Conservation Laws of Fluid Dynamics Models

Prof. Alexei Cheviakov

(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, Canada

June 2015

(日) (同) (三) (三) (三)

Fluid Dynamics Equations

- 2 CLs of Constant-Density Euler and N-S Equations
- 3 CLs of Helically Invariant Flows
- 4 CLs of An Inviscid Model in Gas Dynamics
- 5 CLs of a Surfactant Flow Model

イロン イ部ン イヨン イヨ

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

4 CLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

Discussion

イロト イヨト イヨト イヨ

Definitions

Fluid/gas flow in 3D

- Independent variables: t, x, y, z.
- Dependent variables: $\mathbf{u} = (u^1, u^2, u^3) = (u, v, w); p; \rho$.

・ロン ・聞き ・ 国と ・ 国家

Definitions

Fluid/gas flow in 3D

- Independent variables: t, x, y, z.
- Dependent variables: $\mathbf{u} = (u^1, u^2, u^3) = (u, v, w); p; \rho$.
- 2D picture:

• Euler equations:

$$\begin{split} \rho_t + \nabla \cdot (\rho \, \mathbf{u}) &= \mathbf{0}, \\ \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \rho &= \mathbf{0}. \end{split}$$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$egin{aligned} &
ho_t +
abla \cdot (
ho \, \mathbf{u}) = \mathbf{0}, \ &
ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla) \mathbf{u}) +
abla eta -
u \,
abla^2 \mathbf{u} = \mathbf{0}. \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

• Euler equations:

$$ho_t +
abla \cdot (
ho \mathbf{u}) = \mathbf{0},$$

 $ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla)\mathbf{u}) +
abla
ho = \mathbf{0}$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0},$$

$$\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \boldsymbol{p} - \nu \nabla^2 \mathbf{u} = \mathbf{0}.$$

• 4 equations, 5 unknowns. Closure required.

<ロト </p>

• Euler equations:

$$egin{aligned} &
ho_t +
abla \cdot (
ho \, \mathbf{u}) = \mathbf{0}, \ &
ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla) \mathbf{u}) +
abla eta = \mathbf{0} \end{aligned}$$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$\rho_t + \nabla \cdot (\rho \, \mathbf{u}) = \mathbf{0},$$

$$\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \boldsymbol{p} - \nu \nabla^2 \mathbf{u} = \mathbf{0}.$$

• Closure e.g. 1, homogeneous flow (e.g., water):

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}.$$

メロト メポト メヨト メヨ

• Euler equations:

$$egin{aligned} &
ho_t +
abla \cdot (
ho \, \mathbf{u}) = \mathbf{0}, \ &
ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla) \mathbf{u}) +
abla eta = \mathbf{0} \end{aligned}$$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$\rho_t + \nabla \cdot (\rho \, \mathbf{u}) = \mathbf{0},$$

- $\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \boldsymbol{p} \nu \nabla^2 \mathbf{u} = \mathbf{0}.$
- Closure e.g. 2, incompressible flow:

div
$$\mathbf{u} = \mathbf{0}$$
,
 $\rho_t + \mathbf{u} \cdot \nabla \rho = \mathbf{0}$.

・ロン ・聞き ・ 国と ・ 国家

• Euler equations:

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0},$$

 $\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \rho = \mathbf{0}.$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$egin{aligned} &
ho_t +
abla \cdot (
ho \, \mathbf{u}) = 0, \ &
ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla) \mathbf{u}) +
abla eta -
u \,
abla^2 \mathbf{u} = 0 \end{aligned}$$

• Other closure choices: ideal gas/adiabatic, isothermal, polytropic (gas dynamics), etc...

・ロト ・回ト ・ヨト ・ヨト

• Euler equations:

$$ho_t +
abla \cdot (
ho \mathbf{u}) = \mathbf{0},$$

 $ho(\mathbf{u}_t + (\mathbf{u} \cdot
abla)\mathbf{u}) +
abla
ho = \mathbf{0}$

• Navier-Stokes equations (viscosity $\nu = \text{const}$):

$$\rho_t + \nabla \cdot (\rho \, \mathbf{u}) = \mathbf{0},$$

$$\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \boldsymbol{\rho} - \nu \nabla^2 \mathbf{u} = \mathbf{0}.$$

• Multiple other fluid models exist.

イロト イヨト イヨト イヨ

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

4 CLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

Discussion

イロト イヨト イヨト イヨ

Constant-density Euler equations:

$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \mathbf{p} = \mathbf{0}.$$

・ロト ・回ト ・ヨト ・

Constant-density Euler equations:

 $\nabla \cdot \mathbf{u} = \mathbf{0},$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

- CLs in a general setting.
- Additional CLs in a symmetric setting (e.g., axisymmetric).
- More additional CLs in a reduced setting (e.g., planar flow).

イロト イヨト イヨト イヨ

 $\nabla \cdot \mathbf{u} = \mathbf{0},$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \mathbf{p} = \mathbf{0}.$$

- Some conservation laws known "forever", e.g., [Batchelor (2000)].
- Kovalevskaya form w.r.t. x, y, z.
- It remains an open problem to determine the upper bound of the CL order for the Euler system.
- Let us seek CLs using the Direct method, 2nd-order multipliers [C., Oberlack (2014)]:

$$\Lambda_{\sigma} = \Lambda_{\sigma}$$
 (45 variables);

$$\Lambda_{\sigma}R^{\sigma}\equiv rac{\partial\Phi^{i}}{\partial x^{i}}=0.$$

・ロト ・回ト ・ヨト ・ヨト

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} = \mathbf{0}.$$

Conservation of generalized momentum:

• *x*-direction:

$$\begin{split} &\frac{\partial}{\partial t}(f(t)u^{1}) + \frac{\partial}{\partial x}\Big((u^{1}f(t) - xf'(t))u^{1} + f(t)p\Big) \\ &+ \frac{\partial}{\partial y}\Big((u^{1}f(t) - xf'(t))u^{2}\Big) + \frac{\partial}{\partial z}\Big((u^{1}f(t) - xf'(t))u^{3}\Big) = 0. \end{split}$$

• Multipliers:

$$\Lambda_1 = f(t)u^1 - xf'(t), \qquad \Lambda_2 = f(t), \qquad \Lambda_3 = \Lambda_4 = 0.$$

- Arbitrary f(t).
- Similar in y-, z-directions.

