Asymptotic Analysis of Narrow Escape Problems in Non-Spherical 3D Domains

Alexei F. Cheviakov, Daniel Gomez

University of Saskatchewan, Saskatoon, Canada

SIAM Conference on Dynamical Systems, May 20, 2015

Collaborators

- Michael Ward, UBC, Vancouver, Canada
- Ashton Reimer, UofS, Saskatoon, Canada
- Daniel Zawada, UofS, Saskatoon, Canada
- Daniel Gomez, UofS/UBC, Canada

Outline

(1) Narrow Escape Problems, Mean First Passage Time (MFPT)
(2) Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
(3) Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains
(4) Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains

- Oblate Spheroid
- Prolate Spheroid
- Biconcave Disk-Blood Cell Shape
(5) Towards Higher-order MFPT Asymptotics
(6) Highlights and Open Problems

Outline

(1) Narrow Escape Problems, Mean First Passage Time (MFPT)
(2) Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
(3) Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains - Oblate Spheroid

- Prolate Spheroid
- Biconcave Disk-Blood Cell Shape
(5) Towards Higher-order MFPT Asymptotics
(6) Highlights and Open Problems

Narrow Escape Problems

- A Brownian particle escapes from a bounded domain through small windows.

Examples of applications:

- Pores of cell nuclei.
- Synaptic receptors on dendrites.
- Ion channels in cell membranes.
- Typical cell sizes: $\sim 10^{-5} \mathrm{~m}$; pore sizes $\sim 10^{-9} \ldots 10^{-8} \mathrm{~m}$.

Pores in cell nuclei:

Synaptic receptors on dendrites:

Ion channels in cell membranes:

Mathematical Formulation

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Given:

- A Brownian particle confined in a domain $\Omega \in \mathbb{R}^{3}$.
- Initial position: $x \in \Omega$.
- Mean First Passage Time (MFPT): $v(x)$.
- Domain boundary: $\partial \Omega=\partial \Omega_{r}$ (reflecting) $\cup \partial \Omega_{a}$ (absorbing).
- $\partial \Omega_{\mathrm{a}}=\bigcup_{i=1}^{N} \partial \Omega_{\varepsilon_{i}}$: small absorbing traps (size $\sim \varepsilon$).

Mathematical Formulation

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT $v=v(x) \quad$ [Holcman, Schuss (2004)]:

$$
\left\{\begin{array}{l}
\Delta v=-\frac{1}{D}, \quad x \in \Omega \\
v=0, \quad x \in \partial \Omega_{a} ; \quad \partial_{n} v=0, \quad x \in \partial \Omega_{r}
\end{array}\right.
$$

Average MFPT: $\quad \bar{v}=\frac{1}{|\Omega|} \int_{\Omega} v(x) d x=$ const.

The Mathematical Problem

Problem for the MFPT:

$$
\left\{\begin{array}{l}
\triangle v=-\frac{1}{D}, \quad x \in \Omega, \\
v=0, \quad x \in \partial \Omega_{a}=\cup_{j=1}^{N} \partial \Omega_{\varepsilon_{j}}, \\
\partial_{n} v=0, \quad x \in \partial \Omega_{r} .
\end{array}\right.
$$

Boundary Value Problem:

- Linear;
- Strongly heterogeneous Dirichlet/Neumann BCs;
- Singularly perturbed:

$$
\text { - } \varepsilon \rightarrow 0^{+} \quad \Rightarrow \quad v \rightarrow+\infty \quad \text { a.e. }
$$

Some General Results

Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

$$
\bar{v} \sim \frac{|\Omega|}{\pi D}[-\log \varepsilon+\mathcal{O}(1)]
$$

Unit sphere; one trap [Singer et al (2006)]

$$
\bar{v} \sim \frac{|\Omega|}{4 \varepsilon D}\left[1-\frac{\varepsilon}{\pi} \log \varepsilon+\mathcal{O}(\varepsilon)\right]
$$

Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

$$
\bar{v} \sim \frac{|\Omega|}{4 \varepsilon D}\left[1-\frac{\varepsilon}{\pi} H \log \varepsilon+\mathcal{O}(\varepsilon)\right]
$$

H : mean curvature at the center of the trap.

