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Definitions

Fluid/gas flow in 3D

Independent variables: t, x , y , z .

Dependent variables: u = (u1, u2, u3) = (u, v ,w); p; ρ.
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Definitions

Fluid/gas flow in 3D

Independent variables: t, x , y , z .

Dependent variables: u = (u1, u2, u3) = (u, v ,w); p; ρ.

2D picture:
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.

4 equations, 5 unknowns. Closure required.
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.

Closure e.g. 1, homogeneous flow (e.g., water):

ρ = const, div u = 0.
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.

Closure e.g. 2, incompressible flow:

div u = 0,

ρt + u · ∇ρ = 0.
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.

Other closure choices: ideal gas/adiabatic, isothermal, polytropic (gas dynamics),
etc...
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Main Equations of Gas/Fluid Flow

Euler equations:
ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = 0.

Navier-Stokes equations (viscosity ν = const):

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p − ν∇2u = 0.

Multiple other fluid models exist.
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Conservation Laws of Constant-Density Euler Equations

Constant-density Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Google Image Result for http://www.knowabouthealth.com/wp-content/up... http://www.google.ca/imgres?um=1&hl=en&client=firefox-a&rls=org.moz...
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Conservation Laws of Constant-Density Euler Equations

Constant-density Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

CLs in a general setting.

Additional CLs in a symmetric setting (e.g., axisymmetric).

More additional CLs in a reduced setting (e.g., planar flow).
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Some conservation laws known “forever”, e.g., [Batchelor (2000)].

Kovalevskaya form w.r.t. x , y , z .

It remains an open problem to determine the upper bound of the CL order for the
Euler system.

Let us seek CLs using the Direct method, 2nd-order multipliers [C., Oberlack
(2014)]:

Λσ = Λσ(45 variables);

ΛσR
σ ≡ ∂Φi

∂x i
= 0.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Conservation of generalized momentum:

x-direction:

∂

∂t
(f (t)u1) +

∂

∂x

(
(u1f (t)− xf ′(t))u1 + f (t)p

)
+
∂

∂y

(
(u1f (t)− xf ′(t))u2

)
+

∂

∂z

(
(u1f (t)− xf ′(t))u3

)
= 0.

Multipliers:

Λ1 = f (t)u1 − xf ′(t), Λ2 = f (t), Λ3 = Λ4 = 0.

Arbitrary f (t).

Similar in y -, z-directions.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Conservation of angular momentum x× u:

x-direction:

∂

∂t
(zu2 − yu3) +

∂

∂x

(
(zu2 − yu3)u1

)
+
∂

∂y

(
(zu2 − yu3)u2 + zp

)
+

∂

∂z

(
(zu2 − yu3)u3 − yp

)
= 0.

Multipliers:

Λ1 = u2
z − u3

y , Λ2 = 0, Λ3 = z , Λ4 = −y .

Similar in y -, z-directions.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Conservation of kinetic energy:

x-direction:
∂

∂t
K +∇ ·

(
(K + p)u

)
= 0, K = 1

2
|u|2.

Multipliers:
Λ1 = K + p, Λi = ui , i = 1, 2, 3.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Generalized continuity equation:

For arbitrary k(t):
∇ · (k(t)u) = 0.

Multipliers:
Λ1 = k(t), Λ2 = Λ3 = Λ4 = 0.

Arbitrary k(t).
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Conservation of helicity:

Vorticity: ω = curlu.

Helicity: h = u · ω.

Helicity conservation law:

∂

∂t
h +∇ · (u×∇E + (ω × u)× u) = 0,

where E = K + p is the total energy density.

Topological significance/vortex line linkage.

Multipliers:
Λ1 = 0, Λi = ωi , i = 1, 2, 3.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Vorticity system: conservation of vorticity.

Vorticity: ω = curlu.

Vorticity equations:

div ω = 0, ωt + curl (ω × u) = 0.
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Conservation Laws of Constant-Density Euler Equations

Euler equations:

∇ · u = 0,

ut + (u · ∇)u +∇p = 0.

Vorticity system: potential vorticity.

Vorticity equations:

div ω = 0, ωt + curl (ω × u) = 0.

CL:
(ω · ∇F )t +∇ · (β ×∇F − Ft ω) = 0, β ≡ ω × u.