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

Conservation of angular momentum $\mathbf{x} \times \mathbf{u}$:

• *x*-direction:

$$\begin{split} &\frac{\partial}{\partial t}(zu^2 - yu^3) + \frac{\partial}{\partial x}\left((zu^2 - yu^3)u^1\right) \\ &+ \frac{\partial}{\partial y}\left((zu^2 - yu^3)u^2 + zp\right) + \frac{\partial}{\partial z}\left((zu^2 - yu^3)u^3 - yp\right) = 0. \end{split}$$

• Multipliers:

$$\Lambda_1=u_z^2-u_y^3,\qquad\Lambda_2=0,\qquad\Lambda_3=z,\qquad\Lambda_4=-y.$$

• Similar in y-, z-directions.

イロト イヨト イヨト イヨト

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

Conservation of kinetic energy:

• *x*-direction:

$$\frac{\partial}{\partial t} \mathbf{K} + \nabla \cdot \left((\mathbf{K} + \mathbf{p}) \mathbf{u} \right) = 0, \qquad \mathbf{K} = \frac{1}{2} |\mathbf{u}|^2.$$

• Multipliers:

$$\Lambda_1 = K + p, \qquad \Lambda_i = u^i, \quad i = 1, 2, 3.$$

(ロ) (回) (三) (三)

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} = \mathbf{0}.$$

Generalized continuity equation:

• For arbitrary k(t):

$$\nabla \cdot (k(t)\mathbf{u}) = 0.$$

• Multipliers:

$$\Lambda_1 = k(t), \qquad \Lambda_2 = \Lambda_3 = \Lambda_4 = 0.$$

• Arbitrary k(t).

イロト イヨト イヨト イヨト

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} = \mathbf{0}.$$

Conservation of helicity:

- Vorticity: $\boldsymbol{\omega} = \operatorname{curl} \mathbf{u}$.
- Helicity: $h = \mathbf{u} \cdot \boldsymbol{\omega}$.
- Helicity conservation law:

$$\frac{\partial}{\partial t}h + \nabla \cdot (\mathbf{u} \times \nabla E + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = \mathbf{0},$$

where E = K + p is the total energy density.

- Topological significance/vortex line linkage.
- Multipliers:

$$\Lambda_1=0, \qquad \Lambda_i=\omega^i, \quad i=1,2,3.$$

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{0}.$$

Vorticity system: conservation of vorticity.

- Vorticity: $\boldsymbol{\omega} = \operatorname{curl} \mathbf{u}$.
- Vorticity equations:

div
$$\boldsymbol{\omega} = 0$$
, $\boldsymbol{\omega}_t + \operatorname{curl} (\boldsymbol{\omega} \times \mathbf{u}) = 0$.

イロト イヨト イヨト イヨト

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} = \mathbf{0}.$$

Vorticity system: potential vorticity.

• Vorticity equations:

div
$$\boldsymbol{\omega} = 0$$
, $\boldsymbol{\omega}_t + \operatorname{curl} (\boldsymbol{\omega} \times \mathbf{u}) = 0$.

• CL:

$$(\boldsymbol{\omega}\cdot
abla F)_t +
abla \cdot (\boldsymbol{eta} imes
abla F - F_t \, \boldsymbol{\omega}) = 0, \qquad \boldsymbol{eta} \equiv \boldsymbol{\omega} imes \mathbf{u}.$$

• Multipliers:

$$\Lambda_1 = -D_t F, \quad \Lambda_2 = D_x F, \quad \Lambda_2 = D_y F, \quad \Lambda_2 = D_z F,$$

holding for an arbitrary differential function $F = F[\mathbf{u}, p]$.

• Details [Müller (1995)], generalizations: [C. & Oberlack (2014)].

Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

$$u^{z} = \omega^{x} = \omega^{y} = 0;$$
 $\frac{\partial}{\partial z} = 0.$

$$\begin{cases} (u^{x})_{x} + (u^{y})_{y} = 0, \\ (u^{x})_{t} + u^{x}(u^{x})_{x} + u^{y}(u^{x})_{y} = -p_{x}, \\ (u^{y})_{t} + u^{x}(u^{y})_{x} + u^{y}(u^{y})_{y} = -p_{y}; \end{cases}$$

$$\begin{aligned} \omega^{z} + (u^{x})_{y} - (u^{y})_{x} &= 0, \\ (\omega^{z})_{t} + u^{x} (\omega^{z})_{x} + u^{y} (\omega^{z})_{y} &= 0. \end{aligned}$$

メロト メタト メヨト メヨ

Euler classical two-component plane flow:

$$u^{z} = \omega^{x} = \omega^{y} = 0; \qquad rac{\partial}{\partial z} = 0.$$

$$\begin{cases} (u^{x})_{x} + (u^{y})_{y} = 0, \\ (u^{x})_{t} + u^{x}(u^{x})_{x} + u^{y}(u^{x})_{y} = -p_{x}, \\ (u^{y})_{t} + u^{x}(u^{y})_{x} + u^{y}(u^{y})_{y} = -p_{y}; \end{cases}$$

$$\begin{aligned} \omega^{z} + (u^{x})_{y} - (u^{y})_{x} &= 0, \\ (\omega^{z})_{t} + u^{x} (\omega^{z})_{x} + u^{y} (\omega^{z})_{y} &= 0. \end{aligned}$$

Enstrophy Conservation

• Enstrophy:
$$\mathcal{E} = |\boldsymbol{\omega}|^2 = (\omega^z)^2$$
.

• Material conservation law:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E} = \mathrm{D}_t \ \mathcal{E} + \mathrm{D}_x \ (u^{\mathsf{x}}\mathcal{E}) + \mathrm{D}_y \ (u^{\mathsf{y}}\mathcal{E}) = \mathbf{0}.$$

• Was only known to hold for plane flows, (2+1)-dimensions.

