Local Conservation Laws for Nonlinear Models:
 Theory, Systematic Construction, and Computation Examples

Prof. Alexei Cheviakov
(Alt. English spelling: Alexey Shevyakov)

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

June 2015

Outline

(1) Conservation Laws
(2) Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

Outline

(1) Conservation Laws

2 Direct CL Construction; Symbolic Computation in Maple

(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

Definitions

Variables:

- Independent: $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ or $\left(t, x^{1}, x^{2}, \ldots\right)$ or (t, x, y, \ldots).
- Dependent: $\mathbf{u}=\left(u^{1}(\mathrm{x}), u^{2}(\mathrm{x}), \ldots, u^{m}(\mathrm{x})\right)$ or $(u(\mathrm{x}), v(\mathrm{x}), \ldots)$.

Definitions

Partial derivatives:

- Notation:

$$
\frac{\partial u^{k}}{\partial x^{m}}=u_{x^{m}}^{k}=\partial_{x^{m}} u^{k}
$$

- E.g.,

$$
\frac{\partial}{\partial t} u(x, y, t)=u_{t}=\partial_{t} u
$$

Definitions

Partial derivatives:

- Notation:

$$
\frac{\partial u^{k}}{\partial x^{m}}=u_{x^{m}}^{k}=\partial_{x^{m}} u^{k}
$$

- E.g.,

$$
\frac{\partial}{\partial t} u(x, y, t)=u_{t}=\partial_{t} u
$$

All first-order partial derivatives of $\mathbf{u}: \partial \mathbf{u}$.

- E.g.,

$$
\mathbf{u}=\left(u^{1}(x, t), u^{2}(x, t)\right), \quad \partial \mathbf{u}=\left\{u_{x}^{1}, u_{t}^{1}, u_{x}^{2}, u_{t}^{2}\right\}
$$

Definitions

Higher-order partial derivatives

- Notation: for example,

$$
\frac{\partial^{2}}{\partial x^{2}} u(x, y, z)=u_{x x}=\partial_{x}^{2} u
$$

- All $p^{\text {th }}$-order partial derivatives: $\partial^{p} \mathbf{u}$.

Definitions

Differential functions:

- A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

$$
F[\mathbf{u}]=F\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{p} \mathbf{u}\right)
$$

Definitions

Differential functions:

- A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

$$
F[\mathbf{u}]=F\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{p} \mathbf{u}\right)
$$

Differential equations:

- A differential equation of order k :

$$
R[\mathbf{u}]=R\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0
$$

Definitions

Differential functions:

- A differential function is an expression that may involve independent and dependent variables, and derivatives of dependent variables to some order.

$$
F[\mathbf{u}]=F\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{p} \mathbf{u}\right)
$$

Differential equations:

- A differential equation of order k :

$$
R[\mathbf{u}]=R\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0
$$

Example:

- The 1D diffusion equation for $u(x, t)$ can be written as

$$
0=u_{t}-u_{x x}=H\left(u, u_{t}, u_{x x}\right)=H[u] .
$$

Definitions (ctd.)

The total derivative of a differential function:

- A basic chain rule.
- E.g., let $u=u(x, y), g[u]=g\left(x, y, u, u_{x}, u_{y}\right)$. Then

$$
\begin{aligned}
\mathrm{D}_{x} g[u] & \left.\equiv \frac{\partial}{\partial x} g\left(x, y, u, u_{x}, u_{y}\right)\right|_{u=u(x, y)} \\
& =\frac{\partial g}{\partial x}+\frac{\partial g}{\partial u} u_{x}+\frac{\partial g}{\partial u_{x}} u_{x x}+\frac{\partial g}{\partial u_{y}} u_{x y}
\end{aligned}
$$

Definitions (ctd.)

Multi-indices:

$$
\begin{gathered}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \alpha_{i} \in \mathbb{N} \cup\{0\}, \quad|\alpha|:=\alpha_{1}+\cdots+\alpha_{n} . \\
u_{\alpha}^{\sigma} \equiv \frac{\partial^{|\alpha|} u^{\sigma}}{\partial\left(x^{1}\right)^{\alpha_{1}} \ldots \partial\left(x^{n}\right)^{\alpha_{n}}} \\
\delta_{i} \equiv(0, \ldots, 0,1,0, \ldots, 0) \\
r \delta_{i} \equiv(0, \ldots, 0, r, 0, \ldots, 0), \quad r \in \mathbb{N} \\
\mathrm{D}_{i} \equiv \mathrm{D}_{x^{i}}=\partial_{x^{i}}+u_{\alpha+\delta_{i}}^{p} \partial_{u_{\alpha}^{p}} \\
\mathrm{D}^{\alpha} \equiv \mathrm{D}_{1}^{\alpha_{1}} \cdots \mathrm{D}_{n}^{\alpha_{n}}
\end{gathered}
$$

Local Conservation Laws

Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathrm{i}}[\mathbf{u}]=0 .
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0 .
$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

Local Conservation Laws

Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathrm{i}}[\mathbf{u}]=0 .
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0 .
$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

Example (PDE 1):

$$
\begin{gathered}
\mathbf{u}(x, y, z)=\left(u^{1}, u^{2}, u^{3}\right), \\
\operatorname{div} \mathbf{u}=\mathrm{D}_{x} u^{1}+\mathrm{D}_{y} u^{2}+\mathrm{D}_{z} u^{3}=u_{x}^{1}+u_{y}^{2}+u_{z}^{3}=0 .
\end{gathered}
$$

Local Conservation Laws

Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathrm{i}}[\mathbf{u}]=0 .
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0 .
$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.

Example (PDE 2):

$$
\begin{gathered}
u=u(x, t), \\
\mathrm{D}_{t}(u)-\mathrm{D}_{x}\left(u_{x}\right)=u_{t}-u_{x x}=0 .
\end{gathered}
$$

Local Conservation Laws

Conservation laws

- A local conservation law: a divergence expression equal to zero,

$$
\mathrm{D}_{i} \Psi^{i}[\mathbf{u}] \equiv \operatorname{div} \Psi^{\mathrm{i}}[\mathbf{u}]=0 .
$$

- For models involving time:

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0 .
$$

- $\Theta[\mathbf{u}]$: conserved density.
- $\Psi[\mathbf{u}]$: flux vector.
- A local conservation law \Leftrightarrow a global conservation principle.

Globally Conserved Quantities

- Given: a local CL for a time-dependent system,

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \mathbf{\Psi}[\mathbf{u}]=0
$$

- Integrate in the spatial domain:

$$
\int_{V} \mathrm{D}_{t} \Theta d V+\int_{V}\left(\operatorname{div}_{\mathbf{x}} \Psi\right) d V=\int_{V} \mathrm{D}_{t} \Theta d V+\oint_{\partial V} \Psi \cdot d \mathbf{S}=0
$$

Globally Conserved Quantities

- Given: a local CL for a time-dependent system,

$$
\mathrm{D}_{t} \Theta[\mathbf{u}]+\operatorname{div}_{\mathbf{x}} \Psi[\mathbf{u}]=0
$$

- Integrate in the spatial domain:

$$
\int_{V} \mathrm{D}_{t} \Theta d V+\int_{V}\left(\operatorname{div}_{\mathbf{x}} \Psi\right) d V=\int_{V} \mathrm{D}_{t} \Theta d V+\oint_{\partial V} \Psi \cdot d \mathbf{S}=0
$$

- When the total flux vanishes,

$$
\oint_{\partial V} \Psi[\mathbf{u}] \cdot d \mathbf{S}=0
$$

one has

$$
\frac{d}{d t} \int_{V} \Theta[\mathbf{u}] d V=0
$$

i.e., a global conserved quantity (an integral of motion):

$$
Q=\int_{V} \Theta d V=\text { const. }
$$

Local CL = Local Form of a Conservation Principle

- 1D advection equation:

$$
\begin{aligned}
\Delta M(t) & =\int_{x}^{x+\Delta x} \rho(s, t) A d s[\mathrm{~kg}], \quad Q(x, t)=A \rho(x, t) v(x, t)[\mathrm{kg} / \mathrm{s}] . \\
\frac{d}{d t} \Delta M(t) & =Q(x, t)-Q(x+\Delta x, t) \Rightarrow \frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x}(\rho(x, t) v(x, t))=0 .
\end{aligned}
$$

Local CL = Local Form of a Conservation Principle

- 1D advection equation:

$$
\begin{aligned}
\Delta M(t) & =\int_{x}^{x+\Delta x} \rho(s, t) A d s[\mathrm{~kg}], \quad Q(x, t)=A \rho(x, t) v(x, t)[\mathrm{kg} / \mathrm{s}] . \\
\frac{d}{d t} \Delta M(t) & =Q(x, t)-Q(x+\Delta x, t) \Rightarrow \frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x}(\rho(x, t) v(x, t))=0 .
\end{aligned}
$$

- Similarly, other conservation principles for local continuum models with conservative/zero forcing yield local conservation laws.