Outline

(1) Narrow Escape Problems, Mean First Passage Time (MFPT)
(2) Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
(3) Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains

- Oblate Spheroid
- Prolate Spheroid
- Biconcave Disk-Blood Cell Shape
(5) Towards Higher-order MFPT Asymptotics
(6) Highlights and Open Problems

Matched Asymptotic Expansions (Illustration for the Unit Sphere)

- Outer expansion, defined at $\mathcal{O}(1)$ distances from traps:

$$
v_{\text {out }} \sim \varepsilon^{-1} v_{0}(x)+v_{1}(x)+\varepsilon \log \left(\frac{\varepsilon}{2}\right) v_{2}(x)+\varepsilon v_{3}(x)+\cdots .
$$

- Inner expansion of solution near trap centered at x_{j} uses scaled coordinates y :

$$
v_{i n} \sim \varepsilon^{-1} w_{0}(y)+\log \left(\frac{\varepsilon}{2}\right) w_{1}(y)+w_{2}(y)+\cdots
$$

- Matching condition: when $x \rightarrow x_{j}$ and $y=\varepsilon^{-1}\left(x-x_{j}\right) \rightarrow \infty$,

$$
v_{\text {in }} \sim v_{\text {out }}
$$

Higher-Order Asymptotic MFPT for the Sphere

Given:

- Sphere with N traps located at $\left\{x_{j}\right\}$.
- Trap radii: $r_{j}=a_{j} \varepsilon, j=1, \ldots, N$; capacitances: $c_{j}=2 a_{j} / \pi$.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

$$
v(x)=\bar{v}-\frac{|\Omega|}{D N \bar{c}} \sum_{j=1}^{N} c_{j} G_{s}\left(x ; x_{j}\right)+\mathcal{O}(\varepsilon \log \varepsilon)
$$

$\bar{v}=\frac{|\Omega|}{2 \pi \varepsilon D N \bar{c}}\left[1+\varepsilon \log \left(\frac{2}{\varepsilon}\right) \frac{\sum_{j=1}^{N} c_{j}^{2}}{2 N \bar{c}}+\frac{2 \pi \varepsilon}{N \bar{c}} p_{c}\left(x_{1}, \ldots, x_{N}\right)-\frac{\varepsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}+\mathcal{O}\left(\varepsilon^{2} \log \varepsilon\right)\right]$

- $G_{s}\left(x ; x_{j}\right)$: spherical Neumann Green's function (known).
- \bar{c} : average capacitance; $\kappa_{j}=$ const.
- $p_{c}\left(x_{1}, \ldots, x_{N}\right)$: trap interaction term involving $G_{s}\left(x_{i} ; x_{j}\right)$.

Applications of the MFPT Formula for the Sphere

MFPT and average MFPT:

$$
v(x)=\bar{v}-\frac{|\Omega|}{D N \bar{c}} \sum_{j=1}^{N} c_{j} G_{s}\left(x ; x_{j}\right)+\mathcal{O}(\varepsilon \log \varepsilon)
$$

$\bar{v}=\frac{|\Omega|}{2 \pi \varepsilon D N \bar{c}}\left[1+\varepsilon \log \left(\frac{2}{\varepsilon}\right) \frac{\sum_{j=1}^{N} c_{j}^{2}}{2 N \bar{c}}+\frac{2 \pi \varepsilon}{N \bar{c}} p_{c}\left(x_{1}, \ldots, x_{N}\right)-\frac{\varepsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}+\mathcal{O}\left(\varepsilon^{2} \log \varepsilon\right)\right]$

Applications:

- Fast MFPT computations.
- Optimal N-trap arrangements - local and global optimization.
- Dilute trap limit - homogenization limit for of $N \gg 1$ small traps [A.C., M. Ward, \& R. Straube (2010); A.C. \& D. Zawada (2013)]

Dilute Trap Fraction Limit; $N=802, \varepsilon=0.0005$

Outline

(1) Narrow Escape Problems, Mean First Passage Time (MFPT)
(2) Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
(3) Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains

- Oblate Spheroid
- Prolate Spheroid
- Biconcave Disk-Blood Cell Shape
(5) Towards Higher-order MFPT Asymptotics
(6) Highlights and Open Problems

A General Class of 3D Domains

- (μ, ν, ω) : an orthogonal coordinate system in \mathbb{R}^{3}.
- Consider Ω defined by

$$
\begin{aligned}
& \Omega \equiv\left\{(\mu, \nu, \omega) \mid 0 \leq \mu \leq \mu_{0}, 0 \leq \nu \leq \nu_{0}, 0 \leq \omega \leq \omega_{0}\right\} \\
& \partial \Omega \equiv\left\{(\mu, \nu, \omega) \mid \mu=\mu_{0}, 0 \leq \nu \leq \nu_{0}, 0 \leq \omega \leq \omega_{0}\right\}
\end{aligned}
$$

