Conservation Laws of Fluid Dynamics Models

Prof. Alexei Cheviakov
(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

June 2015

Outline

(1) Fluid Dynamics Equations
(2) CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows
(4) CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Outline

(1) Fluid Dynamics Equations
(2) CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model

6 Discussion

Definitions

Fluid/gas flow in 3D

- Independent variables: t, x, y, z.
- Dependent variables: $\mathbf{u}=\left(u^{1}, u^{2}, u^{3}\right)=(u, v, w) ; p ; \rho$.

Definitions

Fluid/gas flow in 3D

- Independent variables: t, x, y, z.
- Dependent variables: $\mathbf{u}=\left(u^{1}, u^{2}, u^{3}\right)=(u, v, w) ; p ; \rho$.
- 2D picture:

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

- 4 equations, 5 unknowns. Closure required.

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

- Closure e.g. 1, homogeneous flow (e.g., water):

$$
\rho=\text { const }, \quad \operatorname{div} \mathbf{u}=0
$$

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

- Closure e.g. 2, incompressible flow:

$$
\begin{gathered}
\operatorname{div} \mathbf{u}=0 \\
\rho_{t}+\mathbf{u} \cdot \nabla \rho=0
\end{gathered}
$$

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

- Other closure choices: ideal gas/adiabatic, isothermal, polytropic (gas dynamics), etc...

Main Equations of Gas/Fluid Flow

- Euler equations:

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
\end{aligned}
$$

- Navier-Stokes equations (viscosity $\nu=$ const):

$$
\begin{aligned}
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{aligned}
$$

- Multiple other fluid models exist.

Outline

(1) Fluid Dynamics Equations
(2) CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Conservation Laws of Constant-Density Euler Equations

Constant-density Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Conservation Laws of Constant-Density Euler Equations

Constant-density Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

- CLs in a general setting.
- Additional CLs in a symmetric setting (e.g., axisymmetric).
- More additional CLs in a reduced setting (e.g., planar flow).

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

- Some conservation laws known "forever", e.g., [Batchelor (2000)].
- Kovalevskaya form w.r.t. x, y, z.
- It remains an open problem to determine the upper bound of the CL order for the Euler system.
- Let us seek CLs using the Direct method, 2nd-order multipliers [C., Oberlack (2014)]:

$$
\begin{gathered}
\Lambda_{\sigma}=\Lambda_{\sigma}(45 \text { variables }) \\
\Lambda_{\sigma} R^{\sigma} \equiv \frac{\partial \Phi^{i}}{\partial x^{i}}=0
\end{gathered}
$$

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Conservation of generalized momentum:

- x-direction:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(f(t) u^{1}\right)+\frac{\partial}{\partial x}\left(\left(u^{1} f(t)-x f^{\prime}(t)\right) u^{1}+f(t) p\right) \\
& +\frac{\partial}{\partial y}\left(\left(u^{1} f(t)-x f^{\prime}(t)\right) u^{2}\right)+\frac{\partial}{\partial z}\left(\left(u^{1} f(t)-x f^{\prime}(t)\right) u^{3}\right)=0
\end{aligned}
$$

- Multipliers:

$$
\Lambda_{1}=f(t) u^{1}-x f^{\prime}(t), \quad \Lambda_{2}=f(t), \quad \Lambda_{3}=\Lambda_{4}=0
$$

- Arbitrary $f(t)$.
- Similar in y-, z-directions.

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Conservation of angular momentum $\mathbf{x} \times \mathbf{u}$:

- x-direction:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(z u^{2}-y u^{3}\right)+\frac{\partial}{\partial x}\left(\left(z u^{2}-y u^{3}\right) u^{1}\right) \\
& +\frac{\partial}{\partial y}\left(\left(z u^{2}-y u^{3}\right) u^{2}+z p\right)+\frac{\partial}{\partial z}\left(\left(z u^{2}-y u^{3}\right) u^{3}-y p\right)=0 .
\end{aligned}
$$

- Multipliers:

$$
\Lambda_{1}=u_{z}^{2}-u_{y}^{3}, \quad \Lambda_{2}=0, \quad \Lambda_{3}=z, \quad \Lambda_{4}=-y
$$

- Similar in y-, z-directions.

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Conservation of kinetic energy:

- x-direction:

$$
\frac{\partial}{\partial t} K+\nabla \cdot((K+p) \mathbf{u})=0, \quad K=\frac{1}{2}|\mathbf{u}|^{2}
$$

- Multipliers:

$$
\Lambda_{1}=K+p, \quad \Lambda_{i}=u^{i}, \quad i=1,2,3
$$

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Generalized continuity equation:

- For arbitrary $k(t)$:

$$
\nabla \cdot(k(t) \mathbf{u})=0
$$

- Multipliers:

$$
\Lambda_{1}=k(t), \quad \Lambda_{2}=\Lambda_{3}=\Lambda_{4}=0
$$

- Arbitrary $k(t)$.

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Conservation of helicity:

- Vorticity: $\boldsymbol{\omega}=\operatorname{curl} \mathbf{u}$.
- Helicity: $h=\mathbf{u} \cdot \boldsymbol{\omega}$.
- Helicity conservation law:

$$
\frac{\partial}{\partial t} h+\nabla \cdot(\mathbf{u} \times \nabla E+(\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u})=0
$$

where $E=K+p$ is the total energy density.

- Topological significance/vortex line linkage.
- Multipliers:

$$
\Lambda_{1}=0, \quad \Lambda_{i}=\omega^{i}, \quad i=1,2,3
$$

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Vorticity system: conservation of vorticity.

- Vorticity: $\boldsymbol{\omega}=\operatorname{curl} \mathbf{u}$.
- Vorticity equations:

$$
\operatorname{div} \boldsymbol{\omega}=0, \quad \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{u})=0 .
$$

Conservation Laws of Constant-Density Euler Equations

Euler equations:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=0
\end{aligned}
$$

Vorticity system: potential vorticity.

- Vorticity equations:

$$
\operatorname{div} \boldsymbol{\omega}=0, \quad \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{u})=0
$$

- CL:

$$
(\boldsymbol{\omega} \cdot \nabla F)_{t}+\nabla \cdot\left(\boldsymbol{\beta} \times \nabla F-F_{t} \boldsymbol{\omega}\right)=0, \quad \boldsymbol{\beta} \equiv \boldsymbol{\omega} \times \mathbf{u}
$$

- Multipliers:

$$
\Lambda_{1}=-D_{t} F, \quad \Lambda_{2}=D_{x} F, \quad \Lambda_{2}=D_{y} F, \quad \Lambda_{2}=D_{z} F,
$$

holding for an arbitrary differential function $F=F[\mathbf{u}, p]$.