ODE Models: Conserved Quantities

An ODE:

Dependent variable: $u=u(t)$;
A conservation law

$$
\mathrm{D}_{t} F\left(t, u, u^{\prime}, \ldots\right)=\frac{d}{d t} F\left(t, u, u^{\prime}, \ldots\right)=0
$$

yields a conserved quantity (a constant of motion):

$$
F\left(t, u, u^{\prime}, \ldots\right)=C=\text { const. }
$$

ODE Models: Conserved Quantities

An ODE:

Dependent variable: $u=u(t)$;
A conservation law

$$
\mathrm{D}_{t} F\left(t, u, u^{\prime}, \ldots\right)=\frac{d}{d t} F\left(t, u, u^{\prime}, \ldots\right)=0
$$

yields a conserved quantity (a constant of motion):

$$
F\left(t, u, u^{\prime}, \ldots\right)=C=\text { const. }
$$

Example: Harmonic oscillator, spring-mass system

Independent variable: t, dependent: $x(t)$.
ODE: $\ddot{x}(t)+\omega^{2} x(t)=0 ; \quad \omega^{2}=k / m=$ const.
Conservation law: $\frac{d}{d t}\left(\frac{m \dot{x}^{2}(t)}{2}+\frac{k x^{2}(t)}{2}\right)=0$.
Conserved quantity: energy.

ODE Models: Conserved Quantities

Example: ODE integration

An ODE:

$$
K^{\prime \prime \prime}(x)=\frac{-2\left(K^{\prime \prime}(x)\right)^{2} K(x)-\left(K^{\prime}(x)\right)^{2} K^{\prime \prime}(x)}{K(x) K^{\prime}(x)} .
$$

ODE Models: Conserved Quantities

Example: ODE integration

An ODE:

$$
K^{\prime \prime \prime}(x)=\frac{-2\left(K^{\prime \prime}(x)\right)^{2} K(x)-\left(K^{\prime}(x)\right)^{2} K^{\prime \prime}(x)}{K(x) K^{\prime}(x)} .
$$

Three independent conserved quantities:

$$
\frac{K K^{\prime \prime}}{\left(K^{\prime}\right)^{2}}=C_{1}, \quad \frac{K K^{\prime \prime} \ln K}{\left(K^{\prime}\right)^{2}}-\ln K^{\prime}=C_{2}, \quad \frac{x K K^{\prime \prime}+K K^{\prime}}{\left(K^{\prime}\right)^{2}}-x=C_{3}
$$

yield complete ODE integration.

PDE Models

Example:

- Small oscillations of a string (transverse) or a rod (longitudinal) $\Leftrightarrow 1 D$ wave equation:

$$
u_{t t}=c^{2} u_{x x}
$$

- Independent variables: x, t; dependent: $u(x, t)$.

- $c^{2}=T / \rho ; T, \rho=$ const (for a string).

PDE Models

Example:

- Small oscillations of a string (transverse) or a rod (longitudinal) $\Leftrightarrow 1 \mathrm{D}$ wave equation:

$$
u_{t t}=c^{2} u_{x x}
$$

- Independent variables: x, t; dependent: $u(x, t)$.

PDE Models

Example:

- Small oscillations of a string (transverse) or a rod (longitudinal) $\Leftrightarrow 1 D$ wave equation:

$$
u_{t t}=c^{2} u_{x x}
$$

- Independent variables: x, t; dependent: $u(x, t)$.

Conservation of momentum:

- Local conservation law: $\mathrm{D}_{t}\left(\rho u_{t}\right)-\mathrm{D}_{x}\left(T u_{x}\right)=0$;
- Global conserved quantity: total momentum

$$
M=\int_{a}^{b} \rho u_{t} d x=\text { const }
$$

for Neumann homogeneous problems with $u_{x}(a, t)=u_{x}(b, t)=0$.

PDE Models

Example:

- Small oscillations of a string (transverse) or a rod (longitudinal) $\Leftrightarrow 1 D$ wave equation:

$$
u_{t t}=c^{2} u_{x x}
$$

- Independent variables: x, t; dependent: $u(x, t)$.

Conservation of energy:

- Local conservation law:

$$
\mathrm{D}_{t}\left(\frac{\rho u_{t}^{2}}{2}+\frac{T u_{x}^{2}}{2}\right)-\mathrm{D}_{x}\left(T u_{t} u_{x}\right)=0
$$

- Global conserved quantity: total energy

$$
E=\int_{a}^{b}\left(\frac{\rho u_{t}^{2}}{2}+\frac{T u_{x}^{2}}{2}\right) d x=\text { const }
$$

for both Neumann and Dirichlet homogeneous problems.

PDE Models

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: $t ; \quad x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathcal{D} \subset \mathbb{R}^{3}$.
Dependent: $\rho(x, t), v^{1}(x, t), v^{2}(x, t), v^{3}(x, t), p(x, t)$.
Equations:

$$
\begin{aligned}
& \mathrm{D}_{t} \rho+\mathrm{D}_{j}\left(\rho v^{j}\right)=0, \\
& \rho\left(\mathrm{D}_{t}+v^{j} \mathrm{D}_{j}\right) v^{i}+\mathrm{D}_{i} p=0, \quad i=1,2,3, \\
& \rho\left(\mathrm{D}_{t}+v^{j} \mathrm{D}_{j}\right) p+\gamma \rho p \mathrm{D}_{j} v^{j}=0 .
\end{aligned}
$$

PDE Models

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: $t ; \quad x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathcal{D} \subset \mathbb{R}^{3}$.
Dependent: $\rho(x, t), v^{1}(x, t), v^{2}(x, t), v^{3}(x, t), p(x, t)$.
Equations:

$$
\begin{aligned}
& \mathrm{D}_{t} \rho+\mathrm{D}_{j}\left(\rho v^{j}\right)=0 \\
& \rho\left(\mathrm{D}_{t}+v^{j} \mathrm{D}_{j}\right) v^{i}+\mathrm{D}_{i} p=0, \quad i=1,2,3, \\
& \rho\left(\mathrm{D}_{t}+v^{j} \mathrm{D}_{j}\right) p+\gamma \rho p \mathrm{D}_{j} v^{j}=0 .
\end{aligned}
$$

Conservation laws:

- Mass: $\mathrm{D}_{t} \rho+\mathrm{D}_{j}\left(\rho v^{j}\right)=0$,
- Momentum: $\mathrm{D}_{t}\left(\rho v^{i}\right)+\mathrm{D}_{j}\left(\rho v^{i} v^{j}+\rho \delta^{i j}\right)=0, \quad i=1,2,3$,
- Energy: $\mathrm{D}_{t}(E)+\mathrm{D}_{j}\left(v^{j}(E+p)\right)=0, \quad E=\frac{1}{2} \rho|\mathbf{v}|^{2}+\frac{p}{\gamma-1}$.
- Angular momentum + more.

Applications of Conservation Laws

Applications to ODEs

- Constants of motion.
- Reduction of order; integration.

Applications of Conservation Laws

Applications to PDEs

- Rates of change of physical variables; constants of motion.
- Differential constraints (divergence-free or irrotational fields, etc.).
- Analysis: existence, uniqueness, stability.
- An infinite number of conservation laws may indicate integrability / linearization.
- Finite element/finite volume numerical methods may require conserved forms.
- Weak form of DEs for finite element numerical methods.
- Special numerical methods, conservation law-preserving methods (symplectic integrators, etc.).
- Numerical method testing.

Applications of Conservation Laws

Applications to PDEs

- Potentials, stream functions, etc.
- Magnetic vector potential:

$$
\operatorname{div} \mathbf{B}=0 \Rightarrow \mathbf{B}=\operatorname{curl} \mathbf{A}
$$

- Irrotational fluid flow, velocity potential:

$$
\operatorname{curl} \mathbf{v}=0 \Rightarrow \mathbf{v}=\operatorname{grad} \Psi
$$

- Fluid flow, stream function in 2D:

$$
\mathbf{v}=(u, v), \quad \operatorname{div} \mathbf{V}=u_{x}+v_{y}=0, \quad\left\{\begin{array}{l}
u=\Phi_{y} \\
v=-\Phi_{x}
\end{array}\right.
$$

Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that "does not carry a physical meaning".

Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 1:

- Density and all fluxes vanish on all solutions of the given PDE system.
- Example: consider a wave equation on $u(x, t): u_{t t}=u_{x x}$. The conservation law

$$
\mathrm{D}_{t}\left(u\left(u_{t t}-u_{x x}\right)\right)+\mathrm{D}_{x}\left(2 x\left(u_{x t t}-u_{x x x}\right)\right)=0
$$

is a trivial conservation law of the first type.

Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 2:

- The conservation law vanishes as a differential identity.
- Example: for the wave equation on $u(x, t): u_{t t}=u_{x x}$,

$$
\mathrm{D}_{t}\left(u_{x x}\right)-\mathrm{D}_{x}\left(u_{x t}\right) \equiv 0
$$

is a trivial conservation law of the second type.

