Asymptotic Analysis of Narrow Escape Problems in Non-Spherical 3D Domains

Alexei F. Cheviakov, Daniel Gomez

University of Saskatchewan, Saskatoon, Canada

SIAM Conference on Dynamical Systems, May 20, 2015

#### Collaborators

- Michael Ward, UBC, Vancouver, Canada
- Ashton Reimer, UofS, Saskatoon, Canada
- Daniel Zawada, UofS, Saskatoon, Canada
- Daniel Gomez, UofS/UBC, Canada



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Narrow Escape Problems, Mean First Passage Time (MFPT)

- 2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
- Symptotic Analysis of the MFPT Problem for Non-Spherical Domains
- Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains
  - Oblate Spheroid
  - Prolate Spheroid
  - Biconcave Disk–Blood Cell Shape
- 5 Towards Higher-order MFPT Asymptotics
- 6 Highlights and Open Problems

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### Narrow Escape Problems, Mean First Passage Time (MFPT)

- 2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere
- 3 Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains
- Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains
  - Oblate Spheroid
  - Prolate Spheroid
  - Biconcave Disk–Blood Cell Shape
- 5 Towards Higher-order MFPT Asymptotics
- 6 Highlights and Open Problems

• • • • • • • • • • • • •

• A Brownian particle escapes from a bounded domain through small windows.

#### Examples of applications:

- Pores of cell nuclei.
- Synaptic receptors on dendrites.
- Ion channels in cell membranes.
- $\bullet$  Typical cell sizes:  $\sim 10^{-5}$  m; pore sizes  $\sim 10^{-9}...10^{-8}$  m.



Pores in cell nuclei:

Synaptic receptors on dendrites:



Ion channels in cell membranes:



イロン イ部ン イヨン イヨ

## Mathematical Formulation



Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

#### Given:

- A Brownian particle confined in a domain  $\Omega \in \mathbb{R}^3$ .
- Initial position:  $x \in \Omega$ .
- Mean First Passage Time (MFPT): v(x).
- Domain boundary:  $\partial \Omega = \partial \Omega_r$  (reflecting)  $\cup \partial \Omega_a$  (absorbing).
- $\partial \Omega_a = \bigcup_{i=1}^N \partial \Omega_{\varepsilon_i}$ : small absorbing traps (size  $\sim \varepsilon$ ).

## Mathematical Formulation



Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]:

$$\begin{cases} \bigtriangleup v = -\frac{1}{D}, & x \in \Omega, \\ v = 0, & x \in \partial \Omega_a; & \partial_n v = 0, & x \in \partial \Omega_r. \end{cases}$$

Average MFPT:  $\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x) dx = \text{const.}$ 

#### The Mathematical Problem



Problem for the MFPT:

$$\begin{cases} \bigtriangleup v = -\frac{1}{D}, & x \in \Omega, \\ v = 0, & x \in \partial\Omega_a = \bigcup_{j=1}^{N} \partial\Omega_{\varepsilon_j}, \\ \partial_a v = 0, & x \in \partial\Omega_a. \end{cases}$$

・ロト ・回ト ・ヨト ・

#### Boundary Value Problem:

Linear;

- Strongly heterogeneous Dirichlet/Neumann BCs;
- Singularly perturbed:

•  $\varepsilon \to 0^+ \quad \Rightarrow \quad v \to +\infty \quad \text{a.e.}$ 

## Some General Results



Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

$$ar{v} \sim rac{|\Omega|}{\pi D} \left[ -\logarepsilon + \mathcal{O}\left(1
ight) 
ight]$$

Unit sphere; one trap [Singer et al (2006)]

$$ar{
u} \sim rac{|\Omega|}{4arepsilon D} \left[1 - rac{arepsilon}{\pi} \log arepsilon + \mathcal{O}\left(arepsilon
ight)
ight]$$

Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

$$ar{\mathbf{v}} \sim rac{|\Omega|}{4arepsilon D} \left[1 - rac{arepsilon}{\pi} H \log arepsilon + \mathcal{O}\left(arepsilon
ight)
ight]$$

*H*: mean curvature at the center of the trap.

