Local Conservation Laws for Nonlinear Models: Theory, Systematic Construction, and Computation Examples

Prof. Alexei Cheviakov

(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, Canada

June 2015

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

D Conservation Laws

- Direct CL Construction; Symbolic Computation in Maple
- Variational Systems of Differential Equations
- 4 Local Symmetries and the Noether's Theorem
- 5 Discussion
- 6 Appendix: A CL Classification Problem

イロト イヨト イヨト イヨ

Conservation Laws

- 2 Direct CL Construction; Symbolic Computation in Maple
- Variational Systems of Differential Equations
- 4 Local Symmetries and the Noether's Theorem
- 5 Discussion
- Oppendix: A CL Classification Problem

イロト イヨト イヨト イヨ

Variables:

• Independent: $\mathbf{x} = (x^1, x^2, ..., x^n)$ or $(t, x^1, x^2, ...)$ or (t, x, y, ...).

• Dependent: $\mathbf{u} = (u^1(\mathbf{x}), u^2(\mathbf{x}), ..., u^m(\mathbf{x}))$ or $(u(\mathbf{x}), v(\mathbf{x}), ...)$.

・ロト ・回ト ・ヨト ・ヨト

Partial derivatives:

• Notation:

$$\frac{\partial u^k}{\partial x^m} = u^k_{x^m} = \partial_{x^m} u^k.$$

• E.g.,

$$\frac{\partial}{\partial t}u(x,y,t)=u_t=\partial_t u.$$

・ロト ・回ト ・ヨト ・ヨト

Partial derivatives:

• Notation:

$$\frac{\partial u^k}{\partial x^m} = u^k_{x^m} = \partial_{x^m} u^k.$$

• E.g.,

$$\frac{\partial}{\partial t}u(x,y,t)=u_t=\partial_t u.$$

All first-order partial derivatives of \mathbf{u} : $\partial \mathbf{u}$.

• E.g.,

$$\mathbf{u} = (u^1(x,t), u^2(x,t)), \qquad \partial \mathbf{u} = \{u^1_x, u^1_t, u^2_x, u^2_t\}.$$

▲□→ ▲圖→ ▲温→ ▲温→

Higher-order partial derivatives

• Notation: for example,

$$\frac{\partial^2}{\partial x^2}u(x,y,z)=u_{xx}=\partial_x^2u.$$

• All p^{th} -order partial derivatives: $\partial^p \mathbf{u}$.

イロト イヨト イヨト イヨ

Differential functions:

• A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

 $F[\mathbf{u}] = F(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{p}\mathbf{u}).$

・ロト ・回ト ・ヨト ・ヨト

Differential functions:

• A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

$$F[\mathbf{u}] = F(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{p} \mathbf{u}).$$

Differential equations:

• A differential equation of order k:

$$R[\mathbf{u}] = R(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^k \mathbf{u}) = \mathbf{0}.$$

<ロト <四ト < 回ト < 回 > < 回

Differential functions:

• A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

$$F[\mathbf{u}] = F(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{p}\mathbf{u}).$$

Differential equations:

• A differential equation of order k:

$$R[\mathbf{u}] = R(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^k \mathbf{u}) = \mathbf{0}.$$

Example:

• The 1D diffusion equation for u(x, t) can be written as

$$0 = u_t - u_{xx} = H(u, u_t, u_{xx}) = H[u].$$

<ロト <回ト < 回ト < 回ト

The total derivative of a differential function:

• A basic chain rule.

• E.g., let
$$u = u(x, y)$$
, $g[u] = g(x, y, u, u_x, u_y)$. Then

$$D_{x}g[u] \equiv \frac{\partial}{\partial x}g(x, y, u, u_{x}, u_{y})\Big|_{u=u(x,y)}$$
$$= \frac{\partial g}{\partial x} + \frac{\partial g}{\partial u}u_{x} + \frac{\partial g}{\partial u_{x}}u_{xx} + \frac{\partial g}{\partial u_{y}}u_{xy}.$$

・ロト ・回ト ・ヨト ・ヨト

Multi-indices:

 $\alpha = (\alpha_1, \ldots, \alpha_n), \quad \alpha_i \in \mathbb{N} \cup \{0\}, \quad |\alpha| := \alpha_1 + \cdots + \alpha_n.$ $u_{\alpha}^{\sigma} \equiv \frac{\partial^{|\alpha|} u^{\sigma}}{\partial (x^1)^{\alpha_1} \dots \partial (x^n)^{\alpha_n}}.$ $\delta_i \equiv (0, \dots, 0, 1, 0, \dots, 0)$ $r\delta_i \equiv (0,\ldots,0,\underset{(i)}{r},0,\ldots,0), \quad r \in \mathbb{N}$ $D_i \equiv D_{x^i} = \partial_{x^i} + u^p_{\alpha+\delta_i} \partial_{u^p_{\alpha}}$ $D^{\alpha} \equiv D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}$

Conservation laws

• A local conservation law: a divergence expression equal to zero,

$$D_i \Psi^i[\mathbf{u}] \equiv \operatorname{div} \Psi^i[\mathbf{u}] = 0$$

• For models involving time:

$$D_t \Theta[\mathbf{u}] + \operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

イロト イヨト イヨト イヨ

Conservation laws

• A local conservation law: a divergence expression equal to zero,

$$\mathrm{D}_i \Psi^i[\mathbf{u}] \equiv \mathsf{div} \, \Psi^{\mathbf{i}}[\mathbf{u}] = 0$$

• For models involving time:

$$D_t \Theta[\mathbf{u}] + \operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

Example (PDE 1):

$$u(x, y, z) = (u^1, u^2, u^3),$$

div
$$\mathbf{u} = D_x u^1 + D_y u^2 + D_z u^3 = u_x^1 + u_y^2 + u_z^3 = 0.$$

<ロ> (日) (日) (日) (日) (日)

Conservation laws

• A local conservation law: a divergence expression equal to zero,

$$\mathrm{D}_i \Psi^i[\mathbf{u}] \equiv \mathsf{div} \, \Psi^{\mathbf{i}}[\mathbf{u}] = 0$$

• For models involving time:

$$D_t \Theta[\mathbf{u}] + \operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

Example (PDE 2):

$$u=u(x,t),$$

$$D_t(u) - D_x(u_x) = u_t - u_{xx} = 0.$$

イロト イヨト イヨト イヨト

Conservation laws

• A local conservation law: a divergence expression equal to zero,

$$\mathrm{D}_i \Psi^i [\mathbf{u}] \equiv \mathsf{div} \, \Psi^i [\mathbf{u}] = 0.$$

• For models involving time:

$$D_t \Theta[\mathbf{u}] + \operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

• A local conservation law \Leftrightarrow a global conservation principle.

イロン イ部ン イヨン イヨ

Globally Conserved Quantities

• Given: a local CL for a time-dependent system,

$$D_t \Theta[\mathbf{u}] + \mathsf{div}_{\mathbf{x}} \ \Psi[\mathbf{u}] = 0$$

• Integrate in the spatial domain:

$$\int_{V} \mathrm{D}_{t} \Theta \, dV + \int_{V} (\operatorname{div}_{\mathbf{x}} \Psi) \, dV = \int_{V} \mathrm{D}_{t} \Theta \, dV + \oint_{\partial V} \Psi \cdot d\mathbf{S} = \mathbf{0}.$$

・ロト ・回ト ・ヨト ・ヨ

• Given: a local CL for a time-dependent system,

$$D_t \Theta[\mathbf{u}] + \mathsf{div}_{\mathbf{x}} \Psi[\mathbf{u}] = 0.$$

• Integrate in the spatial domain:

$$\int_{V} \mathrm{D}_{t} \Theta \, dV + \int_{V} (\operatorname{div}_{\mathbf{x}} \Psi) \, dV = \int_{V} \mathrm{D}_{t} \Theta \, dV + \oint_{\partial V} \Psi \cdot d\mathbf{S} = 0.$$

• When the total flux vanishes,

$$\oint_{\partial V} \Psi[\mathbf{u}] \cdot d\mathbf{S} = \mathbf{0},$$

one has

$$\frac{d}{dt} \int_{V} \Theta[\mathbf{u}] \ dV = 0,$$

i.e., a global conserved quantity (an integral of motion):

$$Q = \int_V \Theta \ dV = \text{const.}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Local CL = Local Form of a Conservation Principle

• 1D advection equation:

$$\Delta M(t) = \int_{x}^{x+\Delta x} \rho(s,t) A \, ds \quad [kg], \qquad Q(x,t) = A\rho(x,t)v(x,t) \quad [kg/s].$$
$$\frac{d}{dt} \Delta M(t) = Q(x,t) - Q(x+\Delta x,t) \quad \Rightarrow \quad \boxed{\frac{\partial}{\partial t}\rho(x,t) + \frac{\partial}{\partial x}\left(\rho(x,t)v(x,t)\right) = 0.}$$

メロト メポト メヨト メ

Local CL = Local Form of a Conservation Principle

• 1D advection equation:

• Similarly, other conservation principles for local continuum models with conservative/zero forcing yield local conservation laws.