- Details [Müller (1995)], generalizations: [C. \& Oberlack (2014)].

Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

$$
\begin{gathered}
u^{z}=\omega^{x}=\omega^{y}=0 ; \quad \frac{\partial}{\partial z}=0 . \\
\left\{\begin{array}{l}
\left(u^{x}\right)_{x}+\left(u^{y}\right)_{y}=0, \\
\left(u^{x}\right)_{t}+u^{x}\left(u^{x}\right)_{x}+u^{y}\left(u^{x}\right)_{y}=-p_{x}, \\
\left(u^{y}\right)_{t}+u^{x}\left(u^{y}\right)_{x}+u^{y}\left(u^{y}\right)_{y}=-p_{y} ;
\end{array}\right. \\
\left\{\begin{array}{l}
\omega^{2}+\left(u^{x}\right)_{y}-\left(u^{y}\right)_{x}=0, \\
\left(\omega^{z}\right)_{t}+u^{x}\left(\omega^{z}\right)_{x}+u^{y}\left(\omega^{z}\right)_{y}=0 .
\end{array}\right.
\end{gathered}
$$

Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

$$
\begin{gathered}
u^{z}=\omega^{x}=\omega^{y}=0 ; \quad \frac{\partial}{\partial z}=0 . \\
\left\{\begin{array}{l}
\left(u^{x}\right)_{x}+\left(u^{y}\right)_{y}=0, \\
\left(u^{x}\right)_{t}+u^{x}\left(u^{x}\right)_{x}+u^{y}\left(u^{x}\right)_{y}=-p_{x}, \\
\left(u^{y}\right)_{t}+u^{x}\left(u^{y}\right)_{x}+u^{y}\left(u^{y}\right)_{y}=-p_{y} ;
\end{array}\right. \\
\left\{\begin{array}{l}
\omega^{z}+\left(u^{x}\right)_{y}-\left(u^{y}\right)_{x}=0, \\
\left(\omega^{z}\right)_{t}+u^{x}\left(\omega^{z}\right)_{x}+u^{y}\left(\omega^{z}\right)_{y}=0 .
\end{array}\right.
\end{gathered}
$$

Enstrophy Conservation

- Enstrophy: $\mathcal{E}=|\boldsymbol{\omega}|^{2}=\left(\omega^{2}\right)^{2}$.
- Material conservation law:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}=\mathrm{D}_{t} \mathcal{E}+\mathrm{D}_{x}\left(u^{x} \mathcal{E}\right)+\mathrm{D}_{y}\left(u^{y} \mathcal{E}\right)=0
$$

- Was only known to hold for plane flows, $(2+1)$-dimensions.

Plane Euler Flows; Conservation of Enstrophy

Euler classical two-component plane flow:

$$
\begin{gathered}
u^{z}=\omega^{x}=\omega^{y}=0 ; \quad \frac{\partial}{\partial z}=0 . \\
\left\{\begin{array}{l}
\left(u^{x}\right)_{x}+\left(u^{y}\right)_{y}=0, \\
\left(u^{x}\right)_{t}+u^{x}\left(u^{x}\right)_{x}+u^{y}\left(u^{x}\right)_{y}=-p_{x}, \\
\left(u^{y}\right)_{t}+u^{x}\left(u^{y}\right)_{x}+u^{y}\left(u^{y}\right)_{y}=-p_{y} ;
\end{array}\right. \\
\left\{\begin{array}{l}
\omega^{2}+\left(u^{x}\right)_{y}-\left(u^{y}\right)_{x}=0, \\
\left(\omega^{z}\right)_{t}+u^{x}\left(\omega^{z}\right)_{x}+u^{y}\left(\omega^{z}\right)_{y}=0 .
\end{array}\right.
\end{gathered}
$$

Other Plane Flow CLs

- Several additional vorticity-related CLs known for plane flows (e.g., [Batchelor (2000)]);

Conservation Laws of Navier-Stokes Equations

Navier-Stokes Equations equations in $3+1$ dimensions

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{gathered}
$$

Vorticity formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0, \quad \boldsymbol{\omega}=\nabla \times \mathbf{u} \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0
\end{gathered}
$$

Basic conservation laws:

- Momentum / generalized momentum: $\Theta=f(t) u^{i}, \quad i=1,2,3$.
- Angular momentum: $\Theta=(\mathbf{r} \times \mathbf{u})^{i}, \quad i=1,2,3$.
- Vorticity: $\Theta=\omega^{i}, \quad i=1,2,3$.
- Potential vorticity.

Outline

(1) Fluid Dynamics Equations

2 CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Examples of Helical Flows in Nature

- Wind turbine wakes in aerodynamics [Vermeer, Sorensen \& Crespo, 2003]

Examples of Helical Flows in Nature

- Helical instability of rotating viscous jets [Kubitschek \& Weidman, 2007]

Examples of Helical Flows in Nature

- Helical water flow past a propeller

Examples of Helical Flows in Nature

- Wing tip vortices, in particular, on delta wings [Mitchell, Morton \& Forsythe, 1997]

Helical Coordinates

Helical Coordinates

- Cylindrical coordinates: (r, φ, z). Helical coordinates: (r, η, ξ)

$$
\xi=a z+b \varphi, \quad \eta=a \varphi-b \frac{z}{r^{2}}, \quad a, b=\text { const }, \quad a^{2}+b^{2}>0 .
$$

Helical Coordinates

Orthogonal Basis

$$
\mathbf{e}_{r}=\frac{\nabla r}{|\nabla r|}, \quad \mathbf{e}_{\xi}=\frac{\nabla \xi}{|\nabla \xi|}, \quad \mathbf{e}_{\perp \eta}=\frac{\nabla \perp \eta}{\left|\nabla_{\perp} \eta\right|}=\mathbf{e}_{\xi} \times \mathbf{e}_{r}
$$

- Scaling factors: $H_{r}=1, H_{\eta}=r, H_{\xi}=B(r), \quad B(r)=\frac{r}{\sqrt{a^{2} r^{2}+b^{2}}}$.