Trivial Conservation Laws

Definition

A trivial local conservation law: a zero divergence expression that "does not carry a physical meaning".

A trivial CL, Type 2:

- The conservation law vanishes as a differential identity.
- Another example:

$$
\operatorname{div}(\operatorname{curl} \boldsymbol{\Phi}[\mathbf{u}]) \equiv 0
$$

Conservation Law Equivalence

Definition

Two conservation laws $\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0$ and $\mathrm{D}_{i} \Psi^{i}[\mathbf{u}]=0$ are equivalent if
$\mathrm{D}_{i}\left(\Phi^{i}[\mathbf{u}]-\Psi^{i}[\mathbf{u}]\right)=0$ is a trivial conservation law. An equivalence class of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Conservation Law Equivalence

Definition

Two conservation laws $\mathrm{D}_{i} \phi^{i}[\mathbf{u}]=0$ and $\mathrm{D}_{i} \Psi^{i}[\mathbf{u}]=0$ are equivalent if
$\mathrm{D}_{i}\left(\Phi^{i}[\mathbf{u}]-\Psi^{i}[\mathbf{u}]\right)=0$ is a trivial conservation law. An equivalence class of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Definition

A set of ℓ conservation laws $\left\{\mathrm{D}_{i} \Phi_{(j)}^{i}[\mathbf{u}]=0\right\}_{j=1}^{\ell}$ is linearly dependent if there exists a set of constants $\left\{a^{(j)}\right\}_{j=1}^{\ell}$, not all zero, such that the linear combination

$$
\mathrm{D}_{i}\left(a^{(j)} \Phi_{(j)}^{i}[\mathbf{u}]\right)=0
$$

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws in the set can be expressed as a linear combination of the others.

Conservation Law Equivalence

Definition

Two conservation laws $\mathrm{D}_{i} \phi^{i}[\mathbf{u}]=0$ and $\mathrm{D}_{i} \Psi^{i}[\mathbf{u}]=0$ are equivalent if
$\mathrm{D}_{i}\left(\Phi^{i}[\mathbf{u}]-\Psi^{i}[\mathbf{u}]\right)=0$ is a trivial conservation law. An equivalence class of conservation laws consists of all conservation laws equivalent to some given nontrivial conservation law.

Definition

A set of ℓ conservation laws $\left\{\mathrm{D}_{i} \Phi_{(j)}^{i}[\mathbf{u}]=0\right\}_{j=1}^{\ell}$ is linearly dependent if there exists a set of constants $\left\{a^{(j)}\right\}_{j=1}^{\ell}$, not all zero, such that the linear combination

$$
\mathrm{D}_{i}\left(a^{(j)} \Phi_{(j)}^{i}[\mathbf{u}]\right)=0
$$

is a trivial conservation law. In this case, up to equivalence, one of the conservation laws in the set can be expressed as a linear combination of the others.

- In practice, one is interested in finding linearly independent sets of (nontrivial) conservation laws of a given PDE system.

Outline

(1) Conservation Laws
(2) Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

Hadamard Lemma for Differential Functions

Given:

- A totally nondegenerate PDE system $R^{\sigma}[\mathbf{u}]=0, \sigma=1, \ldots, N$ [cf. Olver (1993)].
- A nontrivial local CL: $\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0$.
- Denote $G[\mathbf{U}]=\mathrm{D}_{i} \Phi^{i}[\mathbf{U}]$.

Hadamard Lemma for Differential Functions

Hadamard lemma for differential functions:

A differential function $G[\mathbf{U}]$ vanishes on solutions of a PDE system $\mathbf{R}[\mathbf{u}]=0$ if and only if it has the form

$$
G[\mathbf{U}]=P_{\sigma}^{\alpha}[\mathbf{U}] \mathrm{D}_{\alpha} R^{\sigma}[\mathbf{U}] .
$$

Characteristic form of a CL:

Using the product rule, one has

$$
G[\mathbf{U}]=\mathrm{D}_{i} \Phi^{i}[\mathbf{U}]=\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]+\operatorname{div} \mathbf{H}[\mathbf{U}]
$$

where $\mathbf{H}[\mathbf{U}]$ is linear in R^{σ}; div $\mathbf{H}[\mathbf{u}]=0$ is a trivial $C L$.
Hence every $C L D_{i} \Phi^{i}[\mathbf{u}]=0$ has an equivalent characteristic form

$$
\mathrm{D}_{i} \tilde{\Phi}^{i}[\mathbf{u}]=\Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}]=0, \quad \tilde{\Phi}^{i}=\Phi^{i}-H^{i}
$$

- CL multipliers (characteristics): $\left\{\Lambda_{\sigma}[\mathbf{u}]\right\}_{\sigma=1}^{N}$.

The Idea of the Direct Construction Method

Result:

For most physical DE models, every local CL has an equivalent characteristic form

$$
\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=\Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}]=0
$$

for some set of multipliers $\left\{\Lambda_{\sigma}[\mathbf{u}]\right\}$.

The Idea of the Direct Construction Method

Definition

The Euler operator with respect to U^{j} :

$$
\begin{gathered}
\mathrm{E}_{U^{j}}=(-D)^{\beta} \frac{\partial}{\partial U_{\beta}^{j}}=\frac{\partial}{\partial U^{j}}-\mathrm{D}_{i} \frac{\partial}{\partial U_{i}^{j}}+\cdots+(-1)^{s} \mathrm{D}_{i_{1}} \ldots \mathrm{D}_{i_{s}} \frac{\partial}{\partial U_{i_{1} \ldots i_{s}}^{j}}+\cdots, \\
j=1, \ldots, m .
\end{gathered}
$$

The Idea of the Direct Construction Method

Definition

The Euler operator with respect to U^{j} :

$$
\begin{gathered}
\mathrm{E}_{u j}=(-D)^{\beta} \frac{\partial}{\partial U_{\beta}^{j}}=\frac{\partial}{\partial U^{j}}-\mathrm{D}_{i} \frac{\partial}{\partial U_{i}^{j}}+\cdots+(-1)^{s} \mathrm{D}_{i_{1}} \ldots \mathrm{D}_{i_{s}} \frac{\partial}{\partial U_{i_{1} \ldots i_{s}}^{j}}+\cdots, \\
j=1, \ldots, m .
\end{gathered}
$$

Theorem

Let $\mathbf{U}(\mathbf{x})=\left(U^{1}, \ldots, U^{m}\right)$. The equations

$$
\mathrm{E}_{U^{j}} F[\mathbf{U}] \equiv 0, \quad j=1, \ldots, m
$$

hold for arbitrary $\mathbf{U}(\mathbf{x})$ if and only if

$$
F[\mathbf{U}] \equiv \mathrm{D}_{i} \Psi^{i}[\mathbf{U}]
$$

for some functions $\left\{\Psi^{i}[\mathbf{U}]\right\}$.

The Idea of the Direct Construction Method

Idea:

- Seek conservation laws in the characteristic form $\mathrm{D}_{i} \Phi^{i}=\Lambda_{\sigma} R^{\sigma}=0$.
- Multiplier determining equations:

$$
\mathrm{E}_{U j}\left(\Lambda_{\sigma} R^{\sigma}\right) \equiv 0, \quad j=1, \ldots, m
$$

The DCM Sequence

Consider a general system $\mathbf{R}[\mathbf{u}]=0$ of N PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}]=\Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, \ldots), \quad \sigma=1, \ldots, N$.

The DCM Sequence

Consider a general system $\mathbf{R}[\mathbf{u}]=0$ of N PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}]=\Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, \ldots), \quad \sigma=1, \ldots, N$.
- Solve the set of determining equations

$$
\mathrm{E}_{U^{j}}\left(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]\right) \equiv 0, \quad j=1, \ldots, m
$$

for arbitrary $\mathbf{U}(\mathbf{x})$ (off of the solution set!) to find all such sets of multipliers.

The DCM Sequence

Consider a general system $\mathbf{R}[\mathbf{u}]=0$ of N PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}]=\Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, \ldots), \quad \sigma=1, \ldots, N$.
- Solve the set of determining equations

$$
\mathrm{E}_{U^{j}}\left(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]\right) \equiv 0, \quad j=1, \ldots, m
$$

for arbitrary $\mathbf{U}(\mathbf{x})$ (off of the solution set!) to find all such sets of multipliers.

- Find the corresponding fluxes $\Phi^{i}[\mathbf{U}]$ satisfying the identity

$$
\Lambda_{\sigma} R^{\sigma} \equiv \mathrm{D}_{i} \Phi^{i}
$$

The DCM Sequence

Consider a general system $\mathbf{R}[\mathbf{u}]=0$ of N PDEs.