A. Cheviakov, D. Gomez (UofS)

#### Narrow Escape Problems, Mean First Passage Time (MFPT)

#### 2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere

3 Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

#### 4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains

- Oblate Spheroid
- Prolate Spheroid
- Biconcave Disk–Blood Cell Shape

5 Towards Higher-order MFPT Asymptotics

#### 6 Highlights and Open Problems

• • • • • • • • • • • • •

## Matched Asymptotic Expansions (Illustration for the Unit Sphere)



• Outer expansion, defined at  $\mathcal{O}(1)$  distances from traps:

$$v_{out} \sim \varepsilon^{-1} v_0(x) + v_1(x) + \varepsilon \log\left(\frac{\varepsilon}{2}\right) v_2(x) + \varepsilon v_3(x) + \cdots$$

• Inner expansion of solution near trap centered at  $x_i$  uses scaled coordinates y:

$$v_{in} \sim \varepsilon^{-1} w_0(y) + \log\left(rac{\varepsilon}{2}
ight) w_1(y) + w_2(y) + \cdots$$

• Matching condition: when  $x \to x_j$  and  $y = \varepsilon^{-1}(x - x_j) \to \infty$ ,

 $v_{in} \sim v_{out}$ .

A = A = A = A
 A
 A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### Given:

- Sphere with N traps located at  $\{x_j\}$ .
- Trap radii:  $r_j = a_j \varepsilon$ , j = 1, ..., N; capacitances:  $c_j = 2a_j/\pi$ .

#### MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

$$\begin{aligned} \mathbf{v}(\mathbf{x}) &= \bar{\mathbf{v}} - \frac{|\Omega|}{DN\bar{c}} \sum_{j=1}^{N} c_j G_s(\mathbf{x}; \mathbf{x}_j) + \mathcal{O}(\varepsilon \log \varepsilon) \\ \bar{\mathbf{v}} &= \frac{|\Omega|}{2\pi\varepsilon DN\bar{c}} \left[ 1 + \varepsilon \log\left(\frac{2}{\varepsilon}\right) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\varepsilon}{N\bar{c}} p_c(\mathbf{x}_1, \dots, \mathbf{x}_N) - \frac{\varepsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j + \mathcal{O}(\varepsilon^2 \log \varepsilon) \right] \end{aligned}$$

- $G_s(x; x_j)$ : spherical Neumann Green's function (known).
- $\bar{c}$ : average capacitance;  $\kappa_j = \text{const.}$
- $p_c(x_1, \ldots, x_N)$ : trap interaction term involving  $G_s(x_i; x_j)$ .

イロト イヨト イヨト イヨ

#### MFPT and average MFPT:

$$\begin{split} \mathbf{v}(\mathbf{x}) &= \bar{\mathbf{v}} - \frac{|\Omega|}{DN\bar{c}} \sum_{j=1}^{N} c_j G_{\varepsilon}(\mathbf{x}; \mathbf{x}_j) + \mathcal{O}(\varepsilon \log \varepsilon) \\ \bar{\mathbf{v}} &= \frac{|\Omega|}{2\pi\varepsilon DN\bar{c}} \left[ 1 + \varepsilon \log\left(\frac{2}{\varepsilon}\right) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\varepsilon}{N\bar{c}} p_c(\mathbf{x}_1, \dots, \mathbf{x}_N) - \frac{\varepsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j + \mathcal{O}(\varepsilon^2 \log \varepsilon) \right] \end{split}$$

#### Applications:

- Fast MFPT computations.
- Optimal N-trap arrangements local and global optimization.
- Dilute trap limit homogenization limit for of N ≫ 1 small traps [A.C., M. Ward, & R. Straube (2010); A.C. & D. Zawada (2013)]

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Dilute Trap Fraction Limit; N = 802, $\varepsilon = 0.0005$





#### Narrow Escape Problems, Mean First Passage Time (MFPT)

2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere

#### Symptotic Analysis of the MFPT Problem for Non-Spherical Domains

- Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains
  - Oblate Spheroid
  - Prolate Spheroid
  - Biconcave Disk-Blood Cell Shape
- 5 Towards Higher-order MFPT Asymptotics
- 6 Highlights and Open Problems