Helical Coordinates

Vector expansion

$$
\begin{gathered}
\mathbf{u}=u^{r} \mathbf{e}_{r}+u^{\varphi} \mathbf{e}_{\varphi}+u^{z} \mathbf{e}_{z}=u^{r} \mathbf{e}_{r}+u^{\eta} \mathbf{e}_{\perp \eta}+u^{\xi} \mathbf{e}_{\xi} . \\
u^{\eta}=\mathbf{u} \cdot \mathbf{e}_{\perp \eta}=B\left(a u^{\varphi}-\frac{b}{r} u^{z}\right), \quad u^{\xi}=\mathbf{u} \cdot \mathbf{e}_{\xi}=B\left(\frac{b}{r} u^{\varphi}+a u^{z}\right) .
\end{gathered}
$$

Helical Coordinates

Helical invariance: generalizes axal and translational invariance

- Helical coordinates: $r, \quad \xi=a z+b \varphi, \quad \eta=a \varphi-b z / r^{2}$.
- General helical symmetry: $f=f(r, \xi), \quad a, b \neq 0$.
- Axial: $a=1, b=0 . \quad z$-Translational: $a=0, b=1$.

Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0
\end{gathered}
$$

Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0 .
\end{gathered}
$$

Continuity:

$$
\frac{1}{r} u^{r}+\left(u^{r}\right)_{r}+\frac{1}{B}\left(u^{\xi}\right)_{\xi}=0
$$

Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0 .
\end{gathered}
$$

r-momentum:

$$
\begin{aligned}
\left(u^{r}\right)_{t}+u^{r}\left(u^{r}\right)_{r}+ & \frac{1}{B} u^{\xi}\left(u^{r}\right)_{\xi}-\frac{B^{2}}{r}\left(\frac{b}{r} u^{\xi}+a u^{\eta}\right)^{2}=-p_{r} \\
& +\nu\left[\frac{1}{r}\left(r\left(u^{r}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(u^{r}\right)_{\xi \xi}-\frac{1}{r^{2}} u^{r}-\frac{2 b B}{r^{2}}\left(a\left(u^{\eta}\right)_{\xi}+\frac{b}{r}\left(u^{\xi}\right)_{\xi}\right)\right]
\end{aligned}
$$

Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0 .
\end{gathered}
$$

η-momentum:

$$
\begin{aligned}
& \left(u^{\eta}\right)_{t}+u^{r}\left(u^{\eta}\right)_{r}+\frac{1}{B} u^{\xi}\left(u^{\eta}\right)_{\xi}+\frac{a^{2} B^{2}}{r} u^{r} u^{\eta} \\
& \quad=\nu\left[\frac{1}{r}\left(r\left(u^{\eta}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(u^{\eta}\right)_{\xi \xi}+\frac{a^{2} B^{2}\left(a^{2} B^{2}-2\right)}{r^{2}} u^{\eta}+\frac{2 a b B}{r^{2}}\left(\left(u^{r}\right)_{\xi}-\left(B u^{\xi}\right)_{r}\right)\right]
\end{aligned}
$$

Helically Invariant Navier-Stokes Equations

Navier-Stokes Equations:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nu \nabla^{2} \mathbf{u}=0 .
\end{gathered}
$$

ξ-momentum:

$$
\begin{aligned}
& \left(u^{\xi}\right)_{t}+u^{r}\left(u^{\xi}\right)_{r}+\frac{1}{B} u^{\xi}\left(u^{\xi}\right)_{\xi}+\frac{2 a b B^{2}}{r^{2}} u^{r} u^{\eta}+\frac{b^{2} B^{2}}{r^{3}} u^{r} u^{\xi}=-\frac{1}{B} p_{\xi} \\
& \quad+\nu\left[\frac{1}{r}\left(r\left(u^{\xi}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(u^{\xi}\right)_{\xi \xi}+\frac{a^{4} B^{4}-1}{r^{2}} u^{\xi}+\frac{2 b B}{r}\left(\frac{b}{r^{2}}\left(u^{r}\right)_{\xi}+\left(\frac{a B}{r} u^{\eta}\right)_{r}\right)\right]
\end{aligned}
$$

Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\nabla \times \mathbf{u}=: \boldsymbol{\omega}=\omega^{r} \mathbf{e}_{r}+\omega^{\eta} \mathbf{e}_{\perp \eta}+\omega^{\xi} \mathbf{e}_{\xi} \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0
\end{gathered}
$$

Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0, \\
\nabla \times \mathbf{u}=: \boldsymbol{\omega}=\omega^{r} \mathbf{e}_{r}+\omega^{\eta} \mathbf{e}_{\perp \eta}+\omega^{\xi} \mathbf{e}_{\xi}, \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0 .
\end{gathered}
$$

Vorticity definition:

$$
\begin{gathered}
\omega^{r}=-\frac{1}{B}\left(u^{\eta}\right)_{\xi} \\
\omega^{\eta}=\frac{1}{B}\left(u^{r}\right)_{\xi}-\frac{1}{r}\left(r u^{\xi}\right)_{r}-\frac{2 a b B^{2}}{r^{2}} u^{\eta}+\frac{a^{2} B^{2}}{r} u^{\xi} \\
\omega^{\xi}=\left(u^{\eta}\right)_{r}+\frac{a^{2} B^{2}}{r} u^{\eta}
\end{gathered}
$$

Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0, \\
\nabla \times \mathbf{u}=: \boldsymbol{\omega}=\omega^{r} \mathbf{e}_{r}+\omega^{\eta} \mathbf{e}_{\perp \eta}+\omega^{\xi} \mathbf{e}_{\xi}, \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0 .
\end{gathered}
$$

r-Momentum:

$$
\begin{aligned}
\left(\omega^{r}\right)_{t}+u_{r}\left(\omega^{r}\right)_{r} & +\frac{1}{B} u^{\xi}\left(\omega^{r}\right)_{\xi}=\omega^{r}\left(u^{r}\right)_{r}+\frac{1}{B} \omega^{\xi}\left(u^{r}\right)_{\xi} \\
& +\nu\left[\frac{1}{r}\left(r\left(\omega^{r}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(\omega^{r}\right)_{\xi \xi}-\frac{1}{r^{2}} \omega^{r}-\frac{2 b B}{r^{2}}\left(a\left(\omega^{\eta}\right)_{\xi}+\frac{b}{r}\left(\omega^{\xi}\right)_{\xi}\right)\right]
\end{aligned}
$$

Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0, \\
\nabla \times \mathbf{u}=: \boldsymbol{\omega}=\omega^{r} \mathbf{e}_{r}+\omega^{\eta} \mathbf{e}_{\perp \eta}+\omega^{\xi} \mathbf{e}_{\xi}, \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0 .
\end{gathered}
$$

