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© Local Conservation Laws

9 Fiber-Reinforced Materials; Governing Equations

© Single Fiber Family, Ansatz 1 — One-Dimensional Shear Waves
© Single Fiber Family, Ansatz 2 — 2D Shear Waves

e Two Fiber Families, Planar Case

e A Viscoelastic Model, Single Fiber Family, 1D Shear Waves

@ Discussion
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© Local Conservation Laws
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Introduction

@ Interesting mathematics!

o Study of fundamental properties of nonlinear elastodynamics equations arising in

applications.
v
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Conservation Laws

-

D v |e

Global form

@ Global quantity M € D changes only due to boundary fluxes.
d
M= | ©dV; —M = W - dS.
D dt oD

@ O[u]: conserved density; W: flux vector.
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Conservation Laws

-

D v |e

Global form

@ Global quantity M € D changes only due to boundary fluxes.
d
M= | ©dV; —M = W - dS.
D dt oD

@ O[u]: conserved density; W: flux vector.

@ A local conservation law: a divergence expression equal to zero, e.g.,

D; Ou] 4+ D; W'[u] = 0.
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Conservation Laws

-

D v |e

Global form

@ Global quantity M € D changes only due to boundary fluxes.
d
M= | ©dV; —M = W - dS.
D dt oD

@ O[u]: conserved density; W: flux vector.

Global conserved quantity:

i/\/I:Dt/@dVZO when w.dS =0.
dt v av
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Applications of Conservation Laws

@ Constants of motion.

o Integration.

@ Rates of change of physical variables; constants of motion.

Differential constraints.

@ Analysis: existence, uniqueness, stability, integrability, linearization.

Potentials, stream functions, etc.

Conserved forms for numerical methods (finite volume, etc.).

@ Numerical method testing.

A\
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Construction of Local Conservation Laws

For equations following from a variational principle:

@ Can use Noether’s theorem.
o Conservation laws are connected with variational symmetries.

o Technically difficult.
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Construction of Local Conservation Laws

For equations following from a variational principle:

@ Can use Noether’s theorem.
o Conservation laws are connected with variational symmetries.

o Technically difficult.

v

For generic models: Direct conservation law construction method

o Conservation laws can be sought in the characteristic form A, R° = D;®'.

o Systematically find the multipliers A,.
o Direct method is complete for a wide class of systems.

o Implemented in Maple/GeM: symbolic computations.
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9 Fiber-Reinforced Materials; Governing Equations
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Examples

Fibroblast nuclei Fibroblasts Collagen fibers
-
=——1
2
A—4

Collagen fiber in tendons.

Single fiber family.
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A fiber-reinforced composite in dentistry.

Single fiber family.
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Examples

Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-
reinforced medial layers

Bundles of collagen fibrils

External ela lamina
Elastic lamina

Elastic fibrils
Collagen fibrils
Smooth muscle cell
Internal elastic lamina

Endothelial cell

Arterial tissue (Holzapfel, Gasser, and Ogden, 2000).

Two helically arranged fiber families.
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Fabric — two fiber families.
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Examples

o Appropriate framework: incompressible hyperelasticity / viscoelasticity.
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Notation; Material Picture

Fig. 1. Material and Eulerian coordinates.

Material picture

o Material points X € Q.

@ Actual position of a material point: x = ¢ (X, t) € Q.

o Deformation gradient: F(X,t) = Vo, ,:ij _ %
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Governing Equations

Incompressibility:

J=detF= |2

ai| = p=p/d=p(X).
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Governing Equations

Incompressibility:

Ox'
ai| = p=p/d=p(X).

J:detF:’

v
Equations of motion:

poxe = divix)P + poR, J=1.

o R =R(X, t): total body force per unit mass; po(X): density.

e Use R =0, po = const.
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Constitutive Relations

Stress tensor (incompressible):

P =—p (F7Y + g &
ij

o W: scalar strain energy density; p: hydrostatic pressure.