Euler classical two-component plane flow:

$$u^{z} = \omega^{x} = \omega^{y} = 0; \qquad rac{\partial}{\partial z} = 0.$$

$$\begin{cases} (u^{x})_{x} + (u^{y})_{y} = 0, \\ (u^{x})_{t} + u^{x}(u^{x})_{x} + u^{y}(u^{x})_{y} = -p_{x}, \\ (u^{y})_{t} + u^{x}(u^{y})_{x} + u^{y}(u^{y})_{y} = -p_{y}; \end{cases}$$

Other Plane Flow CLs

• Several additional vorticity-related CLs known for plane flows (e.g., [Batchelor (2000)]);

イロト イ団ト イヨト イヨト

Navier-Stokes Equations equations in 3 + 1 dimensions

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{\rho} - \nu \nabla^2 \mathbf{u} = 0.$$

Vorticity formulation:

$$abla \cdot \mathbf{u} = \mathbf{0}, \quad \boldsymbol{\omega} =
abla imes \mathbf{u},$$
 $\boldsymbol{\omega}_t +
abla imes (\boldsymbol{\omega} imes \mathbf{u}) -
u
abla^2 \boldsymbol{\omega} = \mathbf{0}.$

Basic conservation laws:

- Momentum / generalized momentum: $\Theta = f(t)u^i$, i = 1, 2, 3.
- Angular momentum: $\Theta = (\mathbf{r} \times \mathbf{u})^i$, i = 1, 2, 3.
- Vorticity: $\Theta = \omega^i$, i = 1, 2, 3.
- Potential vorticity.

・ロト ・回ト ・ヨト ・ヨト

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

OLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

Discussion

・ロト ・回ト ・ヨト ・ヨ

• Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

メロト メポト メヨト メヨ

Examples of Helical Flows in Nature

• Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]

イロト イヨト イヨト イ

• Helical water flow past a propeller

・ロト ・回ト ・ ヨト

Examples of Helical Flows in Nature

• Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997]

Helical Coordinates

• Cylindrical coordinates: (r, φ, z) . Helical coordinates: (r, η, ξ)

$$\xi = az + b\varphi, \quad \eta = a\varphi - b\frac{z}{r^2}, \qquad a, b = \text{const}, \quad a^2 + b^2 > 0.$$

・ロト ・回ト ・ヨト ・ヨト

Orthogonal Basis

$$\mathbf{e}_r = rac{
abla r}{|
abla r|}, \quad \mathbf{e}_{\xi} = rac{
abla \xi}{|
abla \xi|}, \quad \mathbf{e}_{\perp \eta} = rac{
abla_{\perp} \eta}{|
abla_{\perp} \eta|} = \mathbf{e}_{\xi} \times \mathbf{e}_r.$$

• Scaling factors: $H_r = 1, H_\eta = r, H_\xi = B(r), \qquad B(r) = \frac{r}{\sqrt{a^2 r^2 + b^2}}.$

・ロト ・回ト ・ヨト ・ヨト

Vector expansion

$$\mathbf{u} = u^{r} \mathbf{e}_{r} + u^{\varphi} \mathbf{e}_{\varphi} + u^{z} \mathbf{e}_{z} = u^{r} \mathbf{e}_{r} + u^{\eta} \mathbf{e}_{\perp \eta} + u^{\xi} \mathbf{e}_{\xi}.$$
$$u^{\eta} = \mathbf{u} \cdot \mathbf{e}_{\perp \eta} = B\left(au^{\varphi} - \frac{b}{r}u^{z}\right), \qquad u^{\xi} = \mathbf{u} \cdot \mathbf{e}_{\xi} = B\left(\frac{b}{r}u^{\varphi} + au^{z}\right).$$

・ロト ・回ト ・ヨト ・ヨ

Helical invariance: generalizes axal and translational invariance

- Helical coordinates: r, $\xi = az + b\varphi$, $\eta = a\varphi bz/r^2$.
- General helical symmetry: $f = f(r, \xi)$, $a, b \neq 0$.
- Axial: a = 1, b = 0. *z*-Translational: a = 0, b = 1.

イロト イヨト イヨト イヨ

Navier-Stokes Equations:

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

・ロト ・回ト ・ヨト ・
$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \boldsymbol{p} - \nu \nabla^2 \mathbf{u} = 0.$$

Continuity:

$$\frac{1}{r}u^{r}+(u^{r})_{r}+\frac{1}{B}(u^{\xi})_{\xi}=0$$

・ロト ・回ト ・ヨト ・

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

r-momentum:

$$(u')_{t} + u'(u')_{r} + \frac{1}{B}u^{\xi}(u')_{\xi} - \frac{B^{2}}{r}\left(\frac{b}{r}u^{\xi} + au^{\eta}\right)^{2} = -p_{r}$$
$$+ \nu \left[\frac{1}{r}(r(u')_{r})_{r} + \frac{1}{B^{2}}(u')_{\xi\xi} - \frac{1}{r^{2}}u' - \frac{2bB}{r^{2}}\left(a(u^{\eta})_{\xi} + \frac{b}{r}(u^{\xi})_{\xi}\right)\right]$$

メロト メタト メヨト メヨ

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

η -momentum:

$$(u^{\eta})_{t} + u^{r}(u^{\eta})_{r} + \frac{1}{B}u^{\xi}(u^{\eta})_{\xi} + \frac{a^{2}B^{2}}{r}u^{r}u^{\eta}$$

= $\nu \left[\frac{1}{r}(r(u^{\eta})_{r})_{r} + \frac{1}{B^{2}}(u^{\eta})_{\xi\xi} + \frac{a^{2}B^{2}(a^{2}B^{2}-2)}{r^{2}}u^{\eta} + \frac{2abB}{r^{2}}\left((u^{r})_{\xi} - \left(Bu^{\xi}\right)_{r}\right)\right]$

メロト メタト メヨト メヨ

$$\nabla \cdot \mathbf{u} = 0,$$
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = 0.$$

ξ -momentum:

$$(u^{\xi})_{t} + u^{r}(u^{\xi})_{r} + \frac{1}{B}u^{\xi}(u^{\xi})_{\xi} + \frac{2abB^{2}}{r^{2}}u^{r}u^{\eta} + \frac{b^{2}B^{2}}{r^{3}}u^{r}u^{\xi} = -\frac{1}{B}p_{\xi} + \nu\left[\frac{1}{r}(r(u^{\xi})_{r})_{r} + \frac{1}{B^{2}}(u^{\xi})_{\xi\xi} + \frac{a^{4}B^{4} - 1}{r^{2}}u^{\xi} + \frac{2bB}{r}\left(\frac{b}{r^{2}}(u^{r})_{\xi} + \left(\frac{aB}{r}u^{\eta}\right)_{r}\right)\right]$$