<ロ> <四> <ヨ> <ヨ>

ODE Models: Conserved Quantities

An ODE:

Dependent variable: u = u(t);

A conservation law

$$D_t F(t, u, u', ...) = \frac{d}{dt} F(t, u, u', ...) = 0$$

yields a conserved quantity (a constant of motion):

$$F(t, u, u', ...) = C = \text{const.}$$

・ロト ・回ト ・ヨト ・ヨ

An ODE:

Dependent variable: u = u(t);

A conservation law

$$D_t F(t, u, u', ...) = \frac{d}{dt} F(t, u, u', ...) = 0$$

yields a conserved quantity (a constant of motion):

$$F(t, u, u', ...) = C = \text{const.}$$

Example: Harmonic oscillator, spring-mass system

Independent variable: t, dependent: x(t).

ODE:
$$\ddot{x}(t) + \omega^2 x(t) = 0$$
; $\omega^2 = k/m = \text{const.}$

Conservation law:
$$\frac{d}{dt}\left(\frac{m\dot{x}^2(t)}{2} + \frac{kx^2(t)}{2}\right) = 0.$$

Conserved quantity: energy.

イロト イヨト イヨト イヨト

Example: ODE integration

An ODE:

$$K'''(x) = \frac{-2(K''(x))^2 K(x) - (K'(x))^2 K''(x)}{K(x)K'(x)}$$

・ロト ・回ト ・ヨト ・ヨ

Example: ODE integration

An ODE:

$$K'''(x) = \frac{-2(K''(x))^2 K(x) - (K'(x))^2 K''(x)}{K(x)K'(x)}$$

Three independent conserved quantities:

$$\frac{KK''}{(K')^2} = C_1, \quad \frac{KK'' \ln K}{(K')^2} - \ln K' = C_2, \quad \frac{xKK'' + KK'}{(K')^2} - x = C_3$$

yield complete ODE integration.

・ロト ・回ト ・ヨト ・

Example:

• Small oscillations of a string (transverse) or a rod (longitudinal) \Leftrightarrow 1D wave equation:

$$u_{tt} = c^2 u_{xx}$$

• Independent variables: x, t; dependent: u(x, t).

•
$$c^2 = T/\rho$$
; $T, \rho = \text{const}$ (for a string).

Image: A math a math

Example:

• Small oscillations of a string (transverse) or a rod (longitudinal) \Leftrightarrow 1D wave equation:

$$u_{tt} = c^2 u_{xx}.$$

• Independent variables: x, t; dependent: u(x, t).

Example:

• Small oscillations of a string (transverse) or a rod (longitudinal) \Leftrightarrow 1D wave equation:

$$u_{tt} = c^2 u_{xx}$$

• Independent variables: x, t; dependent: u(x, t).

Conservation of momentum:

- Local conservation law: $D_t(\rho u_t) D_x(Tu_x) = 0$;
- Global conserved quantity: total momentum

$$M = \int_{a}^{b} \rho u_t \, dx = \text{const},$$

for Neumann homogeneous problems with $u_x(a, t) = u_x(b, t) = 0$.

・ロト ・回ト ・ヨト ・ヨト

Example:

• Small oscillations of a string (transverse) or a rod (longitudinal) \Leftrightarrow 1D wave equation:

$$u_{tt} = c^2 u_{xx}.$$

• Independent variables: x, t; dependent: u(x, t).

Conservation of energy:

• Local conservation law:

$$D_t\left(\frac{\rho u_t^2}{2}+\frac{Tu_x^2}{2}\right)-D_x(Tu_tu_x)=0;$$

Global conserved quantity: total energy

$$E = \int_{a}^{b} \left(\frac{\rho u_t^2}{2} + \frac{T u_x^2}{2} \right) \, dx = \text{const},$$

for both Neumann and Dirichlet homogeneous problems.

イロト イヨト イヨト イヨ

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: t; $x = (x^1, x^2, x^3) \in \mathcal{D} \subset \mathbb{R}^3$. Dependent: $\rho(x, t)$, $v^1(x, t)$, $v^2(x, t)$, $v^3(x, t)$, p(x, t).

Equations:

$$\begin{split} \mathrm{D}_t \rho + \mathrm{D}_j(\rho \mathbf{v}^j) &= 0, \\ \rho(\mathrm{D}_t + \mathbf{v}^j \mathrm{D}_j) \mathbf{v}^i + \mathrm{D}_i \mathbf{p} &= 0, \quad i = 1, 2, 3, \\ \rho(\mathrm{D}_t + \mathbf{v}^j \mathrm{D}_j) \mathbf{p} + \gamma \rho \rho \mathrm{D}_j \mathbf{v}^j &= 0. \end{split}$$

*ロト *個ト * ヨト * ヨト

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: $t; x = (x^1, x^2, x^3) \in \mathcal{D} \subset \mathbb{R}^3$.

Dependent:
$$\rho(x, t)$$
, $v^1(x, t)$, $v^2(x, t)$, $v^3(x, t)$, $p(x, t)$.

Equations:

$$\begin{split} \mathrm{D}_t \rho + \mathrm{D}_j (\rho \mathbf{v}^j) &= \mathbf{0}, \\ \rho (\mathrm{D}_t + \mathbf{v}^j \mathrm{D}_j) \mathbf{v}^i + \mathrm{D}_i \mathbf{p} &= \mathbf{0}, \quad i = 1, 2, 3, \\ \rho (\mathrm{D}_t + \mathbf{v}^j \mathrm{D}_j) \mathbf{p} + \gamma \rho \mathbf{p} \mathrm{D}_j \mathbf{v}^j &= \mathbf{0}. \end{split}$$

Conservation laws:

- Mass: $D_t \rho + D_j(\rho v^j) = 0$,
- Momentum: $D_t(\rho v^i) + D_j(\rho v^i v^j + \rho \delta^{ij}) = 0, \quad i = 1, 2, 3,$
- Energy: $D_t(E) + D_j\left(v^j(E+p)\right) = 0$, $E = \frac{1}{2}\rho|\mathbf{v}|^2 + \frac{p}{\gamma-1}$.
- Angular momentum + more.

Applications to ODEs

- Constants of motion.
- Reduction of order; integration.

メロト メロト メヨト メヨ

Applications to PDEs

- Rates of change of physical variables; constants of motion.
- Differential constraints (divergence-free or irrotational fields, etc.).
- Analysis: existence, uniqueness, stability.
- An infinite number of conservation laws may indicate integrability / linearization.
- Finite element/finite volume numerical methods may require conserved forms.
- Weak form of DEs for finite element numerical methods.
- Special numerical methods, conservation law-preserving methods (symplectic integrators, etc.).
- Numerical method testing.

< □ > < 同 > < 回 > < Ξ > < Ξ

Applications to PDEs

- Potentials, stream functions, etc.
- Magnetic vector potential:

$$\operatorname{div} \mathbf{B} = \mathbf{0} \quad \Rightarrow \quad \mathbf{B} = \operatorname{curl} \mathbf{A}.$$

• Irrotational fluid flow, velocity potential:

$$\operatorname{curl} \mathbf{v} = \mathbf{0} \quad \Rightarrow \quad \mathbf{v} = \operatorname{grad} \Psi.$$

• Fluid flow, stream function in 2D:

$$\mathbf{v} = (u, v), \quad \operatorname{div} \mathbf{V} = u_x + v_y = 0, \quad \begin{cases} u = \Phi_y, \\ v = -\Phi_x. \end{cases}$$

イロト イヨト イヨト イヨ

A *trivial* local conservation law: a zero divergence expression that "does not carry a physical meaning".