- At the boundary: $\left.\partial_{n}\right|_{\partial \Omega}=\left.\partial_{\mu}\right|_{\mu=\mu_{0}}$.
- Scale factors:

$$
h_{\mu_{j}}=h_{\mu}\left(x_{j}\right), \quad h_{\nu_{j}}=h_{\nu}\left(x_{j}\right), \quad h_{\omega_{j}}=h_{\omega}\left(x_{j}\right)
$$

- Local stretched coordinates (centered at the $j^{\text {th }}$ trap):

$$
\eta=-h_{\mu_{j}} \frac{\mu-\mu_{j}}{\varepsilon}, \quad s_{1}=h_{\nu_{j}} \frac{\nu-\nu_{j}}{\varepsilon}, \quad s_{2}=h_{\omega_{j}} \frac{\omega-\omega_{j}}{\varepsilon} .
$$

- Example: axially symmetric domains.

The Laplacian in Local Stretched Coordinates

Laplacian in orthonormal coordinates (μ, ν, ω) :

$$
\Delta \Psi=\frac{1}{h_{\mu} h_{\nu} h_{\omega}}\left[\frac{\partial}{\partial \mu}\left(\frac{h_{\nu} h_{\omega}}{h_{\mu}} \frac{\partial \Psi}{\partial \mu}\right)+\frac{\partial}{\partial \nu}\left(\frac{h_{\mu} h_{\omega}}{h_{\nu}} \frac{\partial \Psi}{\partial \nu}\right)+\frac{\partial}{\partial \omega}\left(\frac{h_{\mu} h_{\nu}}{h_{\omega}} \frac{\partial \Psi}{\partial \omega}\right)\right] .
$$

Leading terms:

$$
\Delta=\frac{1}{\varepsilon^{2}} \Delta_{\left(\eta, s_{1}, s_{2}\right)}+\frac{1}{\varepsilon} \mathcal{L}_{\Delta}+\mathcal{O}(1),
$$

where

$$
\Delta_{\left(\eta, s_{1}, s_{2}\right)} \equiv \frac{\partial^{2}}{\partial \eta^{2}}+\frac{\partial^{2}}{\partial s_{1}^{2}}+\frac{\partial^{2}}{\partial s_{2}^{2}},
$$

and

$$
\mathcal{L}_{\Delta} \equiv \Lambda_{\eta} \frac{\partial^{2}}{\partial \eta^{2}}+\Lambda_{s_{1}} \frac{\partial^{2}}{\partial s_{1}^{2}}+\Lambda_{s_{2}} \frac{\partial^{2}}{\partial s_{2}^{2}}+\lambda_{\eta} \frac{\partial}{\partial \eta}+\lambda_{s_{1}} \frac{\partial}{\partial s_{1}}+\lambda_{s_{2}} \frac{\partial}{\partial s_{2}} .
$$

- $\Lambda_{\alpha}, \lambda_{\alpha}$: rather complicated expressions in terms of scale factors h_{β}.

The Surface Neumann Green's Function

Green's Function problem:

$$
\begin{aligned}
& \Delta G_{s}\left(x ; x_{j}\right)=\frac{1}{|\Omega|}, \quad x \in \Omega, \quad \partial_{n} G_{s}\left(x ; x_{j}\right)=\delta_{s}\left(x-x_{j}\right), \quad x \in \partial \Omega, \\
& \int_{\Omega} G d x=0 .
\end{aligned}
$$

The Surface Neumann Green's Function

Green's Function problem:

$$
\begin{aligned}
& \Delta G_{s}\left(x ; x_{j}\right)=\frac{1}{|\Omega|}, \quad x \in \Omega, \quad \partial_{n} G_{s}\left(x ; x_{j}\right)=\delta_{s}\left(x-x_{j}\right), \quad x \in \partial \Omega, \\
& \int_{\Omega} G d x=0 .
\end{aligned}
$$

Expression for a general domain [A. Singer, Z. Schuss \& D. Holcman (2008)]:

$$
G_{s}\left(x ; x_{j}\right)=\frac{1}{2 \pi\left|x-x_{j}\right|}-\frac{H\left(x_{j}\right)}{4 \pi} \log \left|x-x_{j}\right|+v_{s}\left(x ; x_{j}\right) .
$$

- $H\left(x_{j}\right)$: the mean curvature of $\partial \Omega$ at x_{j}.
- $v_{s}\left(x ; x_{j}\right)$: a bounded function of x and x_{j} in Ω.

