Conservation Laws of Models of Biological Membranes in the Framework of Nonlinear Elastodynamics

Alexei Cheviakov, J.-F. Ganghoffer
University of Saskatchewan, Canada / Université de Lorraine, France

EUROMECH Colloquium 560

February 10, 2015

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves
(4) Single Fiber Family, Ansatz 2 - 2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves

7 Discussion

Introduction

Motivation

- Interesting mathematics!
- Study of fundamental properties of nonlinear elastodynamics equations arising in applications.

Notation

- $\mathrm{D}_{t}=\frac{\partial u}{\partial t} \equiv u_{t}$.

Conservation Laws

Global form

- Global quantity $M \in \mathcal{D}$ changes only due to boundary fluxes.

$$
M=\int_{\mathcal{D}} \Theta d V ; \quad \frac{d}{d t} M=\oint_{\partial \mathcal{D}} \Psi \cdot d \mathbf{S} .
$$

- $\Theta[\mathbf{u}]$: conserved density; $\boldsymbol{\Psi}$: flux vector.

Conservation Laws

Global form

- Global quantity $M \in \mathcal{D}$ changes only due to boundary fluxes.

$$
M=\int_{\mathcal{D}} \Theta d V ; \quad \frac{d}{d t} M=\oint_{\partial \mathcal{D}} \Psi \cdot d \mathbf{S} .
$$

- $\Theta[\mathbf{u}]$: conserved density; $\boldsymbol{\Psi}$: flux vector.

Local form

- A local conservation law: a divergence expression equal to zero, e.g.,

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\mathrm{D}_{i} \Psi^{i}[\mathbf{u}]=0 .
$$

Conservation Laws

Global form

- Global quantity $M \in \mathcal{D}$ changes only due to boundary fluxes.

$$
M=\int_{\mathcal{D}} \Theta d V ; \quad \frac{d}{d t} M=\oint_{\partial \mathcal{D}} \Psi \cdot d \mathbf{S} .
$$

- $\Theta[\mathbf{u}]$: conserved density; $\boldsymbol{\Psi}$: flux vector.

Global conserved quantity:

$$
\frac{d}{d t} M=\mathrm{D}_{t} \int_{V} \Theta d V=0 \quad \text { when } \quad \oint_{\partial V} \Psi \cdot d \mathbf{S}=0
$$

Applications of Conservation Laws

ODEs

- Constants of motion.
- Integration.

PDEs

- Rates of change of physical variables; constants of motion.
- Differential constraints.
- Analysis: existence, uniqueness, stability, integrability, linearization.
- Potentials, stream functions, etc.
- Conserved forms for numerical methods (finite volume, etc.).
- Numerical method testing.

Construction of Local Conservation Laws

For equations following from a variational principle:

- Can use Noether's theorem.
- Conservation laws are connected with variational symmetries.
- Technically difficult.

Construction of Local Conservation Laws

For equations following from a variational principle:

- Can use Noether's theorem.
- Conservation laws are connected with variational symmetries.
- Technically difficult.

For generic models: Direct conservation law construction method

- Conservation laws can be sought in the characteristic form $\Lambda_{\sigma} R^{\sigma} \equiv \mathrm{D}_{i} \Phi^{i}$.
- Systematically find the multipliers Λ_{σ}.
- Direct method is complete for a wide class of systems.
- Implemented in Maple/GeM: symbolic computations.

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

Examples

Collagen fiber in tendons.
Single fiber family.

Examples

A fiber-reinforced composite in dentistry.
Single fiber family.

Examples

Arterial tissue (Holzapfel, Gasser, and Ogden, 2000).
Two helically arranged fiber families.

Examples

Fabric - two fiber families.

Examples

- Appropriate framework: incompressible hyperelasticity / viscoelasticity.

Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

- Material points $\mathbf{X} \in \Omega_{0}$.
- Actual position of a material point: $\mathbf{x}=\phi(\mathbf{X}, t) \in \Omega$.
- Deformation gradient: $\mathbf{F}(\mathbf{X}, t)=\nabla \phi, \quad F_{j}^{i}=\frac{\partial x^{i}}{\partial X^{j}}$.