Direct Construction Method

- Specify dependence of multipliers: $\Lambda_{\sigma}[\mathbf{U}]=\Lambda_{\sigma}(\mathbf{x}, \mathbf{U}, \ldots), \quad \sigma=1, \ldots, N$.
- Solve the set of determining equations

$$
\mathrm{E}_{U^{j}}\left(\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]\right) \equiv 0, \quad j=1, \ldots, m
$$

for arbitrary $\mathbf{U}(\mathbf{x})$ (off of the solution set!) to find all such sets of multipliers.

- Find the corresponding fluxes $\Phi^{i}[\mathbf{U}]$ satisfying the identity

$$
\Lambda_{\sigma} R^{\sigma} \equiv \mathrm{D}_{i} \Phi^{i}
$$

- Each set of fluxes, multipliers yields a local conservation law

$$
\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0
$$

holding on solutions $\mathbf{u}(\mathbf{x})$ of the given PDE system.

The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

$$
R[u]=u_{t}+u u_{x}+u_{x x x}=0
$$

Oth-order multipliers

- Determining equations:

$$
\mathrm{E} U\left(\Lambda(x, t, U)\left(U_{t}+U U_{x}+U_{x x x}\right)\right) \equiv 0
$$

- Solution:

$$
\Lambda_{1}=1, \quad \Lambda_{2}=U, \quad \Lambda_{3}=t U-x
$$

- Conservation laws:

$$
\begin{gathered}
\mathrm{D}_{t}(u)+\mathrm{D}_{x}\left(\frac{1}{2} u^{2}+u_{x x}\right)=0 \\
\mathrm{D}_{t}\left(\frac{1}{2} u^{2}\right)+\mathrm{D}_{x}\left(\frac{1}{3} u^{3}+u u_{x x}-\frac{1}{2} u_{x}^{2}\right)=0 \\
\mathrm{D}_{t}\left(\frac{1}{6} u^{3}-\frac{1}{2} u_{x}^{2}\right)+\mathrm{D}_{x}\left(\frac{1}{8} u^{4}-u u_{x}^{2}+\frac{1}{2}\left(u^{2} u_{x x}+u_{x x}^{2}\right)-u_{x} u_{x x x}\right)=0 .
\end{gathered}
$$

The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

$$
R[u]=u_{t}+u u_{x}+u_{x x x}=0
$$

1st-order multipliers in x

- Form: $\Lambda=\Lambda\left(x, t, U, U_{x}\right)$
- Solution: no extra conservation laws.

The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

$$
R[u]=u_{t}+u u_{x}+u_{x x x}=0
$$

2nd-order multipliers in x

- Form: $\Lambda=\Lambda\left(x, t, U, U_{x}, U_{x x}\right)$
- Solution: one extra conservation law with

$$
\Lambda_{4}=U_{x x}+\frac{1}{2} U^{2}
$$

The Idea of the Direct Construction Method

Example

The Korteweg-de Vries (KdV) equation

$$
R[u]=u_{t}+u u_{x}+u_{x x x}=0
$$

2nd-order multipliers in x

- Form: $\Lambda=\Lambda\left(x, t, U, U_{x}, U_{x x}\right)$
- Solution: one extra conservation law with

$$
\Lambda_{4}=U_{x x}+\frac{1}{2} U^{2}
$$

- For PDE with additional structure, infinite sets of CLs may exist, including CLs of arbitrary order.
- E.g., integrable systems, recursion operators, ...

Flux Computation Methods

Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

$$
\Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}] \equiv \mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0
$$

- How does one compute $\left\{\Phi^{i}[\mathbf{u}]\right\}$?

Flux Computation Methods

Flux Computation Problem

Suppose for a given PDE system, a set of CL multipliers has been found, and one has

$$
\Lambda_{\sigma}[\mathbf{u}] R^{\sigma}[\mathbf{u}] \equiv \mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0
$$

- How does one compute $\left\{\Phi^{i}[\mathbf{u}]\right\}$?

Some methods [cf. Wolf (2002), Cheviakov (2010)]:

- Direct
- Homotopy 1 [Bluman \& Anco (2002)]
- Homotopy 2 [Hereman et al (2005)]
- Scaling (when a specific scaling symmetry is present) [Anco (2003)]

Flux Computation Methods [see Cheviakov (2010)]

Table: Comparison of Four Methods of Flux Computation

Method	Applicability	Computational complexity
Direct	Simpler multipliers/PDE systems, which may involve arbitrary functions.	Solution of an overde- termined linear PDE system for fluxes.
Homotopy 1	Complicated multipliers/PDEs, not involving arbitrary functions.	One-dimensional inte- gration.
Homotopy 2	Complicated multipliers/PDEs, not involving arbitrary functions. The divergence expression must vanish for U=0. For some conservation laws, this method can yield divergent integrals.	One-dimensional inte- gration.
Scaling sym- metry	Complicated multipliers/PDEs, may involve arbitrary functions. Scaling-homogeneous PDEs and multipliers. Noncritical conservation laws.	Repeated differentia- tion.

Symbolic Software for Computation of Conservation Laws

Some refs:

- Review: Hereman, Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions, Preprint, 2006.
- Mathematica: Temuerchaolu, An algorithmic theory of reduction of differential polynomial systems. Adv. Math. 32, 208-220 (in Chinese), 2003.
- Maple/RIF: Reid, Wittkopf, Boulton, Reduction of systems of nonlinear partial differential equations to simplified involutive forms, Eur. J. Appl. Math. 7, 604-635, 1996.
- REDUCE: T. Wolf, Crack, LiePDE, ApplySym and ConLaw, 2002.
- Maple: A.C., symmetry/conservation law analysis module (GeM), 2004-now.

Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

- Use the module: read("d:/gem32_12.mpl"):
- Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);
- Declare the equation:

$$
\begin{aligned}
& \text { gem_decl_eqs }([\operatorname{diff}(U(x, t), t)=U(x, t) * \operatorname{diff}(U(x, t), x) \\
& \quad+\operatorname{diff}(U(x, t), x, x, x)], \\
& \quad \text { solve_for }=[\operatorname{diff}(U(x, t), t)]) ;
\end{aligned}
$$

- Generate determining equations:

$$
\begin{gathered}
\text { det_eqs: }=\text { gem_conslaw_det_eqs }([x, t, U(x, t), \\
\operatorname{diff}(U(x, t), x), \operatorname{diff}(U(x, t), x, x)]):
\end{gathered}
$$

- Reduce the overdetermined system:

```
CL_multipliers:=gem_conslaw_multipliers();
simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);
```


Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

- Solve determining equations:
multipliers_sol:=pdsolve(simplified_eqs[Solved]);
- Obtain corresponding conservation law fluxes/densities:
gem_get_CL_fluxes(multipliers_sol, method=*****) ;

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0 \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0 \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.

Determining equations:

$$
\begin{aligned}
& \mathrm{E}_{U}\left[\xi(x, t, U, V)\left(V_{t}-\left(U^{2}+1\right) U_{x}-U\right)+\phi(x, t, U, V)\left(U_{t}-V_{x}\right)\right] \equiv 0, \\
& \mathrm{E}_{V}\left[\xi(x, t, U, V)\left(V_{t}-\left(U^{2}+1\right) U_{x}-U\right)+\phi(x, t, U, V)\left(U_{t}-V_{x}\right)\right] \equiv 0
\end{aligned}
$$

Euler operators:

$$
\begin{aligned}
& \mathrm{E}_{U}=\frac{\partial}{\partial U}-\mathrm{D}_{x} \frac{\partial}{\partial U_{x}}-\mathrm{D}_{t} \frac{\partial}{\partial U_{t}} \\
& \mathrm{E}_{V}=\frac{\partial}{\partial V}-\mathrm{D}_{x} \frac{\partial}{\partial V_{x}}-\mathrm{D}_{t} \frac{\partial}{\partial V_{t}}
\end{aligned}
$$

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0 \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.

Determining equations:

$$
\begin{aligned}
& \mathrm{E}_{U}\left[\xi(x, t, U, V)\left(V_{t}-\left(U^{2}+1\right) U_{x}-U\right)+\phi(x, t, U, V)\left(U_{t}-V_{x}\right)\right] \equiv 0 \\
& \mathrm{E}_{V}\left[\xi(x, t, U, V)\left(V_{t}-\left(U^{2}+1\right) U_{x}-U\right)+\phi(x, t, U, V)\left(U_{t}-V_{x}\right)\right] \equiv 0
\end{aligned}
$$

Split determining equations:

$$
\begin{aligned}
\phi v-\xi_{u} & =0, \quad \phi u-\left(U^{2}+1\right) \xi v=0 \\
\phi_{x}-\xi_{t}-U \xi v & =0, \quad\left(U^{2}+1\right) \xi_{x}-\phi_{t}-U \xi u-\xi=0
\end{aligned}
$$

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0, \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.
Solution: five sets of multipliers $(\xi, \phi)=$

$$
\begin{array}{cc}
0 & 1 \\
t & x-\frac{1}{2} t^{2} \\
1 & -t \\
e^{x+\frac{1}{2} U^{2}+V} & U e^{x+\frac{1}{2} U^{2}+V} \\
e^{x+\frac{1}{2} U^{2}-V} & -U e^{x+\frac{1}{2} U^{2}-V}
\end{array}
$$

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0 \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.