η-Momentum:

$$
\begin{aligned}
\left(\omega^{\eta}\right)_{t} & +u^{r}\left(\omega^{\eta}\right)_{r}+\frac{1}{B} u^{\xi}\left(\omega^{\eta}\right)_{\xi} \\
& \quad-\frac{a^{2} B^{2}}{r}\left(u^{r} \omega^{\eta}-u^{\eta} \omega^{r}\right)+\frac{2 a b B^{2}}{r^{2}}\left(u^{\xi} \omega^{r}-u^{r} \omega^{\xi}\right)=\omega^{r}\left(u^{\eta}\right)_{r}+\frac{1}{B} \omega^{\xi}\left(u^{\eta}\right)_{\xi} \\
+\nu & {\left[\frac{1}{r}\left(r\left(\omega^{\eta}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(\omega^{\eta}\right)_{\xi \xi}+\frac{a^{2} B^{2}\left(a^{2} B^{2}-2\right)}{r^{2}} \omega^{\eta}+\frac{2 a b B}{r^{2}}\left(\left(\omega^{r}\right)_{\xi}-\left(B \omega^{\xi}\right)_{r}\right)\right] }
\end{aligned}
$$

Helically Invariant Vorticity Formulation

Navier-Stokes Equations, Vorticity Formulation:

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0, \\
\nabla \times \mathbf{u}=: \boldsymbol{\omega}=\omega^{r} \mathbf{e}_{r}+\omega^{\eta} \mathbf{e}_{\perp \eta}+\omega^{\xi} \mathbf{e}_{\xi}, \\
\boldsymbol{\omega}_{t}+\nabla \times(\boldsymbol{\omega} \times \mathbf{u})-\nu \nabla^{2} \boldsymbol{\omega}=0 .
\end{gathered}
$$

ξ-Momentum:

$\left(\omega^{\xi}\right)_{t}+u^{r}\left(\omega^{\xi}\right)_{r}+\frac{1}{B} u^{\xi}\left(\omega^{\xi}\right)_{\xi}$

$$
+\frac{1-a^{2} B^{2}}{r}\left(u^{\xi} \omega^{r}-u^{r} \omega^{\xi}\right)=\omega^{r}\left(u^{\xi}\right)_{r}+\frac{1}{B} \omega^{\xi}\left(u^{\xi}\right)_{\xi}
$$

$$
+\nu\left[\frac{1}{r}\left(r\left(\omega^{\xi}\right)_{r}\right)_{r}+\frac{1}{B^{2}}\left(\omega^{\xi}\right)_{\xi \xi}+\frac{a^{4} B^{4}-1}{r^{2}} \omega^{\xi}+\frac{2 b B}{r}\left(\frac{b}{r^{2}}\left(\omega^{r}\right)_{\xi}+\left(\frac{a B}{r} \omega^{\eta}\right)_{r}\right)\right]
$$

Conservation Laws for Helically Symmetric Flows

For helically symmetric flows:

- Seek local conservation laws

$$
\frac{\partial \Theta}{\partial t}+\nabla \cdot \boldsymbol{\Phi} \equiv \frac{\partial \Theta}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \Phi^{r}\right)+\frac{1}{B} \frac{\partial \Phi^{\xi}}{\partial \xi}=0
$$

using divergence expressions

$$
\frac{\partial \Gamma^{1}}{\partial t}+\frac{\partial \Gamma^{2}}{\partial r}+\frac{\partial \Gamma^{3}}{\partial \xi}=r\left[\frac{\partial}{\partial t}\left(\frac{\Gamma^{1}}{r}\right)+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\Gamma^{2}}{r}\right)+\frac{1}{B} \frac{\partial}{\partial \xi}\left(\frac{B}{r} \Gamma^{3}\right)\right]=0
$$

i.e.,

$$
\Theta \equiv \frac{\Gamma^{1}}{r}, \quad \phi^{r} \equiv \frac{\Gamma^{2}}{r}, \quad \Phi^{\xi} \equiv \frac{B}{r} \Gamma^{3} .
$$

- 1st-order multipliers in primitive variables.
- Oth-order multipliers in vorticity formulation.

Conservation Laws for Helically Symmetric Inviscid Flows: $\nu=0$

Primitive variables - EP1 - Kinetic energy

$$
\Theta=K, \quad \phi^{r}=u^{r}(K+p), \quad \Phi^{\xi}=u^{\xi}(K+p), \quad K=\frac{1}{2}|\mathbf{u}|^{2} .
$$

Primitive variables - EP2-z-momentum

$$
\Theta=B\left(-\frac{b}{r} u^{\eta}+a u^{\xi}\right)=u^{z}, \quad \Phi^{r}=u^{r} u^{2}, \quad \Phi^{\xi}=u^{\xi} u^{z}+a B p .
$$

Primitive variables - EP3-z-angular momentum

$$
\Theta=r B\left(a u^{\eta}+\frac{b}{r} u^{\xi}\right)=r u^{\varphi}, \quad \phi^{r}=r u^{r} u^{\varphi}, \quad \phi^{\xi}=r u^{\xi} u^{\varphi}+b B p .
$$

Primitive variables - EP4 - Generalized momenta/angular momenta

$$
\Theta=F\left(\frac{r}{B} u^{\eta}\right), \quad \Phi^{r}=u^{r} F\left(\frac{r}{B} u^{\eta}\right), \quad \Phi^{\xi}=u^{\xi} F\left(\frac{r}{B} u^{\eta}\right),
$$

where $F(\cdot)$ is an arbitrary function.

Conservation Laws for Helically Symmetric Inviscid Flows: $\nu=0$

Vorticity formulation - EV1 - Conservation of helicity

Helicity:

$$
h=\mathbf{u} \cdot \boldsymbol{\omega}=u^{r} \omega^{r}+u^{\eta} \omega^{\eta}+u^{\xi} \omega^{\xi} .
$$

The conservation law:

$$
\begin{aligned}
\Theta & =h \\
\Phi^{r} & =\omega^{r}\left(E-\left(u^{\eta}\right)^{2}-\left(u^{\xi}\right)^{2}\right)+u^{r}\left(h-u^{r} \omega^{r}\right), \\
\phi^{\xi} & =\omega^{\xi}\left(E-\left(u^{r}\right)^{2}-\left(u^{\eta}\right)^{2}\right)+u^{\xi}\left(h-u^{\xi} \omega^{\xi}\right),
\end{aligned}
$$

where

$$
E=\frac{1}{2}|\mathbf{u}|^{2}+p=\frac{1}{2}\left(\left(u^{r}\right)^{2}+\left(u^{\eta}\right)^{2}+\left(u^{\xi}\right)^{2}\right)+p
$$

is the total energy density. In vector notation:

$$
\frac{\partial}{\partial t} h+\nabla \cdot(\mathbf{u} \times \nabla E+(\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u})=0
$$

Conservation Laws for Helically Symmetric Inviscid Flows: $\nu=0$

Vorticity formulation - EV2 - Generalized helicity

Helicity:

$$
h=\mathbf{u} \cdot \boldsymbol{\omega}=u^{r} \omega^{r}+u^{\eta} \omega^{\eta}+u^{\xi} \omega^{\xi} .
$$

$\frac{\partial}{\partial t}\left(h H\left(\frac{r}{B} u^{\eta}\right)\right)+\nabla \cdot\left[H\left(\frac{r}{B} u^{\eta}\right)[\mathbf{u} \times \nabla E+(\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}]+E u^{\eta} \mathbf{e}_{\perp \eta} \times \nabla H\left(\frac{r}{B} u^{\eta}\right)\right]=0$
for an arbitrary function $H=H(\cdot)$.

