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Narrow Escape Problems

A Brownian particle escapes from a bounded domain through small windows.

Examples of applications:

Pores of cell nuclei.

Synaptic receptors on dendrites.

Ion channels in cell membranes.

Typical cell sizes: ∼ 10−5 m; pore sizes ∼ 10−9...10−8 m.

Mathematical Modelling of Narrow Escape Problems
Ashton S. Reimer and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

The Narrow Escape Problem

The narrow escape problem concerns the motion of a Brownian particle confined in a bounded domain Ω ∈ Rd (d = 2, 3 in two
or three space dimensions) whose boundary ∂Ω = ∂Ωr

⋃
∂Ωa is almost entirely reflecting (∂Ωr), except for small windows (traps,

∂Ωa), through which the particle can escape.

Applications

Pores in cell nuclei: Synaptic receptors on dendrites: Ion channels in cell membranes:

The Mathematical Model

The mean first passage time (MFPT), v(x), is defined as the
expectation value of the time taken for a Brownian particle starting initially
from some point x in a domain Ω to escape through any window on the
boundary ∂Ω. To find v(x), one must solve the

Dirichlet-Neumann boundary problem for MFPT v(x):

4v = − 1
D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa =
N⋃

j=1
∂Ωεj

; ∂nv = 0, x ∈ ∂Ωr.
(1)

Where D is the diffusivity coefficient (D = const or D = D(x)). A useful
quantity is the average MFPT defined as v̄.

I Average MFPT:

v̄ = 1
|Ω|

∫

Ω
v(x) dx = const. (2)
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problem in the limit when the measure of the absorbing set |∂Ωa| = O(ε) is asymp-
totically small, where 0 < ε � 1 measures the dimensionless radius of an absorbing
window.

It is well known (cf. [10], [15], [16]) that the MFPT v(x) satisfies a Poisson
equation with mixed Dirichlet–Neumann boundary conditions, formulated as

�v = − 1
D

, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr ,(1.1b)

where D is the diffusion coefficient associated with the underlying Brownian motion.
In (1.1), the absorbing set consists of N small disjoint absorbing windows ∂Ωεj cen-
tered at xj ∈ ∂Ω (see Figure 1). In our two-dimensional setting, we assume that the
length of each absorbing arc is |∂Ω| = εlj, where lj = O(1). It is further assumed
that the windows are well separated in the sense that |xi − xj | = O(1) for all i �= j.
With respect to a uniform distribution of initial points x ∈ Ω, the average MFPT,
denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1
|Ω|

∫

Ω

v(x) dx ,

where |Ω| denotes the area of Ω.

Fig. 1. Sketch of a Brownian trajectory in the two-dimensional unit disk with absorbing windows
on the boundary.

Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x), and that
of the average MFPT v̄, constitutes a singular perturbation problem. It is the goal
of this paper to systematically use the method of matched asymptotic expansions to
extend previous results on two-dimensional narrow escape problems in three main
directions: (i) to examine the effect on the MFPT of multiple absorbing windows
on the boundary, (ii) to provide both a two-term and an infinite-order logarithmic
asymptotic expansion for the solution v to (1.1) for arbitrary two-dimensional domains
with a smooth boundary, and (iii) to develop and implement a numerical method
to compute the surface Neumann Green’s function, which is required for evaluating
certain terms in the asymptotic results.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1
D

, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1
|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

The Asymptotic Solution

Approximate asymptotic solutions have been obtained for some 2D and 3D domains using the method of matched
asymptotic expansions. The method consists of writing separate expansions of v(x) in terms of ε both near a trap and
away from a trap. The expansions are then matched in an intermediate region (see Refs. [1, 2]). Some examples of such
solutions are presented here.

I Assumptions:

I Domain size L = diam Ω ∼ 1.

I Small parameter: ε� 1; trap sizes ∼ ε.

I Traps are well-separated: |xi − xj| � ε.

The Asymptotic MFPT in a 2D Domain

The leading-term asymptotic behaviour for the MFPT in a 2D domain Ω with N equal length ε sized traps located at x1, ..., xN ,
is given by [1]:

v(x) ∼ v̄ − |Ω|
ND

N∑

i=1
G(x;xi), (3)

|Ω| is the measure of Ω, and G(x;xi) is the corresponding surface Neumann Green’s function. In the vicinity of the trap xi,
the 2D Green’s function behaves like

G(x;xi) ∼ −
1
π

log |x− xi| + R(xi;xi).

Here R(xi;xi) is the regular part of the Green’s function. Let

G ≡




R1 G12 · · · G1N
G21 R2 · · · G2N... ... . . . ...
GN1 · · · GN,N−1 RN




be the symmetric Green’s function matrix; Gij ≡ G(xi;xj); Ri ≡ R(xi;xi). Then the average MFPT v̄ for ε� 1 is given by

v̄ ∼ |Ω|
πNDµ

+ |Ω|
N 2D

p(x1, ..., xN) +O(µ), µ ≡ − 1
log(ε`/4), (4)

where the leading term depends on the total trap size, and in the second term

p(x1, ..., xN) =
N∑

i=1

N∑

j=1
Gij

is an interaction term, dependent on the mutual arrangement of traps. The above results may be generalized for situations
involving traps of non-equal sizes (see Refs. [1,2]).

