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Definitions

Variables:

Independent: x = (x1, x2, ..., xn) or (t, x1, x2, ...) or (t, x , y , ...).

Dependent: u = (u1(x), u2(x), ..., um(x)) or (u(x), v(x), ...).
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Definitions

Partial derivatives:

Notation:
∂uk

∂xm
= uk

xm = ∂xm uk .

E.g.,
∂

∂t
u(x , y , t) = ut = ∂tu.

All first-order partial derivatives of u: ∂u.

E.g.,
u = (u1(x , t), u2(x , t)), ∂u = {u1

x , u1
t , u2

x , u2
t }.
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Definitions

Higher-order partial derivatives

Notation: for example,
∂2

∂x2
u(x , y , z) = uxx = ∂2

x u.

All pth-order partial derivatives: ∂pu.

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 6 / 64



Definitions

Differential functions:

A differential function is an expression that may involve independent and dependent
variables, and derivatives of dependent variables to some order.

F [u] = F (x,u, ∂u, . . . , ∂pu).

Differential equations:

A differential equation of order k:

R[u] = R(x,u, ∂u, . . . , ∂ku) = 0.

Example:

The 1D diffusion equation for u(x , t) can be written as

0 = ut − uxx = H(u, ut , uxx ) = H[u].
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Definitions (ctd.)

The total derivative of a differential function:

A basic chain rule.

E.g., let u = u(x , y), g [u] = g(x , y , u, ux , uy ). Then

Dx g [u] ≡ ∂

∂x
g(x , y , u, ux , uy )

∣∣∣
u=u(x,y)

=
∂g

∂x
+
∂g

∂u
ux +

∂g

∂ux
uxx +

∂g

∂uy
uxy .
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Definitions (ctd.)

Multi-indices:

α = (α1, . . . , αn), αi ∈ N ∪ {0}, |α| := α1 + · · ·+ αn.

uσα ≡
∂|α|uσ

∂(x1)α1 . . . ∂(xn)αn
.

δi ≡ (0, . . . , 0, 1, 0, . . . , 0)

rδi ≡ (0, . . . , 0, r
(i)
, 0, . . . , 0), r ∈ N

Di ≡ Dx i = ∂x i + up
α+δi

∂u
p
α

Dα ≡ Dα1
1 · · ·D

αn
n
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Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

Di Ψ
i [u] ≡ div Ψi[u] = 0.

For models involving time:

Dt Θ[u] + divx Ψ[u] = 0.

Θ[u]: conserved density.

Ψ[u]: flux vector.

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 10 / 64



Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

Di Ψ
i [u] ≡ div Ψi[u] = 0.

For models involving time:

Dt Θ[u] + divx Ψ[u] = 0.

Θ[u]: conserved density.

Ψ[u]: flux vector.

Example (PDE 1):

u(x , y , z) = (u1, u2, u3),

div u = Dx u1 + Dy u2 + Dz u3 = u1
x + u2

y + u3
z = 0.
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Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

Di Ψ
i [u] ≡ div Ψi[u] = 0.

For models involving time:

Dt Θ[u] + divx Ψ[u] = 0.

Θ[u]: conserved density.

Ψ[u]: flux vector.

Example (PDE 2):

u = u(x , t),

Dt(u)−Dx (ux ) = ut − uxx = 0.
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Local Conservation Laws

Conservation laws

A local conservation law: a divergence expression equal to zero,

Di Ψ
i [u] ≡ div Ψi[u] = 0.

For models involving time:

Dt Θ[u] + divx Ψ[u] = 0.

Θ[u]: conserved density.

Ψ[u]: flux vector.

A local conservation law ⇔ a global conservation principle.
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Globally Conserved Quantities

Given: a local CL for a time-dependent system,

Dt Θ[u] + divx Ψ[u] = 0.

Integrate in the spatial domain:∫
V

Dt Θ dV +

∫
V

(divx Ψ) dV =

∫
V

Dt Θ dV +

∮
∂V

Ψ · dS = 0.

When the total flux vanishes, ∮
∂V

Ψ[u] · dS = 0,

one has
d

dt

∫
V

Θ[u] dV = 0,

i.e., a global conserved quantity (an integral of motion):

Q =

∫
V

Θ dV = const.

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 11 / 64



Globally Conserved Quantities

Given: a local CL for a time-dependent system,

Dt Θ[u] + divx Ψ[u] = 0.

Integrate in the spatial domain:∫
V

Dt Θ dV +

∫
V

(divx Ψ) dV =

∫
V

Dt Θ dV +

∮
∂V

Ψ · dS = 0.

When the total flux vanishes, ∮
∂V

Ψ[u] · dS = 0,

one has
d

dt

∫
V

Θ[u] dV = 0,

i.e., a global conserved quantity (an integral of motion):

Q =

∫
V

Θ dV = const.