Conservation Laws for Helically Symmetric Inviscid Flows: $\nu=0$

Vorticity formulation - EV3 - Vorticity conservation laws

$$
\begin{aligned}
\Theta & =\frac{Q(t)}{r} \omega^{\varphi}, \\
\Phi^{r} & =\frac{1}{r}\left(Q(t)\left[u^{r} \omega^{\varphi}-\omega^{r} u^{\varphi}\right]+Q^{\prime}(t) u^{z}\right), \\
\Phi^{\xi} & =-\frac{a B}{r}\left(Q(t)\left[u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right]+Q^{\prime}(t) u^{r}\right),
\end{aligned}
$$

where $Q(t)$ is an arbitrary function.

Vorticity formulation - EV4 - Vorticity conservation law

$$
\begin{aligned}
\Theta & =-r B\left(a^{3} \omega^{\eta}-\frac{b^{3}}{r^{3}} \omega^{\xi}\right), \\
\Phi^{r} & =-2 a^{2} u^{r} u^{2}-a^{3} B r\left(u^{r} \omega^{\eta}-u^{\eta} \omega^{r}\right)+\frac{B b^{3}}{r^{2}}\left(u^{r} \omega^{\xi}-u^{\xi} \omega^{r}\right), \\
\Phi^{\xi} & =a^{3} B\left[\left(u^{r}\right)^{2}+\left(u^{\eta}\right)^{2}-\left(u^{\xi}\right)^{2}+r\left(u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right)\right]+\frac{2 a^{2} b B}{r} u^{\eta} u^{\xi} .
\end{aligned}
$$

Conservation Laws for Helically Symmetric Inviscid Flows: $\nu=0$

Vorticity formulation - EV5 - Vorticity conservation law

$$
\begin{aligned}
\Theta= & -\frac{B}{r^{2}}\left(\frac{b^{2} r^{2}}{B^{2}} \omega^{\xi}+a^{3} r^{4}\left(-\frac{b}{r} \omega^{\eta}+a \omega^{\xi}\right)\right)=-\frac{B}{r^{2}}\left(\frac{b^{2} r^{2}}{B^{2}} \omega^{\xi}+\frac{a^{3} r^{4}}{B} \omega^{z}\right), \\
\Phi^{r}= & a^{3} r B\left(2 u^{r}\left(a u^{\eta}+\frac{b}{r} u^{\xi}\right)+b\left(u^{r} \omega^{\eta}-u^{\eta} \omega^{r}\right)\right) \\
& -\frac{a^{4} r^{4}+a^{2} r^{2} b^{2}+b^{4}}{r \sqrt{a^{2} r^{2}+b^{2}}}\left(u^{r} \omega^{\xi}-u^{\xi} \omega^{r}\right), \\
\Phi^{\xi}= & -a^{3} b B\left(\left(u^{r}\right)^{2}+\left(u^{\eta}\right)^{2}-\left(u^{\xi}\right)^{2}+r\left(u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right)\right)+2 a^{4} r B u^{\eta} u^{\xi} .
\end{aligned}
$$

Vorticity formulation - EV6 - Vorticity conservation law

$$
\nabla \cdot \boldsymbol{\Phi}=0, \quad \Phi^{r}=N \omega^{r}-\frac{1}{B} N N_{\xi} u^{\eta}, \quad \Phi^{\xi}=N \omega^{\xi}
$$

for an arbitrary $N(t, \xi)$.

- Generalization of the obvious divergence expression $\nabla \cdot(G(t) \omega)=0$.

Conservation Laws for Helically Symmetric

Primitive variables - NSP1 - z-momentum.

$$
\Theta=u^{z}, \quad \Phi^{r}=u^{r} u^{z}-\nu\left(u^{z}\right)_{r}, \quad \Phi^{\xi}=u^{\xi} u^{z}+a B p-\frac{\nu}{B}\left(u^{z}\right)_{\xi}
$$

Primitive variables - NSP2 - generalized momentum

$$
\begin{aligned}
\Theta & =\frac{r}{B} u^{\eta}, \\
\Phi^{r} & =\frac{r}{B} u^{r} u^{\eta}-\nu\left[-2 a B\left(a u^{\eta}+2 \frac{b}{r} u^{\xi}\right)^{\prime}+\left(\frac{r}{B} u^{\eta}\right)_{r}\right] \\
& =\frac{r}{B} u^{r} u^{\eta}-\nu\left[-2 a u^{\varphi}+\left(\frac{r}{B} u^{\eta}\right)_{r}\right] \\
\Phi^{\xi} & =\frac{r}{B} u^{\eta} u^{\xi}-\nu \frac{1}{B}\left[\frac{2 a b B^{2}}{r} u^{r}+\left(\frac{r}{B} u^{\eta}\right)_{\xi}\right] .
\end{aligned}
$$

Conservation Laws for Helically Symmetric

Vorticity formulation - NSV1 - Family of vorticity conservation laws

$$
\begin{aligned}
\Theta= & \frac{Q(t)}{r} B\left(a \omega^{\eta}+\frac{b}{r} \omega^{\xi}\right)=\frac{Q(t)}{r} \omega^{\varphi}, \\
\Phi^{r}= & \frac{1}{r}\left\{Q(t)\left[u^{r} B\left(a \omega^{\eta}+\frac{b}{r} \omega^{\xi}\right)-\omega^{r} B\left(a u^{\eta}+\frac{b}{r} u^{\xi}\right)\right]+Q^{\prime}(t) B\left(-\frac{b}{r} u^{\eta}+a u^{\xi}\right)\right. \\
& \left.-Q(t) \nu\left[\frac{a B}{r} \omega^{\eta}+\frac{b^{2} B}{r\left(a^{2} r^{2}+b^{2}\right)}\left(a \omega^{\eta}+\frac{b}{r} \omega^{\xi}\right)+B\left(a \omega_{r}^{\eta}+\frac{b}{r} \omega_{r}^{\xi}\right)\right]\right\}, \\
\Phi^{\xi}= & -\frac{B}{r}\left\{a Q(t)\left[u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right]+a Q^{\prime}(t) u^{r}\right. \\
& \left.+\frac{Q(t)}{r^{3}} \nu\left[\frac{r^{3}}{B}\left(a \omega_{\xi}^{\eta}+\frac{b}{r} \omega_{\xi}^{\xi}\right)+2 b r \omega^{r}\right]\right\},
\end{aligned}
$$

for an arbitrary function $Q(t)$.