Asymptotic Results: Unit Circle, Unit Square

I For the unit circle, the surface Green’s function and its regular part are given by

G(x;xi) ∼ −
1
π

log |x− xi| +
|x|2
4π −

1
8π, R(xi;xi) = 1

8π, |xi| = 1.

I For the unit square, both G(x;xi) and R(xi;xi) can be expressed as rapidly converging infinite sums of logarithmic terms
(see Ref. [1]).

3D Domains: The Unit Sphere

In [2], it has been independently shown that the mean first passage time (MFPT) formula (3), also applies to 3-dimensional
domains. For N identical circular windows of radius ε located at points xi on the unit sphere (|xi| = 1), the MFPT and the
average MFPT for a Brownian particle are given by

v(x) ∼ v̄ − |Ω|
ND

N∑

i=1
Gs(x;xi),

Where the spherical surface Neumann-Green’s function is given by:

Gs(xi;xj) = − 9
20π + 1

2π




1
|xi − xj|

− 1
2 log

[
sin2

(γij
2

)
+ sin

(γij
2

)]
 , cos(γij) = xi · xj

.
The average MFPT has the leading-term behaviour,

v̄ = |Ω|
4εDN


1 + ε

π
log




2
ε


 + ε

π


−9N

5 + 2(N − 2) log 2 + 3
2 + 4

N
H



+O(ε2 log ε)
]
.

(5)

The interaction term (interaction energy) H = H(x1, . . . , xN) (depending on the mutual arrangement of traps) is defined by

H(x1, . . . , xN) =
N∑

i=1

N∑

j=i+1




1
|xi − xj|

− 1
2 log |xi − xj| −

1
2 log (2 + |xi − xj|)


 . (6)

The above results may be generalized for non-equally sized traps (see Ref. [2]). In particular, the interaction energy (6) is a
linear combination of Coulonb potential, logarithmic potential and an addtional logarithmic term.

The Unit Cube

For the unit cube, assuming that (3) holds, one needs to find the corresponding surface Neumann Green’s function to determine
the essential behaviour of the MFPT. For a single trap located at a point (0, y0, z0) in the plane x = 0, the Green’s function
satisfies the problem

4Gc = 1− 2δ(x)δ(y − y0)δ(z − z0) , −1 < x < 1, 0 < y, z < 1;

∂rGc = 0 at x = ±1, or y = 0, 1 or z = 0, 1,
∫ 1
−1 dx

∫ 1
0 dy

∫ 1
0 dz Gc = 0 .

The solution can be found in terms of a triple cosine Fourier series expansion in the double domain, and subsequently converted
into a double summation for faster convergence, using trigonometric identities (see Ref. [3]).

Asymptotic Solution: Applicability Study

For several 2D and 3D domains, we compare known asymptotic solutions of both the mean first passage time (MFPT) and
average MFPT with full numerical finite-difference solutions to experimentally establish applicability limits of the asymptotic
solutions.

We are interested in determining the
I maximal trap sizes,

I minimal trap separation distances,
for which the asymptotic solutions hold within reasonable precision.

For example, in the term O(µ) in formula (4), µ ∼ 0.01 only when ε . 10−40; in the term O(ε2 log ε) in formula (5),
ε2 log ε ∼ 0.01 only when ε . 0.06. We test whether the asymptotic formulas still hold outside these predicted ranges of ε.

The Numerical Method

We solve problem (1) in two and three dimensions numerically, using a variable-step first-order finite-difference numerical
method. For example, in the case of the unit square, the approximate solution at a grid point (xi, yj) is given by vij ≈ v(x, y).
The Laplacian differential operator is approximated by a finite difference operator:

4v(x, y) ≡


∂2

∂x2 + ∂2

∂y2


 v(x, y) ≈ (Λxx + Λyy) [vij],

Λxx[vij] ≡
(hx)−1

i (vi j+1 − vij)− (hx)−1
i−1(vij − vi j−1)

0.5((hx)i + (hx)i−1) , similar for Λyy[vij].

The step sizes {(hx)i}, {(hy)j}, i = 1, ..., n, j = 1, ...,m, are chosen so that more grid points are produced near each trap than
far from traps. Normally, near 100 points per trap were taken.

Mesh refinement
illustration for a

2D square
domain:

Computations and plotting were done in Matlab.

2D Domain: Numerical vs. Asymptotic Results

Unit disk with seven equally spaced traps, each with a width of 2ε = 0.02.

Unit square with two traps separated by 0.5, each with a width of 2ε = 0.02.

2D Domain: Effects of Trap Size

Average MFPT for unit disk with one, two, and seven equally spaced traps with width 2ε = 0.02. For the three trap curve, two traps have width 2ε = 0.02 centred at π/2 and
3π/2 and one trap has width 6ε = 0.06 centred at π.

2D Domain: Effects of Trap Separation

For polar domain, separation distance is arc length. For square domain, separation distance is measured along one side.

3D Sphere and Effects of Trap Size

MFPT for unit sphere with one circular trap with radius ε = 0.01.

