for ρ1/ρ2 = 0.63 and h1/h2 = 0.2 and 5, the solitary wave speed
given by (3.57) increases with wave amplitude at a rate much slower than that of the
weakly nonlinear theory given by (3.40).

Integration of (3.51) can be carried out, resulting in a wave form ζ(X) expressed
implicitly by a relation X = Xs(ζ). The function Xs is a combination of elliptic
integrals, and as such is not particularly informative. However, explicit knowledge
of Xs does allow wave profiles to be readily obtained by plotting routines. We only
report here the result pertaining to Koop & Butler’s configuration, i.e. ρ1h

2
1−ρ2h

2
2 > 0,

whereby

κX =
2

(a+ − a∗)1/2

[(
a+ − a∗
a+

)
F(ϕ,m1)− a∗(a+ − a−)

a+a−
Π(ϕ, µ1, m1)

]
. (3.58)

Here

sinϕ ≡
[

(a+ − a∗)(a− − ζ)
(a− − a∗)(a+ − ζ)

]1/2

, m2
1 ≡ a− − a∗

a+ − a∗ , µ1 ≡ a+

a−
m2

1 , (3.59)

Wave amplitude vs. effective wavelength: CC model solutions provide a “better”
agreement with Euler dynamics than, e.g., Korteweg - de Vries (KdV) solitons,

ut + uux + uxxx = 0.
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The Quality of Approximation
Fully nonlinear internal waves 15
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Figure 5. Effective wavelength λI versus wave amplitude a curves compared with experimental data
(symbols, reproduced with permission from Cambridge University Press) by Koop & Butler (1981)
for ρ1/ρ2 = 0.63 and h1/h2 = 5.09 : ——, fully nonlinear theory given by (3.62); – – –, weakly
nonlinear (KdV) theory given by (3.67); · · · • · · ·, numerical solutions of the full Euler equations by
Grue et al. (1997).

where λI is, from (3.38),

λI = λKdV =

[
4h2

1h
2
2(ρ1h1 + ρ2h2)

3a(ρ2h
2
1 − ρ1h

2
2)

]1/2

. (3.67)

We can also compare these results for λI with those obtained experimentally
by Koop & Butler (1981) within their shallow water configuration, h1/h2 = 5.09.†
Figure 5 shows the experimental data (symbols) vs. theoretical curves from the
fully nonlinear (coupled GN) and weakly nonlinear (KdV) theories, equations (3.62)
and (3.67), respectively. For α = a/h2 < 0.05, the experimental data lie a little below
both theoretical curves, while the data show good agreement with the theoretical
predictions for 0.05 < α < 0.2.

Notice that both the weakly nonlinear and the present fully nonlinear theories are
asymptotic approximations to the full Euler equations, and their solutions should
approach those of the Euler system as the amplitude a decreases and the effective
wavelength λI increases, which occurs for the solitary wave solutions of both models.

† Segur & Hammack (1982) examined whether this depth ratio, γ = 5.09, might be large enough
to fall within the domain of asymptotic validity (for small α) of the ILW model. Their answer
is negative, a situation only partially remedied by the inclusion of the next higher-order terms in
the ILW asymptotic expansion. For more details on higher-order weakly nonlinear unidirectional
models, see the Appendix.
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Old and new variables

Original form: five constant physical parameters: g , ρ1, ρ2, h1, h2.

Total channel depth: H = h1 + h2.

Density ratio: S = ρ1/ρ2, 0 < S < 1.

Relative depth of the top fluid level (dimensionless):

Ẑ =
h1 − ζ

H
≡ η1

H
, 0 < Ẑ < 1.
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

Dimensionless forms of other variables

t = Qt t̂, x = Qh x̂ , P(t, x) = QP P̂(t̂, x̂), vi (t, x) = Qi v̂i (t̂, x̂),

i = 1, 2,

where the scaling factors are chosen to remove most of the constant coefficients:

Qh = H, Qt =

√
H

g
, Q1 = Q2 =

√
gH, QP = ρ1gH.
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The Dimensionless Form and Parameter Reduction

The Choi-Camassa (CC) model:

ηi t + (ηivi )x = 0, i = 1, 2,

vi t + vivi x + gζx = −Px

ρi
+

1

3ηi

(
η3
i Gi

)
x
, Gi ≡ vi tx + vivi xx − (vi x)2.