The Surface Neumann Green's Function

Green's Function problem:

$$
\begin{aligned}
& \Delta G_{s}\left(x ; x_{j}\right)=\frac{1}{|\Omega|}, \quad x \in \Omega, \quad \partial_{n} G_{s}\left(x ; x_{j}\right)=\delta_{s}\left(x-x_{j}\right), \quad x \in \partial \Omega, \\
& \int_{\Omega} G d x=0 .
\end{aligned}
$$

Expression for a general domain [A. Singer, Z. Schuss \& D. Holcman (2008)]:

$$
G_{s}\left(x ; x_{j}\right)=\frac{1}{2 \pi\left|x-x_{j}\right|}-\frac{H\left(x_{j}\right)}{4 \pi} \log \left|x-x_{j}\right|+v_{s}\left(x ; x_{j}\right) .
$$

- $H\left(x_{j}\right)$: the mean curvature of $\partial \Omega$ at x_{j}.
- $v_{s}\left(x ; x_{j}\right)$: a bounded function of x and x_{j} in Ω.

Asymptotic expansion:

$$
\begin{gathered}
G_{s}\left(\eta, s_{1}, s_{2}\right)=\frac{1}{2 \pi \rho} \frac{1}{\varepsilon}-\frac{H\left(x_{j}\right)}{4 \pi} \log \frac{\varepsilon}{2}+g_{0}\left(\eta, s_{1}, s_{2}\right)+g_{1}\left(\eta, s_{1}, s_{2}\right) \varepsilon \log \frac{\varepsilon}{2}+\mathcal{O}(\varepsilon), \\
\rho=\sqrt{\eta^{2}+s_{1}^{2}+s_{2}^{2}} .
\end{gathered}
$$

Matched Asymptotic Expansions

- Inner expansion of solution near trap centered at x_{j} uses stretched coordinates:

$$
v_{\text {in }}=w\left(\eta, s_{1}, s_{2}\right) \sim \frac{1}{\varepsilon} w_{0}+\log \left(\frac{\varepsilon}{2}\right) w_{1}+w_{2}+\cdots .
$$

- Outer expansion far from each of the boundary traps $x_{j},\left|x-x_{j}\right|=\mathcal{O}(1)$:

$$
v_{\text {out }} \sim \frac{1}{\varepsilon} v_{0}+v_{1}+\varepsilon \log \left(\frac{\varepsilon}{2}\right) v_{2}+\varepsilon v_{3}+\cdots .
$$

- Matching condition: as $x \rightarrow x_{j}$ and as $\rho=\sqrt{\eta^{2}+s_{1}^{2}+s_{2}^{2}} \rightarrow \infty$,

$$
\frac{1}{\varepsilon} v_{0}+v_{1}+\varepsilon \log \left(\frac{\varepsilon}{2}\right) v_{2}+\varepsilon v_{3}+\cdots \sim \frac{1}{\varepsilon} w_{0}+\log \left(\frac{\varepsilon}{2}\right) w_{1}+w_{2}+\cdots
$$

The Average MFPT Asymptotic Expression

Average MFPT for a general domain:

- Under the assumption $g_{1}=0$ in the Green's function, as it is for the sphere, matched solutions for first terms of the asymptotic expansions can be computed.
- Average MFPT expression in the outer region $\left|x-x_{j}\right| \gg \mathcal{O}(\varepsilon)$:

$$
\bar{v}=\frac{|\Omega|}{2 \pi D N \bar{c} \varepsilon}\left[1-\left(\frac{1}{2 N \bar{c}} \sum_{i=1}^{N} c_{i}^{2} H\left(x_{i}\right)\right) \varepsilon \log \left(\frac{\varepsilon}{2}\right)+\mathcal{O}(\varepsilon)\right]
$$

The Average MFPT Asymptotic Expression

Average MFPT for a general domain:

- Under the assumption $g_{1}=0$ in the Green's function, as it is for the sphere, matched solutions for first terms of the asymptotic expansions can be computed.
- Average MFPT expression in the outer region $\left|x-x_{j}\right| \gg \mathcal{O}(\varepsilon)$:

$$
\bar{v}=\frac{|\Omega|}{2 \pi D N \bar{c} \varepsilon}\left[1-\left(\frac{1}{2 N \bar{c}} \sum_{i=1}^{N} c_{i}^{2} H\left(x_{i}\right)\right) \varepsilon \log \left(\frac{\varepsilon}{2}\right)+\mathcal{O}(\varepsilon)\right]
$$