Multipliers:

Λ1 = −DtF , Λ2 = DxF , Λ2 = DyF , Λ2 = DzF ,

holding for an arbitrary differential function F = F [u, p].

Details [Müller (1995)], generalizations: [C. & Oberlack (2014)].
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Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

uz = ωx = ωy = 0;
∂

∂z
= 0.


(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ;{
ωz + (ux )y − (uy )x = 0,
(ωz )t + ux (ωz )x + uy (ωz )y = 0.

From Wikipedia, the free encyclopedia

No higher resolution available.
Vorticity_Figure_03_c.png (200 × 200 pixels, file size: 10 KB, MIME type: image/png)

This is a file from the Wikimedia Commons. Information from its description page there is
shown below.

Commons is a freely licensed media file repository. You can help.

Description English: Relative velocities around a point in File:Vorticity Figure 03 a-m

Date 2 October 2012, 10:52:42

Source Own work

Author Jorge Stolfi

I, the copyright holder of this work, hereby publish it under the following license:

This file is licensed under the Creative Commons Attribution-Share Alike
3.0 Unported (//creativecommons.org/licenses/by-sa/3.0/deed.en) license.

You are free:
to share – to copy, distribute and transmit the work
to remix – to adapt the work

Under the following conditions:
attribution – You must attribute the work in the manner
specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).
share alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

File:Vorticity Figure 03 c.png - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/File:Vorticity_Figure_03_c.png

1 of 2 23/03/2013 3:57 PM
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Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

uz = ωx = ωy = 0;
∂

∂z
= 0.


(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ;{
ωz + (ux )y − (uy )x = 0,
(ωz )t + ux (ωz )x + uy (ωz )y = 0.

Enstrophy Conservation

Enstrophy: E = |ω|2 = (ωz )2.

Material conservation law:

d

dt
E = Dt E + Dx (uxE) + Dy (uyE) = 0.

Was only known to hold for plane flows, (2 + 1)-dimensions.
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Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

uz = ωx = ωy = 0;
∂

∂z
= 0.


(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ;{
ωz + (ux )y − (uy )x = 0,
(ωz )t + ux (ωz )x + uy (ωz )y = 0.

Other Plane Flow CLs

Several additional vorticity-related CLs known for plane flows (e.g., [Batchelor
(2000)]);
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Conservation Laws of Navier-Stokes Equations

Navier-Stokes Equations equations in 3 + 1 dimensions

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Vorticity formulation:
∇ · u = 0, ω = ∇× u,

ωt +∇× (ω × u)− ν∇2ω = 0.

Basic conservation laws:

Momentum / generalized momentum: Θ = f (t)ui , i = 1, 2, 3.

Angular momentum: Θ = (r× u)i , i = 1, 2, 3.

Vorticity: Θ = ωi , i = 1, 2, 3.

Potential vorticity.
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Examples of Helical Flows in Nature

Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

the two blades at different pitch angles, the two tip

vortex spirals appear to have each their own path and

transport velocity. After a few revolutions, one tip

vortex catches up with the other and the two spirals

become entwined into one. Unluckily, there are no

recordings of this phenomena.

During the full scale experiment of NREL at the

NASA-Ames wind tunnel, also flow visualisation were

performed with smoke emanated from the tip (see

Fig. 7). With this kind of smoke trails, it is not clear

whether the smoke trail reveals the path of the tip vortex

or some streamline in the tip region. Also, these

experiments have been performed at very low thrust

values, so there is hardly any wake expansion.

A different set-up to visually reveal some properties of

the wake was utilised by Shimizu [12] with a tufts screen

(see Fig. 8).

Visualisation of the flow pattern over the blade is

mostly done with tufts. This is a well-known technique

and applied to both indoor and field experiments (see

[16–20,25–27]), however since blade aerodynamics is

ARTICLE IN PRESS

Fig. 3. Axial force coefficient as function of tip-speed ratio, l;
with tip pitch angle, Y; as a parameter (from [15]).

Fig. 4. Flow visualisation with smoke, revealing the tip vortices

(from [16]).

Fig. 5. Flow visualisation with smoke, revealing smoke trails

being ‘sucked’ into the vortex spirals (from [16]).