・ロト ・回ト ・ヨト ・

A *trivial* local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 1:

- Density and all fluxes vanish on all solutions of the given PDE system.
- Example: consider a wave equation on u(x, t): $u_{tt} = u_{xx}$. The conservation law

$$D_t(u(u_{tt} - u_{xx})) + D_x(2x(u_{xtt} - u_{xxx})) = 0$$

is a trivial conservation law of the first type.

イロン イ部ン イヨン イヨ

A *trivial* local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 2:

- The conservation law vanishes as a differential identity.
- Example: for the wave equation on u(x, t): $u_{tt} = u_{xx}$,

$$D_t(u_{xx}) - D_x(u_{xt}) \equiv 0$$

is a trivial conservation law of the second type.

イロン イ部ン イヨン イヨ

A *trivial* local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 2:

- The conservation law vanishes as a differential identity.
- Another example:

$$\operatorname{div}(\operatorname{curl} \Phi[\mathbf{u}]) \equiv 0.$$

<ロト </p>

Two conservation laws $D_i \Phi^i[\mathbf{u}] = 0$ and $D_i \Psi^i[\mathbf{u}] = 0$ are *equivalent* if $D_i(\Phi^i[\mathbf{u}] - \Psi^i[\mathbf{u}]) = 0$ is a trivial conservation law. An *equivalence class* of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

イロト イ団ト イヨト イヨト

Two conservation laws $D_i \Phi^i[\mathbf{u}] = 0$ and $D_i \Psi^i[\mathbf{u}] = 0$ are *equivalent* if $D_i(\Phi^i[\mathbf{u}] - \Psi^i[\mathbf{u}]) = 0$ is a trivial conservation law. An *equivalence class* of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Definition

A set of ℓ conservation laws $\{D_i \Phi_{(j)}^i [\mathbf{u}] = 0\}_{j=1}^{\ell}$ is *linearly dependent* if there exists a set of constants $\{a^{(j)}\}_{i=1}^{\ell}$, not all zero, such that the linear combination

 $D_i(a^{(j)}\Phi^i_{(j)}[\mathbf{u}])=0$

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws in the set can be expressed as a linear combination of the others.

<ロ> (四) (四) (三) (三) (三) (三)

Two conservation laws $D_i \Phi^i[\mathbf{u}] = 0$ and $D_i \Psi^i[\mathbf{u}] = 0$ are *equivalent* if $D_i(\Phi^i[\mathbf{u}] - \Psi^i[\mathbf{u}]) = 0$ is a trivial conservation law. An *equivalence class* of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Definition

A set of ℓ conservation laws $\{D_i \Phi_{(j)}^i [\mathbf{u}] = 0\}_{j=1}^{\ell}$ is *linearly dependent* if there exists a set of constants $\{a^{(j)}\}_{i=1}^{\ell}$, not all zero, such that the linear combination

 $D_i(a^{(j)}\Phi^i_{(j)}[\mathbf{u}])=0$

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws in the set can be expressed as a linear combination of the others.

• In practice, one is interested in finding linearly independent sets of (nontrivial) conservation laws of a given PDE system.

Conservation Laws

Direct CL Construction; Symbolic Computation in Maple

3 Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem

Discussion

6 Appendix: A CL Classification Problem

Given:

- A totally nondegenerate PDE system $R^{\sigma}[\mathbf{u}] = 0$, $\sigma = 1, ..., N$ [cf. Olver (1993)].
- A nontrivial local CL: $D_i \Phi^i[\mathbf{u}] = 0$.
- Denote $G[\mathbf{U}] = D_i \Phi^i[\mathbf{U}].$

メロト メポト メヨト メヨ

Hadamard lemma for differential functions:

A differential function $G[\mathbf{U}]$ vanishes on solutions of a PDE system $\mathbf{R}[\mathbf{u}] = 0$ if and only if it has the form

 $G[\mathbf{U}] = P^{\alpha}_{\sigma}[\mathbf{U}] \operatorname{D}_{\alpha} R^{\sigma}[\mathbf{U}].$

Characteristic form of a CL:

Using the product rule, one has

$$G[\mathbf{U}] = \mathbf{D}_i \boldsymbol{\Phi}^i[\mathbf{U}] = \boldsymbol{\Lambda}_{\sigma}[\mathbf{U}] \, \boldsymbol{R}^{\sigma}[\mathbf{U}] + \operatorname{div} \, \mathbf{H}[\mathbf{U}],$$

where $\mathbf{H}[\mathbf{U}]$ is linear in R^{σ} ; div $\mathbf{H}[\mathbf{u}] = 0$ is a trivial CL.

Hence every CL $D_i \Phi^i[\mathbf{u}] = 0$ has an equivalent characteristic form

$$D_i \tilde{\Phi}^i[\mathbf{u}] = \Lambda_\sigma[\mathbf{u}] R^\sigma[\mathbf{u}] = 0, \qquad \tilde{\Phi}^i = \Phi^i - H^i.$$

• CL multipliers (characteristics): $\{\Lambda_{\sigma}[\mathbf{u}]\}_{\sigma=1}^{N}$.

Result:

For most physical DE models, every local CL has an equivalent characteristic form

$$D_i \Phi^i[\mathbf{u}] = \Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}] = 0,$$

for some set of multipliers $\{\Lambda_{\sigma}[\mathbf{u}]\}$.

・ロン ・回 と ・ ヨン・

The *Euler operator* with respect to U^{j} :

$$\mathbf{E}_{U^{j}} = (-D)^{\beta} \frac{\partial}{\partial U_{\beta}^{j}} = \frac{\partial}{\partial U^{j}} - \mathbf{D}_{i} \frac{\partial}{\partial U_{i}^{j}} + \dots + (-1)^{s} \mathbf{D}_{i_{1}} \dots \mathbf{D}_{i_{s}} \frac{\partial}{\partial U_{i_{1} \dots i_{s}}^{j}} + \dots ,$$

$$j = 1, \dots, m.$$

・ロト ・回ト ・ヨト ・

The *Euler operator* with respect to U^{j} :

$$\mathbf{E}_{U^{j}} = (-D)^{\beta} \frac{\partial}{\partial U^{j}_{\beta}} = \frac{\partial}{\partial U^{j}} - \mathbf{D}_{i} \frac{\partial}{\partial U^{j}_{i}} + \dots + (-1)^{s} \mathbf{D}_{i_{1}} \dots \mathbf{D}_{i_{s}} \frac{\partial}{\partial U^{j}_{i_{1} \dots i_{s}}} + \dots ,$$

$$j = 1, \dots, m.$$

Theorem

Let $\mathbf{U}(\mathbf{x}) = (U^1, \dots, U^m)$. The equations

$$\mathbf{E}_{U^j} \boldsymbol{F}[\mathbf{U}] \equiv \mathbf{0}, \qquad j = 1, \dots, m,$$

hold for arbitrary $\mathbf{U}(\mathbf{x})$ if and only if

$$F[\mathbf{U}] \equiv D_i \Psi^i[\mathbf{U}]$$

for some functions $\{\Psi^{i}[\mathbf{U}]\}$.

*ロト *個ト * ヨト * ヨト

Idea:

• Seek conservation laws in the characteristic form | D

$$\mathbf{D}_i \Phi^i = \Lambda_\sigma R^\sigma = \mathbf{0}.$$

イロト イヨト イヨト イ

• Multiplier determining equations:

$$E_{Uj}(\Lambda_{\sigma}R^{\sigma})\equiv 0, \quad j=1,\ldots,m.$$

Consider a general system $\mathbf{R}[\mathbf{u}] = 0$ of *N* PDEs.

Direct Construction Method

• Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}] = \Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, ...), \quad \sigma = 1, ..., N.$

Consider a general system $\mathbf{R}[\mathbf{u}] = 0$ of *N* PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}] = \Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, ...), \quad \sigma = 1, ..., N.$
- Solve the set of determining equations

$$\mathbf{E}_{U^{j}}(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]) \equiv 0, \quad j = 1, \dots, m,$$

for arbitrary U(x) (off of the solution set!) to find all such sets of multipliers.