MFPT for unit sphere with four optimally placed circular traps with radius ε = 0.01.

Numerical average MFPT vs. asymptotic average MFPT given by (4).

Narrow Escape from a 3D Cube

Left: Numeric MFPT. Right: Numeric MFPT vs. Truncated Fourier Series of Green’s Function.

The asymptotic MFPT and asymptotic average MFPT are given by (2.43) and (2.44) respectively in [2]. The average MFPTs
were calculated using the difference between Green’s Numerical and each numerical MFPT.

Conclusions

1 From the comparison of numerical and asymptotic solutions for 2D and 3D problems, it was determined that for the
considered examples, the asymptotic formulas have applicability ranges much wider than one might expect from the
asymptotic formulas. In particular:

Percent difference between both numerical and asymptotic average MFPTs as a function of trap size.

Percent difference between both numerical and asymptotic average MFPTs as a function of trap separation.

I The MFPT predicted by formulas (3), (4) in 2D agrees within ∼ 1% of the numerical solution when total trap
arclength is . 0.1 for the unit square and . 0.6 for the unit disk. [The difference between the square and
the sphere can be attributed to effects of corners.]

I The MFPT predicted by formulas (3), (5) in 3D agrees within ∼ 1% of the numerical solution when
total trap area . 0.8 for the unit sphere.

I For two traps, the MFPT for the 2D disk and 3D spherical domain predicted by formulas (3), (4), and (5) agree
within ∼ 5% of the numerical solution when total separation distance & 10 times the size of traps as
governed by above conclusions.
For the square domain, the formulas agree within ∼ 5% of the numerical solution when total separation
distance & 0.6.

2 We showed that the results for the 3D sphere can be generalized for a unit cube. It has been shown that the
MFPT for the cubic domain can be approximately computed using both the truncated 3D Fourier series for the surface
Neumann Green’s function for the cube and formula (3).
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Mathematical Formulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Given:

A Brownian particle confined in a domain Ω ∈ R3.

Initial position: x ∈ Ω.

Mean First Passage Time (MFPT): v(x).

Domain boundary: ∂Ω = ∂Ωr (reflecting) ∪ ∂Ωa (absorbing).

∂Ωa =
⋃N

i=1 ∂Ωεi : small absorbing traps (size ∼ ε).
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Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

Problem for the MFPT v = v(x) [Holcman, Schuss (2004)]: 4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ωr .

Average MFPT: v̄ =
1

|Ω|

∫
Ω

v(x) dx = const.
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The Mathematical Problem

Boundary Value Problem:

Linear;

Strongly heterogeneous
Dirichlet/Neumann BCs;

Singularly perturbed:

ε → 0+ ⇒ v → +∞ a.e.

Problem for the MFPT:


4v = − 1

D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa = ∪N
j=1∂Ωεj ,

∂nv = 0, x ∈ ∂Ωr .
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Some General Results

 

xj 

x 

Arbitrary 2D domain with smooth boundary; one trap [Holcman et al (2004, 2006)]

v̄ ∼ |Ω|
πD

[− log ε+O (1)]

Unit sphere; one trap [Singer et al (2006)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]
Arbitrary 3D domain with smooth boundary; one trap [Singer et al (2009)]

v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
H: mean curvature at the center of the trap.
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Matched Asymptotic Expansions (Illustration for the Unit Sphere)

 

xj 

Outer expansion 

Inner expansion 

Matching 

Outer expansion, defined at O(1) distances from traps:

vout ∼ ε−1v0(x) + v1(x) + ε log
( ε

2

)
v2(x) + εv3(x) + · · · .

Inner expansion of solution near trap centered at xj uses scaled coordinates y :

vin ∼ ε−1w0(y) + log
( ε

2

)
w1(y) + w2(y) + · · · .

Matching condition: when x → xj and y = ε−1(x − xj)→∞,

vin ∼ vout .
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Higher-Order Asymptotic MFPT for the Sphere

Given:

Sphere with N traps located at {xj}.
Trap radii: rj = ajε, j = 1, . . . ,N; capacitances: cj = 2aj/π.

MFPT and average MFPT [A.C., M.Ward, R.Straube (2010)]:

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs(x ; xj) +O(ε log ε)

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN)− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Gs(x ; xj): spherical Neumann Green’s function (known).

c̄: average capacitance; κj = const.

pc(x1, . . . , xN): trap interaction term involving Gs(xi ; xj).

A. Cheviakov, D. Gomez (UofS) Narrow Escape Problem for Non-Spherical Domains 2015 SIAM-Snowbird 11 / 30



Applications of the MFPT Formula for the Sphere

MFPT and average MFPT:

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs(x ; xj) +O(ε log ε)

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN)− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]

Applications:

Fast MFPT computations.

Optimal N-trap arrangements – local and global optimization.