• • • • • • • • • • • •

- $(\mu, \nu, \omega)$ : an orthogonal coordinate system in  $\mathbb{R}^3$ .
- $\bullet\,$  Consider  $\Omega$  defined by

$$\begin{split} \Omega &\equiv \{(\mu,\nu,\omega) \,|\, \mathsf{0} \leq \mu \leq \mu_0, \, \mathsf{0} \leq \nu \leq \nu_0, \, \mathsf{0} \leq \omega \leq \omega_0\},\\ \partial\Omega &\equiv \{(\mu,\nu,\omega) \,|\, \mu = \mu_0, \, \mathsf{0} \leq \nu \leq \nu_0, \, \mathsf{0} \leq \omega \leq \omega_0\}. \end{split}$$

- At the boundary:  $\partial_n|_{\partial\Omega} = \partial_\mu|_{\mu=\mu_0}$ .
- Scale factors:

$$h_{\mu_j} = h_\mu(x_j), \qquad h_{\nu_j} = h_\nu(x_j), \qquad h_{\omega_j} = h_\omega(x_j).$$

• Local stretched coordinates (centered at the *j*<sup>th</sup> trap):

$$\eta = -h_{\mu_j} rac{\mu-\mu_j}{arepsilon}, \qquad s_1 = h_{
u_j} rac{
u-
u_j}{arepsilon}, \qquad s_2 = h_{\omega_j} rac{
u-
\omega_j}{arepsilon}.$$

• Example: axially symmetric domains.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Laplacian in orthonormal coordinates  $(\mu, \nu, \omega)$ :

$$\Delta \Psi = \frac{1}{h_{\mu}h_{\nu}h_{\omega}} \left[ \frac{\partial}{\partial \mu} \left( \frac{h_{\nu}h_{\omega}}{h_{\mu}} \frac{\partial \Psi}{\partial \mu} \right) + \frac{\partial}{\partial \nu} \left( \frac{h_{\mu}h_{\omega}}{h_{\nu}} \frac{\partial \Psi}{\partial \nu} \right) + \frac{\partial}{\partial \omega} \left( \frac{h_{\mu}h_{\nu}}{h_{\omega}} \frac{\partial \Psi}{\partial \omega} \right) \right].$$

#### Leading terms:

$$\Delta = rac{1}{arepsilon^2} \Delta_{(\eta, \mathfrak{s}_1, \mathfrak{s}_2)} + rac{1}{arepsilon} \mathcal{L}_\Delta + \mathcal{O}(1),$$

where

$$\Delta_{(\eta,s_1,s_2)} \equiv \frac{\partial^2}{\partial \eta^2} + \frac{\partial^2}{\partial s_1^2} + \frac{\partial^2}{\partial s_2^2},$$

and

$$\mathcal{L}_{\Delta} \equiv \Lambda_{\eta} \frac{\partial^2}{\partial \eta^2} + \Lambda_{s_1} \frac{\partial^2}{\partial s_1^2} + \Lambda_{s_2} \frac{\partial^2}{\partial s_2^2} + \lambda_{\eta} \frac{\partial}{\partial \eta} + \lambda_{s_1} \frac{\partial}{\partial s_1} + \lambda_{s_2} \frac{\partial}{\partial s_2}$$

•  $\Lambda_{\alpha}$ ,  $\lambda_{\alpha}$ : rather complicated expressions in terms of scale factors  $h_{\beta}$ .

・ロト ・回ト ・ヨト ・

## Green's Function problem:

$$\Delta G_s(x;x_j) = rac{1}{|\Omega|}, \quad x \in \Omega, \qquad \quad \partial_n G_s(x;x_j) = \delta_s(x-x_j), \quad x \in \partial\Omega,$$
  
 $\int_{\Omega} G \, dx = 0.$ 

・ロト ・回ト ・ヨト ・

#### Green's Function problem:

$$\Delta G_s(x;x_j) = \frac{1}{|\Omega|}, \quad x \in \Omega, \qquad \partial_n G_s(x;x_j) = \delta_s(x-x_j), \quad x \in \partial\Omega,$$
$$\int_{\Omega} G \, dx = 0.$$

Expression for a general domain [A. Singer, Z. Schuss & D. Holcman (2008)]:

$$G_{s}(x;x_{j}) = rac{1}{2\pi |x-x_{j}|} - rac{H(x_{j})}{4\pi} \log |x-x_{j}| + v_{s}(x;x_{j}).$$

•  $H(x_j)$ : the mean curvature of  $\partial \Omega$  at  $x_j$ .

•  $v_s(x; x_j)$ : a bounded function of x and  $x_j$  in  $\Omega$ .