Governing Equations

Incompressibility:

$$
J=\operatorname{det} \mathbf{F}=\left|\frac{\partial x^{i}}{\partial X^{j}}\right|=1, \quad \rho=\rho_{0} / J=\rho_{0}(\mathbf{X}) .
$$

Governing Equations

Incompressibility:

$$
J=\operatorname{det} \mathbf{F}=\left|\frac{\partial x^{i}}{\partial X^{j}}\right|=1, \quad \rho=\rho_{0} / J=\rho_{0}(\mathbf{X}) .
$$

Equations of motion:

$$
\rho_{0} \mathbf{x}_{t t}=\operatorname{div}_{(X)} \mathbf{P}+\rho_{0} \mathbf{R}, \quad J=1 .
$$

- $\mathbf{R}=\mathbf{R}(\mathbf{X}, t)$: total body force per unit mass; $\rho_{0}(\mathbf{X})$: density.
- Use $\mathbf{R}=0, \rho_{0}=$ const.

Constitutive Relations

Stress tensor (incompressible):

$$
\begin{equation*}
P^{i j}=-p\left(F^{-1}\right)^{j i}+\rho_{0} \frac{\partial W}{\partial F_{i j}} \tag{1}
\end{equation*}
$$

- W: scalar strain energy density; p : hydrostatic pressure.

Strain Energy Density

$$
W=W_{\text {iso }}+W_{\text {aniso }} .
$$

Isotropic Strain Energy Density

- Right Cauchy-Green strain tensor: $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$,

$$
\begin{equation*}
I_{1}=\operatorname{Tr} \mathbf{C}, \quad I_{2}=\frac{1}{2}\left[(\operatorname{Tr} \mathbf{C})^{2}-\operatorname{Tr}\left(\mathbf{C}^{2}\right)\right] . \tag{2}
\end{equation*}
$$

- Mooney-Rivlin materials:

$$
W_{\text {iso }}=a\left(I_{1}-3\right)+b\left(I_{2}-3\right), \quad a, b>0
$$

Fiber Directions

Fiber directions

- Reference configuration: fibers along $\mathbf{A}(|\mathbf{A}|=1)$.
- Actual configuration: fibers along a $(|\mathbf{a}|=1)$.
- Fiber stretch factor:

$$
\lambda \mathbf{a}=\mathbf{F A} \quad \Rightarrow \quad \lambda^{2}=\mathbf{A}^{T} \mathbf{C} \mathbf{A} .
$$

Anisotropic Strain Energy Density

Anisotropic Strain Energy Density

- Fiber invariants:

$$
I_{4}=\mathbf{A}^{T} \mathbf{C A}, \quad I_{5}=\mathbf{A}^{T} \mathbf{C}^{2} \mathbf{A}
$$

- General constitutive model:

$$
W_{\text {aniso }}=f\left(I_{4}-1, I_{5}-1\right), \quad f(0,0)=0 .
$$

- Standard reinforcement model: $W_{\text {aniso }}=q\left(I_{4}-1\right)^{2}$.

Anisotropic Strain Energy Density

Anisotropic Strain Energy Density

- Fiber invariants:

$$
I_{4}=\mathbf{A}^{T} \mathbf{C A}, \quad I_{5}=\mathbf{A}^{T} \mathbf{C}^{2} \mathbf{A}
$$

- General constitutive model:

$$
W_{\text {aniso }}=f\left(I_{4}-1, I_{5}-1\right), \quad f(0,0)=0 .
$$

- Standard reinforcement model: $W_{\text {aniso }}=q\left(I_{4}-1\right)^{2}$.