Dilute trap limit – homogenization limit for of N � 1 small traps [A.C., M. Ward, &
R. Straube (2010); A.C. & D. Zawada (2013)]

A. Cheviakov, D. Gomez (UofS) Narrow Escape Problem for Non-Spherical Domains 2015 SIAM-Snowbird 12 / 30



Dilute Trap Fraction Limit; N = 802, ε = 0.0005

ALEXEI F. CHEVIAKOV AND DANIEL ZAWADA PHYSICAL REVIEW E 87, 042118 (2013)

one makes the homogenization MFPT v̄h (5.5) become

v̄h = πε

12Dσ
+ 1

15D
, (5.9)

which contains the correct first and third terms of the
asymptotic MFPT (5.7).

In order to match additional terms of (5.7), one can consider
the coefficients f (ε) and κ(σ ) of the extended form

f (ε) = ε + αε2 log ε + βε2, κ(σ ) = 4σ

π + γ
√

σ
.

(5.10)

The homogenization MFPT (5.5) consequently becomes

v̄h = πε

12Dσ
+ πε2

12Dσ
(β + α log ε) + 1

15D

+ γ ε

12D
√

σ
+ Q(ε,σ ), (5.11)

where

Q(ε,σ ) = γ ε2

12Dσ
(β + α log ε). (5.12)

The form (5.11) of the homogenization MFPT can be used to
match the first four leading terms of (5.7) upon choosing

α = − 1

π
, β = 1

π
log 2, γ = 8b1. (5.13)

A direct computation shows that under the choice of
parameters (5.13), the additional term Q(ε,σ ) (5.12) is small
compared to both of the higher-order terms A(ε,σ ) and B(ε,σ )
in the limit ε → 0, N � O(log ε). We have thus arrived at the
following result.

Principal result 2. Consider an arrangement of N �
1 equal small traps on a unit sphere. Suppose that this
arrangement is optimal, i.e., it minimizes the interaction energy
(2.8). Then, in an asymptotic limit ε → 0, N � O(log ε), the
asymptotic expression for the MFPT v(x) (2.1) and the average
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FIG. 7. (Color online) MFPT comparison plots for N = 802 traps with ε = 0.0005. (a) The putative optimal trap arrangement. (b) The
equatorial cross section (z = 0) of the asymptotic MFPT v(x) (2.1). (c) The equatorial cross section of the homogenization MFPT vh(ρ) (5.4).
(d) The absolute difference |vh(ρ) − v(x)|.
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A General Class of 3D Domains

(µ, ν, ω) : an orthogonal coordinate system in R3.

Consider Ω defined by

Ω ≡ {(µ, ν, ω) | 0 ≤ µ ≤ µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0},
∂Ω ≡ {(µ, ν, ω) |µ = µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0}.

At the boundary: ∂n|∂Ω = ∂µ|µ=µ0 .

Scale factors:

hµj = hµ(xj), hνj = hν(xj), hωj = hω(xj).

Local stretched coordinates (centered at the j th trap):

η = −hµj

µ− µj

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj

ω − ωj

ε
.

Example: axially symmetric domains.
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The Laplacian in Local Stretched Coordinates

Laplacian in orthonormal coordinates (µ, ν, ω):

∆Ψ =
1

hµhνhω

[
∂

∂µ

(
hνhω
hµ

∂Ψ

∂µ

)
+

∂

∂ν

(
hµhω
hν

∂Ψ

∂ν

)
+

∂

∂ω

(
hµhν
hω

∂Ψ

∂ω

)]
.

Leading terms:

∆ =
1

ε2
∆(η,s1,s2) +

1

ε
L∆ +O(1),

where

∆(η,s1,s2) ≡
∂2

∂η2
+

∂2

∂s2
1

+
∂2

∂s2
2

,

and

L∆ ≡ Λη
∂2

∂η2
+ Λs1

∂2

∂s2
1

+ Λs2

∂2

∂s2
2

+ λη
∂

∂η
+ λs1

∂

∂s1
+ λs2

∂

∂s2
.

Λα, λα: rather complicated expressions in terms of scale factors hβ .
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The Surface Neumann Green’s Function

Green’s Function problem:

∆Gs(x ; xj) =
1

|Ω| , x ∈ Ω, ∂nGs(x ; xj) = δs(x − xj), x ∈ ∂Ω,∫
Ω

G dx = 0.

Expression for a general domain [A. Singer, Z. Schuss & D. Holcman (2008)]:

Gs(x ; xj) =
1

2π|x − xj |
− H(xj)

4π
log |x − xj |+ vs(x ; xj).

H(xj): the mean curvature of ∂Ω at xj .

vs(x ; xj): a bounded function of x and xj in Ω.

Asymptotic expansion:

Gs(η, s1, s2) =
1

2πρ

1

ε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2) + g1(η, s1, s2) ε log

ε

2
+O(ε),

ρ =
√
η2 + s2

1 + s2
2 .
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Matched Asymptotic Expansions

 

xj 

Outer expansion 

Inner expansion 

Matching 

Inner expansion of solution near trap centered at xj uses stretched coordinates:

vin = w(η, s1, s2) ∼ 1

ε
w0 + log

( ε
2

)
w1 + w2 + · · · .

Outer expansion far from each of the boundary traps xj , |x − xj | = O(1):

vout ∼
1

ε
v0 + v1 + ε log

( ε
2

)
v2 + εv3 + · · · .