Conservation Laws for Helically Symmetric

Vorticity formulation - NSV2 - Vorticity conservation law

$$
\begin{aligned}
\Theta= & -r B\left(a^{3} \omega^{\eta}-\frac{b^{3}}{r^{3}} \omega^{\xi}\right), \\
\Phi^{r}= & -\frac{B}{r^{2}}\left(a^{3} r^{3}\left(u^{r} \omega^{\eta}-u^{\eta} \omega^{r}\right)-b^{3}\left(u^{r} \omega^{\xi}-u^{\xi} \omega^{r}\right)\right)-2 a^{2} B u^{r}\left(-\frac{b}{r} u^{\eta}+a u^{\xi}\right) \\
& -\frac{B}{r^{2}} \nu\left[\frac{r^{2}}{B^{2}}\left(a \omega^{\eta}+\frac{b}{r} \omega^{\xi}\right)-r^{3}\left(a^{3} \omega_{r}^{\eta}-\frac{b^{3}}{r^{3}} \omega_{r}^{\xi}\right)+a b B^{2} r\left(\frac{b^{3}}{r^{3}} \omega^{\eta}+a^{3} \omega^{\xi}\right)\right], \\
\Phi^{\xi}= & a^{3} B\left(\left(u^{r}\right)^{2}+\left(u^{\eta}\right)^{2}-\left(u^{\xi}\right)^{2}+r\left(u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right)\right)+\frac{2 a^{2} b B}{r} u^{\eta} u^{\xi} \\
& +\frac{2 a^{2} b B}{r} \nu\left[\left(1-\frac{b^{2}}{a^{2} r^{2}}\right) \omega^{r}+\frac{r^{2}}{2 a^{2} b B}\left(a^{3} \omega_{\xi}^{\eta}-\frac{b^{3}}{r^{3}} \omega_{\xi}^{\xi}\right)\right] .
\end{aligned}
$$

Conservation Laws for Helically Symmetric

Vorticity formulation - NSV3 - Vorticity conservation law

$$
\begin{aligned}
\Theta= & -\frac{B}{r^{2}}\left(\frac{b^{2} r^{2}}{B^{2}} \omega^{\xi}+a^{3} r^{4}\left(-\frac{b}{r} \omega^{\eta}+a \omega^{\xi}\right)\right)=-\frac{B}{r^{2}}\left(\frac{b^{2} r^{2}}{B^{2}} \omega^{\xi}+\frac{a^{3} r^{4}}{B} \omega^{z}\right), \\
\Phi^{r}= & a^{3} r B\left(2 u^{r}\left(a u^{\eta}+\frac{b}{r} u^{\xi}\right)+b\left(u^{r} \omega^{\eta}-u^{\eta} \omega^{r}\right)\right) \\
& -\frac{a^{4} r^{4}+a^{2} r^{2} b^{2}+b^{4}}{r \sqrt{a^{2} r^{2}+b^{2}}\left(u^{r} \omega^{\xi}-u^{\xi} \omega^{r}\right)} \\
& +\nu\left[4 a^{3} B\left(a u^{\eta}+\frac{b}{r} u^{\xi}\right)-a^{3} b r B\left(\omega^{\eta}\right)_{r}+\frac{B}{r^{3}}\left(b^{4}-a^{4} r^{4}-\frac{a^{6} r^{6}}{a^{2} r^{2}+b^{2}}\right) \omega^{\xi}\right. \\
& \left.\quad+\frac{B}{r^{2}}\left(a^{4} r^{4}+a^{2} r^{2} b^{2}+b^{4}\right)\left(\omega^{\xi}\right)_{r}+\frac{a b}{B}\left(2+\frac{a^{4} r^{4}}{\left(a^{2} r^{2}+b^{2}\right)^{2}}\right) \omega^{\eta}\right] \\
\Phi^{\xi}= & -a^{3} b B\left(\left(u^{r}\right)^{2}+\left(u^{\eta}\right)^{2}-\left(u^{\xi}\right)^{2}+r\left(u^{\eta} \omega^{\xi}-u^{\xi} \omega^{\eta}\right)\right)+2 a^{4} r B u^{\eta} u^{\xi} \\
& +\nu\left[\frac{1}{r^{2}}\left(a^{4} r^{4}+a^{2} r^{2} b^{2}+b^{4}\right)\left(\omega^{\xi}\right)_{\xi}-a^{3} b r\left(\omega^{\eta}\right)_{\xi}-\frac{4 a^{3} b B}{r} u^{r}+\frac{2 b^{4} B}{r^{3}} \omega^{r}\right] .
\end{aligned}
$$

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for inviscid plane flow (known)

$$
\Theta=N\left(\omega^{z}\right), \quad \Phi^{x}=u^{x} N\left(\omega^{z}\right), \quad \phi^{y}=u^{y} N\left(\omega^{z}\right),
$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$
\frac{\mathrm{d}}{\mathrm{~d} t} N\left(\omega^{2}\right)=0 .
$$

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for inviscid plane flow (known)

$$
\Theta=N\left(\omega^{z}\right), \quad \Phi^{x}=u^{x} N\left(\omega^{z}\right), \quad \Phi^{y}=u^{y} N\left(\omega^{z}\right)
$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$
\frac{\mathrm{d}}{\mathrm{~d} t} N\left(\omega^{z}\right)=0
$$

Generalized enstrophy for inviscid axisymmetric flow

$$
\Theta=S\left(\frac{1}{r} \omega^{\varphi}\right), \quad \Phi^{r}=u^{r} S\left(\frac{1}{r} \omega^{\varphi}\right), \quad \Phi^{z}=u^{z} S\left(\frac{1}{r} \omega^{\varphi}\right)
$$

for arbitrary $S(\cdot)$.