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 11 / 64



Local CL = Local Form of a Conservation Principle

1D advection equation:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x x + x A 

Q(x,t) Q(x + x,t) 

x  direction 

D 

x 
x x + x 

y 

y 

y + y 

n 

n 

n 

n 

flow streamlines 

v 

B 

∆M(t) =

∫ x+∆x

x

ρ(s, t) A ds [kg], Q(x , t) = Aρ(x , t)v(x , t) [kg/s].

d

dt
∆M(t) = Q(x , t)− Q(x + ∆x , t) ⇒ ∂

∂t
ρ(x , t) +

∂

∂x
(ρ(x , t)v(x , t)) = 0.

Similarly, other conservation principles for local continuum models with
conservative/zero forcing yield local conservation laws.
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ODE Models: Conserved Quantities

An ODE:

Dependent variable: u = u(t);

A conservation law

DtF (t, u, u′, ...) =
d

dt
F (t, u, u′, ...) = 0

yields a conserved quantity (a constant of motion):

F (t, u, u′, ...) = C = const.
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ODE Models: Conserved Quantities

An ODE:

Dependent variable: u = u(t);

A conservation law

DtF (t, u, u′, ...) =
d

dt
F (t, u, u′, ...) = 0

yields a conserved quantity (a constant of motion):

F (t, u, u′, ...) = C = const.

Example: Harmonic oscillator, spring-mass system

Independent variable: t, dependent: x(t).

ODE: ẍ(t) + ω2x(t) = 0; ω2 = k/m = const.

Conservation law:
d

dt

(
mẋ2(t)

2
+

kx2(t)

2

)
= 0.

Conserved quantity: energy.
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ODE Models: Conserved Quantities

Example: ODE integration

An ODE:

K ′′′(x) =
−2 (K ′′(x))

2
K(x)− (K ′(x))

2
K ′′(x)

K(x)K ′(x)
.

Three independent conserved quantities:

KK ′′

(K ′)2
= C1,

KK ′′ ln K

(K ′)2
− ln K ′ = C2,

xKK ′′ + KK ′

(K ′)2
− x = C3

yield complete ODE integration.
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PDE Models

Example:

Small oscillations of a string (transverse) or a rod (longitudinal) ⇔ 1D wave
equation:

utt = c2uxx .

Independent variables: x , t; dependent: u(x , t).

 
u 

x 
L 

u(x,t) > 0 

x 0 

u 

x x x+x 

T(x,t) 

T(x+x,t) 
c2 = T/ρ; T , ρ = const (for a string).

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 15 / 64



PDE Models

Example:

Small oscillations of a string (transverse) or a rod (longitudinal) ⇔ 1D wave
equation:

utt = c2uxx .

Independent variables: x , t; dependent: u(x , t).

 
u 

x 
L 

u(x,t) > 0 

x 0 

u 

x x x+x 

T(x,t) 

T(x+x,t) 
 (x+x,t) 

 (x,t) 

0 L 

Elasic rod at rest/equilibrium. 
Reference configuration 

x 

0 
x 

x1 x2 x3 

u(x1, t) u(x2, t) u(x3, t) 

u(L, t) 

Actual (moving) configuration 
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PDE Models

Example:

Small oscillations of a string (transverse) or a rod (longitudinal) ⇔ 1D wave
equation:

utt = c2uxx .

Independent variables: x , t; dependent: u(x , t).

Conservation of momentum:

Local conservation law: Dt(ρut)−Dx (Tux ) = 0;

Global conserved quantity: total momentum

M =

∫ b

a

ρut dx = const,

for Neumann homogeneous problems with ux (a, t) = ux (b, t) = 0.
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PDE Models

Example:

Small oscillations of a string (transverse) or a rod (longitudinal) ⇔ 1D wave
equation:

utt = c2uxx .

Independent variables: x , t; dependent: u(x , t).

Conservation of energy:

Local conservation law:

Dt

(
ρu2

t

2
+

Tu2
x

2

)
−Dx (Tutux ) = 0;

Global conserved quantity: total energy

E =

∫ b

a

(
ρu2

t

2
+

Tu2
x

2

)
dx = const,

for both Neumann and Dirichlet homogeneous problems.
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PDE Models

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: t; x = (x1, x2, x3) ∈ D ⊂ R3.

Dependent: ρ(x , t), v 1(x , t), v 2(x , t), v 3(x , t), p(x , t).

Equations:
Dtρ+ Dj (ρv j ) = 0,

ρ(Dt + v jDj )v i + Di p = 0, i = 1, 2, 3,

ρ(Dt + v jDj )p + γρpDj v
j = 0.

Conservation laws:

Mass: Dtρ+ Dj (ρv j ) = 0,

Momentum: Dt(ρv i ) + Dj (ρv i v j + pδij ) = 0, i = 1, 2, 3,

Energy: Dt(E) + Dj

(
v j (E + p)

)
= 0, E = 1

2
ρ|v|2 +

p

γ − 1
.