Fig. 6. Flow visualisation experiment at TUDelft, showing two

revolutions of tip vortices for a two-bladed rotor (from [24]).

Fig. 7. Flow visualisation with smoke grenade in tip, revealing

smoke trails for the NREL turbine in the NASA-Ames wind

tunnel (from Hand [13]).

L.J. Vermeer et al. / Progress in Aerospace Sciences 39 (2003) 467–510474
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Examples of Helical Flows in Nature

Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]
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Examples of Helical Flows in Nature

Helical water flow past a propeller
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Examples of Helical Flows in Nature

Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997]
AIAA-2002-2968 

10 
 

a) b)

c) d)

e)

a)a) b)b)

c)c) d)d)

e)

 
Fig. 9: Detached Eddy Simulation results of the 70° delta wing at α = 27° and Rec = 1.56x106 for five different grids. Iso-
surfaces of vorticity colored by spanwise vorticity component are presented.  a) Coarse Grid-1.2M cells, b) Medium Grid-2.7M 
cells, c) Fine Grid-6.7M cells, d) Real Fine Grid-10.7M cells, e) Adavtive Mesh Refinement Grid-3.2M cells. 
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Helical Coordinates
New conservation laws for helical flows 5

z
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e»

Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical Coordinates

Cylindrical coordinates: (r , ϕ, z). Helical coordinates: (r , η, ξ)

ξ = az + bϕ, η = aϕ− b
z

r 2
, a, b = const, a2 + b2 > 0.
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Orthogonal Basis

er =
∇r
|∇r | , eξ =

∇ξ
|∇ξ| , e⊥η =

∇⊥η
|∇⊥η|

= eξ × er .

Scaling factors: Hr = 1,Hη = r ,Hξ = B(r), B(r) =
r√

a2r 2 + b2
.

A. Cheviakov (UofS, Canada) Conservation Laws II June 2015 13 / 35



Helical Coordinates
New conservation laws for helical flows 5

z

x

y

r

h

er

e ´

e»

Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
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It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Vector expansion

u = ur er + uϕeϕ + uz ez = ur er + uηe⊥η + uξeξ.

uη = u · e⊥η = B

(
auϕ − b

r
uz

)
, uξ = u · eξ = B

(
b

r
uϕ + auz

)
.
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It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical invariance: generalizes axal and translational invariance

Helical coordinates: r , ξ = az + bϕ, η = aϕ− bz/r 2.

General helical symmetry: f = f (r , ξ), a, b 6= 0.

Axial: a = 1, b = 0. z-Translational: a = 0, b = 1.
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Continuity:

1

r
ur + (ur )r +

1

B
(uξ)ξ = 0
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

r -momentum:

(ur )t + ur (ur )r +
1

B
uξ(ur )ξ − B2

r

(
b

r
uξ + auη

)2

= −pr

+ ν

[
1

r
(r(ur )r )r +

1

B2
(ur )ξξ − 1

r 2
ur − 2bB

r 2

(
a(uη)ξ +

b

r
(uξ)ξ

)]
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

η-momentum:

(uη)t + ur (uη)r +
1

B
uξ(uη)ξ +

a2B2

r
uruη

= ν

[
1

r
(r(uη)r )r +

1

B2
(uη)ξξ +

a2B2(a2B2 − 2)

r 2
uη +

2abB

r 2

(
(ur )ξ −

(
Buξ

)
r

)]
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Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

ξ-momentum:

(uξ)t + ur (uξ)r +
1

B
uξ(uξ)ξ +

2abB2

r 2
uruη +

b2B2

r 3
uruξ = − 1

B
pξ

+ ν

[
1

r
(r(uξ)r )r +

1

B2
(uξ)ξξ +

a4B4 − 1

r 2
uξ +

2bB

r

(
b

r 2
(ur )ξ +

(
aB

r
uη
)

r

)]
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

Vorticity definition:

ωr = − 1

B
(uη)ξ,

ωη =
1

B
(ur )ξ − 1

r

(
ruξ
)

r
− 2abB2

r 2
uη +

a2B2

r
uξ,

ωξ = (uη)r +
a2B2

r
uη
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

r -Momentum:

(ωr )t + ur (ωr )r +
1

B
uξ(ωr )ξ = ωr (ur )r +

1

B
ωξ(ur )ξ

+ ν

[
1

r
(r(ωr )r )r +

1

B2
(ωr )ξξ − 1

r 2
ωr − 2bB

r 2

(
a(ωη)ξ +

b

r
(ωξ)ξ

)]
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

η-Momentum:

(ωη)t + ur (ωη)r +
1

B
uξ(ωη)ξ

− a2B2

r
(urωη − uηωr ) +

2abB2

r 2
(uξωr − urωξ) = ωr (uη)r +

1

B
ωξ(uη)ξ

+ ν

[
1

r
(r(ωη)r )r +

1

B2
(ωη)ξξ +

a2B2(a2B2 − 2)

r 2
ωη +

2abB

r 2

(
(ωr )ξ −

(
Bωξ

)
r

)]
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Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

ξ-Momentum:

(ωξ)t + ur (ωξ)r +
1

B
uξ(ωξ)ξ

+
1− a2B2

r
(uξωr − urωξ) = ωr (uξ)r +

1

B
ωξ(uξ)ξ

+ ν

[
1

r
(r(ωξ)r )r +

1

B2
(ωξ)ξξ +

a4B4 − 1

r 2
ωξ +

2bB

r

(
b

r 2
(ωr )ξ +

(
aB

r
ωη
)

r

)]
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Conservation Laws for Helically Symmetric Flows

For helically symmetric flows:

Seek local conservation laws

∂Θ

∂t
+∇ ·Φ ≡ ∂Θ

∂t
+

1

r

∂

∂r
(rΦr ) +

1

B

∂Φξ

∂ξ
= 0

using divergence expressions

∂Γ1

∂t
+
∂Γ2

∂r
+
∂Γ3

∂ξ
= r

[
∂

∂t

(
Γ1

r

)
+

1

r

∂

∂r

(
r

Γ2

r

)
+

1

B

∂

∂ξ

(
B

r
Γ3

)]
= 0,

i.e.,

Θ ≡ Γ1

r
, Φr ≡ Γ2

r
, Φξ ≡ B

r
Γ3.

1st-order multipliers in primitive variables.

0th-order multipliers in vorticity formulation.

A. Cheviakov (UofS, Canada) Conservation Laws II June 2015 16 / 35



Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Primitive variables - EP1 - Kinetic energy

Θ = K , Φr = ur (K + p), Φξ = uξ(K + p), K =
1

2
|u|2.

Primitive variables - EP2 - z-momentum

Θ = B

(
−b

r
uη + auξ

)
= uz , Φr = uruz , Φξ = uξuz + aBp.

Primitive variables - EP3 - z-angular momentum

Θ = rB

(
auη +

b

r
uξ
)

= ruϕ, Φr = ruruϕ, Φξ = ruξuϕ + bBp.

Primitive variables - EP4 - Generalized momenta/angular momenta

Θ = F
( r

B
uη
)
, Φr = urF

( r

B
uη
)
, Φξ = uξF

( r

B
uη
)
,

where F (·) is an arbitrary function.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV1 - Conservation of helicity

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

The conservation law:

Θ = h,

Φr = ωr

(
E − (uη)2 −

(
uξ
)2
)

+ ur (h − urωr ) ,

Φξ = ωξ
(
E − (ur )2 − (uη)2

)
+ uξ

(
h − uξωξ

)
,

where

E =
1

2
|u|2 + p =

1

2

(
(ur )2 + (uη)2 +

(
uξ
)2
)

+ p

is the total energy density. In vector notation:

∂

∂t
h +∇ · (u×∇E + (ω × u)× u) = 0.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV2 - Generalized helicity

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

∂

∂t

(
h H

( r

B
uη
))

+∇·
[
H
( r

B
uη
)

[u×∇E + (ω × u)× u] + Euηe⊥η ×∇H
( r

B
uη
)]

= 0

for an arbitrary function H = H (·).
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV3 - Vorticity conservation laws

Θ =
Q(t)

r
ωϕ,

Φr =
1

r

(
Q(t)[urωϕ − ωruϕ] + Q ′(t)uz) ,

Φξ = −aB

r

(
Q(t)

[
uηωξ − uξωη

]
+ Q ′(t)ur

)
,

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - Vorticity conservation law