Strain Energy Density

W = VViso ar Waniso~

Isotropic Strain Energy Density

@ Right Cauchy-Green strain tensor: C = F'F,

h =TrC, L = 1[(Tr C)*> — Tr(C?)]. (2)

@ Mooney-Rivlin materials:

Wiso = a(ll - 3) = b(l2 — 3), a,b > 0.
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Fiber Directions

o

o Reference configuration: fibers along A (|A| =1).

Fiber directions

o Actual configuration: fibers along a (|a] = 1).

@ Fiber stretch factor:
Ma=FA = M=ATCA.
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Anisotropic Strain Energy Density

Anisotropic Strain Energy Density

@ Fiber invariants:

L=ATCA, I=ATC?A.
o General constitutive model:

Waniso = f(l4 - 15 I5 - 1)5 f(0,0) =0.

e Standard reinforcement model: Waniso = q (lh — 1)°.
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Anisotropic Strain Energy Density

Anisotropic Strain Energy Density

@ Fiber invariants:
L=ATCA, I=ATC?A.

o General constitutive model:
Waniso = f(l4 - 17 I5 - 1)5 f(0,0) =0.

e Standard reinforcement model: Waniso = q (lh — 1)°.

| \

Equations of motion:

oW
oF;

. B . .
poxy = divx) P, J = det [3;1} =1, Pi=—p(F7'Y + po

@ Strain energy density, single fiber family:

W = Wiso + Waniso = 2(/1 - 3) = b(l2 - 3) = q(l4 - 1)2, a, b7 q> 0.
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© Single Fiber Family, Ansatz 1 — One-Dimensional Shear Waves
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Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

@ Equilibrium/no displacement: x = X, natural state.
o Time-dependent, with displacement: x =X+ G, G = G(X,t).

@ No linearization, or assumption of smallness of G, etc.
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Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

@ Equilibrium/no displacement: x = X, natural state.
o Time-dependent, with displacement: x =X+ G, G = G(X,t).

@ No linearization, or assumption of smallness of G, etc.
v

Motions Transverse to a Plane

X1 cos 7y
x = X? , A= 0
X*+ G (Xt) .
sin 7y
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Ansatz 1 Compatible with Incompressibility

Equilibrium and Displacements

@ Equilibrium/no displacement: x = X, natural state.
o Time-dependent, with displacement: x =X+ G, G = G(X,t).
@ No linearization, or assumption of smallness of G, etc.

Motions Transverse to a Plane

X1 cos 7y
x = X? , A= 0
X*+ G (Xt) .
sin 7y
Deformation gradient:
1 0 0
F = 0 10|, J=[F=1

9G/oX, 0 1

A. Cheviakov (U. Saskatchewan) Conservation Laws in Elastodynamics February 10, 2015 20 / 46



One-Dimensional Shear Waves

Equation of motion for one-dimensional displacements:

@ Denote
X'=x, G=G(x,t), a=2(a+b)>0, B=4qg>0.

@ Single nonlinear PDE:

Gi = (a+ Bcos® v (3cos’ v (Gx)? + 6siny cos Y G, + 2sin> 7)) G-

@ Pressure is found explicitly:

p = Bpocos’ y (cosyGy + 2siny) G, + F(t).
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One-Dimensional Shear Waves

a
X0 /ﬁ/ 20 T~

11 0 1 i 0 1
X 7!
Reference Configuration Actual Configuration
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Ansatz 1: Nonlinear Wave Equation and lts Properties

1D wave model in the case of a single fiber family

o Wave equation:

Gy = (a + Bcos’y (3 cos® v (Gx)? + 6siny cosyGy + 2sin’ 'y)) Gix.

o General PDE class: | Gi = (A(Gx)* + BGy + C) Gy,

A =3Bcos*y >0,
B = 683sin~y cos® 7, 0<y<m/2
C =a+ 18sin’(2y) >0,

A. Cheviakov (U. Saskatchewan) Conservation Laws in Elastodynamics February 10, 2015 23 / 46



Ansatz 1: Nonlinear Wave Equation and lts Properties

1D wave model in the case of a single fiber family

o Wave equation:

Gy = (a + Bcos’y (3 cos® v (Gx)? + 6siny cosyGy + 2sin’ 'y)) Gix.