Angular momentum + more.
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Applications of Conservation Laws

Applications to ODEs

Constants of motion.

Reduction of order; integration.
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Applications of Conservation Laws

Applications to PDEs

Rates of change of physical variables; constants of motion.

Differential constraints (divergence-free or irrotational fields, etc.).

Analysis: existence, uniqueness, stability.

An infinite number of conservation laws may indicate integrability / linearization.

Finite element/finite volume numerical methods may require conserved forms.

Weak form of DEs for finite element numerical methods.

Special numerical methods, conservation law-preserving methods (symplectic
integrators, etc.).

Numerical method testing.
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Applications of Conservation Laws

Applications to PDEs

Potentials, stream functions, etc.

Magnetic vector potential:

divB = 0 ⇒ B = curlA.

Irrotational fluid flow, velocity potential:

curlv = 0 ⇒ v = grad Ψ.

Fluid flow, stream function in 2D:

v = (u, v), divV = ux + vy = 0,

{
u = Φy ,
v = −Φx .
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Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that “does not carry a
physical meaning”.
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Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that “does not carry a
physical meaning”.

A trivial CL, Type 1:

Density and all fluxes vanish on all solutions of the given PDE system.

Example: consider a wave equation on u(x , t): utt = uxx . The conservation law

Dt(u(utt − uxx )) + Dx (2x(uxtt − uxxx )) = 0

is a trivial conservation law of the first type.
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Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that “does not carry a
physical meaning”.

A trivial CL, Type 2:

The conservation law vanishes as a differential identity.

Example: for the wave equation on u(x , t): utt = uxx ,

Dt(uxx )−Dx (uxt) ≡ 0

is a trivial conservation law of the second type.
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Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that “does not carry a
physical meaning”.

A trivial CL, Type 2:

The conservation law vanishes as a differential identity.

Another example:
div(curlΦ[u]) ≡ 0.
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Conservation Law Equivalence

Definition

Two conservation laws Di Φ
i [u] = 0 and Di Ψ

i [u] = 0 are equivalent if
Di (Φi [u]−Ψi [u]) = 0 is a trivial conservation law. An equivalence class of conservation
laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Definition

A set of ` conservation laws {Di Φ
i
(j)[u] = 0}`j=1 is linearly dependent if there exists a set

of constants {a(j)}`j=1, not all zero, such that the linear combination

Di (a(j)Φi
(j)[u]) = 0

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws
in the set can be expressed as a linear combination of the others.

In practice, one is interested in finding linearly independent sets of (nontrivial)
conservation laws of a given PDE system.
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Hadamard Lemma for Differential Functions

Given:

A totally nondegenerate PDE system Rσ[u] = 0, σ = 1, ...,N [cf. Olver (1993)].

A nontrivial local CL: Di Φ
i [u] = 0.

Denote G [U] = Di Φ
i [U].
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Hadamard Lemma for Differential Functions

Hadamard lemma for differential functions:

A differential function G [U] vanishes on solutions of a PDE system R[u] = 0 if and only
if it has the form

G [U] = Pασ [U]Dα Rσ[U].

Characteristic form of a CL:

Using the product rule, one has

G [U] = Di Φ
i [U] = Λσ[U] Rσ[U] + div H[U],

where H[U] is linear in Rσ; div H[u] = 0 is a trivial CL.

Hence every CL Di Φ
i [u] = 0 has an equivalent characteristic form

Di Φ̃
i [u] = Λσ[u] Rσ[u] = 0, Φ̃i = Φi − H i .

CL multipliers (characteristics): {Λσ[u]}N
σ=1.
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The Idea of the Direct Construction Method

Result:

For most physical DE models, every local CL has an equivalent characteristic form

Di Φ
i [u] = Λσ[u] Rσ[u] = 0,

for some set of multipliers {Λσ[u]}.
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The Idea of the Direct Construction Method

Definition

The Euler operator with respect to U j :

EU j = (−D)β
∂

∂U j
β

=
∂

∂U j
−Di

∂

∂U j
i

+ · · ·+ (−1)sDi1 . . .Dis

∂

∂U j
i1...is

+ · · · ,

j = 1, . . . ,m.

Theorem

Let U(x) = (U1, . . . ,Um). The equations

EU j F [U] ≡ 0, j = 1, . . . ,m,

hold for arbitrary U(x) if and only if

F [U] ≡ Di Ψ
i [U]

for some functions {Ψi [U]}.
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The Idea of the Direct Construction Method

Idea:

Seek conservation laws in the characteristic form Di Φ
i = ΛσRσ = 0.

Multiplier determining equations:

EU j (ΛσRσ) ≡ 0, j = 1, . . . ,m.
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The DCM Sequence

Consider a general system R[u] = 0 of N PDEs.

Direct Construction Method

Specify dependence of multipliers: Λσ[U] = Λσ(x,U, ...), σ = 1, ...,N.