Matching condition: as x → xj and as ρ =
√
η2 + s2

1 + s2
2 →∞,

1

ε
v0 + v1 + ε log

( ε
2

)
v2 + εv3 + · · · ∼ 1

ε
w0 + log

( ε
2

)
w1 + w2 + · · · .
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The Average MFPT Asymptotic Expression

Average MFPT for a general domain:

Under the assumption g1 = 0 in the Green’s function, as it is for the sphere,
matched solutions for first terms of the asymptotic expansions can be computed.

Average MFPT expression in the outer region |x − xj | � O(ε):

v̄ =
|Ω|

2πDNc̄ε

[
1−

(
1

2Nc̄

N∑
i=1

c2
i H(xi )

)
ε log

( ε
2

)
+O(ε)

]

Compare to the spherical MFPT formula:

v̄ =
|Ω|

2πDNc̄ε

[
1−

(
1

2Nc̄

N∑
j=1

c2
j

)
ε log

( ε
2

)
+

2πε

Nc̄
pc(x1, . . . , xN)− ε

Nc̄

N∑
j=1

cjκj + . . .

]

O(1) term for the sphere depends on trap positions.

A similar expression of the same order for a general domain can be derived, with
some details still missing...
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The Average MFPT: Comparison of Asymptotic and Numerical Results

Numerical solver: COMSOL Multiphysics 4.3b

Compare numerical and asymptotic average MFPT for three distinct geometries

N = 3 and N = 5 traps

Relative error:
R.E. = 100%× |v̄numerical − v̄asymptotic|/v̄numerical

“Extremely fine” and “fine” mesh regions:

(a) (b)

Figure 2: Illustration of extremely fine and fine mesh regions.

3.2 Oblate Spheroid

As our first numerical example we consider the oblate spheroidal coordinates

x = ρ cosh ξ cos ν cosφ, y = ρ cosh ξ cos ν sinφ, z = ρ sinh ξ sin ν, (23)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). The orthogonality of such a coordinate
system is easily verified. Furthermore the level sets ξ = ξ0 generate oblate spheroids with a
minor-axis of length ρ sinh ξ0 along the z-axis and a major-axis of length ρ cosh ξ0 on the xy-
plane. The volume enclosed within ξ ≤ ξ0 therefore falls into our class of three-dimensional
domains.

With ξ0 = tanh−1(0.5) and ρ = (cosh ξ0)−1 the level surface ξ = ξ0 becomes an oblate
spheroid with major-axis of length 1 and minor-axis of length 0.5. Explicitly, the surface is
parametrized by

x = cos ν cosφ, y = cos ν sinφ, z = 0.5 · sin ν. (24)

The volume of this oblate spheroid is |Ω| = 2.0944 and its mean curvature is given by

H(ν) = 0.5
8− 3 cos2 ν

(4− 3 cos2 ν)3/2
. (25)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table
1. The comparisons between the COMSOL numerical average MFPT and the asymptotic two-
term formula (21) are shown in Figures 3 and 4 for the three- and the five-trap configurations,
respectively. In addition to these plots, Figures 5a and 5b show the fully numerical calculation
of the MFPT done in COMSOL to demonstrate the trap arrangements, as well as the MFPT
behaviour on the boundary of the domain.

12
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Sample COMSOL MFPT Computations for the Unit Sphere

Narrow Escape Problems in 3D Domains
Daniel Gomez and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
Biological Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

Cell Membrane

Retrieved Aug. 13, 2013 from:
http://library.thinkquest.org/C004535/cell membranes.html

Red Blood Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle
undergoing Brownian motion to escape an enclosing three-dimensional domain.

I Ω: three-Dimensional domain.

I ∂Ωεj : absorbing boundary trap (j = 1, ..., N).

I v(x): MFPT for particle starting at x ∈ Ω.

I D: diffusion coefficient.

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ; v(x) = 0, x ∈ ⋃
j ∂Ωεj.

Asymptotic Solutions

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of
the strongly heterogeneous boundary conditions.
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over
numerical methods include:

I Faster computation times.

I Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the order of magnitude of trap sizes.

Surface Neumann-Green’s Function

Of critical importance to the NEP is the surface Neumann-Green’s Function, Gs(x,xj), satisfying

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

Using the method of matched asymptotic expansions, the surface Neumann-Green’s function appears in
the expression for the MFPT as

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), kj = const.

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii εaj centred at xj respectively yields
numerous results [1].

I Surface Neumann-Green’s Function:

Gs(x,xj) =
1

2π|x− xj|
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj|

)
− 7

10π

I Mean First Passage Time:

v(x) =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε).

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
.

I Two important quantities depending only on ∂Ωεj :

cj =
2aj
π

(trap capacitance), κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Self-Interaction Term pc(x1, ...,xN )

Term pc(x1, ...,xN ) appearing in expressions for v(x) and v̄(x) is a self-interaction term.

I Describes interaction between individual traps ⇒ important for optimization.

I Depends only on Gs(xi,xj) and each cj according to

pc(x1, ...,xN ) = CTGsC

Gs ≡




− 9

20π
Gs(x1,x2) · · · Gs(x1,xN )

Gs(x2,x1) − 9

20π
· · · Gs(x2,xN )

... ... . . . ...