o General PDE class: | Gi = (A(Gx)* + BGy + C) Gy,

A =3Bcos*y >0,
B = 683sin~y cos® 7, 0<y<m/2
C =a+ 18sin’(2y) >0,

Loss of hyperbolicity

&~

e May occur when B? — 4AC > 0, i.e., sin®(2y) > Fa.
“ ol g — %"
@ Can only happen for “strong” fiber contribution: § > ———.
sin®(2v)
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Ansatz 1: Nonlinear Wave Equation and lts Properties

1D wave model in the case of a single fiber family

o Wave equation:

Gy = (a + Bcos’y (3 cos® v (Gx)? + 6siny cosyGy + 2sin’ 'y)) Gix.

o General PDE class: | Gi = (A(Gx)* + BGy + C) Gy,

A =3Bcos*y >0,
B = 683sin~y cos® 7, 0<y<m/2
C =a+ 18sin’(2y) >0,

Variational structure

@ Any nonlinear PDE of the above class follows from a variational principle, with the
Lagrangian density (up to equivalence)

A
4

B C

_ 15 2 B _C
£_2Gt+ GGXGXX+3GGXGXX 2Gx.

A. Cheviakov (U. Saskatchewan) Conservation Laws in Elastodynamics February 10, 2015 23 / 46



Ansatz 1: Nonlinear Wave Equation and lts Properties

1D wave model in the case of a single fiber family

o Wave equation:

Gy = (a + Bcos’y (3 cos® v (Gx)? + 6siny cosyGy + 2sin’ 'y)) Gix.

o General PDE class: | Gi = (A(Gx)* + BGy + C) Gy,

A =3Bcos*y >0,
B = 683sin~y cos® 7, 0<y<m/2
C =a+ 18sin’(2y) >0,

Simplification

@ Depending on the sign of B2 — 4AC, equation can be transformed to

Upe = ((ux)2 + K) Usscs K =0, £+1.
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One-Dimensional Shear Waves

A numerical solution

o Wave speed dependent on uy.
@ Numerical instabilities.

@ Wave breaking, applicability?
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One-Dimensional Shear Waves

A numerical solution
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Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy
o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.

@ Basic CLs:
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Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy
o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.
@ Basic CLs:

v
Eulerian momentum:

o N=1,

v
Lagrangian momentum:

o N\ = uy,

1 1
D¢(uxur) — Dy (E(uf + )+ Zuﬁ) =0.
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Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy
o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.

@ Basic CLs: J
o N = u,
1 9) 1 9) 1 4 1 2 —
D; (Eut + Eux—i- 12ux> Dy {utux <3ux+1>] =0.

Center of mass theorem:

o A=t

D¢ (tus — u) — Dy [tux (%uﬁ + 1):| =0.
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Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy
o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.

A. Cheviakov (U. Saskatchewan) Conservation Laws in Elastodynamics February 10, 2015 27 / 46



Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy
o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.

An infinite family of conservation laws

o Multiplier: any function A(ue, ux) satisfying

Ny, = (ui + 1) Nugooe-

Linearization by a Legendre contact transformation:

y=ux, z=u, w(y,z)=u(x,t)— xux— tus;

Wy, = (y2 + 1) Wys.

February 10, 2015 27/
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Direct Construction of Conservation Laws for Ansatz 1

Find local CLs for the nonlinear wave equation

o Model: vy = (uf + 1) Uy

o Conserved form: A[u] (uee — (U2 + 1) ux) = D: © + D, W = 0.

v

A more exotic, 2nd-order CL:

@ For A depending on 3rd derivatives, can have, e.g.,

Uxx Uex

Dy =0
U — (Uf + 1) U T (uf + 1)ud

D

A. Cheviakov (U. Saskatchewan) Conservation Laws in Elastodynamics February 10, 2015 27 / 46



Outline

© Single Fiber Family, Ansatz 2 — 2D Shear Waves
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Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

X! cos 7y
X=| X*+H(X" 1) |, A= 0
X*+ G (Xt) sin~y
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Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

X! cos 7y
X=| X*+H(X" 1) |, A= 0
X*+ G (Xt) sin~y
Deformation gradient:
1 0 0
F=|0H/0X 1 0|, J=|F=1
0G/oX1 0 1
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Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

X! cos 7y
X=| X*+H(X" 1) |, A= 0
X*+ G (Xt) sin~y

v
Deformation gradient:

Governing PDEs:
e Denote X' = x, G = G(x,t), H= H(x, t).
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Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis:

X! cos 7y
X=|X+H(X"t) |, A=]| 0
X3+G(X1,t) sin~y

V.