Solve the set of determining equations

EU j (Λσ[U] Rσ[U]) ≡ 0, j = 1, . . . ,m,

for arbitrary U(x) (off of the solution set!) to find all such sets of multipliers.

Find the corresponding fluxes Φi [U] satisfying the identity

ΛσRσ ≡ Di Φ
i .

Each set of fluxes, multipliers yields a local conservation law

Di Φ
i [u] = 0,

holding on solutions u(x) of the given PDE system.
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The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

R[u] = ut + uux + uxxx = 0.

0th-order multipliers

Determining equations:

EU (Λ(x , t,U)(Ut + UUx + Uxxx )) ≡ 0.

Solution:
Λ1 = 1, Λ2 = U, Λ3 = tU − x .

Conservation laws:
Dt(u) + Dx

(
1
2
u2 + uxx

)
= 0,

Dt

(
1
2
u2
)

+ Dx

(
1
3
u3 + uuxx − 1

2
u2

x

)
= 0,

Dt

(
1
6
u3 − 1

2
u2

x

)
+ Dx

(
1
8
u4 − uu2

x + 1
2
(u2uxx + u2

xx )− ux uxxx

)
= 0.
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The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

R[u] = ut + uux + uxxx = 0.

1st-order multipliers in x

Form: Λ = Λ(x , t,U,Ux )

Solution: no extra conservation laws.
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The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

R[u] = ut + uux + uxxx = 0.

2nd-order multipliers in x

Form: Λ = Λ(x , t,U,Ux ,Uxx )

Solution: one extra conservation law with

Λ4 = Uxx + 1
2
U2.
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The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

R[u] = ut + uux + uxxx = 0.

2nd-order multipliers in x

Form: Λ = Λ(x , t,U,Ux ,Uxx )

Solution: one extra conservation law with

Λ4 = Uxx + 1
2
U2.

For PDE with additional structure, infinite sets of CLs may exist, including CLs of
arbitrary order.

E.g., integrable systems, recursion operators, ...

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 27 / 64



Flux Computation Methods

Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

Λσ[u]Rσ[u] ≡ Di Φ
i [u] = 0.

How does one compute {Φi [u]}?

Some methods [cf. Wolf (2002), Cheviakov (2010)]:

Direct

Homotopy 1 [Bluman & Anco (2002)]

Homotopy 2 [Hereman et al (2005)]

Scaling (when a specific scaling symmetry is present) [Anco (2003)]
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Flux Computation Methods [see Cheviakov (2010)]

Table: Comparison of Four Methods of Flux Computation

Method Applicability Computational complexity

Direct Simpler multipliers/PDE systems, which may
involve arbitrary functions.

Solution of an overde-
termined linear PDE
system for fluxes.

Homotopy 1 Complicated multipliers/PDEs, not involving
arbitrary functions.

One-dimensional inte-
gration.

Homotopy 2 Complicated multipliers/PDEs, not involving
arbitrary functions.
The divergence expression must vanish for
U = 0.
For some conservation laws, this method can
yield divergent integrals.

One-dimensional inte-
gration.

Scaling sym-
metry

Complicated multipliers/PDEs, may involve
arbitrary functions.
Scaling-homogeneous PDEs and multipliers.
Noncritical conservation laws.

Repeated differentia-
tion.
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Symbolic Software for Computation of Conservation Laws

Some refs:

Review: Hereman, Symbolic computation of conservation laws of nonlinear partial
differential equations in multi-dimensions, Preprint, 2006.

Mathematica: Temuerchaolu, An algorithmic theory of reduction of differential
polynomial systems. Adv. Math. 32, 208–220 (in Chinese), 2003.

Maple/RIF: Reid, Wittkopf, Boulton, Reduction of systems of nonlinear partial
differential equations to simplified involutive forms, Eur. J. Appl. Math. 7, 604–635,
1996.

REDUCE: T. Wolf, Crack, LiePDE, ApplySym and ConLaw, 2002.

Maple: A.C., symmetry/conservation law analysis module (GeM), 2004-now.
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Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

Use the module: read("d:/gem32_12.mpl"):

Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);

Declare the equation:

gem_decl_eqs([diff(U(x,t),t)=U(x,t)*diff(U(x,t),x)

+diff(U(x,t),x,x,x)],

solve_for=[diff(U(x,t),t)]);

Generate determining equations:

det_eqs:=gem_conslaw_det_eqs([x,t, U(x,t),

diff(U(x,t),x), diff(U(x,t),x,x)]):

Reduce the overdetermined system:

CL_multipliers:=gem_conslaw_multipliers();

simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);
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Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

Solve determining equations:

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

Obtain corresponding conservation law fluxes/densities:

gem_get_CL_fluxes(multipliers_sol, method=*****);
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Another Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,
R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).
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R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Determining equations:

EU

[
ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx )

]
≡ 0,

EV

[
ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx )

]
≡ 0.