The dimensionless Miyata-Choi-Camassa system

Ẑt̂ + (Ẑ v̂1)x̂ = 0, Ẑt̂ + (Ẑ v̂2)x̂ − (v̂2)x̂ = 0,

v̂1t̂ + v̂1v̂1 x̂ − Ẑx̂ + P̂x̂ − Ẑ Ẑx̂ Ĝ1 − 1
3
Ẑ 2Ĝ1 x̂ = 0,

v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3
(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂ Ĝ2 = 0,

Ĝi ≡ v̂i tx + v̂i v̂i xx − (v̂i x̂)2, i = 1, 2.

Loss of “symmetry” between layers (though there was no actual symmetry!)

A single constitutive parameter: S .
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The ODE Governing Traveling Wave Solutions

Dimensionless Choi-Camassa PDEs:

Ẑt̂ + (Ẑ v̂1)x̂ = 0, Ẑt̂ + (Ẑ v̂2)x̂ − (v̂2)x̂ = 0,

v̂1t̂ + v̂1v̂1 x̂ − Ẑx̂ + P̂x̂ − Ẑ Ẑx̂ Ĝ1 − 1
3
Ẑ 2Ĝ1 x̂ = 0,

v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3
(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂ Ĝ2 = 0,

Ĝi ≡ v̂i tx + v̂i v̂i xx − (v̂i x̂)2, i = 1, 2.

Traveling wave coordinate

Point symmetry generator:

X = ĉ
∂

∂x̂
+

∂

∂ t̂
.

Dimensionless traveling wave coordinate and the ansatz:

r̂ = r̂(t, x) = x̂ − ĉ t̂ + x̂0 =
1

H
(x − ct + x0);

Ẑ , v̂1, v̂2, P̂ = Ẑ , v̂1, v̂2, P̂ (r̂).
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The ODE Governing Traveling Wave Solutions

Dimensionless Choi-Camassa PDEs:

Ẑt̂ + (Ẑ v̂1)x̂ = 0, Ẑt̂ + (Ẑ v̂2)x̂ − (v̂2)x̂ = 0,

v̂1t̂ + v̂1v̂1 x̂ − Ẑx̂ + P̂x̂ − Ẑ Ẑx̂ Ĝ1 − 1
3
Ẑ 2Ĝ1 x̂ = 0,

v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3
(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂ Ĝ2 = 0,

Ĝi ≡ v̂i tx + v̂i v̂i xx − (v̂i x̂)2, i = 1, 2.

First two equations; velocity expressions

ĉ Ẑ ′ = (Ẑ v̂1)′ = (Ẑ v̂2)′ − v̂ ′2, ⇒

v̂1 = ĉ +
C1

Ẑ
, v̂2 = ĉ +

C2

1− Ẑ
, C1,C2 = const.

Galilei invariance, WLOG ĉ = 0.
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The ODE Governing Traveling Wave Solutions

Dimensionless Choi-Camassa PDEs:

Ẑt̂ + (Ẑ v̂1)x̂ = 0, Ẑt̂ + (Ẑ v̂2)x̂ − (v̂2)x̂ = 0,

v̂1t̂ + v̂1v̂1 x̂ − Ẑx̂ + P̂x̂ − Ẑ Ẑx̂ Ĝ1 − 1
3
Ẑ 2Ĝ1 x̂ = 0,

v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3
(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂ Ĝ2 = 0,

Ĝi ≡ v̂i tx + v̂i v̂i xx − (v̂i x̂)2, i = 1, 2.

Third equation; pressure

P̂ = P̂0 + Ẑ − C 2
1

6Ẑ 2

(
2Ẑ Ẑ ′′ − (Ẑ ′)2 + 3

)
, P̂0 = const.
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v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3
(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂ Ĝ2 = 0,

Ĝi ≡ v̂i tx + v̂i v̂i xx − (v̂i x̂)2, i = 1, 2.

Fourth equation: v̂2t̂ + . . . = 0

3rd-order, complicated-looking ODE for Ẑ(r̂): E4[Ẑ ] = 0.

Seek integrating factors (conservation law multipliers): Λk [Ẑ ]E4[Ẑ ] =
d

dr̂
Φk [Ẑ ].