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for inviscid plane flow (known)

$$
\Theta=N\left(\omega^{z}\right), \quad \Phi^{x}=u^{x} N\left(\omega^{z}\right), \quad \Phi^{y}=u^{y} N\left(\omega^{z}\right),
$$

for an arbitrary $N(\cdot)$, equivalent to a material conservation law

$$
\frac{\mathrm{d}}{\mathrm{~d} t} N\left(\omega^{z}\right)=0
$$

Generalized enstrophy for inviscid axisymmetric flow

$$
\Theta=S\left(\frac{1}{r} \omega^{\varphi}\right), \quad \phi^{r}=u^{r} S\left(\frac{1}{r} \omega^{\varphi}\right), \quad \phi^{z}=u^{z} S\left(\frac{1}{r} \omega^{\varphi}\right)
$$

for arbitrary $S(\cdot)$.

- Several additional conservation laws arise for plane and axisymmetric, inviscid and viscous flows (details in paper).

Some Conservation Laws for Two-Component Flows

Generalized enstrophy for general inviscid helical 2-component flow

$$
\Theta=T\left(\frac{B}{r} \omega^{\eta}\right), \quad \phi^{r}=u^{r} T\left(\frac{B}{r} \omega^{\eta}\right), \quad \phi^{\xi}=u^{\xi} T\left(\frac{B}{r} \omega^{\eta}\right),
$$

for an arbitrary $T(\cdot)$, equivalent to a material conservation law

$$
\frac{\mathrm{d}}{\mathrm{~d} t} T\left(\frac{B}{r} \omega^{\eta}\right)=0
$$

Summary for helical flows:

Helically-Invariant Equations

- Full three-component Euler and Navier-Stokes equations written in helically-invariant form.
- Two-component reductions.

Additional Conservation Laws

- Three-component Euler:
- Generalized momenta. Generalized helicity. Additional vorticity CLs.
- Three-component Navier-Stokes:
- Additional CLs in primitive and vorticity formulation.
- Two-component flows:
- Infinite set of enstrophy-related vorticity CLs (inviscid case).
- Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.

Outline

(1) Fluid Dynamics Equations
(2) CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Conservation laws of an Inviscid Model in Gas Dynamics

- Euler equations:

$$
\rho_{t}+\nabla \cdot(\rho \mathbf{u})=0, \quad \rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)+\nabla p=0
$$

- A CL classification for 2D, 3D barotropic model:

$$
p=p(\rho) \quad(S=\text { const })
$$

[Anco \& Dar (2010)].

Outline

(1) Fluid Dynamics Equations
(2) CLs of Constant-Density Euler and N-S Equations
(3) CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Surfactants - Brief Overview

Surfactants

- "Surfactant" =" Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).

Surfactants - Brief Overview

Surfactants

- "Surfactant" =" Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).
- Sodium lauryl sulfate:

Surfactants - Brief Overview

Surfactants

- "Surfactant" =" Surface active agent".
- Act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
- Consist of a hydrophobic group (tail) and a hydrophilic group (head).
- Hydrophilic groups (heads) can have various properties:

Surfactants - Applications

- Surfactant molecules adsorb at phase separation interfaces.
- Stabilization of growth of bubbles / droplets.
- Creation of emulsions of insoluble substances.
- Multiple industrial and medical applications.

Surfactants - Applications

- Can form micelles, double layers, etc.

Surfactants - Applications

- Soap bubbles...

Surfactant Transport Equations

Derivation:

Can be derived as a special case of multiphase flows with moving interfaces and contact lines:
[Y.Wang, M. Oberlack, 2011]

- Illustration:

Surfactant Transport Equations (ctd.)

Parameters

- Surfactant concentration $c=c(\mathbf{x}, t)$.
- Flow velocity $\mathbf{u}(\mathbf{x}, t)$.
- Two-phase interface: phase separation surface $\Phi(\mathbf{x}, t)=0$.
- Unit normal: $\mathbf{n}=-\frac{\nabla \Phi}{|\nabla \Phi|}$.

Surfactant Transport Equations (ctd.)

Surface gradient

- Surface projection tensor: $p_{i j}=\delta_{i j}-n_{i} n_{j}$.
- Surface gradient operator: $\nabla^{s}=\mathbf{p} \cdot \nabla=\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}$.
- Surface Laplacian:

$$
\Delta^{s} F=\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial F}{\partial x^{k}}\right)
$$

Surfactant Transport Equations (ctd.)

Governing equations

- Incompressibility condition: $\nabla \cdot \mathbf{u}=0$.
- Fluid dynamics equations: Euler or Navier-Stokes.
- Interface transport by the flow: $\Phi_{t}+\mathbf{u} \cdot \nabla \Phi=0$.
- Surfactant transport equation:

$$
c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0
$$

Surfactant Transport Equations (ctd.)

Fully conserved form

- Specific numerical methods (e.g., discontinuous Galerkin) require the system to be written in a fully conserved form.
- Straightforward for continuity, momentum, and interface transport equations.
- Can the surfactant transport equation be written in the conserved form?

$$
c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0 .
$$

CLs of the Surfactant Dynamics Equations: The Convection Case

Governing equations $(\alpha=0)$

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0 \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0 \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0
\end{gathered}
$$

CLs of the Surfactant Dynamics Equations: The Convection Case

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c t+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0 .
\end{gathered}
$$

Multiplier ansatz

$$
\Lambda^{i}=\Lambda^{i}\left(t, \mathbf{x}, \Phi, c, \mathbf{u}, \partial \Phi, \partial c, \partial \mathbf{u}, \partial^{2} \Phi, \partial^{2} c, \partial^{2} \mathbf{u}\right) .
$$

CLs of the Surfactant Dynamics Equations: The Convection Case

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \phi\right)}{\partial x^{i}}=0, \\
R^{3}=c t+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0 .
\end{gathered}
$$

Multiplier ansatz

$$
\Lambda^{i}=\Lambda^{i}\left(t, \mathbf{x}, \Phi, c, \mathbf{u}, \partial \Phi, \partial c, \partial \mathbf{u}, \partial^{2} \Phi, \partial^{2} c, \partial^{2} \mathbf{u}\right) .
$$

Conservation Law Determining Equations

$$
\mathrm{E}_{\mu j}\left(\Lambda^{\sigma} R^{\sigma}\right)=0, \quad j=1, \ldots, 3 ; \quad \mathrm{E}_{\phi}\left(\Lambda^{\sigma} R^{\sigma}\right)=0 ; \quad \mathrm{E}_{c}\left(\Lambda^{\sigma} R^{\sigma}\right)=0 .
$$

CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0 .
\end{gathered}
$$

Principal Result 1 (multipliers)

- There exist an infinite family of multiplier sets with $\Lambda^{3} \neq 0$, i.e., essentially involving c.
- Family of conservation laws with

$$
\Lambda^{3}=|\nabla \Phi| \mathcal{K}(\Phi, c|\nabla \Phi|) .
$$

CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0 \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0 \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0
\end{gathered}
$$