Euler operators:

EU =
∂

∂U
−Dx

∂

∂Ux
−Dt

∂

∂Ut
,

EV =
∂

∂V
−Dx

∂

∂Vx
−Dt

∂

∂Vt
.
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Determining equations:
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[
ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx )

]
≡ 0,

EV

[
ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx )

]
≡ 0.

Split determining equations:

φV − ξU = 0, φU − (U2 + 1)ξV = 0,

φx − ξt − UξV = 0, (U2 + 1)ξx − φt − UξU − ξ = 0.
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Another Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,
R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Solution: five sets of multipliers (ξ, φ) =

0 1

t x − 1
2
t2

1 −t

ex+ 1
2

U2+V Uex+ 1
2

U2+V

ex+ 1
2

U2−V −Uex+ 1
2

U2−V
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Another Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,
R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Resulting five conservation laws:

Dtu −Dx v = 0,

Dt [(x − 1
2
t2)u + tv ] + Dx [( 1

2
t2 − x)v − t( 1

3
u3 + u)] = 0,

Dt [v − tu] + Dx [tv − ( 1
3
u3 + u)] = 0,

Dt [ex+ 1
2

u2+v ] + Dx [−uex+ 1
2

u2+v ] = 0,

Dt [ex+ 1
2

u2−v ] + Dx [uex+ 1
2

u2−v ] = 0.

To obtain further conservation laws, extend the multiplier ansatz...
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Another Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,
R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Maple example:
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Singular Multipliers

Definition

A CL multiplier Λσ[U] is singular if it is a singular function when evaluated on solutions
of the given PDE system.

In practice, one is only interested in non-singular sets of multipliers.

Singular multipliers lead to arbitrary divergence expressions that are not conservation
laws of the given system.
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Singular Multipliers

For example, for the KdV, R[u] = ut + uux + uxxx = 0, a multiplier

Λσ[U] =
Di Φ

i [U]

Ut + UUx + Uxxx

is a singular multiplier... yielding a “false” divergence expression

Di Φ
i [U]

Ut + UUx + Uxxx
(Ut + UUx + Uxxx ) = Di Φ

i [U]

for arbitrary functions Φ1[U], . . . ,Φn[U].

To avoid getting an infinite set of singular multipliers: need to exclude some leading
derivative (e.g., Ut) and its differential consequences.
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Completeness of the Direct CL Construction Method

Extended Kovalevskaya form

A PDE system R[u] = 0 is in extended Kovalevskaya form with respect to an
independent variable x j , if the system is solved for the highest derivative of each
dependent variable with respect to x j , i.e.,

∂sσ

∂(x j )sσ
uσ = Qσ(x , u, ∂u, . . . , ∂k u), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to x j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.
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uσ = Qσ(x , u, ∂u, . . . , ∂k u), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to x j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

Theorem [M. Alonso (1979)]

Let R[u] = 0 be a PDE system in the extended Kovalevskaya form. Then every its local
conservation law has an equivalent conservation law in the characteristic form,

ΛσRσ ≡ Di Φ
i = 0,

such that {Λσ} do not involve the leading derivatives or their differential consequences.
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Completeness of the Direct CL Construction Method

Extended Kovalevskaya form

A PDE system R[u] = 0 is in extended Kovalevskaya form with respect to an
independent variable x j , if the system is solved for the highest derivative of each
dependent variable with respect to x j , i.e.,

∂sσ

∂(x j )sσ
uσ = Qσ(x , u, ∂u, . . . , ∂k u), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to x j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

Example

The KdV equation
R[u] = ut + uux + uxxx = 0

has the extended Kovalevskaya form with respect to t (ut = . . .) or x (uxxx = . . .).
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Completeness of the Direct CL Construction Method

For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is
complete.

For systems in a solved form but not in the extended Kovalevskaya form, multipliers
may involve leading derivatives/their differential consequences.

In practice, even if the extended Kovalevskaya form exists for a given system, it may
be too complex to work with.

One may use the Direct method on non-Kovalevskaya systems to get partial CL
classifications.
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Conservation Laws and Coordinate Transformations

Consider a PDE system
Rσ[u] = 0, σ = 1, . . . ,N,

with n independent variables x = (x1, . . . , xn) and m dependent variables
u = (u1, . . . , um).

Consider an invertible point transformation

x i = x i (z,w), i = 1, . . . , n,
uµ = uµ(z,w), µ = 1, . . . ,m,

where z = (z1, . . . , zm), w(z) = (w 1, . . . ,w m).

Obtain an equivalent PDE system

Sσ[w] = 0, σ = 1, . . . ,N,
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Conservation Laws and Coordinate Transformations

Theorem

To any local CL (equivalence class)

Dx i Φ
i [u] = 0

of a PDE system R[u] = 0 there corresponds a CL (equivalence class)

D̃z j Ψ
j [w] = 0

holding for the PDE system S[w] = 0.