< □ > < 同 > < 回 > < Ξ > < Ξ

#### Green's Function problem:

$$\Delta G_s(x;x_j) = \frac{1}{|\Omega|}, \quad x \in \Omega, \qquad \quad \partial_n G_s(x;x_j) = \delta_s(x-x_j), \quad x \in \partial\Omega,$$
  
 $\int_{\Omega} G dx = 0.$ 

Expression for a general domain [A. Singer, Z. Schuss & D. Holcman (2008)]:

$$G_s(x;x_j) = rac{1}{2\pi |x-x_j|} - rac{H(x_j)}{4\pi} \log |x-x_j| + v_s(x;x_j).$$

- $H(x_j)$ : the mean curvature of  $\partial \Omega$  at  $x_j$ .
- $v_s(x; x_j)$ : a bounded function of x and  $x_j$  in  $\Omega$ .

#### Asymptotic expansion:

$$\begin{aligned} G_s(\eta,s_1,s_2) &= \frac{1}{2\pi\rho}\frac{1}{\varepsilon} - \frac{H(x_j)}{4\pi}\log\frac{\varepsilon}{2} + g_0(\eta,s_1,s_2) + g_1(\eta,s_1,s_2)\varepsilon\log\frac{\varepsilon}{2} + \mathcal{O}(\varepsilon), \\ \rho &= \sqrt{\eta^2 + s_1^2 + s_2^2}. \end{aligned}$$

#### Matched Asymptotic Expansions



• Inner expansion of solution near trap centered at  $x_j$  uses stretched coordinates:

$$v_{in} = w(\eta, s_1, s_2) \sim rac{1}{arepsilon} w_0 + \log\left(rac{arepsilon}{2}
ight) w_1 + w_2 + \cdots.$$

• Outer expansion far from each of the boundary traps  $x_j$ ,  $|x - x_j| = O(1)$ :

$$v_{out} \sim \frac{1}{\varepsilon} v_0 + v_1 + \varepsilon \log\left(\frac{\varepsilon}{2}\right) v_2 + \varepsilon v_3 + \cdots$$

• Matching condition: as  $x \to x_j$  and as  $\rho = \sqrt{\eta^2 + s_1^2 + s_2^2} \to \infty$ ,

$$\frac{1}{\varepsilon}v_0 + v_1 + \varepsilon \log\left(\frac{\varepsilon}{2}\right) v_2 + \varepsilon v_3 + \cdots \sim \frac{1}{\varepsilon}w_0 + \log\left(\frac{\varepsilon}{2}\right) w_1 + w_2 + \cdots.$$

#### Average MFPT for a general domain:

- Under the assumption  $g_1 = 0$  in the Green's function, as it is for the sphere, matched solutions for first terms of the asymptotic expansions can be computed.
- Average MFPT expression in the outer region  $|x x_j| \gg O(\varepsilon)$ :

$$ar{m{v}} = rac{|\Omega|}{2\pi D N ar{c} arepsilon} igg[ 1 - \left( rac{1}{2 N ar{c}} \sum_{i=1}^N c_i^2 H(x_i) 
ight) \, arepsilon \log \left( rac{arepsilon}{2} 
ight) + \mathcal{O}(arepsilon) igg]$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### Average MFPT for a general domain:

- Under the assumption  $g_1 = 0$  in the Green's function, as it is for the sphere, matched solutions for first terms of the asymptotic expansions can be computed.
- Average MFPT expression in the outer region  $|x x_j| \gg O(\varepsilon)$ :

$$ar{v} = rac{|\Omega|}{2\pi D N ar{c} arepsilon} igg[ 1 - \left( rac{1}{2 N ar{c}} \sum_{i=1}^N c_i^2 H(x_i) 
ight) \, arepsilon \log \left( rac{arepsilon}{2} 
ight) + \mathcal{O}(arepsilon) igg]$$

Compare to the spherical MFPT formula:

$$\bar{\nu} = \frac{|\Omega|}{2\pi D N \bar{c} \varepsilon} \left[ 1 - \left( \frac{1}{2N\bar{c}} \sum_{j=1}^{N} c_{j}^{2} \right) \varepsilon \log \left( \frac{\varepsilon}{2} \right) + \frac{2\pi \varepsilon}{N\bar{c}} p_{c}(x_{1}, \dots, x_{N}) - \frac{\varepsilon}{N\bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j} + \dots \right]$$

- $\mathcal{O}(1)$  term for the sphere depends on *trap positions*.
- A similar expression of the same order for a general domain can be derived, with some details still missing...