・ロト ・回ト ・ヨト ・

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

・ロト ・回ト ・ヨト ・

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

Vorticity definition:

$$\omega^{r} = -\frac{1}{B}(u^{\eta})_{\xi},$$

$$\omega^{\eta} = \frac{1}{B}(u^{r})_{\xi} - \frac{1}{r}\left(ru^{\xi}\right)_{r} - \frac{2abB^{2}}{r^{2}}u^{\eta} + \frac{a^{2}B^{2}}{r}u^{\xi},$$

$$\omega^{\xi} = (u^{\eta})_{r} + \frac{a^{2}B^{2}}{r}u^{\eta}$$

イロト イヨト イヨト イヨ

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

r-Momentum:

$$(\omega')_t + u_r(\omega')_r + \frac{1}{B}u^{\xi}(\omega')_{\xi} = \omega'(u')_r + \frac{1}{B}\omega^{\xi}(u')_{\xi} + \nu \left[\frac{1}{r}(r(\omega')_r)_r + \frac{1}{B^2}(\omega')_{\xi\xi} - \frac{1}{r^2}\omega' - \frac{2bB}{r^2}\left(a(\omega^{\eta})_{\xi} + \frac{b}{r}(\omega^{\xi})_{\xi}\right)\right]$$

メロト メタト メヨト メヨ

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

η -Momentum:

$$\begin{aligned} (\omega^{\eta})_{t} + u^{r}(\omega^{\eta})_{r} + \frac{1}{B}u^{\xi}(\omega^{\eta})_{\xi} \\ &- \frac{a^{2}B^{2}}{r}(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}) + \frac{2abB^{2}}{r^{2}}(u^{\xi}\omega^{r} - u^{r}\omega^{\xi}) = \omega^{r}(u^{\eta})_{r} + \frac{1}{B}\omega^{\xi}(u^{\eta})_{\xi} \\ &+ \nu \left[\frac{1}{r}(r(\omega^{\eta})_{r})_{r} + \frac{1}{B^{2}}(\omega^{\eta})_{\xi\xi} + \frac{a^{2}B^{2}(a^{2}B^{2} - 2)}{r^{2}}\omega^{\eta} + \frac{2abB}{r^{2}}\left((\omega^{r})_{\xi} - \left(B\omega^{\xi}\right)_{r}\right)\right] \end{aligned}$$

イロト イヨト イヨト イヨ

$$\nabla \cdot \mathbf{u} = 0,$$

$$\nabla \times \mathbf{u} =: \boldsymbol{\omega} = \boldsymbol{\omega}^{r} \mathbf{e}_{r} + \boldsymbol{\omega}^{\eta} \mathbf{e}_{\perp \eta} + \boldsymbol{\omega}^{\xi} \mathbf{e}_{\xi},$$

$$\boldsymbol{\omega}_{t} + \nabla \times (\boldsymbol{\omega} \times \mathbf{u}) - \nu \nabla^{2} \boldsymbol{\omega} = 0.$$

ξ -Momentum:

$$(\omega^{\xi})_{t} + u^{r}(\omega^{\xi})_{r} + \frac{1}{B}u^{\xi}(\omega^{\xi})_{\xi} + \frac{1 - a^{2}B^{2}}{r}(u^{\xi}\omega^{r} - u^{r}\omega^{\xi}) = \omega^{r}(u^{\xi})_{r} + \frac{1}{B}\omega^{\xi}(u^{\xi})_{\xi} + \nu\left[\frac{1}{r}(r(\omega^{\xi})_{r})_{r} + \frac{1}{B^{2}}(\omega^{\xi})_{\xi\xi} + \frac{a^{4}B^{4} - 1}{r^{2}}\omega^{\xi} + \frac{2bB}{r}\left(\frac{b}{r^{2}}(\omega^{r})_{\xi} + \left(\frac{aB}{r}\omega^{\eta}\right)_{r}\right)\right]$$

イロト イヨト イヨト イヨ

For helically symmetric flows:

• Seek local conservation laws

$$\frac{\partial \Theta}{\partial t} + \nabla \cdot \mathbf{\Phi} \equiv \frac{\partial \Theta}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \Phi^r \right) + \frac{1}{B} \frac{\partial \Phi^{\xi}}{\partial \xi} = 0$$

using divergence expressions

$$\frac{\partial\Gamma^{1}}{\partial t} + \frac{\partial\Gamma^{2}}{\partial r} + \frac{\partial\Gamma^{3}}{\partial\xi} = r \left[\frac{\partial}{\partial t} \left(\frac{\Gamma^{1}}{r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\Gamma^{2}}{r} \right) + \frac{1}{B} \frac{\partial}{\partial\xi} \left(\frac{B}{r} \Gamma^{3} \right) \right] = 0,$$
$$\Theta \equiv \frac{\Gamma^{1}}{r}, \quad \Phi^{r} \equiv \frac{\Gamma^{2}}{r}, \quad \Phi^{\xi} \equiv \frac{B}{r} \Gamma^{3}.$$

- 1st-order multipliers in primitive variables.
- Oth-order multipliers in vorticity formulation.

i.e.,

Primitive variables - EP1 - Kinetic energy

$$\Theta = K, \quad \Phi^r = u^r(K+p), \quad \Phi^{\xi} = u^{\xi}(K+p), \qquad K = \frac{1}{2}|\mathbf{u}|^2.$$

Primitive variables - EP2 - z-momentum

$$\Theta = B\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) = u^{z}, \quad \Phi^{r} = u^{r}u^{z}, \quad \Phi^{\xi} = u^{\xi}u^{z} + aBp.$$

Primitive variables - EP3 - z-angular momentum

$$\Theta = rB\left(au^{\eta} + \frac{b}{r}u^{\xi}\right) = ru^{\varphi}, \quad \Phi^{r} = ru^{r}u^{\varphi}, \quad \Phi^{\xi} = ru^{\xi}u^{\varphi} + bBp.$$

Primitive variables - EP4 - Generalized momenta/angular momenta

$$\Theta = F\left(\frac{r}{B}u^{\eta}\right), \quad \Phi^{r} = u^{r}F\left(\frac{r}{B}u^{\eta}\right), \quad \Phi^{\xi} = u^{\xi}F\left(\frac{r}{B}u^{\eta}\right),$$

where $F(\cdot)$ is an arbitrary function.