Equations of motion:

$$
\rho_{0} \mathbf{x}_{t t}=\operatorname{div}_{(X)} \mathbf{P}, \quad J=\operatorname{det}\left[\frac{\partial x^{i}}{\partial X^{j}}\right]=1, \quad P^{i j}=-p\left(F^{-1}\right)^{j i}+\rho_{0} \frac{\partial W}{\partial F_{i j}}
$$

- Strain energy density, single fiber family:

$$
W=W_{\text {iso }}+W_{\text {aniso }}=a\left(I_{1}-3\right)+b\left(I_{2}-3\right)+q\left(I_{4}-1\right)^{2} ; \quad a, b, q>0
$$

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

- Equilibrium/no displacement: $\mathbf{x}=\mathbf{X}$, natural state.
- Time-dependent, with displacement: $\mathbf{x}=\mathbf{X}+\mathbf{G}, \quad \mathbf{G}=\mathbf{G}(\mathbf{X}, t)$.
- No linearization, or assumption of smallness of \mathbf{G}, etc.

Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

- Equilibrium/no displacement: $\mathbf{x}=\mathbf{X}$, natural state.
- Time-dependent, with displacement: $\mathbf{x}=\mathbf{X}+\mathbf{G}, \quad \mathbf{G}=\mathbf{G}(\mathbf{X}, t)$.
- No linearization, or assumption of smallness of \mathbf{G}, etc.

Motions Transverse to a Plane

$$
\mathbf{x}=\left[\begin{array}{c}
X^{1} \\
X^{2} \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right]
$$

Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

- Equilibrium/no displacement: $\mathbf{x}=\mathbf{X}$, natural state.
- Time-dependent, with displacement: $\mathbf{x}=\mathbf{X}+\mathbf{G}, \quad \mathbf{G}=\mathbf{G}(\mathbf{X}, t)$.
- No linearization, or assumption of smallness of \mathbf{G}, etc.

Motions Transverse to a Plane

$$
\mathbf{x}=\left[\begin{array}{c}
X^{1} \\
X^{2} \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right]
$$

Deformation gradient:

$$
\mathbf{F}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\partial G / \partial X_{1} & 0 & 1
\end{array}\right], \quad J=|\mathbf{F}| \equiv 1 .
$$

One-Dimensional Shear Waves

Equation of motion for one-dimensional displacements:

- Denote

$$
X^{1}=x, \quad G=G(x, t), \quad \alpha=2(a+b)>0, \quad \beta=4 q>0
$$

- Single nonlinear PDE:

$$
G_{t t}=\left(\alpha+\beta \cos ^{2} \gamma\left(3 \cos ^{2} \gamma\left(G_{x}\right)^{2}+6 \sin \gamma \cos \gamma G_{x}+2 \sin ^{2} \gamma\right)\right) G_{x x}
$$

- Pressure is found explicitly:

$$
p=\beta \rho_{0} \cos ^{3} \gamma\left(\cos \gamma G_{x}+2 \sin \gamma\right) G_{x}+f(t)
$$

One-Dimensional Shear Waves

Reference Configuration

Actual Configuration

Ansatz 1: Nonlinear Wave Equation and Its Properties

1D wave model in the case of a single fiber family

- Wave equation:

$$
G_{t t}=\left(\alpha+\beta \cos ^{2} \gamma\left(3 \cos ^{2} \gamma\left(G_{x}\right)^{2}+6 \sin \gamma \cos \gamma G_{x}+2 \sin ^{2} \gamma\right)\right) G_{x x} .
$$

- General PDE class: $G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}$,

$$
\begin{aligned}
& A=3 \beta \cos ^{4} \gamma>0, \\
& B=6 \beta \sin \gamma \cos ^{3} \gamma, \\
& C=\alpha+\frac{1}{2} \beta \sin ^{2}(2 \gamma)>0,
\end{aligned} \quad 0 \leq \gamma<\pi / 2 .
$$

Ansatz 1: Nonlinear Wave Equation and Its Properties

1D wave model in the case of a single fiber family

- Wave equation:

$$
G_{t t}=\left(\alpha+\beta \cos ^{2} \gamma\left(3 \cos ^{2} \gamma\left(G_{x}\right)^{2}+6 \sin \gamma \cos \gamma G_{x}+2 \sin ^{2} \gamma\right)\right) G_{x x} .
$$

- General PDE class: $G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}$,

$$
\begin{aligned}
& A=3 \beta \cos ^{4} \gamma>0, \\
& B=6 \beta \sin \gamma \cos ^{3} \gamma, \\
& C=\alpha+\frac{1}{2} \beta \sin ^{2}(2 \gamma)>0,
\end{aligned} \quad 0 \leq \gamma<\pi / 2 .
$$

Loss of hyperbolicity

- May occur when $B^{2}-4 A C \geq 0$, i.e., $\sin ^{2}(2 \gamma) \geq \frac{4 \alpha}{\beta}$.
- Can only happen for "strong" fiber contribution: $\beta \geq \frac{4 \alpha}{\sin ^{2}(2 \gamma)}$.