Consider a general system $\mathbf{R}[\mathbf{u}] = 0$ of *N* PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}] = \Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, ...), \quad \sigma = 1, ..., N.$
- Solve the set of determining equations

$$\mathbf{E}_{U^{j}}(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]) \equiv 0, \quad j = 1, \dots, m,$$

for arbitrary U(x) (off of the solution set!) to find all such sets of multipliers.

• Find the corresponding fluxes $\Phi^{i}[\mathbf{U}]$ satisfying the identity

 $\Lambda_{\sigma}R^{\sigma}\equiv \mathrm{D}_{i}\Phi^{i}.$

Consider a general system $\mathbf{R}[\mathbf{u}] = 0$ of N PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}] = \Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, ...), \quad \sigma = 1, ..., N.$
- Solve the set of determining equations

$$\mathbf{E}_{U^{j}}(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]) \equiv 0, \quad j = 1, \dots, m,$$

for arbitrary U(x) (off of the solution set!) to find all such sets of multipliers.

• Find the corresponding fluxes $\Phi^{i}[\mathbf{U}]$ satisfying the identity

$$\Lambda_{\sigma}R^{\sigma}\equiv \mathrm{D}_{i}\Phi^{i}.$$

• Each set of fluxes, multipliers yields a local conservation law

$$\mathrm{D}_i \Phi^i [\mathbf{u}] = \mathbf{0},$$

holding on solutions $\mathbf{u}(\mathbf{x})$ of the given PDE system.

The Korteweg-de Vries (KdV) equation

$$R[u] = u_t + uu_x + u_{xxx} = 0.$$

Oth-order multipliers

• Determining equations:

$$\mathbf{E}_U \left(\Lambda(x,t,U) (U_t + UU_x + U_{xxx}) \right) \equiv 0.$$

• Solution:

$$\Lambda_1 = 1, \quad \Lambda_2 = U, \quad \Lambda_3 = tU - x.$$

• Conservation laws:

$$D_t(u) + D_x \left(\frac{1}{2}u^2 + u_{xx}\right) = 0,$$

$$D_t \left(\frac{1}{2}u^2\right) + D_x \left(\frac{1}{3}u^3 + uu_{xx} - \frac{1}{2}u_x^2\right) = 0,$$

$$D_t \left(\frac{1}{6}u^3 - \frac{1}{2}u_x^2\right) + D_x \left(\frac{1}{8}u^4 - uu_x^2 + \frac{1}{2}(u^2u_{xx} + u_{xx}^2) - u_xu_{xxx}\right) = 0.$$

The Korteweg-de Vries (KdV) equation

$$R[u] = u_t + uu_x + u_{xxx} = 0.$$

1st-order multipliers in x

- Form: $\Lambda = \Lambda(x, t, U, U_x)$
- Solution: no extra conservation laws.

イロト イ団ト イヨト イヨト

The Korteweg-de Vries (KdV) equation

$$R[u] = u_t + uu_x + u_{xxx} = 0.$$

2nd-order multipliers in x

- Form: $\Lambda = \Lambda(x, t, U, U_x, U_{xx})$
- Solution: one extra conservation law with

$$\Lambda_4 = U_{xx} + \frac{1}{2}U^2.$$

The Korteweg-de Vries (KdV) equation

$$R[u] = u_t + uu_x + u_{xxx} = 0.$$

2nd-order multipliers in x

- Form: $\Lambda = \Lambda(x, t, U, U_x, U_{xx})$
- Solution: one extra conservation law with

 $\Lambda_4 = U_{xx} + \frac{1}{2}U^2.$

- For PDE with additional structure, infinite sets of CLs may exist, including CLs of arbitrary order.
- E.g., integrable systems, recursion operators, ...

<ロト <回ト < 回ト < 回ト

Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

$$\Lambda_{\sigma}[\mathbf{u}]R^{\sigma}[\mathbf{u}] \equiv \mathrm{D}_{i}\Phi^{i}[\mathbf{u}] = 0.$$

How does one compute {Φⁱ[u]}?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

```
\Lambda_{\sigma}[\mathbf{u}]R^{\sigma}[\mathbf{u}] \equiv \mathrm{D}_{i}\Phi^{i}[\mathbf{u}] = 0.
```

How does one compute {Φⁱ[u]}?

Some methods [cf. Wolf (2002), Cheviakov (2010)]:

Direct

- Homotopy 1 [Bluman & Anco (2002)]
- Homotopy 2 [Hereman et al (2005)]
- Scaling (when a specific scaling symmetry is present) [Anco (2003)]

イロト イ団ト イヨト イヨト

Table: Comparison of Four Methods of Flux Computation

Method	Applicability	Computational complexity
Direct	Simpler multipliers/PDE systems, which may involve arbitrary functions.	Solution of an overde- termined linear PDE system for fluxes.
Homotopy 1	Complicated multipliers/PDEs, not involving arbitrary functions.	One-dimensional inte- gration.
Homotopy 2	Complicated multipliers/PDEs, not involving arbitrary functions. The divergence expression must vanish for U = 0. For some conservation laws, this method can yield divergent integrals.	One-dimensional inte- gration.
Scaling sym- metry	Complicated multipliers/PDEs, may involve arbitrary functions. Scaling-homogeneous PDEs and multipliers. Noncritical conservation laws.	Repeated differentia- tion.

・ロト ・回ト ・ヨト ・

Some refs:

- Review: Hereman, Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions, Preprint, 2006.
- Mathematica: Temuerchaolu, An algorithmic theory of reduction of differential polynomial systems. Adv. Math. 32, 208–220 (in Chinese), 2003.
- Maple/RIF: Reid, Wittkopf, Boulton, *Reduction of systems of nonlinear partial differential equations to simplified involutive forms*, Eur. J. Appl. Math. 7, 604–635, 1996.
- **REDUCE**: T. Wolf, Crack, LiePDE, ApplySym and ConLaw, 2002.
- Maple: A.C., symmetry/conservation law analysis module (GeM), 2004-now.

イロト 不得下 イヨト イヨト

Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

- Use the module: read("d:/gem32_12.mpl"):
- Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);
- Declare the equation:

```
gem_decl_eqs([diff(U(x,t),t)=U(x,t)*diff(U(x,t),x)
+diff(U(x,t),x,x,x)],
    solve_for=[diff(U(x,t),t)]);
```

• Generate determining equations:

• Reduce the overdetermined system:

```
CL_multipliers:=gem_conslaw_multipliers();
simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);
```

<ロ> (日) (日) (日) (日) (日)

Example of use of the GeM package for Maple for the KdV.

• Solve determining equations:

```
multipliers_sol:=pdsolve(simplified_eqs[Solved]);
```

• Obtain corresponding conservation law fluxes/densities:

gem_get_CL_fluxes(multipliers_sol, method=****);

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

Determining equations:

$$\begin{split} & \mathrm{E}_{U}\left[\xi(x,t,U,V)(V_{t}-(U^{2}+1)U_{x}-U)+\phi(x,t,U,V)(U_{t}-V_{x})\right]\equiv0,\\ & \mathrm{E}_{V}\left[\xi(x,t,U,V)(V_{t}-(U^{2}+1)U_{x}-U)+\phi(x,t,U,V)(U_{t}-V_{x})\right]\equiv0. \end{split}$$

Euler operators:

$$E_{U} = \frac{\partial}{\partial U} - D_{x} \frac{\partial}{\partial U_{x}} - D_{t} \frac{\partial}{\partial U_{t}},$$
$$E_{V} = \frac{\partial}{\partial V} - D_{x} \frac{\partial}{\partial V_{x}} - D_{t} \frac{\partial}{\partial V_{t}}.$$

イロン イ団と イヨン イヨン

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

Determining equations:

$$\begin{split} & \mathbb{E}_{U}\left[\xi(x,t,U,V)(V_{t}-(U^{2}+1)U_{x}-U)+\phi(x,t,U,V)(U_{t}-V_{x})\right]\equiv0, \\ & \mathbb{E}_{V}\left[\xi(x,t,U,V)(V_{t}-(U^{2}+1)U_{x}-U)+\phi(x,t,U,V)(U_{t}-V_{x})\right]\equiv0. \end{split}$$

Split determining equations:

$$\begin{split} \phi_V - \xi_U &= 0, \qquad \phi_U - (U^2 + 1)\xi_V = 0, \\ \phi_x - \xi_t - U\xi_V &= 0, \qquad (U^2 + 1)\xi_x - \phi_t - U\xi_U - \xi = 0. \end{split}$$

イロン イ団と イヨン イヨン

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

Solution: five sets of multipliers $(\xi, \phi) =$

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

Resulting five conservation laws:

$$D_t u - D_x v = 0,$$

$$D_t [(x - \frac{1}{2}t^2)u + tv] + D_x [(\frac{1}{2}t^2 - x)v - t(\frac{1}{3}u^3 + u)] = 0,$$

$$D_t [v - tu] + D_x [tv - (\frac{1}{3}u^3 + u)] = 0,$$

$$D_t [e^{x + \frac{1}{2}u^2 + v}] + D_x [-ue^{x + \frac{1}{2}u^2 + v}] = 0,$$

$$D_t [e^{x + \frac{1}{2}u^2 - v}] + D_x [ue^{x + \frac{1}{2}u^2 - v}] = 0.$$

• To obtain further conservation laws, extend the multiplier ansatz...