Vorticity formulation - EV1 - Conservation of helicity

Helicity:

$$h = \mathbf{u} \cdot \boldsymbol{\omega} = u^r \boldsymbol{\omega}^r + u^\eta \boldsymbol{\omega}^\eta + u^\xi \boldsymbol{\omega}^\xi.$$

The conservation law:

$$\begin{split} \Theta &= h, \\ \Phi^{r} &= \omega^{r} \left(E - (u^{\eta})^{2} - \left(u^{\xi} \right)^{2} \right) + u^{r} \left(h - u^{r} \omega^{r} \right), \\ \Phi^{\xi} &= \omega^{\xi} \left(E - (u^{r})^{2} - (u^{\eta})^{2} \right) + u^{\xi} \left(h - u^{\xi} \omega^{\xi} \right), \end{split}$$

where

$$E = \frac{1}{2} |\mathbf{u}|^2 + p = \frac{1}{2} \left((u^r)^2 + (u^\eta)^2 + (u^\xi)^2 \right) + p$$

is the total energy density. In vector notation:

$$\frac{\partial}{\partial t}h + \nabla \cdot (\mathbf{u} \times \nabla E + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0.$$

イロト イヨト イヨト イヨ

Vorticity formulation - EV2 - Generalized helicity

Helicity:

$$h = \mathbf{u} \cdot \boldsymbol{\omega} = u^r \omega^r + u^\eta \omega^\eta + u^\xi \omega^\xi.$$

$$\frac{\partial}{\partial t}\left(hH\left(\frac{r}{B}u^{\eta}\right)\right) + \nabla \cdot \left[H\left(\frac{r}{B}u^{\eta}\right)\left[\mathbf{u}\times\nabla E + (\boldsymbol{\omega}\times\mathbf{u})\times\mathbf{u}\right] + Eu^{\eta}\mathbf{e}_{\perp\eta}\times\nabla H\left(\frac{r}{B}u^{\eta}\right)\right] = 0$$

for an arbitrary function $H = H(\cdot)$.

・ロト ・回ト ・ヨト ・

Vorticity formulation - EV3 - Vorticity conservation laws

$$\begin{split} \Theta &= \frac{Q(t)}{r} \omega^{\varphi}, \\ \Phi^{r} &= \frac{1}{r} \left(Q(t) [u^{r} \omega^{\varphi} - \omega^{r} u^{\varphi}] + Q^{\prime}(t) u^{z} \right), \\ \Phi^{\xi} &= -\frac{aB}{r} \left(Q(t) \left[u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right] + Q^{\prime}(t) u^{r} \right) \end{split}$$

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - Vorticity conservation law

$$\Theta = -rB\left(a^{3}\omega^{\eta} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right),$$

$$\Phi^{r} = -2a^{2}u^{r}u^{z} - a^{3}Br\left(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}\right) + \frac{Bb^{3}}{r^{2}}\left(u^{r}\omega^{\xi} - u^{\xi}\omega^{r}\right),$$

$$\Phi^{\xi} = a^{3}B\left[\left(u^{r}\right)^{2} + \left(u^{\eta}\right)^{2} - \left(u^{\xi}\right)^{2} + r\left(u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta}\right)\right] + \frac{2a^{2}bB}{r}u^{\eta}u^{\xi}.$$

Vorticity formulation - EV5 - Vorticity conservation law

$$\begin{split} \Theta &= -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + a^3 r^4 \left(-\frac{b}{r} \omega^{\eta} + a \omega^{\xi} \right) \right) = -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + \frac{a^3 r^4}{B} \omega^{z} \right), \\ \Phi^r &= a^3 r B \left(2u^r \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) + b \left(u^r \omega^{\eta} - u^{\eta} \omega^{r} \right) \right) \\ &- \frac{a^4 r^4 + a^2 r^2 b^2 + b^4}{r \sqrt{a^2 r^2 + b^2}} \left(u^r \omega^{\xi} - u^{\xi} \omega^{r} \right), \\ \Phi^{\xi} &= -a^3 b B \left((u^r)^2 + (u^{\eta})^2 - (u^{\xi})^2 + r \left(u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right) \right) + 2a^4 r B u^{\eta} u^{\xi}. \end{split}$$

Vorticity formulation - EV6 - Vorticity conservation law

$$abla \cdot \mathbf{\Phi} = \mathbf{0}, \quad \mathbf{\Phi}^r = \mathbf{N}\omega^r - \frac{1}{B}\mathbf{N}_{\xi}u^{\eta}, \quad \mathbf{\Phi}^{\xi} = \mathbf{N}\omega^{\xi},$$

for an arbitrary $N(t,\xi)$.

• Generalization of the obvious divergence expression $\nabla \cdot (G(t)\omega) = 0$.

Primitive variables - NSP1 - z-momentum.

$$\Theta = u^z, \quad \Phi^r = u^r u^z - \nu(u^z)_r, \quad \Phi^{\xi} = u^{\xi} u^z + aBp - \frac{\nu}{B}(u^z)_{\xi}.$$

Primitive variables - NSP2 - generalized momentum

$$\begin{split} \Theta &= \frac{r}{B} u^{\eta}, \\ \Phi^{r} &= \frac{r}{B} u^{r} u^{\eta} - \nu \left[-2aB \left(au^{\eta} + 2\frac{b}{r} u^{\xi} \right) + \left(\frac{r}{B} u^{\eta} \right)_{r} \right] \\ &= \frac{r}{B} u^{r} u^{\eta} - \nu \left[-2au^{\varphi} + \left(\frac{r}{B} u^{\eta} \right)_{r} \right], \\ \Phi^{\xi} &= \frac{r}{B} u^{\eta} u^{\xi} - \nu \frac{1}{B} \left[\frac{2abB^{2}}{r} u^{r} + \left(\frac{r}{B} u^{\eta} \right)_{\xi} \right]. \end{split}$$

イロン イ部ン イヨン イヨ

Vorticity formulation - NSV1 - Family of vorticity conservation laws

$$\begin{split} \Theta &= \quad \frac{Q(t)}{r} B\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) = \frac{Q(t)}{r}\omega^{\varphi}, \\ \Phi^{r} &= \quad \frac{1}{r} \left\{ Q(t) \left[u^{r} B\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) - \omega^{r} B\left(au^{\eta} + \frac{b}{r}u^{\xi}\right) \right] + Q'(t) B\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) \\ &\quad -Q(t)\nu \left[\frac{aB}{r}\omega^{\eta} + \frac{b^{2}B}{r(a^{2}r^{2} + b^{2})} \left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) + B\left(a\omega^{\eta}_{r} + \frac{b}{r}\omega^{\xi}_{r}\right) \right] \right\}, \\ \Phi^{\xi} &= \quad -\frac{B}{r} \left\{ aQ(t) \left[u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta} \right] + aQ'(t)u^{r} \\ &\quad + \frac{Q(t)}{r^{3}}\nu \left[\frac{r^{3}}{B} \left(a\omega^{\eta}_{\xi} + \frac{b}{r}\omega^{\xi}_{\xi}\right) + 2br\omega^{r} \right] \right\}, \end{split}$$

for an arbitrary function Q(t).