Resulting five conservation laws:

$$
\begin{gathered}
\mathrm{D}_{t} u-\mathrm{D}_{x} v=0, \\
\mathrm{D}_{t}\left[\left(x-\frac{1}{2} t^{2}\right) u+t v\right]+\mathrm{D}_{x}\left[\left(\frac{1}{2} t^{2}-x\right) v-t\left(\frac{1}{3} u^{3}+u\right)\right]=0, \\
\mathrm{D}_{t}[v-t u]+\mathrm{D}_{\times}\left[t v-\left(\frac{1}{3} u^{3}+u\right)\right]=0, \\
\mathrm{D}_{t}\left[e^{x+\frac{1}{2} u^{2}+v}\right]+\mathrm{D}_{x}\left[-u e^{x+\frac{1}{2} u^{2}+v}\right]=0, \\
\mathrm{D}_{t}\left[e^{x+\frac{1}{2} u^{2}-v}\right]+\mathrm{D}_{x}\left[u e^{x+\frac{1}{2} u^{2}-v}\right]=0 .
\end{gathered}
$$

- To obtain further conservation laws, extend the multiplier ansatz...

Another Detailed Example

Consider a nonlinear telegraph system for $u^{1}=u(x, t), u^{2}=v(x, t)$:

$$
\begin{aligned}
& R^{1}[u, v]=v_{t}-\left(u^{2}+1\right) u_{x}-u=0 \\
& R^{2}[u, v]=u_{t}-v_{x}=0
\end{aligned}
$$

Multiplier ansatz: $\quad \Lambda_{1}=\xi(x, t, U, V), \quad \Lambda_{2}=\phi(x, t, U, V)$.

- Maple example:

Singular Multipliers

Definition

A CL multiplier $\Lambda_{\sigma}[\mathrm{U}]$ is singular if it is a singular function when evaluated on solutions of the given PDE system.

- In practice, one is only interested in non-singular sets of multipliers.
- Singular multipliers lead to arbitrary divergence expressions that are not conservation laws of the given system.

Singular Multipliers

- For example, for the $\mathrm{KdV}, R[u]=u_{t}+u u_{x}+u_{x x x}=0$, a multiplier

$$
\Lambda_{\sigma}[U]=\frac{\mathrm{D}_{i} \Phi^{i}[U]}{U_{t}+U U_{x}+U_{x x x}}
$$

is a singular multiplier... yielding a "false" divergence expression

$$
\frac{\mathrm{D}_{i} \Phi^{i}[U]}{U_{t}+U U_{x}+U_{x x x}}\left(U_{t}+U U_{x}+U_{x x x}\right)=\mathrm{D}_{i} \Phi^{i}[U]
$$

for arbitrary functions $\Phi^{1}[U], \ldots, \Phi^{n}[U]$.

- To avoid getting an infinite set of singular multipliers: need to exclude some leading derivative (e.g., U_{t}) and its differential consequences.

Completeness of the Direct CL Construction Method

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}]=0$ is in extended Kovalevskaya form with respect to an independent variable x^{j}, if the system is solved for the highest derivative of each dependent variable with respect to x^{j}, i.e.,

$$
\frac{\partial^{s_{\sigma}}}{\partial\left(x^{j}\right)^{s_{\sigma}}} u^{\sigma}=Q^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right), \quad 1 \leq s_{\sigma} \leq k, \quad \sigma=1, \ldots, m
$$

where all derivatives with respect to x^{j} appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

Completeness of the Direct CL Construction Method

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}]=0$ is in extended Kovalevskaya form with respect to an independent variable x^{j}, if the system is solved for the highest derivative of each dependent variable with respect to x^{j}, i.e.,

$$
\frac{\partial^{s_{\sigma}}}{\partial\left(x^{j}\right)^{s_{\sigma}}} u^{\sigma}=Q^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right), \quad 1 \leq s_{\sigma} \leq k, \quad \sigma=1, \ldots, m
$$

where all derivatives with respect to x^{j} appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

Theorem [M. Alonso (1979)]

Let $\mathbf{R}[\mathbf{u}]=0$ be a PDE system in the extended Kovalevskaya form. Then every its local conservation law has an equivalent conservation law in the characteristic form,

$$
\Lambda_{\sigma} R^{\sigma} \equiv \mathrm{D}_{i} \phi^{i}=0
$$

such that $\left\{\Lambda_{\sigma}\right\}$ do not involve the leading derivatives or their differential consequences.

Completeness of the Direct CL Construction Method

Extended Kovalevskaya form

A PDE system $\mathbf{R}[\mathbf{u}]=0$ is in extended Kovalevskaya form with respect to an independent variable x^{j}, if the system is solved for the highest derivative of each dependent variable with respect to x^{j}, i.e.,

$$
\frac{\partial^{s_{\sigma}}}{\partial\left(x^{j}\right)^{s_{\sigma}}} u^{\sigma}=Q^{\sigma}\left(x, u, \partial u, \ldots, \partial^{k} u\right), \quad 1 \leq s_{\sigma} \leq k, \quad \sigma=1, \ldots, m
$$

where all derivatives with respect to x^{j} appearing in the right-hand side of each PDE above are of lower order than those appearing on the left-hand side.

Example

The KdV equation

$$
R[u]=u_{t}+u u_{x}+u_{x x x}=0
$$

has the extended Kovalevskaya form with respect to $t\left(u_{t}=\ldots\right)$ or $x\left(u_{x x x}=\ldots\right)$.

Completeness of the Direct CL Construction Method

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.

Completeness of the Direct CL Construction Method

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.

Completeness of the Direct CL Construction Method

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.
- In practice, even if the extended Kovalevskaya form exists for a given system, it may be too complex to work with.

Completeness of the Direct CL Construction Method

- For systems in the extended Kovalevskaya form, DCM for non-singular multipliers is complete.
- For systems in a solved form but not in the extended Kovalevskaya form, multipliers may involve leading derivatives/their differential consequences.
- In practice, even if the extended Kovalevskaya form exists for a given system, it may be too complex to work with.
- One may use the Direct method on non-Kovalevskaya systems to get partial CL classifications.

Conservation Laws and Coordinate Transformations

Consider a PDE system

$$
R^{\sigma}[\mathbf{u}]=0, \quad \sigma=1, \ldots, N
$$

with n independent variables $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ and m dependent variables $\mathbf{u}=\left(u^{1}, \ldots, u^{m}\right)$.

Conservation Laws and Coordinate Transformations

Consider a PDE system

$$
R^{\sigma}[\mathbf{u}]=0, \quad \sigma=1, \ldots, N
$$

with n independent variables $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ and m dependent variables $\mathbf{u}=\left(u^{1}, \ldots, u^{m}\right)$.

Consider an invertible point transformation

$$
\begin{aligned}
x^{i} & =x^{i}(\mathbf{z}, \mathbf{w}), \quad i=1, \ldots, n \\
u^{\mu} & =u^{\mu}(\mathbf{z}, \mathbf{w}), \quad \mu=1, \ldots, m
\end{aligned}
$$

where $\mathbf{z}=\left(z^{1}, \ldots, z^{m}\right), \mathbf{w}(\mathbf{z})=\left(w^{1}, \ldots, w^{m}\right)$.
Obtain an equivalent PDE system

$$
S^{\sigma}[\mathbf{w}]=0, \quad \sigma=1, \ldots, N
$$

Conservation Laws and Coordinate Transformations

Theorem

To any local CL (equivalence class)

$$
D_{x^{\prime}} \Phi^{i}[\mathbf{u}]=0
$$

of a PDE system $\mathbf{R}[\mathbf{u}]=0$ there corresponds a CL (equivalence class)

$$
\tilde{\mathrm{D}}_{z^{j}} \psi^{j}[\mathbf{w}]=0
$$

holding for the PDE system $\mathbf{S}[\mathbf{w}]=0$.
In particular,

$$
\mathrm{J}[\mathbf{w}] \mathrm{D}_{i} \phi^{i}[\mathbf{u}]=\tilde{\mathrm{D}}_{z^{j}} \psi^{j}[\mathbf{w}], \quad \mathrm{J}[\mathbf{w}]=\frac{\mathrm{D}\left(x^{1}, \ldots, x^{n}\right)}{\mathrm{D}\left(z^{1}, \ldots, z^{n}\right)} .
$$

Conservation Laws and Coordinate Transformations

Theorem

To any local CL (equivalence class)

$$
D_{x^{\prime}} \Phi^{i}[\mathbf{u}]=0
$$

of a PDE system $\mathbf{R}[\mathbf{u}]=0$ there corresponds a CL (equivalence class)

$$
\tilde{\mathrm{D}}_{z j} \psi^{j}[\mathrm{w}]=0
$$

holding for the PDE system $\mathbf{S}[\mathbf{w}]=0$.
In particular,

$$
\mathrm{J}[\mathbf{w}] \mathrm{D}_{i} \phi^{i}[\mathbf{u}]=\tilde{\mathrm{D}}_{z^{j}} \psi^{j}[\mathbf{w}], \quad \mathrm{J}[\mathbf{w}]=\frac{\mathrm{D}\left(x^{1}, \ldots, x^{n}\right)}{\mathrm{D}\left(z^{1}, \ldots, z^{n}\right)} .
$$

- Local conservation laws are coordinate-independent.