Find two factors assuming Λk = Λk(r̂ , Ẑ) (GeM symbolic software):

Λ1 = Ẑ−3(1− Ẑ)−3, Λ2 = Ẑ−2(1− Ẑ)−3.

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 16 / 39



The ODE Governing Traveling Wave Solutions (ctd.)

Two respective constants of motion (first integrals):

Φ1[Ẑ ] = − 1

2Ẑ 2(1− Ẑ)2

[
2Ẑ(1− Ẑ)(α1Ẑ + α0)Ẑ ′′

+
(
α0(1− 2Ẑ)− α1Ẑ 2

)(
3− (Ẑ ′)2

)
+ 6(1− S)Ẑ 3(1− Ẑ)2

]
= K1 = const,

Φ2[Ẑ ] = − 1

2Ẑ(1− Ẑ)2

[
2Ẑ(1− Ẑ)(α1Ẑ + α0)Ẑ ′′

+
(
α1Ẑ(1− 2Ẑ) + α0(2− 3Ẑ)

)(
3− (Ẑ ′)2

)
+ 3(1− S)Ẑ 3(1− Ẑ)2

]
= K2 = const.

Solve for Ẑ ′′, Ẑ ′ in terms of Ẑ ; obtain a 1st-order autonomous ODE on Ẑ .

Here we denoted α0 = C 2
1 S , α1 = C 2

2 − α0.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

=: Q(Ẑ)

Relationships between parameters:

A4 = 3(1− S), A3 = 2K1 − A4,

A2 = −2(K1 + K2), A1 = 2K2 + 3α1, A0 = 3α0.

Four independent constant parameters. For example, one may choose

α0 ≥ 0, α1 ≥ −α0,A2,A3 ∈ R

as arbitrary constants. Then

A1 = 3α1 − (A2 + A3 + A4), α0 + α1 ≥ 0, A4 > 0.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

=: Q(Ẑ)

The above ODE has not been generally studied.

Implicit solution – not so practical:

±
∫ Ẑ

Q(s)−1/2 ds = r − r0,

Transformation Y (r̂) = (Ẑ − α0/α1)−1 maps the above ODE to an ODE with the
5th-degree polynomial right-hand side

(Y ′)2 =
A0

α1
Y 5 +

A1

α1
Y 4 +

A2

α1
Y 3 +

A3

α1
Y 2 +

A4

α1
Y .

If α1 = 0, 4th-degree polynomial right-hand side.
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The ODE Governing Traveling Wave Solutions (ctd.)

The final ODE:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

=: Q(Ẑ)

Classical ODEs with polynomial right-hand side:

Weierstrass ODE (cubic RHS) → Weierstrass function ℘();

KdV reduction (cubic RHS) → sech2();

Jacobi elliptic ODEs (4th degree polynomial RHS)

→ Jacobi elliptic functions cn(), sn(), dn().

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 18 / 39



Outline

1 Classical PDEs of Fluid Dynamics

2 The Two-Fluid Model

3 The Governing Equations

4 Some Properties of the CC Model

5 The ODE Governing Traveling Wave Solutions

6 Exact Solutions: Cnoidal and Solitary Traveling Waves

7 Exact Solutions: Cnoidal and Kink Traveling Waves

8 Discussion

A. Shevyakov (Math & Stat) A Fully Nonlinear Two-Fluid Model IPM Seminar, June 28, 2018 19 / 39



Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

The following theorem is proven by a direct substitution.
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) = B1 sn
2(γ r̂ , k) + B2,

for arbitrary constants k,B1,B2. The remaining constants γ and α1,2 are given by one of
the following relationships.

Case 1:

α0 = −α1 =
A4B2

3k2
(B1 + B2)(B1 + B2k2), γ2 =

A4B1

4k2α1
;
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α1Ẑ + α0

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) = B1 sn
2(γ r̂ , k) + B2,

for arbitrary constants k,B1,B2. The remaining constants γ and α1,2 are given by one of
the following relationships.

Case 2:

α0 = 0, α1 = − A4

3k2
(B2 − 1)(B1 + B2 − 1)

(
B1 + k2(B2 − 1)

)
, γ2 =

A4B1

4k2α1
.
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

The ODE family:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) = B1 sn
2(γ r̂ , k) + B2,

for arbitrary constants k,B1,B2. The remaining constants γ and α1,2 are given by one of
the following relationships.