・ロト ・回ト ・ヨト ・

Vorticity formulation - NSV2 - Vorticity conservation law

$$\begin{split} \Theta &= -rB\left(a^{3}\omega^{\eta} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right), \\ \Phi^{r} &= -\frac{B}{r^{2}}\left(a^{3}r^{3}\left(u^{r}\omega^{\eta} - u^{\eta}\omega^{r}\right) - b^{3}\left(u^{r}\omega^{\xi} - u^{\xi}\omega^{r}\right)\right) - 2a^{2}Bu^{r}\left(-\frac{b}{r}u^{\eta} + au^{\xi}\right) \\ &- \frac{B}{r^{2}}\nu\left[\frac{r^{2}}{B^{2}}\left(a\omega^{\eta} + \frac{b}{r}\omega^{\xi}\right) - r^{3}\left(a^{3}\omega^{\eta}_{r} - \frac{b^{3}}{r^{3}}\omega^{\xi}\right) + abB^{2}r\left(\frac{b^{3}}{r^{3}}\omega^{\eta} + a^{3}\omega^{\xi}\right)\right], \\ \Phi^{\xi} &= a^{3}B\left((u^{r})^{2} + (u^{\eta})^{2} - (u^{\xi})^{2} + r\left(u^{\eta}\omega^{\xi} - u^{\xi}\omega^{\eta}\right)\right) + \frac{2a^{2}bB}{r}u^{\eta}u^{\xi} \\ &+ \frac{2a^{2}bB}{r}\nu\left[\left(1 - \frac{b^{2}}{a^{2}r^{2}}\right)\omega^{r} + \frac{r^{2}}{2a^{2}bB}\left(a^{3}\omega^{\eta}_{\xi} - \frac{b^{3}}{r^{3}}\omega^{\xi}_{\xi}\right)\right]. \end{split}$$

・ロト ・回ト ・ヨト ・

Vorticity formulation - NSV3 - Vorticity conservation law

$$\begin{split} \Theta &= -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + a^3 r^4 \left(-\frac{b}{r} \omega^{\eta} + a \omega^{\xi} \right) \right) = -\frac{B}{r^2} \left(\frac{b^2 r^2}{B^2} \omega^{\xi} + \frac{a^3 r^4}{B} \omega^{z} \right), \\ \Phi^r &= a^3 r B \left(2u^r \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) + b \left(u^r \omega^{\eta} - u^{\eta} \omega^{r} \right) \right) \\ &- \frac{a^4 r^4 + a^2 r^2 b^2 + b^4}{r \sqrt{a^2 r^2 + b^2}} \left(u^r \omega^{\xi} - u^{\xi} \omega^{r} \right) \\ &+ \nu \left[4a^3 B \left(a u^{\eta} + \frac{b}{r} u^{\xi} \right) - a^3 b r B (\omega^{\eta})_r + \frac{B}{r^3} \left(b^4 - a^4 r^4 - \frac{a^6 r^6}{a^2 r^2 + b^2} \right) \omega^{\xi} \right. \\ &+ \frac{B}{r^2} \left(a^4 r^4 + a^2 r^2 b^2 + b^4 \right) \left(\omega^{\xi} \right)_r + \frac{ab}{B} \left(2 + \frac{a^4 r^4}{(a^2 r^2 + b^2)^2} \right) \omega^{\eta} \right], \\ \Phi^{\xi} &= -a^3 b B \left((u^r)^2 + (u^{\eta})^2 - (u^{\xi})^2 + r \left(u^{\eta} \omega^{\xi} - u^{\xi} \omega^{\eta} \right) \right) + 2a^4 r B u^{\eta} u^{\xi} \\ &+ \nu \left[\frac{1}{r^2} \left(a^4 r^4 + a^2 r^2 b^2 + b^4 \right) \left(\omega^{\xi} \right)_{\xi} - a^3 b r (\omega^{\eta})_{\xi} - \frac{4a^3 b B}{r} u^r + \frac{2b^4 B}{r^3} \omega^r \right]. \end{split}$$

・ロン ・回 と ・ ヨン・

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

イロト イヨト イヨト イ

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

Generalized enstrophy for inviscid axisymmetric flow

$$\Theta = S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{r} = u^{r}S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{z} = u^{z}S\left(\frac{1}{r}\omega^{\varphi}\right)$$

for arbitrary $S(\cdot)$.

イロン イ部ン イヨン イヨ

Generalized enstrophy for inviscid plane flow (known)

$$\Theta = N(\omega^z), \quad \Phi^x = u^x N(\omega^z), \quad \Phi^y = u^y N(\omega^z),$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t}N(\omega^z)=0.$$

Generalized enstrophy for inviscid axisymmetric flow

$$\Theta = S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{r} = u^{r}S\left(\frac{1}{r}\omega^{\varphi}\right), \quad \Phi^{z} = u^{z}S\left(\frac{1}{r}\omega^{\varphi}\right)$$

for arbitrary $S(\cdot)$.

• Several additional conservation laws arise for plane and axisymmetric, inviscid and viscous flows (details in paper).

<ロト </p>

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for general inviscid helical 2-component flow

$$\Theta = T\left(\frac{B}{r}\omega^{\eta}\right), \quad \Phi^{r} = u^{r}T\left(\frac{B}{r}\omega^{\eta}\right), \quad \Phi^{\xi} = u^{\xi}T\left(\frac{B}{r}\omega^{\eta}\right),$$

for an arbitrary $T(\cdot)$, equivalent to a material conservation law

$$\frac{\mathrm{d}}{\mathrm{d}t} T\left(\frac{B}{r}\omega^{\eta}\right) = 0.$$

・ロト ・回ト ・ヨト

Helically-Invariant Equations

- Full three-component Euler and Navier-Stokes equations written in helically-invariant form.
- Two-component reductions.