Outline

(1) Conservation Laws
(2) Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
6) Appendix: A CL Classification Problem

Symmetries and Conservation Laws

- Local symmetries and local conservation laws of DE systems are closely related.
- A specific well-known relationship: Noether's theorem for variational DE systems.

Variational Principles

Action integral

$$
J[\mathbf{U}]=\int_{\Omega} \mathcal{L}\left(\mathbf{x}, \mathbf{U}, \partial \mathbf{U}, \ldots, \partial^{k} \mathbf{U}\right) d x
$$

Principle of extremal action

Variation of $\mathbf{U}: \mathbf{U}(\mathbf{x}) \rightarrow \mathbf{U}(\mathbf{x})+\delta \mathbf{U}(\mathrm{x}) ; \quad \delta \mathbf{U}(\mathbf{x})=\varepsilon \mathbf{v}(\mathrm{x}) ;\left.\quad \delta \mathbf{U}(\mathrm{x})\right|_{\partial \Omega}=0$.
Variation of action: $\delta J \equiv J[\mathbf{U}+\varepsilon \mathbf{v}]-J[\mathbf{U}]=\int_{\Omega}(\delta \mathcal{L}) d x=o(\varepsilon)$.

Variational Principles

Variation of the Lagrangian

$$
\begin{aligned}
\delta \mathcal{L} & =\mathcal{L}\left(\mathbf{x}, \mathbf{U}+\varepsilon \mathbf{v}, \partial \mathbf{U}+\varepsilon \partial \mathbf{v}, \ldots, \partial^{k} \mathbf{U}+\varepsilon \partial^{k} \mathbf{v}\right)-\mathcal{L}\left(\mathbf{x}, \mathbf{U}, \partial \mathbf{U}, \ldots, \partial^{k} \mathbf{U}\right) \\
& =\varepsilon\left(\frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U^{\sigma}} v^{\sigma}+\frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U_{j}^{\sigma}} v_{j}^{\sigma}+\cdots+\frac{\partial \mathcal{L}[\mathbf{U}]}{\partial U_{j_{1} \ldots j_{k}}^{\sigma}} v_{j_{1} \ldots j_{k}}^{\sigma}\right)+O\left(\varepsilon^{2}\right) \\
& { }^{\text {by parts }}= \\
= & \varepsilon\left(v^{\sigma} E_{U^{\sigma}}(\mathcal{L}[\mathbf{U}])\right)+\operatorname{div}(\ldots)+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Euler-Lagrange equations, Euler operators:

$$
\begin{aligned}
\mathrm{E}_{U^{\sigma}}(\mathcal{L}[\mathrm{U}]) & =\frac{\partial \mathcal{L}[\mathrm{U}]}{\partial U^{\sigma}}+\cdots+(-1)^{k} \mathrm{D}_{\mathrm{j}_{1}} \cdots \mathrm{D}_{\mathrm{j}_{k}} \frac{\partial \mathcal{L}[\mathrm{U}]}{\partial U_{j_{1} \cdots j_{k}}^{\sigma}}=0, \\
\sigma & =1, \ldots, m .
\end{aligned}
$$

Variational DE systems

Definition

A DE system $\mathbf{R}[\mathbf{u}]=0$ is variational if its equations are Euler-Lagrange equations for some variational principle:

$$
R^{\sigma}[\mathbf{U}]=\mathrm{E}_{U^{\sigma}}(\mathcal{L}[\mathbf{U}]), \quad \sigma=1, \ldots, m .
$$

Variational Principles

- Example 1: Harmonic oscillator, $U=x=x(t)$

Variational Principles

- Example 1: Harmonic oscillator, $U=x=x(t)$

$$
\mathcal{L}=K-P=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}
$$

Variational Principles

- Example 1: Harmonic oscillator, $U=x=x(t)$

$$
\begin{gathered}
\mathcal{L}=K-P=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} \\
\mathrm{E}_{x}=\frac{d}{d x}-\mathrm{D}_{t} \frac{d}{d \dot{x}}
\end{gathered}
$$

Variational Principles

- Example 1: Harmonic oscillator, $U=x=x(t)$

$$
\begin{gathered}
\mathcal{L}=K-P=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} \\
\mathrm{E}_{x}=\frac{d}{d x}-\mathrm{D}_{t} \frac{d}{d \dot{x}} \\
\mathrm{E}_{x} \mathcal{L}=-m\left(\ddot{x}+\omega^{2} x\right)=0, \quad \omega^{2}=k / m
\end{gathered}
$$

Variational Principles

- Example 2: Wave equation for $U=u(x, t)$

Variational Principles

- Example 2: Wave equation for $U=u(x, t)$

$$
\mathcal{L}=K-P=\frac{1}{2} \rho u_{t}^{2}-\frac{1}{2} T u_{x}{ }^{2}
$$

Variational Principles

- Example 2: Wave equation for $U=u(x, t)$

$$
\begin{aligned}
& \mathcal{L}=K-P=\frac{1}{2} \rho u_{t}^{2}-\frac{1}{2} T u_{x}^{2} \\
& \mathrm{E}_{u}=\frac{d}{d u}-\mathrm{D}_{t} \frac{d}{d u_{t}}-\mathrm{D}_{x} \frac{d}{d u_{x}}
\end{aligned}
$$

Variational Principles

- Example 2: Wave equation for $U=u(x, t)$

$$
\begin{gathered}
\mathcal{L}=K-P=\frac{1}{2} \rho u_{t}^{2}-\frac{1}{2} T u_{x}^{2} \\
\mathrm{E}_{u}=\frac{d}{d u}-\mathrm{D}_{t} \frac{d}{d u_{t}}-\mathrm{D}_{x} \frac{d}{d u_{x}} \\
\mathrm{E}_{u} \mathcal{L}=-\rho\left(u_{t t}-c^{2} u_{x x}\right)=0, \quad c^{2}=T / \rho
\end{gathered}
$$

Variational DE systems

(1) A DE system $\mathbf{R}^{\sigma}[\mathbf{U}]$ is variational if and only if its linearization is self-adjoint.

- Linearization:

$$
L^{\sigma}[\mathbf{u}] \mathbf{v}(\mathbf{x})=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} R^{\sigma}[\mathbf{u}+\epsilon \mathbf{v}]=\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{p}} D^{\alpha} v^{p}=0
$$

- Adjoint linearization:

$$
L_{\mu}^{*}[\mathbf{u}] \mathbf{w}(\mathbf{x})=(-D)^{\alpha}\left(\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{\mu}} w_{\sigma}\right)=0
$$

- Relationship:

$$
\mathbf{W} \cdot(\mathbf{L}[\mathbf{U}] \mathbf{V})-\left(\mathbf{L}^{*}[\mathbf{U}] \mathbf{W}\right) \cdot \mathbf{v} \stackrel{\text { by parts }}{=} \operatorname{div} P
$$

in components,

$$
W_{\sigma} L^{\sigma}[\mathbf{U}] \mathbf{V}-V^{\mu} L_{\mu}^{*}[\mathbf{U}] \mathbf{W} \equiv \mathrm{D}_{i} P^{i}
$$

Variational DE systems

(1) A DE system $\mathbf{R}^{\sigma}[\mathbf{U}]$ is variational if and only if its linearization is self-adjoint.