Ansatz 1: Nonlinear Wave Equation and Its Properties

1D wave model in the case of a single fiber family

- Wave equation:

$$
G_{t t}=\left(\alpha+\beta \cos ^{2} \gamma\left(3 \cos ^{2} \gamma\left(G_{x}\right)^{2}+6 \sin \gamma \cos \gamma G_{x}+2 \sin ^{2} \gamma\right)\right) G_{x x} .
$$

- General PDE class: $G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}$,

$$
\begin{aligned}
& A=3 \beta \cos ^{4} \gamma>0 \\
& B=6 \beta \sin \gamma \cos ^{3} \gamma, \\
& C=\alpha+\frac{1}{2} \beta \sin ^{2}(2 \gamma)>0,
\end{aligned} \quad 0 \leq \gamma<\pi / 2
$$

Variational structure

- Any nonlinear PDE of the above class follows from a variational principle, with the Lagrangian density (up to equivalence)

$$
\mathcal{L}=\frac{1}{2} G_{t}^{2}+\frac{A}{4} G G_{x}^{2} G_{x x}+\frac{B}{3} G G_{x} G_{x x}-\frac{C}{2} G_{x}^{2} .
$$

Ansatz 1: Nonlinear Wave Equation and Its Properties

1D wave model in the case of a single fiber family

- Wave equation:

$$
G_{t t}=\left(\alpha+\beta \cos ^{2} \gamma\left(3 \cos ^{2} \gamma\left(G_{x}\right)^{2}+6 \sin \gamma \cos \gamma G_{x}+2 \sin ^{2} \gamma\right)\right) G_{x x} .
$$

- General PDE class: $G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}$,

$$
\begin{aligned}
& A=3 \beta \cos ^{4} \gamma>0, \\
& B=6 \beta \sin \gamma \cos ^{3} \gamma, \\
& C=\alpha+\frac{1}{2} \beta \sin ^{2}(2 \gamma)>0,
\end{aligned} \quad 0 \leq \gamma<\pi / 2 .
$$

Simplification

- Depending on the sign of $B^{2}-4 A C$, equation can be transformed to

$$
u_{t t}=\left(\left(u_{x}\right)^{2}+K\right) u_{x x}, \quad K=0, \pm 1
$$

One-Dimensional Shear Waves

A numerical solution

- Wave speed dependent on u_{x}.
- Numerical instabilities.
- Wave breaking, applicability?

One-Dimensional Shear Waves

A numerical solution

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\wedge[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=D_{t} \Theta+D_{x} \Psi=0$.
- Basic CLs:

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\wedge[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=\mathrm{D}_{t} \Theta+\mathrm{D}_{x} \Psi=0$.
- Basic CLs:

Eulerian momentum:

- $\wedge=1$,

$$
\mathrm{D}_{t}\left(u_{t}\right)-\mathrm{D}_{x}\left[u_{x}\left(\frac{1}{3} u_{x}^{2}+1\right)\right]=0 .
$$

Lagrangian momentum:

- $\Lambda=u_{x}$,

$$
\mathrm{D}_{t}\left(u_{x} u_{t}\right)-\mathrm{D}_{x}\left(\frac{1}{2}\left(u_{t}^{2}+u_{x}^{2}\right)+\frac{1}{4} u_{x}^{4}\right)=0
$$

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\wedge[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=\mathrm{D}_{t} \Theta+\mathrm{D}_{x} \Psi=0$.
- Basic CLs:

Energy:

- $\Lambda=u_{t}$,

$$
\mathrm{D}_{t}\left(\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+\frac{1}{12} u_{x}^{4}\right)-\mathrm{D}_{x}\left[u_{t} u_{x}\left(\frac{1}{3} u_{x}^{2}+1\right)\right]=0 .
$$

Center of mass theorem:

- $\Lambda=t$,

$$
\mathrm{D}_{t}\left(t u_{t}-u\right)-\mathrm{D}_{x}\left[t u_{x}\left(\frac{1}{3} u_{x}^{2}+1\right)\right]=0 .
$$

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\wedge[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=D_{t} \Theta+D_{x} \Psi=0$.