Θ = −rB
(
a3ωη − b3

r 3
ωξ
)
,

Φr = −2a2uruz − a3Br (urωη − uηωr ) +
Bb3

r 2

(
urωξ − uξωr

)
,

Φξ = a3B
[
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

)]
+

2a2bB

r
uηuξ.
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Conservation Laws for Helically Symmetric Inviscid Flows: ν = 0

Vorticity formulation - EV5 - Vorticity conservation law

Θ =− B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr =a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
− a4r 4 + a2r 2b2 + b4

r
√
a2r 2 + b2

(
urωξ − uξωr

)
,

Φξ =− a3bB
(

(ur )2 + (uη)2 − (uξ)2 + r
(
uηωξ − uξωη

))
+ 2a4rBuηuξ.

Vorticity formulation - EV6 - Vorticity conservation law

∇ ·Φ = 0, Φr = Nωr − 1

B
Nξu

η, Φξ = Nωξ,

for an arbitrary N(t, ξ).

Generalization of the obvious divergence expression ∇ · (G(t)ω) = 0.
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Conservation Laws for Helically Symmetric Viscous Flows

Primitive variables - NSP1 - z-momentum.

Θ = uz , Φr = uruz − ν(uz )r , Φξ = uξuz + aBp − ν

B
(uz )ξ.

Primitive variables - NSP2 - generalized momentum

Θ =
r

B
uη,

Φr =
r

B
uruη − ν

[
−2aB

(
auη + 2

b

r
uξ
)

+
( r

B
uη
)

r

]
=

r

B
uruη − ν

[
−2auϕ +

( r

B
uη
)

r

]
,

Φξ =
r

B
uηuξ − ν 1

B

[
2abB2

r
ur +

( r

B
uη
)
ξ

]
.
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV1 - Family of vorticity conservation laws

Θ =
Q(t)

r
B

(
aωη +

b

r
ωξ
)

=
Q(t)

r
ωϕ,

Φr =
1

r

{
Q(t)

[
urB

(
aωη +

b

r
ωξ
)
− ωrB

(
auη +

b

r
uξ
)]

+ Q ′(t)B

(
−b

r
uη + auξ

)
−Q(t)ν

[
aB

r
ωη +

b2B

r (a2r 2 + b2)

(
aωη +

b

r
ωξ
)

+ B

(
aωηr +

b

r
ωξr

)]}
,

Φξ = −B

r

{
aQ(t)

[
uηωξ − uξωη

]
+ aQ ′(t)ur

+
Q(t)

r 3
ν

[
r 3

B

(
aωηξ +

b

r
ωξξ

)
+ 2brωr

]}
,

for an arbitrary function Q(t).
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV2 - Vorticity conservation law

Θ = −rB
(
a3ωη − b3

r 3
ωξ
)
,

Φr = −B

r 2

(
a3r 3 (urωη − uηωr )− b3

(
urωξ − uξωr

))
− 2a2Bur

(
−b

r
uη + auξ

)
−B

r 2
ν

[
r 2

B2

(
aωη +

b

r
ωξ
)
− r 3

(
a3ωηr −

b3

r 3
ωξr

)
+ abB2r

(
b3

r 3
ωη + a3ωξ

)]
,

Φξ = a3B
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+

2a2bB

r
uηuξ

+
2a2bB

r
ν

[(
1− b2

a2r 2

)
ωr +

r 2

2a2bB

(
a3ωηξ −

b3

r 3
ωξξ

)]
.
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Conservation Laws for Helically Symmetric Viscous Flows

Vorticity formulation - NSV3 - Vorticity conservation law

Θ = −B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr = a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
−a4r 4 + a2r 2b2 + b4

r
√
a2r 2 + b2

(
urωξ − uξωr

)
+ν

[
4a3B

(
auη +

b

r
uξ
)
− a3brB(ωη)r +

B

r 3

(
b4 − a4r 4 − a6r 6

a2r 2 + b2

)
ωξ

+
B

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)r +

ab

B

(
2 +

a4r 4

(a2r 2 + b2)2

)
ωη
]
,

Φξ = −a3bB
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+ 2a4rBuηuξ

+ν

[
1

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)ξ − a3br(ωη)ξ − 4a3bB

r
ur +

2b4B

r 3
ωr

]
.
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Some Conservation Laws for Two-Component Flows

Generalized enstrophy for inviscid plane flow (known)

Θ = N(ωz ), Φx = uxN(ωz ), Φy = uyN(ωz ),

for an arbitrary N(·), equivalent to a material conservation law

d

dt
N(ωz ) = 0.