## The Average MFPT: Comparison of Asymptotic and Numerical Results

- Numerical solver: COMSOL Multiphysics 4.3b
- Compare numerical and asymptotic average MFPT for three distinct geometries
- N = 3 and N = 5 traps
- Relative error:

$$\mathsf{R}.\mathsf{E}. = 100\% imes |ar{v}_{\mathsf{numerical}} - ar{v}_{\mathsf{asymptotic}}|/ar{v}_{\mathsf{numerical}}|$$

• "Extremely fine" and "fine" mesh regions:





## Sample COMSOL MFPT Computations for the Unit Sphere



・ロト ・回ト ・ ヨト



•  $x = \rho \cosh \xi \cos \nu \cos \phi$ ,  $y = \rho \cosh \xi \cos \nu \sin \phi$ ,  $z = \rho \sinh \xi \sin \nu$ 

• 
$$\xi \in [0,\infty)$$
,  $\nu \in [-\pi/2,\pi/2]$ ,  $\phi \in [0,2\pi)$ 

•  $\partial \Omega$ :  $\xi = \xi_0 = \tanh^{-1}(0.5), \ \rho = (\cosh \xi_0)^{-1}$ 

イロト イヨト イヨト イ



• Trap radii:  $r_j = a_j \varepsilon$ 

| Number of Traps | а | ν         | $\phi$  |
|-----------------|---|-----------|---------|
| <i>N</i> = 3    | 1 | $-3\pi/8$ | 0       |
|                 | 2 | 0         | $\pi$   |
|                 | 4 | $\pi/2$   | 0       |
| <i>N</i> = 5    | 1 | 0         | $\pi/2$ |
|                 | 2 | $\pi/4$   | 0       |
|                 | 2 | $-\pi/2$  | 0       |
|                 | 3 | $-\pi/4$  | $\pi/4$ |
|                 | 4 | $\pi/4$   | π       |

Trap locations and relative radii for oblate and prolate spheroids

・ロト ・回ト ・ヨト ・



• Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 3:



A. Cheviakov, D. Gomez (UofS)



• Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 5:





•  $x = \rho \sinh \xi \cos \nu \cos \phi$ ,  $y = \rho \sinh \xi \cos \nu \sin \phi$ ,  $z = \rho \cosh \xi \sin \nu$ 

• 
$$\xi \in [0,\infty)$$
,  $\nu \in [-\pi/2,\pi/2]$ , and  $\phi \in [0,2\pi)$ 

•  $\partial \Omega$ :  $\xi_0 = \tanh^{-1}(1/1.5)$  and  $\rho = (\sinh \xi_0)^{-1}$ 

Image: A math a math



• Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 3:



A. Cheviakov, D. Gomez (UofS)



• Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 5:





• Shape obtained by rotating the following curve about the z-axis:

$$x = alpha \sin \chi, \qquad z = a rac{lpha}{2} (b + c \sin^2 \chi - d \sin^4 \chi) \cos \chi, \qquad \chi \in [0, \pi].$$

• Common parameters [Pozrikidis (2003)]:

a = 1,  $\alpha = 1.38581994$ , b = 0.207, c = 2.003, d = 1.123.



• Trap radii:  $r_j = a_j \varepsilon$ 

| Number of Traps | а | $\chi$   | $\phi$  |
|-----------------|---|----------|---------|
| <i>N</i> = 3    | 1 | 0        | 0       |
|                 | 2 | $3\pi/4$ | 0       |
|                 | 4 | $\pi/2$  | π       |
| <i>N</i> = 5    | 1 | 0        | 0       |
|                 | 2 | $3\pi/4$ | 0       |
|                 | 2 | $\pi$    | 0       |
|                 | 2 | $\pi/2$  | $\pi/2$ |
|                 | 4 | $\pi/2$  | π       |

Trap locations and relative radii for biconcave disk (blood cell)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



• Numerical vs. asymptotic average MFPT for the biconcave disk, N = 3:





• Numerical vs. asymptotic average MFPT for the biconcave disk, N = 5:



Oblate Spheroid with Three Traps



Prolate Spheroid with Three Traps



Biconcave Disk with Three Traps



イロト イヨト イヨト イヨ

• Based on certain assumptions, higher terms in MFPT formulas can be written, generalizing those for the unit sphere:

$$\bar{\mathbf{v}} = \frac{|\Omega|}{2\pi\varepsilon DN\bar{c}} \bigg[ 1 - \frac{1}{2N\bar{c}} \sum_{j=1}^{N} c_j^2 H(x_j) \varepsilon \log \frac{\varepsilon}{2} \\ + \frac{\varepsilon}{N\bar{c}} \bigg( \sum_{j=1}^{N} b_j + p_c(x_1, \dots, x_N) \bigg) + \mathcal{O}(\varepsilon^2 \log \varepsilon) \bigg].$$

$$v(x) = \overline{v} - \frac{|\Omega|}{DN\overline{c}} \sum_{j=1}^{N} c_j G_s(x; x_j),$$

• The "interaction energy":

$$p_c(x_1,\ldots,x_N) \equiv 2\pi \sum_{j=1}^N \sum_{i\neq j} c_j c_i G_s(x_j;x_i).$$

• Ingredients still required:  $G_s(x; x_j), b_j$ .

Narrow Escape Problems, Mean First Passage Time (MFPT)

2 Asymptotic Results for Small Traps; Higher-Order MFPT for the Sphere

3 Asymptotic Analysis of the MFPT Problem for Non-Spherical Domains

- 4 Asymptotic vs. and Numerical Average MFPT for Non-Spherical Domains
  - Oblate Spheroid
  - Prolate Spheroid
  - Biconcave Disk–Blood Cell Shape

Towards Higher-order MFPT Asymptotics

6 Highlights and Open Problems

#### Results

- For the average MFPT  $\bar{\nu},$  a two-term asymptotic expansion is derived for a wide class of non-spherical domains.
- Directly generalizes the results for the sphere.
- Full finite-element MFPT numerical calculations have been performed to compare average MFPT with asymptotic expansions close agreement observed for small  $\varepsilon$ .
- Steps towards the derivation of a higher-order formula for v(x),  $\bar{v}$  involving trap positions are taken.

#### Open problems

- Assumptions on surface Neumann Green's function expansion have been made justification or modification is required.
- The trap interaction term for non-spherical domains requires further work...
- ... when clarified, global optimization of the average MFPT with respect to trap locations may be performed.

イロト イポト イヨト イヨ

#### Some References



#### A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III, J. Stat. Phys. 122 (3) (2006).

#### A. F. Cheviakov, M. J. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010), pp. 836–870.



#### A. F. Cheviakov, A. S. Reimer, and M. J. Ward,

Mathematical modeling and numerical computation of narrow escape problems. Phys. Rev. E 85, 021131 (2012).



#### A. F. Cheviakov and D. Zawada,

Narrow-escape problem for the unit sphere: Homogenization limit, optimal arrangements of large numbers of traps, and the  $N^2$  conjecture. Phys. Rev. E **87**, 042118 (2013).



#### D. Gomez and A. F. Cheviakov,

Asymptotic Analysis of Narrow Escape Problems in Nonspherical Three-Dimensional Domains. Phys. Rev. E 91, 012137 (2015).

#### Some References



#### A. Singer, Z. Schuss, and D. Holcman,

Narrow Escape, Part I; Part II; Part III, J. Stat. Phys. 122 (3) (2006).

#### A. F. Cheviakov, M. J. Ward, and R. Straube,

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: the Sphere. Multiscale Model. Simul. 8 (3) (2010), pp. 836-870.



#### A. F. Cheviakov, A. S. Reimer, and M. J. Ward.

Mathematical modeling and numerical computation of narrow escape problems. Phys. Rev. E 85, 021131 (2012).



#### A. F. Cheviakov and D. Zawada.

Narrow-escape problem for the unit sphere: Homogenization limit, optimal arrangements of large numbers of traps, and the  $N^2$  conjecture. Phys. Rev. E 87, 042118 (2013).

#### D. Gomez and A. F. Cheviakov.

Asymptotic Analysis of Narrow Escape Problems in Nonspherical Three-Dimensional Domains. Phys. Rev. E 91. 012137 (2015).

# Thank you for attention!