(日) (四) (三) (三) (三)

Consider a nonlinear telegraph system for $u^1 = u(x, t)$, $u^2 = v(x, t)$:

$$R^{1}[u, v] = v_{t} - (u^{2} + 1)u_{x} - u = 0,$$

$$R^{2}[u, v] = u_{t} - v_{x} = 0.$$

Multiplier ansatz: $\Lambda_1 = \xi(x, t, U, V), \quad \Lambda_2 = \phi(x, t, U, V).$

• Maple example:

▲□→ ▲圖→ ▲温→ ▲温→

A CL multiplier $\Lambda_{\sigma}[\mathbf{U}]$ is *singular* if it is a singular function when evaluated on solutions of the given PDE system.

- In practice, one is only interested in non-singular sets of multipliers.
- Singular multipliers lead to arbitrary divergence expressions that are not conservation laws of the given system.

<ロト <四ト < 回ト < 回 > < 回

• For example, for the KdV, $R[u] = u_t + uu_x + u_{xxx} = 0$, a multiplier

$$\Lambda_{\sigma}[U] = \frac{\mathrm{D}_{i} \Phi^{i}[U]}{U_{t} + UU_{x} + U_{xxx}}$$

is a singular multiplier... yielding a "false" divergence expression

$$\frac{\mathrm{D}_i \Phi^i[U]}{U_t + UU_x + U_{\mathrm{xxx}}} (U_t + UU_x + U_{\mathrm{xxx}}) = \mathrm{D}_i \Phi^i[U]$$

for arbitrary functions $\Phi^1[U], \ldots, \Phi^n[U]$.

• To avoid getting an infinite set of singular multipliers: need to exclude some leading derivative (e.g., U_t) and its differential consequences.

イロン イ団 とくほと くほとう

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}] = 0$ is in *extended Kovalevskaya form* with respect to an independent variable x^{j} , if the system is solved for the highest derivative of each dependent variable with respect to x^{j} , i.e.,

$$\frac{\partial^{s_{\sigma}}}{\partial (x^{j})^{s_{\sigma}}}u^{\sigma} = Q^{\sigma}(x, u, \partial u, \dots, \partial^{k}u), \quad 1 \leq s_{\sigma} \leq k, \quad \sigma = 1, \dots, m,$$

where all derivatives with respect to x^i appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

< □ > < 同 > < 回 > < Ξ > < Ξ

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}] = 0$ is in *extended Kovalevskaya form* with respect to an independent variable x^{j} , if the system is solved for the highest derivative of each dependent variable with respect to x^{j} , i.e.,

$$\frac{\partial^{s_{\sigma}}}{\partial(x^{j})^{s_{\sigma}}}u^{\sigma}=Q^{\sigma}(x,u,\partial u,\ldots,\partial^{k}u), \quad 1\leq s_{\sigma}\leq k, \quad \sigma=1,\ldots,m,$$

where all derivatives with respect to x^{j} appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

Theorem [M. Alonso (1979)]

Let $\mathbf{R}[\mathbf{u}] = 0$ be a PDE system in the extended Kovalevskaya form. Then every its local conservation law has an equivalent conservation law in the characteristic form,

$$\Lambda_{\sigma}R^{\sigma}\equiv \mathrm{D}_{i}\Phi^{i}=0,$$

such that $\{\Lambda_{\sigma}\}$ do not involve the leading derivatives or their differential consequences.

<ロ> (日) (日) (日) (日) (日)

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}] = 0$ is in *extended Kovalevskaya form* with respect to an independent variable x^{j} , if the system is solved for the highest derivative of each dependent variable with respect to x^{j} , i.e.,

$$\frac{\partial^{s_{\sigma}}}{\partial(x^{j})^{s_{\sigma}}}u^{\sigma}=Q^{\sigma}(x,u,\partial u,\ldots,\partial^{k}u), \quad 1\leq s_{\sigma}\leq k, \quad \sigma=1,\ldots,m,$$

where all derivatives with respect to x^{j} appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

Example

The KdV equation

$$R[u] = u_t + uu_x + u_{xxx} = 0$$

has the extended Kovalevskaya form with respect to $t (u_t = ...)$ or $x (u_{xxx} = ...)$.

イロト イポト イヨト イヨト

• For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.
- In practice, even if the extended Kovalevskaya form exists for a given system, it may be too complex to work with.

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.
- In practice, even if the extended Kovalevskaya form exists for a given system, it may be too complex to work with.
- One may use the Direct method on non-Kovalevskaya systems to get partial CL classifications.

Consider a PDE system

$$R^{\sigma}[\mathbf{u}] = \mathbf{0}, \quad \sigma = 1, \dots, N,$$

with *n* independent variables $\mathbf{x} = (x^1, \dots, x^n)$ and *m* dependent variables $\mathbf{u} = (u^1, \dots, u^m)$.

Consider a PDE system

$$R^{\sigma}[\mathbf{u}] = \mathbf{0}, \quad \sigma = 1, \dots, N,$$

with *n* independent variables $\mathbf{x} = (x^1, \dots, x^n)$ and *m* dependent variables $\mathbf{u} = (u^1, \dots, u^m)$.

Consider an invertible point transformation

$$\begin{array}{rcl} x^i &=& x^i(\mathbf{z},\mathbf{w}), \quad i=1,\ldots,n,\\ u^\mu &=& u^\mu(\mathbf{z},\mathbf{w}), \quad \mu=1,\ldots,m, \end{array}$$

where $\mathbf{z} = (z^1, \dots, z^m)$, $\mathbf{w}(\mathbf{z}) = (w^1, \dots, w^m)$.

Obtain an equivalent PDE system

$$S^{\sigma}[\mathbf{w}] = 0, \quad \sigma = 1, \dots, N,$$

・ロン ・四と ・ヨン ・ヨン

Theorem

To any local CL (equivalence class)

$$D_{x^i}\Phi^i[\mathbf{u}] = \mathbf{0}$$

of a PDE system $\mathbf{R}[\mathbf{u}] = 0$ there corresponds a CL (equivalence class)

$$\tilde{\mathrm{D}}_{z^{j}}\Psi^{j}[\mathbf{w}] = \mathbf{0}$$

holding for the PDE system $\mathbf{S}[\mathbf{w}] = 0$.

In particular,

$$\mathbf{J}[\mathbf{w}]\mathbf{D}_i \boldsymbol{\Phi}^i[\mathbf{u}] = \tilde{\mathbf{D}}_{z^j} \boldsymbol{\Psi}^j[\mathbf{w}], \qquad \mathbf{J}[\mathbf{w}] = \frac{\mathbf{D}(x^1, \dots, x^n)}{\mathbf{D}(z^1, \dots, z^n)}.$$

メロト メポト メヨト メヨ

Theorem

To any local CL (equivalence class)

$$D_{x^i}\Phi^i[\mathbf{u}] = \mathbf{0}$$

of a PDE system $\mathbf{R}[\mathbf{u}] = 0$ there corresponds a CL (equivalence class)

 $\tilde{\mathrm{D}}_{z^{j}}\Psi^{j}[\mathbf{w}]=\mathbf{0}$

holding for the PDE system $\mathbf{S}[\mathbf{w}] = 0$.