Generalized enstrophy for inviscid axisymmetric flow

Θ = S

(
1

r
ωϕ
)
, Φr = urS

(
1

r
ωϕ
)
, Φz = uzS

(
1

r
ωϕ
)

for arbitrary S(·).

Several additional conservation laws arise for plane and axisymmetric, inviscid and
viscous flows (details in paper).
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Some Conservation Laws for Two-Component Flows

18 O. Kelbin, A.F. Cheviakov, M. Oberlack,

z

x

y

r

u»

ur

» = const

´!

Figure 2. A schematic of a two-component helically invariant flow, with zero velocity component
in the invariant η-direction: uη = 0. Conversely, the vorticity has only one nonzero component
ωη 6= 0.

Note that the equation (6.2c) vanishes when νab = 0, i.e., for inviscid flows, and
for viscous flows with axial or planar symmetry. For other cases when the equation
(6.2c) does not vanish, it imposes an additional differential constraint on the velocity
components ur, uξ. Such a restriction may lead to lack of solution existence for boundary
value problems, and hence below we only consider the inviscid case with a, b 6= 0 and
both viscous and inviscid cases when a = 0 or b = 0.

6.1. Additional conservation laws for general inviscid two-component helically invariant
flows

We now consider two-component helically invariant Euler flows satisfying (6.1). The
three governing equations in primitive variables are given by (6.2a), (6.2b), and (6.2d),
with ν = 0. Employing first-order conservation law multipliers, we find that the energy
conservation law EP1 (4.1) is carried over without change; the conservation laws EP2
(4.2) and EP3 (4.3) collapse to one, given by

Θ = Buξ, Φr = Buruξ, Φξ = B((uξ)2 + p);

the conservation law EP4 (4.4) vanishes. No additional conservation laws arise in the
above multiplier ansatz.

In the vorticity formulation, equations in primitive variables are appended with the
definition of vorticity and the vorticity transport equations. For the two-component case,
from (6.1), it follows that ωξ = ωr = 0 (cf. Figure 2). The remaining vorticity component
ωη is given by

ωη =
1

B
(ur)ξ −

1

r

∂

∂r
(ruξ) +

a2B2

r
uξ. (6.3)

The vorticity transport equations in r− and ξ−directions vanish identically, and the
remaining equation reads

(ωη)t +
1

r

∂

∂r
(rurωη) +

1

B

∂

∂ξ
(uξωη)− a2B2

r
urωη = 0. (6.4)

Physically it is important to note that the reduction due to (6.1) gives rise to the elim-
ination of the vortex stretching term in equation (2.13e). Hence, similar to the plane
two-component case, (6.4) corresponds to pure helical vorticity convection. This vanish-

Generalized enstrophy for general inviscid helical 2-component flow

Θ = T

(
B

r
ωη
)
, Φr = urT

(
B

r
ωη
)
, Φξ = uξT

(
B

r
ωη
)
,

for an arbitrary T (·), equivalent to a material conservation law

d

dt
T

(
B

r
ωη
)

= 0.
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Summary for helical flows:

Helically-Invariant Equations

Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

Two-component reductions.

Additional Conservation Laws

Three-component Euler:
Generalized momenta. Generalized helicity. Additional vorticity CLs.

Three-component Navier-Stokes:
Additional CLs in primitive and vorticity formulation.

Two-component flows:
Infinite set of enstrophy-related vorticity CLs (inviscid case).
Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Outline

1 Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

4 CLs of An Inviscid Model in Gas Dynamics

5 CLs of a Surfactant Flow Model

6 Discussion
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Conservation laws of an Inviscid Model in Gas Dynamics

Euler equations:

ρt +∇ · (ρu) = 0, ρ(ut + (u · ∇)u) +∇p = 0.

A CL classification for 2D, 3D barotropic model:

p = p(ρ) (S = const).

[Anco & Dar (2010)].
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Surfactants - Brief Overview

Surfactants

”Surfactant”=”Surface active agent”.

Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.