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\Lambda[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=D_{t} \Theta+D_{x} \Psi=0$.

An infinite family of conservation laws

- Multiplier: any function $\Lambda\left(u_{t}, u_{x}\right)$ satisfying

$$
\Lambda_{u_{x}, u_{x}}=\left(u_{x}^{2}+1\right) \Lambda_{u_{t}, u_{t}} .
$$

Linearization by a Legendre contact transformation:

$$
\begin{gathered}
y=u_{x}, \quad z=u_{t}, \quad w(y, z)=u(x, t)-x u_{x}-t u_{t} ; \\
w_{y y}=\left(y^{2}+1\right) w_{z z} .
\end{gathered}
$$

Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

- Model: $u_{t t}=\left(u_{x}^{2}+1\right) u_{x x}$.
- Conserved form: $\Lambda[u]\left(u_{t t}-\left(u_{x}^{2}+1\right) u_{x x}\right)=\mathrm{D}_{t} \Theta+\mathrm{D}_{x} \Psi=0$.

A more exotic, 2nd-order CL:

- For \wedge depending on 3rd derivatives, can have, e.g.,

$$
\mathrm{D}_{t} \frac{u_{x x}}{u_{t x}-\left(u_{x}^{2}+1\right) u_{x x}}+\mathrm{D}_{x} \frac{u_{t x}}{u_{t x}^{2}-\left(u_{x}^{2}+1\right) u_{x x}^{2}}=0
$$

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

$$
\mathbf{x}=\left[\begin{array}{c}
X^{1} \\
X^{2}+H\left(X^{1}, t\right) \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right] .
$$

Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

$$
\mathbf{x}=\left[\begin{array}{c}
X^{1} \\
X^{2}+H\left(X^{1}, t\right) \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right] .
$$

Deformation gradient:

$$
\mathbf{F}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\partial H / \partial X_{1} & 1 & 0 \\
\partial G / \partial X_{1} & 0 & 1
\end{array}\right], \quad J=|\mathbf{F}| \equiv 1 .
$$

Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

$$
\mathbf{x}=\left[\begin{array}{c}
X^{1} \\
X^{2}+H\left(X^{1}, t\right) \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right] .
$$

Deformation gradient:

$$
\mathbf{F}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\partial H / \partial X_{1} & 1 & 0 \\
\partial G / \partial X_{1} & 0 & 1
\end{array}\right], \quad J=|\mathbf{F}| \equiv 1 .
$$

Governing PDEs:

- Denote $X^{1}=x, G=G(x, t), H=H(x, t)$.

Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

$$
\mathbf{X}=\left[\begin{array}{c}
X^{1} \\
X^{2}+H\left(X^{1}, t\right) \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right]
$$

Coupled nonlinear wave equations:

$$
\begin{gathered}
0=p_{x}-2 \beta \rho_{0} \cos ^{3} \gamma\left[\left(\cos \gamma G_{x}+\sin \gamma\right) G_{x x}+\cos \gamma H_{x} H_{x x}\right], \\
H_{t t}=\alpha H_{x x}+\beta \cos ^{3} \gamma\left[\cos \gamma\left(\left[G_{x}^{2}+H_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)+2 \sin \gamma \frac{\partial}{\partial x}\left(G_{x} H_{x}\right)\right], \\
G_{t t}=\alpha G_{x x}+\beta \cos ^{2} \gamma\left[2 \sin ^{2} \gamma G_{x x}+\cos ^{2} \gamma\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right. \\
\left.+\sin 2 \gamma\left(3 G_{x} G_{x x}+H_{x} H_{x x}\right)\right] .
\end{gathered}
$$

Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

$$
\mathbf{X}=\left[\begin{array}{c}
X^{1} \\
X^{2}+H\left(X^{1}, t\right) \\
X^{3}+G\left(X^{1}, t\right)
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{c}
\cos \gamma \\
0 \\
\sin \gamma
\end{array}\right]
$$

Coupled nonlinear wave equations:

$$
\begin{gathered}
0=p_{x}-2 \beta \rho_{0} \cos ^{3} \gamma\left[\left(\cos \gamma G_{x}+\sin \gamma\right) G_{x x}+\cos \gamma H_{x} H_{x x}\right], \\
H_{t t}=\alpha H_{x x}+\beta \cos ^{3} \gamma\left[\cos \gamma\left(\left[G_{x}^{2}+H_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)+2 \sin \gamma \frac{\partial}{\partial x}\left(G_{x} H_{x}\right)\right], \\
G_{t t}=\alpha G_{x x}+\beta \cos ^{2} \gamma\left[2 \sin ^{2} \gamma G_{x x}+\cos ^{2} \gamma\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right. \\
\left.+\sin 2 \gamma\left(3 G_{x} G_{x x}+H_{x} H_{x x}\right)\right] .
\end{gathered}
$$

Subcase 1: $\gamma=\pi / 2$

$$
H_{t t}=\alpha H_{x x}, \quad G_{t t}=\alpha G_{x x} .
$$

Ansatz 2 Compatible with Incompressibility

Subcase 2: $\gamma=0$

$$
\begin{aligned}
H_{t t} & =\alpha H_{x x}+\beta\left[\left(\left[3 H_{x}^{2}+G_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)\right], \\
G_{t t} & =\alpha G_{x x}+\beta\left[\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right] .
\end{aligned}
$$

Ansatz 2 Compatible with Incompressibility

Subcase 2: $\gamma=0$

$$
\begin{aligned}
& H_{t t}=\alpha H_{x x}+\beta\left[\left(\left[3 H_{x}^{2}+G_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)\right], \\
& G_{t t}=\alpha G_{x x}+\beta\left[\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right] .
\end{aligned}
$$

- Exact traveling wave solutions can be derived [A.C., J.-F.G., S.St.Jean (2015)].
- e.g. Carrol-type nonlinear rotational shear waves

Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

$$
\begin{aligned}
& H_{t t}=\alpha H_{x x}+\beta\left[\left(\left[3 H_{x}^{2}+G_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)\right], \\
& G_{t t}=\alpha G_{x x}+\beta\left[\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right] .
\end{aligned}
$$

Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

$$
\begin{aligned}
& H_{t t}=\alpha H_{x x}+\beta\left[\left(\left[3 H_{x}^{2}+G_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)\right], \\
& G_{t t}=\alpha G_{x x}+\beta\left[\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right] .
\end{aligned}
$$

Linear momenta:

$$
\Theta_{1}=H_{t}, \quad \Theta_{2}=G_{t},
$$

x-components of the Lagrangian and the Angular momentum:

$$
\Theta_{3}=G_{x} G_{t}+G_{x} G_{t}, \quad \Theta_{4}=-G H_{t}+H G_{t},
$$

Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

$$
\begin{aligned}
& H_{t t}=\alpha H_{x x}+\beta\left[\left(\left[3 H_{x}^{2}+G_{x}^{2}\right] H_{x x}+2 G_{x} H_{x} G_{x x}\right)\right], \\
& G_{t t}=\alpha G_{x x}+\beta\left[\left(2 G_{x} H_{x} H_{x x}+\left(H_{x}^{2}+3 G_{x}^{2}\right) G_{x x}\right)\right] .
\end{aligned}
$$

Energy:

$$
\Theta_{5}=\frac{1}{2}\left(G_{t}^{2}+H_{t}^{2}\right)+\frac{\alpha}{2}\left(G_{x}^{2}+H_{x}^{2}\right)+\frac{\beta}{4}\left(G_{x}^{2}+H_{x}^{2}\right)^{2}
$$