Natural choice: B2 =
h1

H
− B1. Then the dimensional interface displacement is

ζ(x , t) = HB1 cn
2(γ r̂(x , t), k).
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Exact Traveling Wave Solutions: (A) Cnoidal and Solitary Waves

Cnoidal traveling wave: Ẑ(r̂) = B1 sn
2(γ r̂ , k) + B2.

Layer-average velocities, Case 1:

v1(x , t) =
√

gH

(
ĉ ±

√
α0/S

B1 sn2(γ r̂(x , t), k) + B2

)
, v2(x , t) = ĉ

√
gH = const,

Layer-average velocities, Case 2:

v1(x , t) = ĉ
√

gH = const, v2(x , t) =
√

gH

(
ĉ ±

√
α1

1− B1 sn2(γ r̂(x , t), k)− B2

)
.

Signs can be chosen independently.

Pressure: from appropriate formula that uses Ẑ(r̂).
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Cnoidal Waves

Cnoidal waves in nature:
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Jacobi Elliptic Functions

sn(x , k), cn(x , k), dn(x , k); 0 ≤ k ≤ 1.

Doubly periodic meromorphic functions on the complex plane.

Related to elliptic integrals, elliptic curves.

Can be defined as solutions of special ODEs.
E.g., y = sn(x + c, k) is a general solution of(

dy

dx

)2

= (1− y 2)(1− k2y 2).

Identities, e.g.,

sn2(x , k) + cn2(x , k) = 1;
d

dx
sn(x , k) = cn(x , k) dn(x , k).

Limits:
lim

k→0+
sn(x , k) = sin x ; lim

k→1−
sn(x , k) = tanh x ;

lim
k→0+

cn(x , k) = cos x ; lim
k→1−

cn(x , k) =
1

cosh x
.
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Periods of Cnoidal Wave Solutions

Spatial period (wavelength) of the elliptic sine sn(x , k):

τ =
2π

AGM(1,
√

1− k2)
,

AGM(a, b) denoting the Gauss’ algebraic-geometric mean of a, b.

a1 =
√

ab, b1 = (a + b)/2,

a2 =
√

a1b1, b2 = (a1 + b1)/2,

...

lim
n→∞

an = lim
n→∞

bn = AGM(a, b).
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Periods of Cnoidal Wave Solutions

Wavelength of the cnoidal traveling wave ζ(x , t) = HB1 cn
2
(
γ

x − ct

H
, k
)

:

λ̂ =
π

γ AGM(1,
√

1− k2)
, λ = Hλ̂.

γ, k are related.

limk→1− λ̂ = +∞.

Dimensionless wavelength λ̂ as a function of k, for different B1:

k
0.4 0.5 0.6 0.7 0.8 0.9 1

λ̂

0

2

4

6

8

10
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Cnoidal Waves – Sample Plots

Sample exact solution parameters and wavelengths for the exact periodic cnoidal
wave solutions:

ĉ = 1, S = 0.9, x0 = t = 0,

h1 = 0.4 m, h2 = 0.6 m, H = 1 m, g = 9.8 m/s2.

Case k B1 λ, m ε = H/λ

1 0.9990 -0.0300 15.7055 0.0637
2 0.9990 0.0300 90.4410 0.0111
1 0.9900 -0.1000 6.8466 0.1461
2 0.9900 0.1000 22.0327 0.0454
1 0.9000 -0.1800 3.2188 0.3107
2 0.9000 0.1800 7.1438 0.1400
1 0.8000 -0.2500 1.9146 0.5223
2 0.8000 0.2500 3.1912 0.3134
1 0.9900 -0.2500 5.2898 0.1890
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Cnoidal Waves – Sample Plots

Case 1: solid black, negative amplitude. Case 2: dashed blue, positive amplitude.
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Cnoidal Waves – Sample Plots

Flood diagrams for the right-propagating cnoidal wave solutions:

Case 1: k = 0.99,B1 = −0.25.

Case 2: k = 0.99,B1 = 0.1.
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Solitary Waves

For k = 1, obtain solitary wave solutions (different in Cases 1,2):

Ẑ(r̂) = (B1 + B2)− B1 cosh−2(γ r̂).