In particular,

$$\mathbf{J}[\mathbf{w}]\mathbf{D}_i \mathbf{\Phi}^i[\mathbf{u}] = \tilde{\mathbf{D}}_{z^i} \Psi^i[\mathbf{w}], \qquad \mathbf{J}[\mathbf{w}] = \frac{\mathbf{D}(x^1, \dots, x^n)}{\mathbf{D}(z^1, \dots, z^n)}.$$

• Local conservation laws are coordinate-independent.

イロト イ団ト イヨト イヨト

D Conservation Laws

2 Direct CL Construction; Symbolic Computation in Maple

3 Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem

Discussion

6 Appendix: A CL Classification Problem

- Local symmetries and local conservation laws of DE systems are closely related.
- A specific well-known relationship: Noether's theorem for variational DE systems.

Action integral

$$J[\mathbf{U}] = \int_{\Omega} \mathcal{L}(\mathbf{x}, \mathbf{U}, \partial \mathbf{U}, \dots, \partial^k \mathbf{U}) \, dx.$$

Principle of extremal action

Variation of U:
$$\mathbf{U}(\mathbf{x}) \to \mathbf{U}(\mathbf{x}) + \delta \mathbf{U}(\mathbf{x}); \quad \delta \mathbf{U}(\mathbf{x}) = \varepsilon \mathbf{v}(\mathbf{x}); \quad \delta \mathbf{U}(\mathbf{x}) \Big|_{\partial \Omega} = 0.$$

Variation of action: $\delta J \equiv J[\mathbf{U} + \varepsilon \mathbf{v}] - J[\mathbf{U}] = \int_{\Omega} (\delta \mathcal{L}) d\mathbf{x} = o(\varepsilon).$

・ロン ・聞き ・ 国と ・ 国家

Variation of the Lagrangian

$$\begin{split} \delta \mathcal{L} &= \mathcal{L}(\mathbf{x}, \mathbf{U} + \varepsilon \mathbf{v}, \partial \mathbf{U} + \varepsilon \partial \mathbf{v}, \dots, \partial^{k} \mathbf{U} + \varepsilon \partial^{k} \mathbf{v}) - \mathcal{L}(\mathbf{x}, \mathbf{U}, \partial \mathbf{U}, \dots, \partial^{k} \mathbf{U}) \\ &= \varepsilon \left(\frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U^{\sigma}} \mathbf{v}^{\sigma} + \frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U_{j}^{\sigma}} \mathbf{v}_{j}^{\sigma} + \dots + \frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U_{j_{1} \dots j_{k}}^{\sigma}} \mathbf{v}_{j_{1} \dots j_{k}}^{\sigma} \right) + O(\varepsilon^{2}) \\ \stackrel{\text{by parts}}{=} \varepsilon (\mathbf{v}^{\sigma} \mathbf{E}_{U^{\sigma}}(\mathcal{L}[\mathbf{U}])) + \operatorname{div}(\dots) + O(\varepsilon^{2}) \end{split}$$

Euler-Lagrange equations, Euler operators:

$$\begin{split} \mathbf{E}_{U^{\sigma}}(\mathcal{L}[\mathbf{U}]) &= \frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U^{\sigma}} + \cdots + (-1)^{k} \mathbf{D}_{j_{1}} \cdots \mathbf{D}_{j_{k}} \frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U_{j_{1} \cdots j_{k}}^{\sigma}} = \mathbf{0}, \\ \sigma &= 1, \dots, m. \end{split}$$

Definition

A DE system $\mathbf{R}[\mathbf{u}]=0$ is variational if its equations are Euler-Lagrange equations for some variational principle:

$$R^{\sigma}[\mathbf{U}] = E_{U^{\sigma}}(\mathcal{L}[\mathbf{U}]), \qquad \sigma = 1, \dots, m.$$

メロト メタト メヨト メヨ

$$\mathcal{L} = K - P = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$\mathcal{L} = K - P = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$\mathbf{E}_{x} = \frac{d}{dx} - \mathbf{D}_{t} \, \frac{d}{d\dot{x}}$$

$$\mathcal{L} = K - P = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$\mathbf{E}_{x} = \frac{d}{dx} - \mathbf{D}_{t} \, \frac{d}{d\dot{x}}$$

$$\mathbf{E}_{\mathbf{x}}\mathcal{L} = -m(\ddot{\mathbf{x}} + \omega^2 \mathbf{x}) = 0, \qquad \omega^2 = k/m$$

$$\mathcal{L} = K - P = \frac{1}{2}\rho u_t^2 - \frac{1}{2}T u_x^2$$

$$\mathcal{L} = K - P = \frac{1}{2}\rho u_t^2 - \frac{1}{2}T u_x^2$$

$$\mathbf{E}_{u} = \frac{d}{du} - \mathbf{D}_{t} \frac{d}{du_{t}} - \mathbf{D}_{x} \frac{d}{du_{x}}$$

$$\mathcal{L} = K - P = \frac{1}{2}\rho u_t^{\ 2} - \frac{1}{2}T u_x^{\ 2}$$

$$\mathbf{E}_{u} = \frac{d}{du} - \mathbf{D}_{t} \frac{d}{du_{t}} - \mathbf{D}_{x} \frac{d}{du_{x}}$$

$$E_u \mathcal{L} = -\rho(u_{tt} - c^2 u_{xx}) = 0, \qquad c^2 = T/\rho$$

- **(**) A DE system $\mathbf{R}^{\sigma}[\mathbf{U}]$ is variational if and only if its linearization is self-adjoint.
 - Linearization:

$$L^{\sigma}[\mathbf{u}]\mathbf{v}(\mathbf{x}) = \frac{d}{d\epsilon}\Big|_{\epsilon=0} R^{\sigma}[\mathbf{u} + \epsilon \mathbf{v}] = \frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{p}} D^{\alpha} \mathbf{v}^{p} = 0;$$

Adjoint linearization:

$$L^*_{\mu}[\mathbf{u}]\mathbf{w}(\mathbf{x}) = (-D)^{\alpha}\left(\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u^{\mu}_{\alpha}}w_{\sigma}\right) = 0$$

• Relationship:

$$\mathbf{W} \cdot (\mathbf{L}[\mathbf{U}] \mathbf{V}) - (\mathbf{L}^*[\mathbf{U}] \mathbf{W}) \cdot \mathbf{v} \stackrel{\mathsf{by}}{\equiv} \overset{\mathsf{parts}}{\equiv} \operatorname{div} P;$$

in components,

$$W_{\sigma} L^{\sigma}[\mathbf{U}] \mathbf{V} - V^{\mu} L^{*}_{\mu}[\mathbf{U}] \mathbf{W} \equiv \mathbf{D}_{i} P^{i}.$$

- **(**) A DE system $\mathbf{R}^{\sigma}[\mathbf{U}]$ is variational if and only if its linearization is self-adjoint.
 - Linearization:

$$L^{\sigma}[\mathbf{u}]\mathbf{v}(\mathbf{x}) = \frac{d}{d\epsilon}\Big|_{\epsilon=0} R^{\sigma}[\mathbf{u} + \epsilon \mathbf{v}] = \frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{p}} D^{\alpha} \mathbf{v}^{p} = 0;$$

Adjoint linearization:

$$\mathcal{L}^*_{\mu}[\mathbf{u}]\mathbf{w}(\mathbf{x}) = (-D)^{\alpha}\left(\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u^{\mu}_{\alpha}}w_{\sigma}\right) = 0$$

• Relationship:

$$\mathbf{W} \cdot (\mathbf{L}[\mathbf{U}] \mathbf{V}) - (\mathbf{L}^*[\mathbf{U}] \mathbf{W}) \cdot \mathbf{v} \stackrel{\mathsf{by}}{\equiv} \overset{\mathsf{parts}}{\equiv} \operatorname{div} P;$$

in components,

$$W_{\sigma} L^{\sigma}[\mathbf{U}] \mathbf{V} - V^{\mu} L^{*}_{\mu}[\mathbf{U}] \mathbf{W} \equiv \mathbf{D}_{i} P^{i}.$$

Homotopy Formula for a Lagrangian:

$$\mathcal{L} = \int_0^1 \mathbf{u} \cdot \mathbf{R}[\lambda \mathbf{u}] \ d\lambda.$$

A. Cheviakov (UofS, Canada)

Conservation Laws I

Image: A math a math

Example: Wave equation for u(x, t)

$$R[u] = u_{tt} - c^2 u_{xx} = 0;$$

Linearization (already linear!)

$$L[u] v(x, t) = v_{tt} - c^2 v_{xx} = 0;$$

Adjoint linearization operator:

$$w(x,t) L[u] v(x,t) = w(v_{tt} - c^2 v_{xx}) = (w_{tt} - c^2 w_{xx})v(x,t) + (v_t w - v w_t)_t - c^2 (v_x w - v w_x)_x;$$

Result:

$$L^*[u] v(x,t) = L[u] v(x,t),$$

so R[u] is self-adjoint.