In particular,

J[w]Di Φ
i [u] = D̃z j Ψ

j [w], J[w] =
D(x1, . . . , xn)

D(z1, . . . , zn)
.

Local conservation laws are coordinate-independent.
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6 Appendix: A CL Classification Problem
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Symmetries and Conservation Laws

Local symmetries and local conservation laws of DE systems are closely related.

A specific well-known relationship: Noether’s theorem for variational DE systems.
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Variational Principles

Action integral

J[U] =

∫
Ω

L(x,U, ∂U, . . . , ∂kU) dx .

Principle of extremal action

Variation of U: U(x)→ U(x) + δU(x); δU(x) = εv(x); δU(x)
∣∣
∂Ω

= 0.

Variation of action: δJ ≡ J[U + εv]− J[U] =
∫

Ω
(δL) dx = o(ε).
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Variational Principles

Variation of the Lagrangian

δL = L(x,U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv)− L(x,U, ∂U, . . . , ∂kU)

= ε

(
∂L[U]

∂Uσ
vσ +

∂L[U]

∂Uσ
j

vσj + · · ·+ ∂L[U]

∂Uσ
j1···jk

vσj1···jk

)
+ O(ε2)

by parts
= ε(vσEUσ (L[U])) + div(...) + O(ε2)

Euler-Lagrange equations, Euler operators:

EUσ (L[U]) =
∂L[U]

∂Uσ
+ · · ·+ (−1)kDj1 · · ·Djk

∂L[U]

∂Uσ
j1···jk

= 0,

σ = 1, . . . ,m.
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Variational DE systems

Definition

A DE system R[u] = 0 is variational if its equations are Euler-Lagrange equations for
some variational principle:

Rσ[U] = EUσ (L[U]), σ = 1, . . . ,m.
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Variational Principles

Example 1: Harmonic oscillator, U = x = x(t)

L = K − P =
1

2
mẋ2 − 1

2
kx2

Ex =
d

dx
−Dt

d

dẋ

ExL = −m(ẍ + ω2x) = 0, ω2 = k/m
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Variational Principles

Example 2: Wave equation for U = u(x , t)

L = K − P =
1

2
ρut

2 − 1

2
T ux

2

Eu =
d

du
−Dt

d

dut
−Dx

d

dux

EuL = −ρ(utt − c2uxx ) = 0, c2 = T/ρ
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Variational DE systems

1 A DE system Rσ[U] is variational if and only if its linearization is self-adjoint.

Linearization:

Lσ[u]v(x) =
d

dε

∣∣∣
ε=0

Rσ[u + εv] =
∂Rσ[u]

∂up
α

Dαvp = 0;

Adjoint linearization:

L∗µ[u]w(x) = (−D)α
(
∂Rσ[u]

∂uµα
wσ

)
= 0

Relationship:

W · (L[U] V) − (L∗[U] W) · v
by parts
≡ div P;

in components,
Wσ Lσ[U]V − Vµ L∗µ[U]W ≡ Di P

i .

2 Homotopy Formula for a Lagrangian:

L =

∫ 1

0

u ·R[λu] dλ.
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Self-adjointness

Example: Wave equation for u(x , t)

R[u] = utt − c2uxx = 0;

Linearization (already linear!)

L[u] v(x , t) = vtt − c2vxx = 0;

Adjoint linearization operator:

w(x , t) L[u] v(x , t) = w(vtt−c2vxx ) = (wtt − c2wxx )v(x , t)+(vtw−vwt)t−c2(vx w−vwx )x ;

Result:
L∗[u] v(x , t) = L[u] v(x , t),

so R[u] is self-adjoint.

Lagrangian:

L =
1

2
ut

2 − 1

2
c2ux

2.
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Existence of a Variational Principle

A number of important physical non-dissipative systems have a variational
formulation.

The vast majority of PDE systems do not have a variational formulation.

Self-adjointness is coordinate-dependent; also depends on the writing of the system.

It remains an open problem how to determine whether a given system has a
variational formulation.

Pseudo-Lagrangians can be constructed by appending adjoint equations to given
ones.
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Outline

1 Conservation Laws

2 Direct CL Construction; Symbolic Computation in Maple

3 Variational Systems of Differential Equations

4 Local Symmetries and the Noether’s Theorem

5 Discussion

6 Appendix: A CL Classification Problem
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Symmetries of Differential Equations

Consider a general DE system

Rσ[u] = Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

with variables x = (x1, ..., xn), u = (u1, ..., um).

Definition

A one-parameter Lie group of point transformations

x∗ = f (x,u; a) = x + aξ(x,u) + O(a2),
u∗ = g(x,u; a) = u + aη(x,u) + O(a2)

(with the parameter a) is a point symmetry of Rσ[u] if it transforms solutions to
solutions: u(x)→ u∗(x∗).
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(with the parameter a) is a point symmetry of Rσ[u] if it transforms solutions to
solutions: u(x)→ u∗(x∗).