- Linearization:

$$
L^{\sigma}[\mathbf{u}] \mathbf{v}(\mathbf{x})=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} R^{\sigma}[\mathbf{u}+\epsilon \mathbf{v}]=\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{p}} D^{\alpha} v^{p}=0
$$

- Adjoint linearization:

$$
L_{\mu}^{*}[\mathbf{u}] \mathbf{w}(\mathbf{x})=(-D)^{\alpha}\left(\frac{\partial R^{\sigma}[\mathbf{u}]}{\partial u_{\alpha}^{\mu}} w_{\sigma}\right)=0
$$

- Relationship:

$$
\mathbf{W} \cdot(\mathbf{L}[\mathbf{U}] \mathbf{V})-\left(\mathbf{L}^{*}[\mathbf{U}] \mathbf{W}\right) \cdot \mathbf{v} \stackrel{\text { by parts }}{=} \operatorname{div} P
$$

in components,

$$
W_{\sigma} L^{\sigma}[\mathbf{U}] \mathbf{V}-V^{\mu} L_{\mu}^{*}[\mathbf{U}] \mathbf{W} \equiv \mathrm{D}_{i} P^{i}
$$

(2) Homotopy Formula for a Lagrangian:

$$
\mathcal{L}=\int_{0}^{1} \mathbf{u} \cdot \mathbf{R}[\lambda \mathbf{u}] d \lambda
$$

Self-adjointness

Example: Wave equation for $u(x, t)$

$$
R[u]=u_{t t}-c^{2} u_{x x}=0
$$

Linearization (already linear!)

$$
L[u] v(x, t)=v_{t t}-c^{2} v_{x x}=0
$$

Adjoint linearization operator:
$w(x, t) L[u] v(x, t)=w\left(v_{t t}-c^{2} v_{x x}\right)=\left(w_{t t}-c^{2} w_{x x}\right) v(x, t)+\left(v_{t} w-v w_{t}\right)_{t}-c^{2}\left(v_{x} w-v w_{x}\right)_{x} ;$ Result:

$$
L^{*}[u] v(x, t)=L[u] v(x, t),
$$

so $R[u]$ is self-adjoint.
Lagrangian:

$$
\mathcal{L}=\frac{1}{2} u_{t}{ }^{2}-\frac{1}{2} c^{2} u_{x}{ }^{2} .
$$

Existence of a Variational Principle

- A number of important physical non-dissipative systems have a variational formulation.

Existence of a Variational Principle

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.

Existence of a Variational Principle

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.

Existence of a Variational Principle

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.
- It remains an open problem how to determine whether a given system has a variational formulation.

Existence of a Variational Principle

- A number of important physical non-dissipative systems have a variational formulation.
- The vast majority of PDE systems do not have a variational formulation.
- Self-adjointness is coordinate-dependent; also depends on the writing of the system.
- It remains an open problem how to determine whether a given system has a variational formulation.
- Pseudo-Lagrangians can be constructed by appending adjoint equations to given ones.

Outline

(1) Conservation Laws

2 Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[\mathbf{u}]=\mathbf{R}^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right), \quad \mathbf{u}=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A one-parameter Lie group of point transformations

$$
\begin{aligned}
& \mathbf{x}^{*}=f(\mathbf{x}, \mathbf{u} ; a)=\mathbf{x}+a \xi(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right) \\
& \mathbf{u}^{*}=g(\mathbf{x}, \mathbf{u} ; a)=\mathbf{u}+a \eta(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right)
\end{aligned}
$$

(with the parameter a) is a point symmetry of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^{*}\left(\mathbf{x}^{*}\right)$.

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[\mathbf{u}]=\mathbf{R}^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right), \quad \mathbf{u}=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A one-parameter Lie group of point transformations

$$
\begin{aligned}
& \mathbf{x}^{*}=f(\mathbf{x}, \mathbf{u} ; a)=\mathbf{x}+a \xi(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right) \\
& \mathbf{u}^{*}=g(\mathbf{x}, \mathbf{u} ; a)=\mathbf{u}+a \eta(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right)
\end{aligned}
$$

(with the parameter a) is a point symmetry of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^{*}\left(\mathbf{x}^{*}\right)$.

Example 1: translations

A translation

$$
x^{*}=x+C, \quad t^{*}=t, \quad u^{*}=u \quad(C \in \mathbb{R})
$$

leaves the $K d V$ equation invariant:

$$
u_{t}+u u_{x}+u_{x x x}=0=u_{t^{*}}^{*}+u^{*} u_{x^{*}}^{*}+u_{x^{*} x^{*} x^{*}}^{*}
$$

Symmetries of Differential Equations

Consider a general DE system

$$
R^{\sigma}[\mathbf{u}]=\mathbf{R}^{\sigma}\left(\mathbf{x}, \mathbf{u}, \partial \mathbf{u}, \ldots, \partial^{k} \mathbf{u}\right)=0, \quad \sigma=1, \ldots, N
$$

with variables $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right), \quad \mathbf{u}=\left(u^{1}, \ldots, u^{m}\right)$.

Definition

A one-parameter Lie group of point transformations

$$
\begin{aligned}
& \mathbf{x}^{*}=f(\mathbf{x}, \mathbf{u} ; a)=\mathbf{x}+a \xi(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right) \\
& \mathbf{u}^{*}=g(\mathbf{x}, \mathbf{u} ; a)=\mathbf{u}+a \eta(\mathbf{x}, \mathbf{u})+O\left(a^{2}\right)
\end{aligned}
$$

(with the parameter a) is a point symmetry of $R^{\sigma}[\mathbf{u}]$ if it transforms solutions to solutions: $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}^{*}\left(\mathbf{x}^{*}\right)$.

Example 2: scalings

A scaling

$$
x^{*}=\alpha x, \quad t^{*}=\alpha^{3} t, \quad u^{*}=\alpha u \quad(\alpha \in \mathbb{R})
$$

also leaves the KdV equation invariant:

$$
u_{t}+u u_{x}+u_{x x x}=0=u_{t^{*}}^{*}+u^{*} u_{x^{*}}^{*}+u_{x^{*} x^{*} x^{*}}^{*}
$$

Evolutionary Form of a Local Symmetry

A symmetry (in 1D case)

$$
\begin{aligned}
& x^{*}=f(x, u ; a)=x+a \xi(x, u)+O\left(a^{2}\right) \\
& u^{*}=g(x, u ; a)=u+a \eta(x, u)+O\left(a^{2}\right)
\end{aligned}
$$

maps a solution $u(x)$ into $u^{*}\left(x^{*}\right)$, changing both x and u.

In the evolutionary form, the same curve mapping does not change x :

$$
\begin{aligned}
& x^{* *}=x, \quad u^{* *}=u+a \zeta[u]+O\left(a^{2}\right) \\
& \zeta[u]=\eta(x, u)-\frac{\partial u}{\partial x} \xi(x, u)
\end{aligned}
$$

Evolutionary Form of a Local Symmetry: Example

- Consider an ODE

$$
y^{\prime}=-\frac{x}{y} \quad \Leftrightarrow y^{2}+x^{2}=C=\text { const. }
$$

- A scaling symmetry: $x^{*}=e^{a} x, y^{*}=e^{a} y$.
- Local form:

$$
x^{*}=x+a \xi(x, y)+O\left(a^{2}\right), \quad y^{*}=y+a \eta(x, y)+O\left(a^{2}\right), \quad \xi=x, \quad \eta=y
$$

- Evolutionary form: $\zeta[y]=\eta-y^{\prime}(x) \xi=y+x^{2} / y$.
- Local transformation for the evolutionary form:

$$
\begin{aligned}
x^{* *} & =x \\
u^{* *} & =u+a\left(y+\frac{x^{2}}{y}\right)+O\left(a^{2}\right)
\end{aligned}
$$

Evolutionary Form of a Local Symmetry: Example

- $a=0.1$:

Variational Symmetries

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ that follows from a variational principle with

$$
J[\mathbf{u}]=\int_{\Omega} \mathcal{L}[\mathbf{u}] d x
$$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ is a variational symmetry if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. Olver (1993)]

Variational Symmetries

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ that follows from a variational principle with

$$
J[\mathbf{u}]=\int_{\Omega} \mathcal{L}[\mathbf{u}] d x
$$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ is a variational symmetry if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. Olver (1993)]

Example 1: translations for the wave equation

$$
u_{t t}=c^{2} u_{x x}, \quad \mathcal{L}=\frac{1}{2} u_{t}^{2}-\frac{c^{2}}{2} u_{x}^{2}
$$

The translation $x^{*}=x+C, \quad t^{*}=t, \quad u^{*}=u$ is a variational symmetry.

Variational Symmetries

Consider a general DE system $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ that follows from a variational principle with

$$
J[\mathbf{u}]=\int_{\Omega} \mathcal{L}[\mathbf{u}] d x
$$

Definition

A local evolutionary symmetry of $\mathbf{R}^{\sigma}[\mathbf{u}]=0$ is a variational symmetry if it preserves the action integral, or in other words, preserves $\mathcal{L}[\mathbf{u}]$ up to a divergence. [cf. Olver (1993)]

Example 2: scaling for the wave equation

$$
u_{t t}=c^{2} u_{x x}, \quad \mathcal{L}=\frac{1}{2} u_{t}^{2}-\frac{c^{2}}{2} u_{x}^{2}
$$

Can show: the scaling $x^{*}=x, t^{*}=t, \quad u^{*}=u / \alpha$ is not a variational symmetry.