In particular, under the natural choice B2 =
h1

H
− B1, one has

ζ(x , t) = HB1 cosh−2
(
γ

x − ct

H

)
.

Characteristic spike width:

λs =
H

γ(B1,B2)
.

Depression-type waves: Case 1, B1 < 0.

Elevation-type waves: Case 2, B1 > 0.
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Solitary Waves

Case 1: solid black, depression-type. Case 2: dashed blue, elevation-type.
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Solitary Waves

Flood diagrams for the right-propagating solitary waves: B1 = ±0.3.
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Solitary Waves – Velocity Shear?

Interface displacement: ζ(x , t) = HB1 cosh−2
(
γ

x − ct

H

)
.

Physical conditions: −h2 < HB1 < h1.

The dimensionless velocity shear values at infinity |∆v̂ |∞ = |v̂1 − v̂2|x=±∞:

|∆v̂ |(1)
∞ =

√
1− S

S

(
h1

H
− B1

)
6= 0,

|∆v̂ |(2)
∞ =

√
(1− S)

(
h2

H
+ B1

)
6= 0.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

The ODE family:

(Ẑ ′)2 =
A4Ẑ 4 + A3Ẑ 3 + A2Ẑ 2 + A1Ẑ + A0

α1Ẑ + α0

The following theorem is also proven by a direct substitution.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) =
B1

sn(γ r̂ , k) + B2

for arbitrary constants B1,B2, S. The remaining constants γ, k and α1,2 are given by one
of the following relationships.

Case 1:

α0 = −α1 = − A4B3
1

6B2(1− B2
2 )
,

γ2 =
3B2

2

B2
1

, k2 =
(1− (B1 − B2)2)

B2(2B1 − B2)(B2
1 + (B1 − B2)2) + (B1 − B2)2

.

Here α0 + α1 = C2 = 0, hence the mean velocity of the bottom layer
v2(t, x) = const.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) =
B1

sn(γ r̂ , k) + B2

for arbitrary constants B1,B2, S. The remaining constants γ, k and α1,2 are given by one
of the following relationships.

Case 2:

α0 = 0, α1 =
A4(2B2 − B1)(1− (B1 − B2)2)

6B2(1− B2
2 )

,

γ2 =
3B1B2

2

(2B2 − B1)(1− (B1 − B2)2)
, k2 = B−2

2 .

Here α0 = C1 = 0, which yields a constant mean velocity of the top layer,
v1(t, x) = const.
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Exact Traveling Wave Solutions: (B) Further Cnoidal and Kink Waves

Theorem

The above family of ODEs admits exact solutions in the form

Ẑ(r̂) =
B1

sn(γ r̂ , k) + B2

for arbitrary constants B1,B2, S. The remaining constants γ, k and α1,2 are given by one
of the following relationships.

Case 3:

α0 =
A4B3

1

3(1− B2
2 )

1− (B1 − B2)2

B2(4B2
1 − 5B1B2 + 2B2

2 )− 2B2 + B1
, α1 = 0,

γ2 =
3

B2
1

B2(2B1 − B2)(B2
1 + (B1 − B2)2) + (B1 − B2)2

1− (B1 − B2)2
, k2 = γ−2.

For this case, both mean horizontal velocities are non-constant.
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Exact Traveling Wave Solutions: Second Cnoidal Family

Cnoidal traveling wave: Ẑ(r̂) =
B1

sn(γ r̂ , k) + B2
.

Layer-average velocities and pressure: same formulas as before, through Ẑ(r̂).

Dimensionless and dimensional wavelength:

λ̂ =
2π

γ AGM(1,
√

1− k2)
, λ = Hλ̂.

In Case 3, k = 1/γ, and

λ̂(k) = 2πk/AGM(1,
√

1− k2), lim
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Second Cnoidal Family – Sample Plots

Case 3, sample parameters and wavelengths for the second cnoidal solution family:

ĉ = 1, x0 = t = 0, S = 0.9,

h1 = 3/7 m, h2 = 4/7 m, H = 1 m, g = 9.8 m/s2.