Example 1: translations

A translation
x∗ = x + C , t∗ = t, u∗ = u (C ∈ R)

leaves the KdV equation invariant:

ut + uux + uxxx = 0 = u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗ .
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(with the parameter a) is a point symmetry of Rσ[u] if it transforms solutions to
solutions: u(x)→ u∗(x∗).

Example 2: scalings

A scaling
x∗ = αx , t∗ = α3t, u∗ = αu (α ∈ R)

also leaves the KdV equation invariant:

ut + uux + uxxx = 0 = u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗ .
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Evolutionary Form of a Local Symmetry

A symmetry (in 1D case)

x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),
u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

maps a solution u(x) into u∗(x∗), changing both x and u.

 

(x, u) 

(x*, u*)

(x, u**)

(, ) 
)

(0, ) 
)

x

u 

In the evolutionary form, the same curve mapping does not change x :

x∗∗ = x , u∗∗ = u + a ζ[u] + O(a2),

ζ[u] = η(x , u)− ∂u

∂x
ξ(x , u).
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Evolutionary Form of a Local Symmetry: Example

Consider an ODE
y ′ = −x

y
⇔ y 2 + x2 = C = const.

A scaling symmetry: x∗ = eax , y∗ = eay .

Local form:

x∗ = x + aξ(x , y) + O(a2), y∗ = y + aη(x , y) + O(a2), ξ = x , η = y .

Evolutionary form: ζ[y ] = η − y ′(x) ξ = y + x2/y .

Local transformation for the evolutionary form:

x∗∗ = x ,

u∗∗ = u + a

(
y +

x2

y

)
+ O(a2).
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Evolutionary Form of a Local Symmetry: Example

a = 0.1:

> > 

> > 

> > 

> > 

> > 

> > 

y1:=sqrt(1-x^2);

y1 := Kx2C1

eps:=0.1;
eps := 0.1

ys:=sqrt(exp(eps)^2-x^2);

ys := 1.221402758Kx2

plot([y1,ys],x=-1..1);

x
K1 K0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

y2:=y1+eps*(y1+x^2/y1);

y2 := 1.1 Kx2C1 C
0.1 x2

Kx2C1
plot([y1,y2],x=-1..1);

x
K1 K0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2
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Variational Symmetries

Consider a general DE system Rσ[u] = 0 that follows from a variational principle with

J[u] =

∫
Ω

L[u] dx

.

Definition

A local evolutionary symmetry of Rσ[u] = 0 is a variational symmetry if it preserves the
action integral, or in other words, preserves L[u] up to a divergence. [cf. Olver (1993)]
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J[u] =

∫
Ω

L[u] dx

.

Definition

A local evolutionary symmetry of Rσ[u] = 0 is a variational symmetry if it preserves the
action integral, or in other words, preserves L[u] up to a divergence. [cf. Olver (1993)]

Example 1: translations for the wave equation

utt = c2uxx , L =
1

2
ut

2 − c2

2
ux

2.

The translation x∗ = x + C , t∗ = t, u∗ = u is a variational symmetry.
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Variational Symmetries

Consider a general DE system Rσ[u] = 0 that follows from a variational principle with

J[u] =

∫
Ω

L[u] dx

.

Definition

A local evolutionary symmetry of Rσ[u] = 0 is a variational symmetry if it preserves the
action integral, or in other words, preserves L[u] up to a divergence. [cf. Olver (1993)]

Example 2: scaling for the wave equation

utt = c2uxx , L =
1

2
ut

2 − c2

2
ux

2.

Can show: the scaling x∗ = x , t∗ = t, u∗ = u/α is not a variational symmetry.
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Noether’s Theorem

Theorem

Given:

1 a PDE system R[u] = 0, following from a variational principle;

2 a local variational symmetry in an evolutionary form:

(x i )∗ = x i , (uσ)∗ = uσ + a ζσ[u] + O(a2).

Then the given DE system has a local conservation law Di Φ
i [u] = 0.

In particular,
Di Φ

i [U] = Λσ[U]Rσ[U],

where the multipliers are given by the evolutionary forms of symmetry components:

Λσ[U] ≡ ζσ[U].
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Noether’s Theorem: Examples

Example 1: time translation symmetry, harmonic oscillator

Equation: ẍ(t) + ω2x(t) = 0.

Symmetry:
t∗ = t + a, ξ = 1;
x∗ = x , η = 0,

Multiplier (integrating factor): Λ = η − ẋ(t)ξ = −ẋ ;

Conservation law:

ΛR = −ẋ(ẍ(t) + ω2x(t)) = − d

dt

(
ẋ2(t)

2
+
ω2x2(t)

2

)
= 0.
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Noether’s Theorem: Examples

Example 2

Equation: Wave equation utt = c2uxx , u = u(x , t).