Coupled nonlinear wave equations:

0= px—2B8po cos® v [(cosyGx + siny) G + cos yHxHy],

Hee =  aHye + B cos®y |:COS’Y ([Gx2 + Hf] He + QGXHXGXX) + 2sin fy% (GXHX)} ,

Gt = aGu + Bcos’y [2sin®y Gy + cos’ v (2GcHiHu + (HZ + 3G?2) Gi)

+ sin 27 (3G« G + HxHx)].
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Ansatz 2 Compatible with Incompressibility

Displacements transverse to an axis

X! cosy

X=|X+H(X"t) |, A=]| 0
X3+G(X1,t) sin~y

”
Coupled nonlinear wave equations:

0= px—2B8po cos® v [(cosyGx + siny) G + cos yHxHy],

Hee =  aHye + B cos®y |:COS’Y ([Gf + Hf] He + ZGXHXGXX) + 2sin fy% (GXHX)} ,

Gt = QG + fcos’ v [2sin®y G + cos® v (2GxHxHy + (H2 + 3G?2) Gi)

+ sin 27 (3G« G + HxHx)].

4

Subcase 1: v = 7/2

Hy = Olex, G = Gy
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Ansatz 2 Compatible with Incompressibility
Subcase 2: v =0
Htt: aHxx+B [([3H3+G3] Hxx+2GxHxGxx)]7

G = aGu+ B[(2GcHcHuw + (H; 4+ 3G?) Gu)].
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Ansatz 2 Compatible with Incompressibility

Subcase 2: v =0
Htt: aHxx+B [([3H3+G3] Hxx+2GxHxGxx)]7

G = aGu+ B[(2GcHcHuw + (H; 4+ 3G?) Gu)].

@ Exact traveling wave solutions can be derived [A.C., J.-F.G., 5.5t.Jean (2015)].

o e.g. Carrol-type nonlinear rotational shear waves
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Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

Htt = Olex aF 5 [([31‘_’3 aF GE:I Hxx ar 2GxHxGxx)] 5

Gtt = aGXX +ﬂ [(2GxHxHxx ar (Hf ar 3G3) Gxx)] .
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Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

Htt = Olex aF 5 [([31‘_’)% aF GE:I Hxx ar 2GxHxGxx)] 5

Gtt = anx arF ﬂ [(2GxHxHxx ar (H)% ar 3G3) Gxx)] .

Linear momenta:

el = Ht, @2 = Gt;

x-components of the Lagrangian and the Angular momentum:

O3 = GxG: + GGy, ©4 = —GH; + HG:,
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Direct Construction of Conservation Laws for Ansatz 2

Compute local CLs for the coupled model

Htt = Olex aF 5 [([31‘_’)% aF GE:I Hxx ar 2GxHxGxx)] 5

Gtt = anx arF ﬂ [(2GxHxHxx ar (H)% ar 3G3) Gxx)] .

Os = %(Gf +H)+ %(Gﬁ T H) + g(cf T H2)?

Center of mass theorem:

@5=th—G, 67:th—H.
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Outline

e Two Fiber Families, Planar Case
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A Two-Fiber Planar Model

L
AR

L=XM=A{CA;, Ilk=XM=AJCAs, = (A!A)(A{CA)).