Center of mass theorem:

$$
\Theta_{6}=t G_{t}-G, \quad \Theta_{7}=t H_{t}-H .
$$

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves

7 Discussion

A Two-Fiber Planar Model

Fiber invariants:

$$
\boldsymbol{I}_{4}=\lambda_{1}^{2}=\mathbf{A}_{1}^{T} \mathbf{C} \mathbf{A}_{1}, \quad \boldsymbol{I}_{6}=\lambda_{2}^{2}=\mathbf{A}_{2}^{T} \mathbf{C} \mathbf{A}_{2}, \quad \boldsymbol{I}_{8}=\left(\mathbf{A}_{1}^{T} \mathbf{A}_{2}\right)\left(\mathbf{A}_{1}^{T} \mathbf{C} \mathbf{A}_{2}\right) .
$$

Strain energy density:

$$
W=a\left(I_{1}-3\right)+b\left(I_{2}-3\right)+q_{1}\left(I_{4}-1\right)^{2}+q_{2}\left(I_{6}-1\right)^{2}+K_{1} I_{8}^{2}+K_{2} I_{8} .
$$

One-Dimensional Shear Waves

Reference Configuration

Actual Configuration

A Two-Fiber Planar Model, 1D Shear Waves

Displacements transverse to an axis:

$$
\mathbf{X}=\left[\begin{array}{c}
X^{1} \\
X^{2}+G\left(X^{1}, t\right)
\end{array}\right], \quad p=p\left(X^{1}, t\right) .
$$

A Two-Fiber Planar Model, 1D Shear Waves

Displacements transverse to an axis:

$$
\mathbf{X}=\left[\begin{array}{c}
X^{1} \\
X^{2}+G\left(X^{1}, t\right)
\end{array}\right], \quad p=p\left(X^{1}, t\right)
$$

Equations:

- Denote $X^{1}=x$.
- Incompressibility condition is again identically satisfied.
- $p(x, t)$ found explicitly.
- Displacement $G(x, t)$ satisfies a PDE from the same general class

$$
G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}
$$

where

$$
A=A\left(K_{1}, q_{1,2}, \gamma_{1,2}\right), \quad B=B\left(K_{1}, q_{1,2}, \gamma_{1,2}\right), \quad C=C\left(K_{1,2}, q_{1,2}, \gamma_{1,2}\right)
$$

A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

$$
G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}
$$

- Same conservation laws as found before!

A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

$$
G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x},
$$

- Same conservation laws as found before!

Variational structure

- Any nonlinear PDE of the above class follows from a variational principle, with the Lagrangian density (up to equivalence)

$$
\mathcal{L}=\frac{1}{2} G_{t}^{2}+\frac{A}{4} G G_{x}^{2} G_{x x}+\frac{B}{3} G G_{x} G_{x x}-\frac{C}{2} G_{x}^{2}
$$

A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

$$
G_{t t}=\left(A\left(G_{x}\right)^{2}+B G_{x}+C\right) G_{x x}
$$

- Same conservation laws as found before!

Simplification

- Depending on the sign of $B^{2}-4 A C$, PDE can be transformed to

$$
u_{t t}=\left(\left(u_{x}\right)^{2} \pm K\right) u_{x x}, \quad K=0, \pm 1 .
$$

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

A Viscoelastic Planar Model

A hyper-viscoelastic model:

- An extra "invariant": $J_{2}=\operatorname{Tr}\left(\dot{\mathbf{C}}^{2}\right)$.

Total potential, one fiber family:

$$
W=a\left(I_{1}-3\right)+b\left(I_{2}-3\right)+q_{1}\left(I_{4}-1\right)^{2}+\frac{\eta}{4} J_{2}\left(I_{1}-3\right) .
$$

One-Dimensional Viscoelastic Shear Waves

Equation of motion:

- Case: shear wave propagating along the fibers, X^{1}.
- Single nonlinear PDE:

$$
G_{t t}=\left(\alpha+3 \beta G_{x}^{2}\right) G_{x x}+\eta\left[2\left(1+4 G_{x}^{2}\right) G_{x} G_{t x} G_{x x}+\left(1+2 G_{x}^{2}\right) G_{x}^{2} G_{t x x}\right] .
$$

- D'Alembert-type example: no wave breaking...