Consist of a hydrophobic group (tail) and a hydrophilic group (head).
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Surfactants - Brief Overview

Surfactants

”Surfactant”=”Surface active agent”.

Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.

Consist of a hydrophobic group (tail) and a hydrophilic group (head).

Sodium lauryl sulfate:
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Surfactants - Brief Overview

Surfactants

”Surfactant”=”Surface active agent”.

Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.

Consist of a hydrophobic group (tail) and a hydrophilic group (head).

Hydrophilic groups (heads) can have various properties:
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Surfactants - Applications

Surfactant molecules adsorb at phase separation interfaces.
Stabilization of growth of bubbles / droplets.
Creation of emulsions of insoluble substances.
Multiple industrial and medical applications.
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Surfactants - Applications

Can form micelles, double layers, etc.

A. Cheviakov (UofS, Canada) Conservation Laws II June 2015 26 / 35



Surfactants - Applications

Soap bubbles...
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Surfactant Transport Equations

Derivation:

Can be derived as a special case of multiphase flows with moving interfaces and contact
lines:
[Y.Wang, M. Oberlack, 2011]

Illustration:
Y. Wang, M. Oberlack

Fig. 1 The investigated material domain B with its outer boundary ∂B consisting of three-phase subdomains B(i)(i = 1, 2, 3)
surrounded by their outer boundaries ∂B(i) and phase interfaces S(i)

The interface or phase boundary may be not a surface of sudden change of mass, momentum, energy, and
entropy; it rather constitutes a thin layer across which mass, momentum, energy, etc. change smoothly but
rapidly between the densities of the adjacent phase materials. The reason for this is the necessity of molecular
arrays of the adjacent bulk phases. Such an interface layer possesses a thickness of only a few molecular diam-
eters or molecular mean free path. Compared to the dimensions of the adjacent bulk materials, the interface is
almost infinitely thin and can therefore be described as two-dimensional continua, representing mathematically
singular surface with its own thermomechanical properties. The interface can carry mass, momentum, energy,
and entropy. The interface is considered to be material in the sense if we assume its tangential velocity is the
tangential material velocity of fluid particles that lie on the interface at some instant of time. The singular
surface as a whole, however, may be non-material, because matter may cross it when it represents a phase
boundary. A thermodynamic theory of phase boundaries can thus be founded on the postulation of conservation
laws for surface mass, momentum and energy and a balance law for surface entropy together with constitutive
assumptions for surface dependent fields and jump relations of the bulk fields at the phase boundary. It is also
the similar case for the three-phase contact line, which represents a three-phase interaction region and hence
may also possess mass, momentum, energy, and entropy, for which corresponding conservation laws can also
be postulated.

For the material domain B, the quantities arising in the Eq. (1) express the corresponding entities for the
whole domain; they are equivalent to a sum of individual contributions for all particles contained in the domain
B or on the boundary ∂B. Thus, we have

Γ =
∫

B

γ dv =
3∑

i=1

∫

B(i)

γ (i) dv +
3∑

i=1

∫

S(i)

γ (si ) da +
∫

C

γ (c) dl,

F = −
∫

∂B

φ · n da = −
3∑

i=1

∫

∂B(i)

φ(i) · n da −
3∑

i=1

∫

C(i)

φ(si ) · s(i) dl

−
[
(φ(c) · λ(c))II − (φ(c) · λ(c))I

]
, (2)

P =
∫

B

π dv =
3∑

i=1

∫

B(i)

π(i) dv +
3∑

i=1

∫

S(i)

π(si ) da +
∫

C

π(c) dl,
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Surfactant Transport Equations (ctd.)

 

 = 0 

n 

u 

Parameters

Surfactant concentration c = c(x, t).

Flow velocity u(x, t).

Two-phase interface: phase separation surface Φ(x, t) = 0.

Unit normal: n = − ∇Φ

|∇Φ| .

A. Cheviakov (UofS, Canada) Conservation Laws II June 2015 28 / 35



Surfactant Transport Equations (ctd.)

 

 = 0 

n 

u 

Surface gradient

Surface projection tensor: pij = δij − ninj .

Surface gradient operator: ∇s = p · ∇ = (δij − ninj )
∂

∂x j
.