Gs(xN ,x1) · · · Gs(xN ,xN−1) − 9

20π



, C ≡



c1
...
cN


 .

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps

Average MFPT
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Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap ∂Ωε of
radius ε (i.e. a = 1) located at x0 [4].

I Surface-Neumann Green’s Function:

Gs(x,x0) =
1

2π|x− xj|
− H(x0)

4π
log |x− x0| + vs(x,x0),

where vs(x,xj) is an unknown bounded function of x,xj ∈ Ω.

I Average MFPT:

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

.

Limitations of this approach are:

I Approximation is only valid for one absorbing window.

I No asymptotic expression for the (non-averaged) MFPT is given.

I Error bound of O(ε) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap

Average MFPT
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Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate
system (µ, ν, ω). Then assume the coordinate surface is µ = µ0.

I Examples: spheres, spheroids, ellipsoids,
surfaces of rotation.

I N traps located at (µ0, νj, ωj) for
j = 1, ..., N .

I hµ, hν, hω: scale factors of particular
coordinate system.

I Local stretched coordinates:

η = −hµ0

µ− µ0

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj
ω − ωj
ε

.

(µ0, νj, ωj)

η

s1 s2

Local Form of Surface Neumann-Green’s Function

Using the expression for the surface Neumann-Green’s function (1) and introducing the local stretched
coordinates gives:

Gs(η, s1, s2;xj) =
1

2πρε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2;xj) + ε log

ε

2
g1(η, s1, s2;xj) +O(ε),

where ρ =
√
η2 + s2

1 + s2
2 and g0 and g1 are bounded functions depending on the geometry at xj.

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

Inner Problem (near xj)

I Local stretched coordinates (η, s1, s2).

I w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 +O(ε).

I Domain: η ≥ 0, s1, s2 ∈ R.

I Linear PDE: ∆(η,s1,s2)wk = δk2Lw0.

(L is a second-order linear differential operator.)

I Boundary Conditions:

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j.

Outer Problem (far from xj)

I Global coordinates (µ, ν, ω).

I v(µ, ν, ω) ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 +O(ε).

I Domain: (µ, ν, ω) ∈ Ω.

I PDE: ∆vk = − 1

D
δk1.

I Boundary Conditions:

∂nvk = 0, x ∈ ∂Ω \ {x1, ...,xN}.

Matched Asymptotic Expansions Condition

1

ε
w0 + log

ε

2
w1 + w2 + · · · ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · .

I Collect like coefficients of ε and sequentially solve for wk and vk using the inner problem, the outer
problem, and the matching condition.

Proposed Asymptotic Solutions for MFPT and Average MFPT

I Assumptions: g1 = 0 and w2 ∼
v0bj
ρ

.

I MFPT:

v(x) =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

∑N
j=1 bj +O(ε2 log ε)

]
.

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
+

2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

N∑

j=1

bj +O(ε2 log ε)

]
.

I p̃c(x1, ...,xN ) is a modified version of pc(x1, ...,xN ) for the sphere, depending only on Gs(xi,xj).

I bj is modified version of κj for the sphere, determined by the far field behaviour of w2.

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Traps of Different Sizes

Prolate Spheroid
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Conclusions

I Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.

I The average MFPT values following from the proposed asymptotic formulae were found to be in close
agreement with numerical simulation results.

Future Research

I Comparison to numerical simulation for a more extensive variety of geometries.

I Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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x = ρ cosh ξ cos ν cosφ, y = ρ cosh ξ cos ν sinφ, z = ρ sinh ξ sin ν

ξ ∈ [0,∞), ν ∈ [−π/2, π/2], φ ∈ [0, 2π)

∂Ω: ξ = ξ0 = tanh−1(0.5), ρ = (cosh ξ0)−1
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Trap radii: rj = aj ε

Number of Traps a ν φ
1 −3π/8 0

N = 3 2 0 π
4 π/2 0
1 0 π/2
2 π/4 0

N = 5 2 −π/2 0
3 −π/4 π/4
4 π/4 π

Trap locations and relative radii for oblate and prolate spheroids
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 3:

Number of Traps a ν φ

1 −3π/8 0

N = 3 2 0 π

4 π/2 0

1 0 π/2

2 π/4 0

N = 5 2 −π/2 0

3 −π/4 π/4

4 π/4 π

Table 1: Trap locations and relative radii for in sample MFPT computations for oblate and
prolate spheroids.
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Figure 3: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 3.
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Numerical vs. asymptotic average MFPT for the oblate spheroid, N = 5:
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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x = ρ sinh ξ cos ν cosφ, y = ρ sinh ξ cos ν sinφ, z = ρ cosh ξ sin ν

ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π)

∂Ω: ξ0 = tanh−1(1/1.5) and ρ = (sinh ξ0)−1
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 3:

0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

60

70

80



A
ve

ra
g

e
 M

F
P

T
 

(a)

0 0.01 0.02 0.03 0.04 0.05
2

4

6

8

10

12

14

16

18



R
e
la

ti
ve

 E
rr

o
r 

(%
)

(b)

Figure 6: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 3.