Principal Result 1 (divergence expressions)

- Usual form:

$$
\frac{\partial}{\partial t} \mathcal{G}(\Phi, c|\nabla \Phi|)+\frac{\partial}{\partial x^{i}}\left(u^{i} \mathcal{G}(\Phi, c|\nabla \Phi|)\right)=0 .
$$

- Material form:

$$
\frac{d}{d t} \mathcal{G}(\Phi, c|\nabla \Phi|)=0
$$

CLs of the Surfactant Dynamics Equations: The Convection Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}=0 .
\end{gathered}
$$

Simplest conservation law with c-dependence

- Can take $\mathcal{G}(\Phi, c|\nabla \Phi|)=c|\nabla \Phi|$.

$$
\frac{\partial}{\partial t}(c|\nabla \Phi|)+\frac{\partial}{\partial x^{i}}\left(u^{i} c|\nabla \Phi|\right)=0 .
$$

The Convection-Diffusion Case

Governing equations ($\alpha \neq 0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0 \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0 .
\end{gathered}
$$

The Convection-Diffusion Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0 .
\end{gathered}
$$

Principal Result 2 (multipliers)

$$
\begin{aligned}
& \Lambda^{1}=\Phi \mathcal{F}(\Phi)|\nabla \Phi|^{-1}\left(\frac{\partial}{\partial x^{j}}\left(c \frac{\partial \Phi}{\partial x^{j}}\right)-c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}}\right), \\
& \Lambda^{2}=-\mathcal{F}(\Phi)|\nabla \Phi|^{-1}\left(\frac{\partial}{\partial x^{j}}\left(c \frac{\partial \Phi}{\partial x^{j}}\right)-c n_{i} n_{j} \frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}}\right), \\
& \Lambda^{3}=\mathcal{F}(\Phi)|\nabla \Phi|,
\end{aligned}
$$

The Convection-Diffusion Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0 .
\end{gathered}
$$

Principal Result 2 (divergence expressions)

- An infinite family of conservation laws:

$$
\frac{\partial}{\partial t}(c \mathcal{F}(\Phi)|\nabla \Phi|)+\frac{\partial}{\partial x^{i}}\left(A^{i} \mathcal{F}(\Phi)|\nabla \Phi|\right)=0
$$

where

$$
A^{i}=c u^{i}-\alpha\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right), \quad i=1,2,3
$$

and \mathcal{F} is an arbitrary sufficiently smooth function.

The Convection-Diffusion Case (ctd.)

Governing equations ($\alpha=0$)

$$
\begin{gathered}
R^{1}=\frac{\partial u^{i}}{\partial x^{i}}=0, \\
R^{2}=\Phi_{t}+\frac{\partial\left(u^{i} \Phi\right)}{\partial x^{i}}=0, \\
R^{3}=c_{t}+u^{i} \frac{\partial c}{\partial x^{i}}-c n_{i} n_{j} \frac{\partial u^{i}}{\partial x^{j}}-\alpha\left(\delta_{i j}-n_{i} n_{j}\right) \frac{\partial}{\partial x^{j}}\left(\left(\delta_{i k}-n_{i} n_{k}\right) \frac{\partial c}{\partial x^{k}}\right)=0 .
\end{gathered}
$$

Simplest conservation law with c-dependence

- Can take $\mathcal{F}(\Phi)=1$:

$$
\frac{\partial}{\partial t}(c|\nabla \Phi|)+\frac{\partial}{\partial x^{i}}\left(A^{i}|\nabla \Phi|\right)=0 .
$$

- Surfactant dynamics equations can be written in a fully conserved form.

Outline

(1) Fluid Dynamics Equations

(2) CLs of Constant-Density Euler and N-S Equations

3 CLs of Helically Invariant Flows

44 CLs of An Inviscid Model in Gas Dynamics
(5) CLs of a Surfactant Flow Model
(6) Discussion

Discussion

- Fluid \& gas dynamics: a large number of general and specific models exist.
- viscous and inviscid;
- single and multi-phase;
- non-Newtonian;
- special reductions/geometries of interest;
- asymptotic models (KdV, shallow water, etc.).

Discussion

- Fluid \& gas dynamics: a large number of general and specific models exist.
- viscous and inviscid;
- single and multi-phase;
- non-Newtonian;
- special reductions/geometries of interest;
- asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically - DCM/symbolic software.

Discussion

- Fluid \& gas dynamics: a large number of general and specific models exist.
- viscous and inviscid;
- single and multi-phase;
- non-Newtonian;
- special reductions/geometries of interest;
- asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically - DCM/symbolic software.
- General Euler and NS for 3D:
- basic CLs known;
- infinite family of "potential vorticity" CLs;single and multi-phase;
- Additional CLs for symmetric reductions;
- Further additional CLs for 2-component velocity.

Discussion

- Fluid \& gas dynamics: a large number of general and specific models exist.
- viscous and inviscid;
- single and multi-phase;
- non-Newtonian;
- special reductions/geometries of interest;
- asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically - DCM/symbolic software.
- General Euler and NS for 3D:
- basic CLs known;
- infinite family of "potential vorticity" CLs;single and multi-phase;
- Additional CLs for symmetric reductions;
- Further additional CLs for 2-component velocity.
- A lot remains to be discovered!

Discussion

- Fluid \& gas dynamics: a large number of general and specific models exist.
- viscous and inviscid;
- single and multi-phase;
- non-Newtonian;
- special reductions/geometries of interest;
- asymptotic models (KdV, shallow water, etc.).
- CLs can be found systematically - DCM/symbolic software.
- General Euler and NS for 3D:
- basic CLs known;
- infinite family of "potential vorticity" CLs;single and multi-phase;
- Additional CLs for symmetric reductions;
- Further additional CLs for 2-component velocity.
- A lot remains to be discovered!
- Further applications: numerical simulations; development of specialized numerical methods, etc.

Some references

Batchelor, G.K. (2000).
An Introduction to Fluid Dynamics, Cambridge University Press.
Müller, P. (1995).
Ertel's potential vorticity theorem in physical oceanography.
Reviews of Geophysics 33(1), 67-97.
Kallendorf, C., Cheviakov, A.F., Oberlack, M., and Wang, Y. (2012).
Conservation Laws of Surfactant Transport Equations. Phys. Fluids 24, 102105.

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013).
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. J. Fluid Mech. 721, 340-366.

Cheviakov, A.F., Oberlack, M. (2014).
Generalized Ertels theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and NavierStokes equations. J. Fluid Mech. 760, 368-386.