Surface Laplacian:

∆sF = (δij − ninj )
∂

∂x j

(
(δik − nink )

∂F

∂xk

)
.
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Surfactant Transport Equations (ctd.)

 

 = 0 

n 

u 

Governing equations

Incompressibility condition: ∇ · u = 0.

Fluid dynamics equations: Euler or Navier-Stokes.

Interface transport by the flow: Φt + u · ∇Φ = 0.

Surfactant transport equation:

ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.
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Surfactant Transport Equations (ctd.)

 

 = 0 

n 

u 

Fully conserved form

Specific numerical methods (e.g., discontinuous Galerkin) require the system to be
written in a fully conserved form.

Straightforward for continuity, momentum, and interface transport equations.

Can the surfactant transport equation be written in the conserved form?

ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.
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CLs of the Surfactant Dynamics Equations: The Convection Case

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
= 0.

Multiplier ansatz

Λi = Λi (t,x,Φ, c,u, ∂Φ, ∂c, ∂u, ∂2Φ, ∂2c, ∂2u).

Conservation Law Determining Equations

Euj (ΛσRσ) = 0, j = 1, ..., 3; EΦ(ΛσRσ) = 0; Ec (ΛσRσ) = 0.
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CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
= 0.

Principal Result 1 (multipliers)

There exist an infinite family of multiplier sets with Λ3 6= 0, i.e., essentially
involving c.

Family of conservation laws with

Λ3 = |∇Φ| K(Φ, c|∇Φ|).
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CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
= 0.

Principal Result 1 (divergence expressions)

Usual form:
∂

∂t
G(Φ, c|∇Φ|) +

∂

∂x i

(
uiG(Φ, c|∇Φ|)

)
= 0.

Material form:
d

dt
G(Φ, c|∇Φ|) = 0.
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CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
= 0.

Simplest conservation law with c-dependence

Can take G(Φ, c|∇Φ|) = c|∇Φ|.

∂

∂t
(c|∇Φ|) +

∂

∂x i

(
uic|∇Φ|

)
= 0.
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The Convection-Diffusion Case

Governing equations (α 6= 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.
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The Convection-Diffusion Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.

Principal Result 2 (multipliers)

Λ1 = ΦF(Φ) |∇Φ|−1

(
∂

∂x j

(
c
∂Φ

∂x j

)
− cninj

∂2Φ

∂x i∂x j

)
,

Λ2 = −F(Φ) |∇Φ|−1

(
∂

∂x j

(
c
∂Φ

∂x j

)
− cninj

∂2Φ

∂x i∂x j

)
,

Λ3 = F(Φ)|∇Φ|,
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The Convection-Diffusion Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.

Principal Result 2 (divergence expressions)

An infinite family of conservation laws:

∂

∂t
(c F(Φ) |∇Φ|) +

∂

∂x i

(
Ai F(Φ) |∇Φ|

)
= 0,

where

Ai = cui − α
(

(δik − nink )
∂c

∂xk

)
, i = 1, 2, 3,

and F is an arbitrary sufficiently smooth function.
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The Convection-Diffusion Case (ctd.)

Governing equations (α = 0)

R1 =
∂ui

∂x i
= 0,

R2 = Φt +
∂(ui Φ)

∂x i
= 0,

R3 = ct + ui ∂c

∂x i
− cninj

∂ui

∂x j
− α(δij − ninj )

∂

∂x j

(
(δik − nink )

∂c

∂xk

)
= 0.

Simplest conservation law with c-dependence

Can take F(Φ) = 1:

∂

∂t
(c |∇Φ|) +

∂

∂x i

(
Ai |∇Φ|

)
= 0.

Surfactant dynamics equations can be written in a fully conserved form.
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Discussion

Fluid & gas dynamics: a large number of general and specific models exist.

viscous and inviscid;

single and multi-phase;

non-Newtonian;

special reductions/geometries of interest;

asymptotic models (KdV, shallow water, etc.).

CLs can be found systematically – DCM/symbolic software.

General Euler and NS for 3D:
basic CLs known;

infinite family of “potential vorticity” CLs;single and multi-phase;

Additional CLs for symmetric reductions;

Further additional CLs for 2-component velocity.

A lot remains to be discovered!

Further applications: numerical simulations; development of specialized numerical
methods, etc.
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