One-Dimensional Shear Waves

A numerical solution

Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

$$
G_{t t}=\left(\alpha+3 \beta G_{x}^{2}\right) G_{x x}+\eta\left[2\left(1+4 G_{x}^{2}\right) G_{x} G_{t x} G_{x x}+\left(1+2 G_{x}^{2}\right) G_{x}^{2} G_{t x x}\right]
$$

- $\alpha=\eta=1$.

Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

$$
G_{t t}=\left(\alpha+3 \beta G_{x}^{2}\right) G_{x x}+\eta\left[2\left(1+4 G_{x}^{2}\right) G_{x} G_{t x} G_{x x}+\left(1+2 G_{x}^{2}\right) G_{x}^{2} G_{t x x}\right]
$$

- $\alpha=\eta=1$.

CL 1:

$$
\mathrm{D}_{t}\left(u_{t}-\left(1+2 u_{x}^{2}\right) u_{x}^{2} u_{x x}\right)-\mathrm{D}_{x}\left(\left(1+\beta u_{x}^{2}\right) u_{x}\right)=0 .
$$

Potential system:

$$
v_{x}=u_{t}-\left(1+2 u_{x}^{2}\right) u_{x}^{2} u_{x x}, \quad v_{t}=\left(1+\beta u_{x}^{2}\right) u_{x} .
$$

Evolution equations:

$$
\begin{aligned}
& u_{t}=v_{x}+\left(1+2 u_{x}^{2}\right) u_{x}^{2} u_{x x} \\
& v_{t}=\left(1+\beta u_{x}^{2}\right) u_{x}
\end{aligned}
$$

Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

$$
G_{t t}=\left(\alpha+3 \beta G_{x}^{2}\right) G_{x x}+\eta\left[2\left(1+4 G_{x}^{2}\right) G_{x} G_{t x} G_{x x}+\left(1+2 G_{x}^{2}\right) G_{x}^{2} G_{t x x}\right]
$$

- $\alpha=\eta=1$.

CL 2:

$$
\mathrm{D}_{t}\left(t u_{t}-u-t\left(1+2 u_{x}^{2}\right) u_{x}^{2} u_{x x}\right)-\mathrm{D}_{x}\left[\left(t-\left(\frac{1}{3}-\beta t\right)+\frac{2}{5} u_{x}^{4}\right) u_{x}\right]=0 .
$$

Outline

(1) Local Conservation Laws
(2) Fiber-Reinforced Materials; Governing Equations
(3) Single Fiber Family, Ansatz 1 - One-Dimensional Shear Waves

4 Single Fiber Family, Ansatz 2-2D Shear Waves
(5) Two Fiber Families, Planar Case
(6) A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
(7) Discussion

Summary

Incompressible hyperelastic models

- Fundamental nonlinear equations for finite-amplitude waves are systematically obtained.
- Wave equations derived for one- and two-fiber-family cases.
- Variational structure is inherited in all models.
- Wave breaking in the one-dimensional case.
- Local conservation laws are computed.

Viscoelastic models

- A one-dimensional finite-amplitude nonlinear wave model is derived, for the two-fiber-family case.
- No wave breaking.
- Local conservation laws are considered.

Future work

Further research

- Consider different geometries of interest for applications (e.g., cylindrical, spherical,...).
- Use the derived local conservation laws for optimization and testing of numerical methods.

Some references

E Anco, S. C. and Bluman, G. W. (2002)
Direct construction method for conservation laws of partial differential equations. Part I:
Examples of conservation law classifications. Eur. J. Appl. Math. 13, 545-566.
Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2010).
Applications of Symmetry Methods to Partial Differential Equations.
Springer: Applied Mathematical Sciences, Vol. 168.
Cheviakov, A. F. (2007)
GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Comm. 176, 48-61.
品
Cheviakov, A. F., Ganghoffer, J.-F., and St. Jean, S. (2015)
Fully nonlinear wave models in fiber-reinforced anisotropic incompressible hyperelastic solids. Int. J. Nonlin. Mech. 71, 8-21.