Additional Conservation Laws

- Three-component Euler:
 - Generalized momenta. Generalized helicity. Additional vorticity CLs.
- Three-component Navier-Stokes:
 - Additional CLs in primitive and vorticity formulation.
- Two-component flows:
 - Infinite set of enstrophy-related vorticity CLs (inviscid case).
 - Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.

• • • • • • • • • • • •

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

CLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

Discussion

・ロト ・回ト ・ヨト ・ヨ

• Euler equations:

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0, \qquad \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla \rho = 0.$$

• A CL classification for 2D, 3D barotropic model:

$$p = p(\rho)$$
 (S = const).

[Anco & Dar (2010)].

・ロン ・回 と ・ ヨン・

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

4 CLs of An Inviscid Model in Gas Dynamics

6 CLs of a Surfactant Flow Model

Discussion

・ロト ・回ト ・ヨト ・

Surfactants

- "Surfactant" = "Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).

Surfactants - Brief Overview

Surfactants

- "Surfactant" = "Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Surfactants - Brief Overview

Surfactants

- "Surfactant" = "Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).
- Hydrophilic groups (heads) can have various properties:

Surfactants - Applications

- Surfactant molecules adsorb at phase separation interfaces.
 - Stabilization of growth of bubbles / droplets.
 - Creation of emulsions of insoluble substances.
 - Multiple industrial and medical applications.

Surfactants - Applications

• Can form micelles, double layers, etc.

・ロト ・回ト ・ヨト ・ヨト

Surfactants - Applications

• Soap bubbles...

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Derivation:

Can be derived as a special case of multiphase flows with moving interfaces and contact lines:

[Y.Wang, M. Oberlack, 2011]

• Illustration:

Surfactant Transport Equations (ctd.)

Parameters

- Surfactant concentration $c = c(\mathbf{x}, t)$.
- Flow velocity $\mathbf{u}(\mathbf{x}, t)$.
- Two-phase interface: phase separation surface $\Phi(\mathbf{x}, t) = 0$.

• Unit normal:
$$\mathbf{n} = -\frac{\nabla \Phi}{|\nabla \Phi|}$$
.

・ロト ・日下・ ・ ヨト・

Surfactant Transport Equations (ctd.)

Surface gradient

- Surface projection tensor: $p_{ij} = \delta_{ij} n_i n_j$.
- Surface gradient operator: $\nabla^s = \mathbf{p} \cdot \nabla = (\delta_{ij} n_i n_j) \frac{\partial}{\partial x^j}$.
- Surface Laplacian:

$$\Delta^{s}F = (\delta_{ij} - n_{i}n_{j})\frac{\partial}{\partial x^{j}}\left((\delta_{ik} - n_{i}n_{k})\frac{\partial F}{\partial x^{k}}\right)$$

・ロン ・回 と ・ ヨン・
Surfactant Transport Equations (ctd.)

Governing equations

- Incompressibility condition: $\nabla \cdot \mathbf{u} = 0.$
- Fluid dynamics equations: Euler or Navier-Stokes.
- Interface transport by the flow: $\Phi_t + \mathbf{u} \cdot \nabla \Phi = 0.$
- Surfactant transport equation:

$$c_t + u^i \frac{\partial c}{\partial x^i} - c n_i n_j \frac{\partial u^i}{\partial x^j} - \alpha (\delta_{ij} - n_i n_j) \frac{\partial}{\partial x^j} \left((\delta_{ik} - n_i n_k) \frac{\partial c}{\partial x^k} \right) = 0.$$

Surfactant Transport Equations (ctd.)

Fully conserved form

- Specific numerical methods (e.g., discontinuous Galerkin) require the system to be written in a fully conserved form.
- Straightforward for continuity, momentum, and interface transport equations.
- Can the surfactant transport equation be written in the conserved form?

$$c_t + u^i \frac{\partial c}{\partial x^i} - cn_i n_j \frac{\partial u^i}{\partial x^j} - \alpha (\delta_{ij} - n_i n_j) \frac{\partial}{\partial x^j} \left((\delta_{ik} - n_i n_k) \frac{\partial c}{\partial x^k} \right) = 0.$$

Image: A mathematical states and a mathem

CLs of the Surfactant Dynamics Equations: The Convection Case

Governing equations ($\alpha = 0$)

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$
$$R^{2} = \Phi_{t} + \frac{\partial (u^{i}\Phi)}{\partial x^{i}} = 0,$$
$$R^{3} = c_{t} + u^{i}\frac{\partial c}{\partial x^{i}} - cn_{i}n_{j}\frac{\partial u^{i}}{\partial x^{j}} = 0.$$

イロト イロト イヨト イ

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{i}} = 0.$$

Multiplier ansatz

$$\Lambda^{i} = \Lambda^{i}(t, \mathbf{x}, \Phi, c, \mathbf{u}, \partial \Phi, \partial c, \partial \mathbf{u}, \partial^{2} \Phi, \partial^{2} c, \partial^{2} \mathbf{u}).$$

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{i}} = 0.$$

Multiplier ansatz

$$\Lambda^{i} = \Lambda^{i}(t, \mathbf{x}, \Phi, c, \mathbf{u}, \partial \Phi, \partial c, \partial \mathbf{u}, \partial^{2} \Phi, \partial^{2} c, \partial^{2} \mathbf{u}).$$

Conservation Law Determining Equations

 $\mathbf{E}_{u^j}(\Lambda^{\sigma}R^{\sigma})=0, \quad j=1,...,3; \qquad \mathbf{E}_{\Phi}(\Lambda^{\sigma}R^{\sigma})=0; \qquad \mathbf{E}_c(\Lambda^{\sigma}R^{\sigma})=0.$

イロン イ団と イヨン イヨン

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} = 0.$$

Principal Result 1 (multipliers)

- There exist an infinite family of multiplier sets with Λ³ ≠ 0, i.e., essentially involving c.
- Family of conservation laws with

$$\Lambda^3 = |\nabla \Phi| \mathcal{K}(\Phi, c |\nabla \Phi|).$$

<ロト </p>

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} = 0.$$

Principal Result 1 (divergence expressions)

• Usual form:

$$rac{\partial}{\partial t}\mathcal{G}(\Phi,c|
abla \Phi|)+rac{\partial}{\partial x^i}\left(u^i\mathcal{G}(\Phi,c|
abla \Phi|)
ight)=0.$$

• Material form:

$$rac{d}{dt}\mathcal{G}(\Phi,c|
abla \Phi|)=0.$$

A. Cheviakov	(UofS, Canada)
--------------	----------------

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} = 0.$$

Simplest conservation law with *c*-dependence

• Can take
$$\mathcal{G}(\Phi, c | \nabla \Phi |) = c | \nabla \Phi |$$
.

$$\frac{\partial}{\partial t}(\boldsymbol{c}|\nabla \Phi|) + \frac{\partial}{\partial x^{i}}\left(\boldsymbol{u}^{i}\boldsymbol{c}|\nabla \Phi|\right) = 0.$$

The Convection-Diffusion Case

Governing equations ($\alpha \neq 0$)

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

The Convection-Diffusion Case (ctd.)