3.3 Prolate Spheroid

In a similar fashion to the oblate spheroid we can consider the prolate spheroidal coordiantes

x = ρ sinh ξ cos ν cosφ, y = ρ sinh ξ cos ν sinφ, z = ρ cosh ξ sin ν, (26)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). As with the oblate spheroidal coordinates,
the volume enclosed by ξ ≤ ξ0 falls within our class of three-dimensional domains.

With ξ0 = tanh−1(1/1.5) and ρ = (sinh ξ0)−1 the level surface ξ = ξ0 becomes a prolate
spheroid with major-axis of length 1.5 and minor axis of length 1. The surface is parametrized
by

x = cos ν cosφ, y = cos ν sinφ, z = 1.5 · sin ν. (27)

Finally it has a volume of |Ω| = 6.2832 and a mean curvature given by

H(ν) = 1.5
8 + 5 cos ν2

(4 + 5 cos ν2)3/2
. (28)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table 1.
The comparisons between the COMSOL numerical average MFPT and the asymptotic two-term
formula (21) are shown in Figures 6 and 7 for the N = 3 and N = 5 configurations respectively.
Additionally, Figures 8a and 8b show the fully numerical calculation of the MFPT perfomed in
COMSOL.

15

A. Cheviakov, D. Gomez (UofS) Narrow Escape Problem for Non-Spherical Domains 2015 SIAM-Snowbird 23 / 30



Prolate Spheroid

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140



A
v
e

ra
g

e
 M

F
P

T
 [

s
]

(a)

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20



R
e

la
ti
v
e

 E
rr

o
r 

(%
)

(b)

Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Numerical vs. asymptotic average MFPT for the prolate spheroid, N = 5:
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Biconcave Disk (Blood Cell Shape)

0 0.5 1 1.5
-0.5

0

0.5

x

z

Shape obtained by rotating the following curve about the z-axis:

x = aα sinχ, z = a
α

2
(b + c sin2 χ− d sin4 χ) cosχ, χ ∈ [0, π].

Common parameters [Pozrikidis (2003)]:

a = 1, α = 1.38581994, b = 0.207, c = 2.003, d = 1.123.
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Biconcave Disk (Blood Cell Shape)
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
1

hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0

N∑

j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:

v(x) =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
− 2πε

N∑

j=1

cjGs(x;xj)

+
ε

Nc̄

N∑

j=1

bj +
2πε

Nc̄

N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) +O(ε2 log ε)

]
,

(33)

and

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
+

ε

Nc̄

( N∑

j=1

bj+2π

N∑

j=1

∑

i6=j
cjciGs(xj ;xi)

)
+O(ε2 log ε)

]

(34)

The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑

j=1

∑

i 6=j
cjciGs(xj ;xi) (35)

20

Trap radii: rj = aj ε

Number of Traps a χ φ
1 0 0

N = 3 2 3π/4 0
4 π/2 π
1 0 0
2 3π/4 0

N = 5 2 π 0
2 π/2 π/2
4 π/2 π

Trap locations and relative radii for biconcave disk (blood cell)
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:
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The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑
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∑

i 6=j
cjciGs(xj ;xi) (35)
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Numerical vs. asymptotic average MFPT for the biconcave disk, N = 3:
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Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
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hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0
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j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:
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The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑
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∑

i 6=j
cjciGs(xj ;xi) (35)
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Numerical vs. asymptotic average MFPT for the biconcave disk, N = 5:
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Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Sample COMSOL Meshes

Narrow Escape Problems in 3D Domains
Daniel Gomez and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
Biological Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

Cell Membrane

Retrieved Aug. 13, 2013 from:
http://library.thinkquest.org/C004535/cell membranes.html

Red Blood Cells

Retrieved Aug. 13, 2013 from:
http://www.sciencedaily.com/releases/2007/11/071126201333.htm

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle
undergoing Brownian motion to escape an enclosing three-dimensional domain.

I Ω: three-Dimensional domain.

I ∂Ωεj : absorbing boundary trap (j = 1, ..., N).

I v(x): MFPT for particle starting at x ∈ Ω.

I D: diffusion coefficient.

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ; v(x) = 0, x ∈ ⋃
j ∂Ωεj.

Asymptotic Solutions

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of
the strongly heterogeneous boundary conditions.
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over
numerical methods include:

I Faster computation times.

I Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the order of magnitude of trap sizes.

Surface Neumann-Green’s Function

Of critical importance to the NEP is the surface Neumann-Green’s Function, Gs(x,xj), satisfying

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

Using the method of matched asymptotic expansions, the surface Neumann-Green’s function appears in
the expression for the MFPT as

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), kj = const.

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii εaj centred at xj respectively yields
numerous results [1].

I Surface Neumann-Green’s Function:

Gs(x,xj) =
1

2π|x− xj|
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj|

)
− 7

10π

I Mean First Passage Time:

v(x) =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε).

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
.

I Two important quantities depending only on ∂Ωεj :

cj =
2aj
π

(trap capacitance), κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Self-Interaction Term pc(x1, ...,xN )

Term pc(x1, ...,xN ) appearing in expressions for v(x) and v̄(x) is a self-interaction term.