Lagrangian:

$$\mathcal{L} = \frac{1}{2}{u_t}^2 - \frac{1}{2}c^2{u_x}^2.$$

• A number of important physical non-dissipative systems have a variational formulation.

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.

メロト メタト メヨト メヨ

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.
- It remains an open problem how to determine whether a given system has a variational formulation.

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.
- It remains an open problem how to determine whether a given system has a variational formulation.
- Pseudo-Lagrangians can be constructed by appending adjoint equations to given ones.

D Conservation Laws

- 2 Direct CL Construction; Symbolic Computation in Maple
- 3 Variational Systems of Differential Equations
- 4 Local Symmetries and the Noether's Theorem
- Discussion
- 6 Appendix: A CL Classification Problem

Symmetries of Differential Equations

Consider a general DE system

$$R^{\sigma}[\mathbf{u}] = \mathbf{R}^{\sigma}(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{k}\mathbf{u}) = 0, \quad \sigma = 1, \dots, N$$

with variables $\mathbf{x} = (x^1, ..., x^n)$, $\mathbf{u} = (u^1, ..., u^m)$.

Definition

A one-parameter Lie group of point transformations

$$\mathbf{x}^* = f(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{x} + a\xi(\mathbf{x}, \mathbf{u}) + O(a^2),$$

$$\mathbf{u}^* = g(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{u} + a\eta(\mathbf{x}, \mathbf{u}) + O(a^2)$$

(with the parameter a) is a *point symmetry* of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^*(\mathbf{x}^*)$.

Symmetries of Differential Equations

Consider a general DE system

$$R^{\sigma}[\mathbf{u}] = \mathbf{R}^{\sigma}(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{k}\mathbf{u}) = \mathbf{0}, \quad \sigma = 1, \dots, N$$

with variables $\mathbf{x} = (x^1, ..., x^n)$, $\mathbf{u} = (u^1, ..., u^m)$.

Definition

A one-parameter Lie group of point transformations

$$\mathbf{x}^* = f(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{x} + \mathbf{a}\xi(\mathbf{x}, \mathbf{u}) + O(\mathbf{a}^2),$$

 $\mathbf{u}^* = g(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{u} + \mathbf{a}\eta(\mathbf{x}, \mathbf{u}) + O(\mathbf{a}^2)$

(with the parameter a) is a *point symmetry* of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^*(\mathbf{x}^*)$.

Example 1: translations

A translation

$$x^* = x + C$$
, $t^* = t$, $u^* = u$ $(C \in \mathbb{R})$

leaves the KdV equation invariant:

$$u_t + uu_x + u_{xxx} = 0 = u_{t^*}^* + u^* u_{x^*}^* + u_{x^*x^*x^*}^*.$$

A. Cheviakov (UofS, Canada)

Symmetries of Differential Equations

Consider a general DE system

$$R^{\sigma}[\mathbf{u}] = \mathbf{R}^{\sigma}(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \dots, \partial^{k}\mathbf{u}) = \mathbf{0}, \quad \sigma = 1, \dots, N$$

with variables $\mathbf{x} = (x^1, ..., x^n)$, $\mathbf{u} = (u^1, ..., u^m)$.

Definition

A one-parameter Lie group of point transformations

$$\mathbf{x}^* = f(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{x} + \mathbf{a}\xi(\mathbf{x}, \mathbf{u}) + O(\mathbf{a}^2),$$

 $\mathbf{u}^* = g(\mathbf{x}, \mathbf{u}; \mathbf{a}) = \mathbf{u} + \mathbf{a}\eta(\mathbf{x}, \mathbf{u}) + O(\mathbf{a}^2)$

(with the parameter a) is a *point symmetry* of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^*(\mathbf{x}^*)$.

Example 2: scalings

A scaling

$$x^* = \alpha x, \quad t^* = \alpha^3 t, \quad u^* = \alpha u \quad (\alpha \in \mathbb{R})$$

also leaves the KdV equation invariant:

$$u_t + uu_x + u_{xxx} = 0 = u_{t^*}^* + u^* u_{x^*}^* + u_{x^*x^*x^*}^*.$$

A. Cheviakov (UofS, Canada)

A symmetry (in 1D case)

$$\begin{aligned} x^* &= f(x, u; a) = x + a\xi(x, u) + O(a^2), \\ u^* &= g(x, u; a) = u + a\eta(x, u) + O(a^2). \end{aligned}$$

maps a solution u(x) into $u^*(x^*)$, changing both x and u.

In the evolutionary form, the same curve mapping does not change x:

$$x^{**} = x$$
, $u^{**} = u + a \zeta[u] + O(a^2)$,

$$\zeta[u] = \eta(x, u) - \frac{\partial u}{\partial x}\xi(x, u).$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Evolutionary Form of a Local Symmetry: Example

Consider an ODE

$$y' = -\frac{x}{y} \quad \Leftrightarrow y^2 + x^2 = C = \text{const.}$$

- A scaling symmetry: $x^* = e^a x$, $y^* = e^a y$.
- Local form:

$$x^* = x + a\xi(x, y) + O(a^2), \quad y^* = y + a\eta(x, y) + O(a^2), \qquad \xi = x, \quad \eta = y.$$

- Evolutionary form: $\zeta[y] = \eta y'(x)\xi = y + x^2/y$.
- Local transformation for the evolutionary form:

$$x^{**} = x,$$

 $u^{**} = u + a \left(y + \frac{x^2}{y}\right) + O(a^2).$

Evolutionary Form of a Local Symmetry: Example

• *a* = 0.1:

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ that follows from a variational principle with

 $J[\mathbf{u}] = \int_{\Omega} \mathcal{L}[\mathbf{u}] \, dx$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ is a **variational symmetry** if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. *Olver (1993)*]

・ロト ・回ト ・ヨト ・ヨト

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ that follows from a variational principle with

$$J[\mathbf{u}] = \int_{\Omega} \mathcal{L}[\mathbf{u}] \, dx$$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ is a variational symmetry if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. *Olver (1993)*]

Example 1: translations for the wave equation

$$u_{tt} = c^2 u_{xx}, \qquad \mathcal{L} = \frac{1}{2} u_t^2 - \frac{c^2}{2} u_x^2.$$

The translation $x^* = x + C$, $t^* = t$, $u^* = u$ is a variational symmetry.

<ロト <回ト < 回ト < 回ト

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ that follows from a variational principle with

$$J[\mathbf{u}] = \int_{\Omega} \mathcal{L}[\mathbf{u}] \, dx$$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}] = 0$ is a variational symmetry if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. *Olver (1993)*]

Example 2: scaling for the wave equation

$$u_{tt} = c^2 u_{xx}, \qquad \mathcal{L} = \frac{1}{2} u_t^2 - \frac{c^2}{2} u_x^2.$$

Can show: the scaling $x^* = x$, $t^* = t$, $u^* = u/\alpha$ is not a variational symmetry.