Governing equations ($\alpha = 0$)

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

Principal Result 2 (multipliers)

$$\begin{split} \Lambda^{1} &= \Phi \mathcal{F}(\Phi) \, |\nabla \Phi|^{-1} \left(\frac{\partial}{\partial x^{j}} \left(c \frac{\partial \Phi}{\partial x^{j}} \right) - c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}} \right), \\ \Lambda^{2} &= -\mathcal{F}(\Phi) \, |\nabla \Phi|^{-1} \left(\frac{\partial}{\partial x^{j}} \left(c \frac{\partial \Phi}{\partial x^{j}} \right) - c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}} \right), \\ \Lambda^{3} &= \mathcal{F}(\Phi) |\nabla \Phi|, \end{split}$$

イロト イヨト イヨト イヨ

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

Principal Result 2 (divergence expressions)

• An infinite family of conservation laws:

$$rac{\partial}{\partial t}\left(c\,\mathcal{F}(\Phi)\left|
abla \Phi
ight|
ight)+rac{\partial}{\partial x^{i}}\left(A^{i}\,\mathcal{F}(\Phi)\left|
abla \Phi
ight|
ight)=0,$$

where

$$A^{i} = cu^{i} - \alpha \left(\left(\delta_{ik} - n_{i}n_{k} \right) \frac{\partial c}{\partial x^{k}} \right), \quad i = 1, 2, 3,$$

and $\ensuremath{\mathcal{F}}$ is an arbitrary sufficiently smooth function.

A. Cheviakov (UofS, Canada)

$$R^{1} = \frac{\partial u^{i}}{\partial x^{i}} = 0,$$

$$R^{2} = \Phi_{t} + \frac{\partial (u^{i} \Phi)}{\partial x^{i}} = 0,$$

$$R^{3} = c_{t} + u^{i} \frac{\partial c}{\partial x^{i}} - cn_{i}n_{j} \frac{\partial u^{i}}{\partial x^{j}} - \alpha(\delta_{ij} - n_{i}n_{j}) \frac{\partial}{\partial x^{j}} \left((\delta_{ik} - n_{i}n_{k}) \frac{\partial c}{\partial x^{k}} \right) = 0.$$

Simplest conservation law with *c*-dependence

• Can take $\mathcal{F}(\Phi) = 1$:

$$\frac{\partial}{\partial t} \left(c \left| \nabla \Phi \right| \right) + \frac{\partial}{\partial x^{i}} \left(A^{i} \left| \nabla \Phi \right| \right) = 0.$$

• Surfactant dynamics equations can be written in a fully conserved form.

イロト イヨト イヨト イヨト

Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

4 CLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

イロト イヨト イヨト イヨ

- Fluid & gas dynamics: a large number of general and specific models exist.
 - viscous and inviscid;
 - single and multi-phase;
 - non-Newtonian;
 - special reductions/geometries of interest;
 - asymptotic models (KdV, shallow water, etc.).

イロン イ部ン イヨン イヨ

- Fluid & gas dynamics: a large number of general and specific models exist.
 - viscous and inviscid;
 - single and multi-phase;
 - non-Newtonian;
 - special reductions/geometries of interest;
 - asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically DCM/symbolic software.

- Fluid & gas dynamics: a large number of general and specific models exist.
 - viscous and inviscid;
 - single and multi-phase;
 - non-Newtonian;
 - special reductions/geometries of interest;
 - asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically DCM/symbolic software.
- General Euler and NS for 3D:
 - basic CLs known;
 - infinite family of "potential vorticity" CLs;single and multi-phase;
 - Additional CLs for symmetric reductions;
 - Further additional CLs for 2-component velocity.

• • • • • • • • • • • • •

- Fluid & gas dynamics: a large number of general and specific models exist.
 - viscous and inviscid;
 - single and multi-phase;
 - non-Newtonian;
 - special reductions/geometries of interest;
 - asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically DCM/symbolic software.
- General Euler and NS for 3D:
 - basic CLs known;
 - infinite family of "potential vorticity" CLs;single and multi-phase;
 - Additional CLs for symmetric reductions;
 - Further additional CLs for 2-component velocity.

• A lot remains to be discovered!

< □ > < 同 > < 回 > < Ξ > < Ξ

- Fluid & gas dynamics: a large number of general and specific models exist.
 - viscous and inviscid;
 - single and multi-phase;
 - non-Newtonian;
 - special reductions/geometries of interest;
 - asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically DCM/symbolic software.
- General Euler and NS for 3D:
 - basic CLs known;
 - infinite family of "potential vorticity" CLs;single and multi-phase;
 - Additional CLs for symmetric reductions;
 - Further additional CLs for 2-component velocity.

• A lot remains to be discovered!

• Further applications: numerical simulations; development of specialized numerical methods, etc.

イロト イ団ト イヨト イヨト

Some references

Batchelor, G.K. (2000).

An Introduction to Fluid Dynamics, Cambridge University Press.

Müller, P. (1995).

Ertel's potential vorticity theorem in physical oceanography. Reviews of Geophysics 33(1), 67–97.

Kallendorf, C., Cheviakov, A.F., Oberlack, M., and Wang, Y. (2012).

Conservation Laws of Surfactant Transport Equations. Phys. Fluids 24, 102105.

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013).

New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. J. Fluid Mech. **721**, 340–366.

Cheviakov, A.F., Oberlack, M. (2014).

Generalized Ertels theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and NavierStokes equations. J. Fluid Mech. **760**, 368–386.

<ロト </p>