I Describes interaction between individual traps ⇒ important for optimization.

I Depends only on Gs(xi,xj) and each cj according to

pc(x1, ...,xN ) = CTGsC

Gs ≡




− 9

20π
Gs(x1,x2) · · · Gs(x1,xN )

Gs(x2,x1) − 9

20π
· · · Gs(x2,xN )

... ... . . . ...

Gs(xN ,x1) · · · Gs(xN ,xN−1) − 9

20π



, C ≡



c1
...
cN


 .

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps

Average MFPT
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Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap ∂Ωε of
radius ε (i.e. a = 1) located at x0 [4].

I Surface-Neumann Green’s Function:

Gs(x,x0) =
1

2π|x− xj|
− H(x0)

4π
log |x− x0| + vs(x,x0),

where vs(x,xj) is an unknown bounded function of x,xj ∈ Ω.

I Average MFPT:

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

.

Limitations of this approach are:

I Approximation is only valid for one absorbing window.

I No asymptotic expression for the (non-averaged) MFPT is given.

I Error bound of O(ε) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap
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Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate
system (µ, ν, ω). Then assume the coordinate surface is µ = µ0.

I Examples: spheres, spheroids, ellipsoids,
surfaces of rotation.

I N traps located at (µ0, νj, ωj) for
j = 1, ..., N .

I hµ, hν, hω: scale factors of particular
coordinate system.

I Local stretched coordinates:

η = −hµ0

µ− µ0

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj
ω − ωj
ε

.

(µ0, νj, ωj)

η

s1 s2

Local Form of Surface Neumann-Green’s Function

Using the expression for the surface Neumann-Green’s function (1) and introducing the local stretched
coordinates gives:

Gs(η, s1, s2;xj) =
1

2πρε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2;xj) + ε log

ε

2
g1(η, s1, s2;xj) +O(ε),

where ρ =
√
η2 + s2

1 + s2
2 and g0 and g1 are bounded functions depending on the geometry at xj.

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

Inner Problem (near xj)

I Local stretched coordinates (η, s1, s2).

I w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 +O(ε).

I Domain: η ≥ 0, s1, s2 ∈ R.

I Linear PDE: ∆(η,s1,s2)wk = δk2Lw0.

(L is a second-order linear differential operator.)

I Boundary Conditions:

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j.

Outer Problem (far from xj)

I Global coordinates (µ, ν, ω).

I v(µ, ν, ω) ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 +O(ε).

I Domain: (µ, ν, ω) ∈ Ω.

I PDE: ∆vk = − 1

D
δk1.

I Boundary Conditions:

∂nvk = 0, x ∈ ∂Ω \ {x1, ...,xN}.

Matched Asymptotic Expansions Condition

1

ε
w0 + log

ε

2
w1 + w2 + · · · ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · .

I Collect like coefficients of ε and sequentially solve for wk and vk using the inner problem, the outer
problem, and the matching condition.

Proposed Asymptotic Solutions for MFPT and Average MFPT

I Assumptions: g1 = 0 and w2 ∼
v0bj
ρ

.

I MFPT:

v(x) =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

∑N
j=1 bj +O(ε2 log ε)

]
.

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
+

2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

N∑

j=1

bj +O(ε2 log ε)

]
.

I p̃c(x1, ...,xN ) is a modified version of pc(x1, ...,xN ) for the sphere, depending only on Gs(xi,xj).

I bj is modified version of κj for the sphere, determined by the far field behaviour of w2.

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Traps of Different Sizes

Prolate Spheroid
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Biconcave Disk
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Conclusions

I Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.

I The average MFPT values following from the proposed asymptotic formulae were found to be in close
agreement with numerical simulation results.

Future Research

I Comparison to numerical simulation for a more extensive variety of geometries.

I Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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Towards Higher-order MFPT Asymptotics

Based on certain assumptions, higher terms in MFPT formulas can be written,
generalizing those for the unit sphere:

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

∑N
j=1 c

2
j H(xj) ε log

ε

2

+
ε

Nc̄

(∑N
j=1 bj + pc(x1, . . . , xN)

)
+O(ε2 log ε)

]
.

v(x) = v̄ − |Ω|
DNc̄

N∑
j=1

cjGs(x ; xj),

The “interaction energy”:

pc(x1, . . . , xN) ≡ 2π
N∑
j=1

∑
i 6=j

cjciGs(xj ; xi ).

Ingredients still required: Gs(x ; xj), bj .
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Highlights and Open Problems

Results

For the average MFPT v̄ , a two-term asymptotic expansion is derived for a wide
class of non-spherical domains.

Directly generalizes the results for the sphere.

Full finite-element MFPT numerical calculations have been performed to compare
average MFPT with asymptotic expansions – close agreement observed for small ε.

Steps towards the derivation of a higher-order formula for v(x), v̄ involving trap
positions are taken.

Open problems

Assumptions on surface Neumann Green’s function expansion have been made –
justification or modification is required.

The trap interaction term for non-spherical domains requires further work...

... when clarified, global optimization of the average MFPT with respect to trap
locations may be performed.
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