Space translation symmetry:

t∗ = t, ξt = 0;
x∗ = x , ξx = 0,
u∗ = u + a, η = 1,

Multiplier: Λ = ζ = η − 0 · ux − 0 · ut = 1;

Conservation law (Momentum):

ΛR = 1(utt − c2uxx ) = Dt (ut)− Dx

(
c2ux

)
= 0.
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Noether’s Theorem: Examples

Example 2

Equation: Wave equation utt = c2uxx , u = u(x , t).

Time translation symmetry:

t∗ = t + a, ξt = 1;
x∗ = x , ξx = 0,
u∗ = u, η = 0,

Multiplier: Λ = ζ = η − 0 · ux − 1 · ut = −ut ;

Conservation law (Energy):

ΛR = −ut(utt − c2uxx ) = −
[

Dt

(
u2

t

2
+ c2 u2

x

2

)
− Dx

(
c2utux

)]
= 0.
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General Relationship Between Symmetries and Conservation Laws

For a non-variational DE system R[u] = 0 of N PDEs:

Local evolutionary symmetry components {ζσ[u]} are solutions of the linearized
system

Lσ[u] ζ[u]
∣∣∣
R[u]=0

= 0, σ = 1, . . . ,m.

Conservation law multipliers {Λσ[u]} are a subset of solutions of the adjoint
linearized system:

L∗µ[u] Λ[u]
∣∣∣
R[u]=0

= 0, µ = 1, . . . ,N.

Classification examples show differences in symmetry and CL structure. [See, e.g.,
Bluman and Temuerchaolu (2005).]

Symmetries can be used to map local conservation laws into local conservation laws
(new or known). [E.g., Bluman, C., Anco (2010) and refs therein.]

In symmetric settings (planar, axial,...), physical systems often have extra
conservation laws.
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Discussion

Divergence-type CLs are useful in physics, analysis, and numerical simualtions.

CLs are coordinate-independent.

Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.

For variational DE systems, 1:1 correspondence between equivalence classes of CLs
and variational symmetries.

Generally, CLs can be obtained systematically through the Direct construction
method:

Theoretically complete for systems in the solved (Kovalevskaya!) form.

Only finds CLs up to a given order.

Implemented in symbolic software.

Other systematic CL construction methods exist, which are subsets of the Direct
construction method.

Noether’s theorem for variational systems;

Pseudo-Lagrangian method (Ibragimov et al), etc.

Noether’s theorem is not a preferred way to derive unknown CLs.
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Discussion

Some related topics not addressed in this talk:

Trivial and equivalent CL multipliers [cf. Olver (1993)].

Material CLs.

Nonlocal CLs.

Abnormal PDE systems; Noether’s 2nd theorem.

Upper bounds of CL order.

Recursion operators.

Next talk:

Conservation law computations for fluid dynamics models.
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CL Classification for Peakon Equations

Peakon b−family:

u = u(x , t),

R[u] = ut − utxx + (b + 1)uux − bux uxx − uuxxx = 0.

1st-order multipliers

Λ = Λ(x , t,U,Ux ,Ut).

29 determining equations.

Cases arising in CL classification:

1 General case: (CL dim) = 1.

2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.

3 Camassa-Holm equation: b = 2, (CL dim) = 2.

Maple example:

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 64 / 64



CL Classification for Peakon Equations

Peakon b−family:

u = u(x , t),

R[u] = ut − utxx + (b + 1)uux − bux uxx − uuxxx = 0.

1st-order multipliers

Λ = Λ(x , t,U,Ux ,Ut).

29 determining equations.

Cases arising in CL classification:

1 General case: (CL dim) = 1.

2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.

3 Camassa-Holm equation: b = 2, (CL dim) = 2.

Maple example:

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 64 / 64



CL Classification for Peakon Equations

Peakon b−family:

u = u(x , t),

R[u] = ut − utxx + (b + 1)uux − bux uxx − uuxxx = 0.

1st-order multipliers

Λ = Λ(x , t,U,Ux ,Ut).

29 determining equations.

Cases arising in CL classification:

1 General case: (CL dim) = 1.

2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.

3 Camassa-Holm equation: b = 2, (CL dim) = 2.

Maple example:

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 64 / 64



CL Classification for Peakon Equations

Peakon b−family:

u = u(x , t),

R[u] = ut − utxx + (b + 1)uux − bux uxx − uuxxx = 0.

1st-order multipliers

Λ = Λ(x , t,U,Ux ,Ut).

29 determining equations.

Cases arising in CL classification:

1 General case: (CL dim) = 1.

2 Degasperis-Procesi equation: b = 3, (CL dim) = 3.

3 Camassa-Holm equation: b = 2, (CL dim) = 2.

Maple example:

A. Cheviakov (UofS, Canada) Conservation Laws I June 2015 64 / 64


	Conservation Laws
	Direct CL Construction; Symbolic Computation in Maple
	Variational Systems of Differential Equations
	Local Symmetries and the Noether's Theorem
	Discussion
	Appendix: A CL Classification Problem