Compare to the spherical MFPT formula:

$$
\bar{v}=\frac{|\Omega|}{2 \pi D N \bar{c} \varepsilon}\left[1-\left(\frac{1}{2 N \bar{c}} \sum_{j=1}^{N} c_{j}^{2}\right) \varepsilon \log \left(\frac{\varepsilon}{2}\right)+\frac{2 \pi \varepsilon}{N \bar{c}} p_{c}\left(x_{1}, \ldots, x_{N}\right)-\frac{\varepsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}+\ldots\right]
$$

- $\mathcal{O}(1)$ term for the sphere depends on trap positions.
- A similar expression of the same order for a general domain can be derived, with some details still missing...

The Average MFPT: Comparison of Asymptotic and Numerical Results

- Numerical solver: COMSOL Multiphysics 4.3b
- Compare numerical and asymptotic average MFPT for three distinct geometries
- $N=3$ and $N=5$ traps
- Relative error:

$$
\text { R.E. }=100 \% \times\left|\bar{v}_{\text {numerical }}-\bar{v}_{\text {asymptotic }}\right| / \bar{v}_{\text {numerical }}
$$

- "Extremely fine" and "fine" mesh regions:

Sample COMSOL MFPT Computations for the Unit Sphere

MFPT $($ epsilon $=0.02)$

MFPT $(\mathrm{epsilon}=0.02)$

Oblate Spheroid

- $x=\rho \cosh \xi \cos \nu \cos \phi, \quad y=\rho \cosh \xi \cos \nu \sin \phi, \quad z=\rho \sinh \xi \sin \nu$
- $\xi \in[0, \infty), \nu \in[-\pi / 2, \pi / 2], \phi \in[0,2 \pi)$
- $\partial \Omega: \quad \xi=\xi_{0}=\tanh ^{-1}(0.5), \rho=\left(\cosh \xi_{0}\right)^{-1}$

Oblate Spheroid

- Trap radii: $r_{j}=a_{j} \varepsilon$

Number of Traps	a	ν	ϕ
$N=3$	1	$-3 \pi / 8$	0
	2	0	π
	4	$\pi / 2$	0
$N=5$	1	0	$\pi / 2$
	2	$\pi / 4$	0
	2	$-\pi / 2$	0
	3	$-\pi / 4$	$\pi / 4$
	4	$\pi / 4$	π

Trap locations and relative radii for oblate and prolate spheroids

Oblate Spheroid

- Numerical vs. asymptotic average MFPT for the oblate spheroid, $N=3$:

Oblate Spheroid

- Numerical vs. asymptotic average MFPT for the oblate spheroid, $N=5$:

Prolate Spheroid

- $x=\rho \sinh \xi \cos \nu \cos \phi, \quad y=\rho \sinh \xi \cos \nu \sin \phi, \quad z=\rho \cosh \xi \sin \nu$
- $\xi \in[0, \infty), \nu \in[-\pi / 2, \pi / 2]$, and $\phi \in[0,2 \pi)$
- $\partial \Omega: \quad \xi_{0}=\tanh ^{-1}(1 / 1.5)$ and $\rho=\left(\sinh \xi_{0}\right)^{-1}$

Prolate Spheroid

- Numerical vs. asymptotic average MFPT for the prolate spheroid, $N=3$:

Prolate Spheroid

- Numerical vs. asymptotic average MFPT for the prolate spheroid, $N=5$:

Biconcave Disk (Blood Cell Shape)

- Shape obtained by rotating the following curve about the z-axis:

$$
x=a \alpha \sin \chi, \quad z=a \frac{\alpha}{2}\left(b+c \sin ^{2} \chi-d \sin ^{4} \chi\right) \cos \chi, \quad \chi \in[0, \pi] .
$$

- Common parameters [Pozrikidis (2003)]:

$$
a=1, \quad \alpha=1.38581994, \quad b=0.207, \quad c=2.003, \quad d=1.123
$$

Biconcave Disk (Blood Cell Shape)

- Trap radii: $r_{j}=a_{j} \varepsilon$

Number of Traps	a	χ	ϕ
$N=3$	1	0	0
	2	$3 \pi / 4$	0
	4	$\pi / 2$	π
$N=5$	1	0	0
	2	$3 \pi / 4$	0
	2	π	0
	2	$\pi / 2$	$\pi / 2$
	4	$\pi / 2$	π