Fiber invariants:

Strain energy density:

W=a(h—3)+b(bh—3)+q(ls —1)°+q (I — 1)* + Kilg + Kol.
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One-Dimensional Shear Waves

X2
Al
5 v/\————
n r 0
T2 X,
AZ

) . -1
Reference Configuration -1 0 1

Actual Configuration
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A Two-Fiber Planar Model, 1D Shear Waves

Displacements transverse to an axis:

Xl
X2+ G (X4,1)

:| ’ p:p(X17t)
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A Two-Fiber Planar Model, 1D Shear Waves
Displacements transverse to an axis:

Xl
. 1
X2+G(X1 t):|7 p_p(th)

X =

Equations:

| \

o Denote X! = x.
@ Incompressibility condition is again identically satisfied.
e p(x,t) found explicitly.

o Displacement G(x, t) satisfies a PDE from the same general class

Gtt = (A(Gx)2 + BGy + C) GXX7

where

A=A(Ki,q12,71,2), B=B(Ki,qi2,7,2), C=C(Kiz2,q12,7,.2),
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A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

Gt = (A(G:)* + BG + C) G,

@ Same conservation laws as found before!
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A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

Gt = (A(G:)* + BG + C) G,

@ Same conservation laws as found before!

V.

Variational structure

@ Any nonlinear PDE of the above class follows from a variational principle, with the
Lagrangian density (up to equivalence)

A
4

B C

2 2
GG2 G+ 5 GGG — G

1
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A Two-Fiber Planar Model, 1D Shear Waves

Nonlinear wave equation

Gt = (A(G:)* + BG + C) G,

@ Same conservation laws as found before!

Simplification

o Depending on the sign of B2 — 4AC, PDE can be transformed to

Uy = ((ux)2 2 K) Uscs K =0, £+1.
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Outline

e A Viscoelastic Model, Single Fiber Family, 1D Shear Waves
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A Viscoelastic Planar Model

A hyper-viscoelastic model:

@ An extra “invariant”: J = Tr(CQ).

Total potential, one fiber family:

W =a(h—3)+b(b—3)+aq(l—1)°+ %Jz(/l —3).
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One-Dimensional Viscoelastic Shear Waves

1

/\—

7
Equation of motion:

@ Case: shear wave propagating along the fibers, X*.

@ Single nonlinear PDE:

| Gie = (@ + 38G2) G + 1 [2(1 + 4G2) G Gox Gux + (1 + 2G2) G2 G |

o D’'Alembert-type example: no wave breaking...
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One-Dimensional Shear Waves

A numerical solution

Conservation Laws in Elastodynamics






Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

Gie = (0 +38G2) G + 1 [2(1 + 4G2) G G G + (1 + 2G2) GZ G|

e a=n=1.
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Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

Gie = (0 +38G2) G + 1 [2(1 + 4G2) G G G + (1 + 2G2) GZ G|

e a=n=1.

CL 1:

Df(ut — (1 + 2U>2<)U>2(Uxx) - DX((]- + ﬂuﬁ)Ux) = 0

Potential system:

Ve = tr — (1 4 203) U3 s, vi = (1 + Bud)uy.

Evolution equations:

ur = Vi + (1 4 202) 2 s,

vi = (14 Bu?)us.
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Conservation Laws for the Viscoelastic Shear Waves

Compute local CLs for the coupled model

Gie = (0 +38G2) G + 1 [2(1 + 4G2) G G G + (1 + 2G2) GZ G|

e a=n=1.

CL 2:

De(tus — u — t(1 4 2u2)tl ) — Dy [(t — (% — ,Bt) + %uﬁ) ux} =0.
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Outline

@ Discussion
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Summary

Incompressible hyperelastic models

o Fundamental nonlinear equations for finite-amplitude waves are systematically
obtained.

Wave equations derived for one- and two-fiber-family cases.

Variational structure is inherited in all models.

o Wave breaking in the one-dimensional case.

@ Local conservation laws are computed.

Viscoelastic models

@ A one-dimensional finite-amplitude nonlinear wave model is derived, for the
two-fiber-family case.

@ No wave breaking.

@ Local conservation laws are considered.
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Further research

o Consider different geometries of interest for applications (e.g., cylindrical,
spherical,...).

@ Use the derived local conservation laws for optimization and testing of numerical
methods.
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