B1 B2 k λ, m ε = H/λ

2.3995 5 0.9950 20.4057 0.0980
2.3881 5 0.8996 11.3073 0.1769
2.3037 5 0.6000 5.5882 0.3579
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Second Cnoidal Family – Sample Plots

Solution plots: curve colors blue, black, and red correspond to the tree rows of the
above table.
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Second Cnoidal Family – Sample Plots

Sample flood diagram, for the solution parameters in the second row of the table:
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Exact Traveling Wave Solutions: Kink/Anti-Kink Solutions

Cnoidal traveling wave: Ẑ(r̂) =
B1

sn(γ r̂ , k) + B2
.

In the limit k → 1−: sn(y , 1) = tanh y .

Resulting exact solution: Ẑ(r̂) =
B1

tanh(γ r̂) + B2
.

Dimensional interface displacement: ζ(x , t) = h1 −
HB1

tanh
(
γ

x − ct

H

)
+ B2

.

Case 3: the dimensional amplitude and the characteristic wavelength:

a = H|B2|−1, λ =
H

γ
=

H|B1|√
3
.
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Kink/Anti-Kink Solutions – Sample Plots

Case 3, sample parameters and wavelengths for the kink/anti-kink solutions:

ĉ = 1, h1 = h2 = 0.5 m, H = 1 m, g = 9.8 m/s2, x0 = t = 0, S = 0.9;

B1 B2 a λ ε = H/λ

2 4.2361 0.8660 1.1547 0.8660
5 10.0990 0.3464 2.8868 0.3464

15 30.0333 0.1155 8.6603 0.1155
-3 -6.1623 0.5774 1.7321 0.5774
-6 -12.0828 0.2887 3.4641 0.2887

-24 -48.0208 0.2887 13.8564 0.0722
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Kink/Anti-Kink Solutions – Sample Plots

Solution plots: Black solid curves (large to small amplitude) correspond to the first
tree rows of the table (kink solutions). Blue dashed curves (large to small
amplitude) correspond to the rows 4-6 of the table (anti-kink solutions).
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Kink/Anti-Kink Solutions – Sample Plots

Sample flood diagram, for the solution parameters in the second row of the table:
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Kink Waves – Velocity Shear?

Interface displacement: ζ(x , t) = h1 −
HB1

tanh
(
γ

x − ct

H

)
+ B2

.

Can require |∆v | = |v1 − v2| → 0 as x →∞ or x → −∞.

Example: flood diagram for

ĉ = 1, h1/h2 = 3, H = 1 m, g = 9.8 m/s, S = 0.6 :
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Outline

1 Classical PDEs of Fluid Dynamics

2 The Two-Fluid Model

3 The Governing Equations
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8 Discussion
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Summary: Results

A natural dimensionless form of the Choi-Camassa model is derived, involving a
single dimensionless physical parameter.

Dimensionless traveling wave ODE; reduction of order via integrating factors.

Exact traveling wave solutions of several important types, given by elementary
explicit formulas:

periodic waves;
solitary waves;
kink/anti-kink.

Wave properties are independent of the wave speed (Galilei invariance).

The presented solutions are essentially different from semi-numerical solitary waves
of the original CC paper, where zero velocity shear at infinity was assumed.
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Summary: Methods

Asymptotic approximation and dimension reduction / averaging:

(t, x , y , z) → (t, x).

Equivalence transformations / non-dimensionalization → single dimensionless
parameter S = ρ1/ρ2.

Symmetry reduction: PDE → ODE.

Conservation laws / integrating factors: 3rd-order ODE → 1st-order ODE.

Exact solutions.

Galilei transformations → arbitrary wave speed c.
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Some Further Questions

Stability of the traveling wave solutions?

Multi-layer generalization?

R. Camassa: “Quality of approximation by the CC model may be related to the
conservation law structure similarity of the CC and Euler systems”.

Conservation laws of PDE systems:

Dt Θ + div Ψ = 0.

Systematic conservation law construction, direct method.
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Some references

Miyata, M. (1985)

An internal solitary wave of large amplitude. La Mer 23 (2), 43-48.

Choi, W., & Camassa, R. (1999)
Fully nonlinear internal waves in a two-fluid system. JFM 396, 1–36.

Cheviakov, A. (2018)
Exact solutions of a fully nonlinear two-fluid model. Phys. D, accepted.

Thank you for your attention!
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