Trap locations and relative radii for biconcave disk (blood cell)

Biconcave Disk (Blood Cell Shape)

- Numerical vs. asymptotic average MFPT for the biconcave disk, $N=3$:

Biconcave Disk (Blood Cell Shape)

- Numerical vs. asymptotic average MFPT for the biconcave disk, $N=5$:

Sample COMSOL Meshes

Oblate Spheroid with Three Traps

Prolate Spheroid with Three Traps

Towards Higher-order MFPT Asymptotics

- Based on certain assumptions, higher terms in MFPT formulas can be written, generalizing those for the unit sphere:

$$
\begin{gathered}
\bar{v}=\frac{|\Omega|}{2 \pi \varepsilon D N \bar{c}}\left[1-\frac{1}{2 N \bar{c}} \sum_{j=1}^{N} c_{j}^{2} H\left(x_{j}\right) \varepsilon \log \frac{\varepsilon}{2}\right. \\
\left.+\frac{\varepsilon}{N \bar{c}}\left(\sum_{j=1}^{N} b_{j}+p_{c}\left(x_{1}, \ldots, x_{N}\right)\right)+\mathcal{O}\left(\varepsilon^{2} \log \varepsilon\right)\right] . \\
v(x)=\bar{v}-\frac{|\Omega|}{D N \bar{c}} \sum_{j=1}^{N} c_{j} G_{s}\left(x ; x_{j}\right)
\end{gathered}
$$

- The "interaction energy":

$$
p_{c}\left(x_{1}, \ldots, x_{N}\right) \equiv 2 \pi \sum_{j=1}^{N} \sum_{i \neq j} c_{j} c_{i} G_{s}\left(x_{j} ; x_{i}\right) .
$$

- Ingredients still required: $G_{s}\left(x ; x_{j}\right), b_{j}$.

Outline

(1) Narrow Escape Problems, Mean First Passage Time (MFPT)
(2) Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
(3) Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains

- Oblate Spheroid
- Prolate Spheroid
- Biconcave Disk-Blood Cell Shape
(5) Towards Higher-order MFPT Asymptotics
(6) Highlights and Open Problems

Highlights and Open Problems

Results

- For the average MFPT \bar{v}, a two-term asymptotic expansion is derived for a wide class of non-spherical domains.
- Directly generalizes the results for the sphere.
- Full finite-element MFPT numerical calculations have been performed to compare average MFPT with asymptotic expansions - close agreement observed for small ε.
- Steps towards the derivation of a higher-order formula for $v(x), \bar{v}$ involving trap positions are taken.

Open problems

- Assumptions on surface Neumann Green's function expansion have been made justification or modification is required.
- The trap interaction term for non-spherical domains requires further work...
- ... when clarified, global optimization of the average MFPT with respect to trap locations may be performed.

Some References

A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III , J. Stat. Phys. 122 (3) (2006).
A. F. Cheviakov, M. J. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010), pp. 836-870.
A. F. Cheviakov, A. S. Reimer, and M. J. Ward,

Mathematical modeling and numerical computation of narrow escape problems. Phys. Rev. E 85, 021131 (2012).
A. F. Cheviakov and D. Zawada,

Narrow-escape problem for the unit sphere: Homogenization limit, optimal arrangements of large numbers of traps, and the N^{2} conjecture. Phys. Rev. E 87, 042118 (2013).
D. Gomez and A. F. Cheviakov,

Asymptotic Analysis of Narrow Escape Problems in Nonspherical Three-Dimensional Domains. Phys. Rev. E 91, 012137 (2015).

Some References

A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III , J. Stat. Phys. 122 (3) (2006).
A. F. Cheviakov, M. J. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010), pp. 836-870.
A. F. Cheviakov, A. S. Reimer, and M. J. Ward,

Mathematical modeling and numerical computation of narrow escape problems. Phys. Rev. E 85, 021131 (2012).
A. F. Cheviakov and D. Zawada,

Narrow-escape problem for the unit sphere: Homogenization limit, optimal arrangements of large numbers of traps, and the N^{2} conjecture. Phys. Rev. E 87, 042118 (2013).
D. Gomez and A. F. Cheviakov,

Asymptotic Analysis of Narrow Escape Problems in Nonspherical Three-Dimensional Domains. Phys. Rev. E 91, 012137 (2015).

Thank you for attention!