Theorem

Given:

- **()** a PDE system $\mathbf{R}[\mathbf{u}] = 0$, following from a variational principle;
- **2** a local variational symmetry in an evolutionary form:

$$(x^{i})^{*} = x^{i}, \quad (u^{\sigma})^{*} = u^{\sigma} + a\zeta^{\sigma}[\mathbf{u}] + O(a^{2}).$$

Then the given DE system has a local conservation law $D_i \Phi^i[\mathbf{u}] = 0$. In particular,

$$D_i \Phi^i [\mathbf{U}] = \Lambda_{\sigma} [\mathbf{U}] R^{\sigma} [\mathbf{U}],$$

where the multipliers are given by the evolutionary forms of symmetry components:

$$\Lambda_{\sigma}[\mathbf{U}] \equiv \zeta^{\sigma}[\mathbf{U}].$$

• • • • • • • • • • • • •

Noether's Theorem: Examples

Example 1: time translation symmetry, harmonic oscillator

- Equation: $\ddot{x}(t) + \omega^2 x(t) = 0.$
- Symmetry:

$$t^* = t + a, \quad \xi = 1; \\ x^* = x, \qquad \eta = 0,$$

- Multiplier (integrating factor): $\Lambda = \eta \dot{x}(t)\xi = -\dot{x};$
- Conservation law:

$$\Lambda R = -\dot{\mathbf{x}}(\ddot{\mathbf{x}}(t) + \omega^2 \mathbf{x}(t)) = -\frac{d}{dt} \left(\frac{\dot{\mathbf{x}}^2(t)}{2} + \frac{\omega^2 \mathbf{x}^2(t)}{2} \right) = 0.$$

・ロン ・聞き ・ モン・ モーン

Noether's Theorem: Examples

Example 2

- Equation: Wave equation $u_{tt} = c^2 u_{xx}$, u = u(x, t).
- Space translation symmetry:

$$egin{array}{lll} t^* &= t, & \xi^t = 0; \ x^* &= x, & \xi^x = 0, \ u^* &= u + a, & \eta = 1, \end{array}$$

• Multiplier:
$$\Lambda = \zeta = \eta - 0 \cdot u_x - 0 \cdot u_t = 1$$
;

• Conservation law (Momentum):

$$\Lambda R = \mathbf{1}(u_{tt} - c^2 u_{xx}) = D_t(u_t) - D_x(c^2 u_x) = 0.$$

・ロト ・回ト ・ヨト ・ヨト

Noether's Theorem: Examples

Example 2

- Equation: Wave equation $u_{tt} = c^2 u_{xx}$, u = u(x, t).
- Time translation symmetry:

• Multiplier:
$$\Lambda = \zeta = \eta - 0 \cdot u_x - 1 \cdot u_t = -u_t$$
;

• Conservation law (Energy):

$$\Lambda R = -u_t(u_{tt} - c^2 u_{xx}) = -\left[D_t\left(\frac{u_t^2}{2} + c^2 \frac{u_x^2}{2}\right) - D_x\left(c^2 u_t u_x\right)\right] = 0.$$

・ロト ・回ト ・ヨト ・ヨト

General Relationship Between Symmetries and Conservation Laws

For a non-variational DE system $\mathbf{R}[\mathbf{u}] = 0$ of N PDEs:

• Local evolutionary symmetry components $\{\zeta^{\sigma}[\mathbf{u}]\}$ are solutions of the linearized system

$$L^{\sigma}[\mathbf{u}]\boldsymbol{\zeta}[\mathbf{u}]\Big|_{\mathbf{R}[\mathbf{u}]=0}=0, \quad \sigma=1,\ldots,m.$$

• Conservation law multipliers $\{\Lambda_{\sigma}[\mathbf{u}]\}\$ are a subset of solutions of the adjoint linearized system:

$$L^*_{\mu}[\mathbf{u}] \mathbf{\Lambda}[\mathbf{u}] \Big|_{\mathbf{R}[\mathbf{u}]=0} = 0, \quad \mu = 1, \dots, N.$$

- Classification examples show differences in symmetry and CL structure. [See, e.g., *Bluman and Temuerchaolu (2005)*.]
- Symmetries can be used to map local conservation laws into local conservation laws (new or known). [E.g., *Bluman, C., Anco (2010)* and refs therein.]
- In symmetric settings (planar, axial,...), physical systems often have extra conservation laws.

<ロ> (日) (日) (日) (日) (日)

D Conservation Laws

- 2 Direct CL Construction; Symbolic Computation in Maple
- 3 Variational Systems of Differential Equations
- 4 Local Symmetries and the Noether's Theorem

5 Discussion

6 Appendix: A CL Classification Problem

• Divergence-type CLs are useful in physics, analysis, and numerical simualtions.

・ロト ・回ト ・ヨト ・ヨ

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.

・ロト ・回ト ・ヨト ・ヨ

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.

メロト メタト メヨト メヨ

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
 - Theoretically complete for systems in the solved (Kovalevskaya!) form.
 - Only finds CLs up to a given order.
 - Implemented in symbolic software.

<ロト <四ト < 回ト < 回 > < 回

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
 - Theoretically complete for systems in the solved (Kovalevskaya!) form.
 - Only finds CLs up to a given order.
 - Implemented in symbolic software.
- Other systematic CL construction methods exist, which are *subsets* of the Direct construction method.
 - Noether's theorem for variational systems;
 - Pseudo-Lagrangian method (Ibragimov et al), etc.

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
 - Theoretically complete for systems in the solved (Kovalevskaya!) form.
 - Only finds CLs up to a given order.
 - Implemented in symbolic software.
- Other systematic CL construction methods exist, which are *subsets* of the Direct construction method.
 - Noether's theorem for variational systems;
 - Pseudo-Lagrangian method (Ibragimov et al), etc.
- Noether's theorem is not a preferred way to derive unknown CLs.

Some related topics not addressed in this talk:

- Trivial and equivalent CL multipliers [cf. Olver (1993)].
- Material CLs.
- Nonlocal CLs.
- Abnormal PDE systems; Noether's 2nd theorem.
- Upper bounds of CL order.
- Recursion operators.

・ロト ・回ト ・ヨト ・

Some related topics not addressed in this talk:

- Trivial and equivalent CL multipliers [cf. Olver (1993)].
- Material CLs.
- Nonlocal CLs.
- Abnormal PDE systems; Noether's 2nd theorem.
- Upper bounds of CL order.
- Recursion operators.

Next talk:

• Conservation law computations for fluid dynamics models.

Some references

Olver, P.J. (1993)

Applications of Lie Groups to Differential Equations. Springer-Verlag.

Anco, S. C. and Bluman, G. W. (2002)

Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. *Eur. J. Appl. Math.* **13**, 545–566.

Temuerchaolu (2003)

An algorithmic theory of reduction of differential polynomial systems. *Adv. Math.* **32**, 208–220 (in Chinese).

Bluman, G.W. and Temuerchaolu (2005)

Comparing symmetries and conservation laws of nonlinear telegraph equations. J. Math. Phys. 46, 073513.

Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2010)

Applications of Symmetry Methods to Partial Differential Equations. Springer.

Cheviakov, A.F. (2007)

GeM software package for computation of symmetries and conservation laws of differential equations. *Comp. Phys. Comm.* **176**(1), 48–61.

Cheviakov, A.F. (2010)

Computation of fluxes of conservation laws. J. Eng Math 66, 153-173.

D Conservation Laws

- 2 Direct CL Construction; Symbolic Computation in Maple
- Variational Systems of Differential Equations
- 4 Local Symmetries and the Noether's Theorem
- Discussion

- u = u(x, t),
- $R[u] = u_t u_{txx} + (b+1)uu_x bu_x u_{xx} uu_{xxx} = 0.$

・ロト ・回ト ・ヨト ・ヨト

• u = u(x, t),

•
$$R[u] = u_t - u_{txx} + (b+1)uu_x - bu_x u_{xx} - uu_{xxx} = 0.$$

1st-order multipliers

- $\Lambda = \Lambda(x, t, U, U_x, U_t).$
- 29 determining equations.

• u = u(x, t),

•
$$R[u] = u_t - u_{txx} + (b+1)uu_x - bu_x u_{xx} - uu_{xxx} = 0.$$

1st-order multipliers

- $\Lambda = \Lambda(x, t, U, U_x, U_t).$
- 29 determining equations.

Cases arising in CL classification:

- General case: (CL dim) = 1.
- 2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.
- Solution: b = 2, (CL dim) = 2.

<ロト <回ト < 回ト < 回ト

• u = u(x, t),

•
$$R[u] = u_t - u_{txx} + (b+1)uu_x - bu_x u_{xx} - uu_{xxx} = 0.$$

1st-order multipliers

- $\Lambda = \Lambda(x, t, U, U_x, U_t).$
- 29 determining equations.

Cases arising in CL classification:

- General case: (CL dim) = 1.
- 2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.
- Solution: b = 2, (CL dim) = 2.

• Maple example:

<ロト <回ト < 回ト < 回ト