Noether's Theorem

Theorem

Given:

(1) a PDE system $\mathbf{R}[\mathbf{u}]=0$, following from a variational principle;
(2) a local variational symmetry in an evolutionary form:

$$
\left(x^{i}\right)^{*}=x^{i}, \quad\left(u^{\sigma}\right)^{*}=u^{\sigma}+a \zeta^{\sigma}[\mathbf{u}]+O\left(a^{2}\right)
$$

Then the given $D E$ system has a local conservation law $\mathrm{D}_{i} \Phi^{i}[\mathbf{u}]=0$. In particular,

$$
\mathrm{D}_{i} \Phi^{i}[\mathbf{U}]=\Lambda_{\sigma}[\mathbf{U}] R^{\sigma}[\mathbf{U}]
$$

where the multipliers are given by the evolutionary forms of symmetry components:

$$
\Lambda_{\sigma}[\mathbf{U}] \equiv \zeta^{\sigma}[\mathbf{U}] .
$$

Noether's Theorem: Examples

Example 1: time translation symmetry, harmonic oscillator

- Equation: $\ddot{x}(t)+\omega^{2} x(t)=0$.
- Symmetry:

$$
\begin{array}{ll}
t^{*}=t+a, & \xi=1 \\
x^{*}=x, & \eta=0
\end{array}
$$

- Multiplier (integrating factor): $\Lambda=\eta-\dot{x}(t) \xi=-\dot{x}$;
- Conservation law:

$$
\Lambda R=-\dot{x}\left(\ddot{x}(t)+\omega^{2} x(t)\right)=-\frac{d}{d t}\left(\frac{\dot{x}^{2}(t)}{2}+\frac{\omega^{2} x^{2}(t)}{2}\right)=0
$$

Noether's Theorem: Examples

Example 2

- Equation: Wave equation $u_{t t}=c^{2} u_{x x}, \quad u=u(x, t)$.
- Space translation symmetry:

$$
\begin{array}{ll}
t^{*}=t, & \xi^{t}=0 \\
x^{*}=x, & \xi^{x}=0 \\
u^{*}=u+a, & \eta=1
\end{array}
$$

- Multiplier: $\Lambda=\zeta=\eta-0 \cdot u_{x}-0 \cdot u_{t}=1$;
- Conservation law (Momentum):

$$
\Lambda R=1\left(u_{t t}-c^{2} u_{x x}\right)=D_{t}\left(u_{t}\right)-D_{x}\left(c^{2} u_{x}\right)=0
$$

Noether's Theorem: Examples

Example 2

- Equation: Wave equation $u_{t t}=c^{2} u_{x x}, \quad u=u(x, t)$.
- Time translation symmetry:

$$
\begin{array}{ll}
t^{*}=t+a, & \xi^{t}=1 \\
x^{*}=x, & \xi^{x}=0 \\
u^{*}=u, & \eta=0
\end{array}
$$

- Multiplier: $\Lambda=\zeta=\eta-0 \cdot u_{x}-1 \cdot u_{t}=-u_{t}$;
- Conservation law (Energy):

$$
\Lambda R=-u_{t}\left(u_{t t}-c^{2} u_{x x}\right)=-\left[D_{t}\left(\frac{u_{t}^{2}}{2}+c^{2} \frac{u_{x}^{2}}{2}\right)-D_{x}\left(c^{2} u_{t} u_{x}\right)\right]=0
$$

General Relationship Between Symmetries and Conservation Laws

For a non-variational DE system $\mathbf{R}[\mathbf{u}]=0$ of N PDEs:

- Local evolutionary symmetry components $\left\{\zeta^{\sigma}[\mathbf{u}]\right\}$ are solutions of the linearized system

$$
\left.L^{\sigma}[\mathbf{u}] \zeta[\mathbf{u}]\right|_{\mathbf{R}[\mathbf{u}]=0}=0, \quad \sigma=1, \ldots, m
$$

- Conservation law multipliers $\left\{\Lambda_{\sigma}[\mathbf{u}]\right\}$ are a subset of solutions of the adjoint linearized system:

$$
\left.L_{\mu}^{*}[\mathbf{u}] \Lambda[\mathbf{u}]\right|_{\mathbf{R}[\mathbf{u}]=0}=0, \quad \mu=1, \ldots, N
$$

- Classification examples show differences in symmetry and CL structure. [See, e.g., Bluman and Temuerchaolu (2005).]
- Symmetries can be used to map local conservation laws into local conservation laws (new or known). [E.g., Bluman, C., Anco (2010) and refs therein.]
- In symmetric settings (planar, axial,...), physical systems often have extra conservation laws.

Outline

(1) Conservation Laws
(2) Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
- Theoretically complete for systems in the solved (Kovalevskaya!) form.
- Only finds CLs up to a given order.
- Implemented in symbolic software.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
- Theoretically complete for systems in the solved (Kovalevskaya!) form.
- Only finds CLs up to a given order.
- Implemented in symbolic software.
- Other systematic CL construction methods exist, which are subsets of the Direct construction method.
- Noether's theorem for variational systems;
- Pseudo-Lagrangian method (Ibragimov et al), etc.

Discussion

- Divergence-type CLs are useful in physics, analysis, and numerical simualtions.
- CLs are coordinate-independent.
- Symmetries map CLs into CLs; can facilitate CL analysis of complicated models.
- For variational DE systems, 1:1 correspondence between equivalence classes of CLs and variational symmetries.
- Generally, CLs can be obtained systematically through the Direct construction method:
- Theoretically complete for systems in the solved (Kovalevskaya!) form.
- Only finds CLs up to a given order.
- Implemented in symbolic software.
- Other systematic CL construction methods exist, which are subsets of the Direct construction method.
- Noether's theorem for variational systems;
- Pseudo-Lagrangian method (Ibragimov et al), etc.
- Noether's theorem is not a preferred way to derive unknown CLs.

Discussion

Some related topics not addressed in this talk:

- Trivial and equivalent CL multipliers [cf. Olver (1993)].
- Material CLs.
- Nonlocal CLs.
- Abnormal PDE systems; Noether's 2nd theorem.
- Upper bounds of CL order.
- Recursion operators.

Discussion

Some related topics not addressed in this talk:

- Trivial and equivalent CL multipliers [cf. Olver (1993)].
- Material CLs.
- Nonlocal CLs.
- Abnormal PDE systems; Noether's 2nd theorem.
- Upper bounds of CL order.
- Recursion operators.

Next talk:

- Conservation law computations for fluid dynamics models.

Some references

Fivion Olver, P.J. (1993)
Applications of Lie Groups to Differential Equations. Springer-Verlag.
Anco, S. C. and Bluman, G. W. (2002)
Direct construction method for conservation laws of partial differential equations. Part I:
Examples of conservation law classifications. Eur. J. Appl. Math. 13, 545-566.
Temuerchaolu (2003)
An algorithmic theory of reduction of differential polynomial systems. Adv. Math. 32, 208-220 (in Chinese).

Bluman, G.W. and Temuerchaolu (2005)
Comparing symmetries and conservation laws of nonlinear telegraph equations. J. Math.
Phys. 46, 073513.
國 Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2010)
Applications of Symmetry Methods to Partial Differential Equations. Springer.
Cheviakov, A.F. (2007)
GeM software package for computation of symmetries and conservation laws of differential equations. Comp. Phys. Comm. 176(1), 48-61.
景
Cheviakov, A.F. (2010)
Computation of fluxes of conservation laws. J. Eng Math 66, 153-173.

Outline

(1) Conservation Laws
2) Direct CL Construction; Symbolic Computation in Maple
(3) Variational Systems of Differential Equations

4 Local Symmetries and the Noether's Theorem
(5) Discussion
(6) Appendix: A CL Classification Problem

CL Classification for Peakon Equations

Peakon b-family:

- $u=u(x, t)$,
- $R[u]=u_{t}-u_{t x x}+(b+1) u u_{x}-b u_{x} u_{x x}-u u_{x x x}=0$.

CL Classification for Peakon Equations

Peakon b-family:

- $u=u(x, t)$,
- $R[u]=u_{t}-u_{t x x}+(b+1) u u_{x}-b u_{x} u_{x x}-u u_{x x x}=0$.

1st-order multipliers

- $\Lambda=\Lambda\left(x, t, U, U_{x}, U_{t}\right)$.
- 29 determining equations.

CL Classification for Peakon Equations

Peakon b-family:

- $u=u(x, t)$,
- $R[u]=u_{t}-u_{t x x}+(b+1) u u_{x}-b u_{x} u_{x x}-u u_{x x x}=0$.

1st-order multipliers

- $\Lambda=\Lambda\left(x, t, U, U_{x}, U_{t}\right)$.
- 29 determining equations.

Cases arising in CL classification:

(1) General case: $(C L$ dim $)=1$.
(2) Degasperis-Procesi equation: $b=3,(C L \operatorname{dim})=3$.

- Camassa-Holm equation: $b=2,(C L \operatorname{dim})=2$.

CL Classification for Peakon Equations

Peakon b-family:

- $u=u(x, t)$,
- $R[u]=u_{t}-u_{t x x}+(b+1) u u_{x}-b u_{x} u_{x x}-u u_{x x x}=0$.

1st-order multipliers

- $\Lambda=\Lambda\left(x, t, U, U_{x}, U_{t}\right)$.
- 29 determining equations.

Cases arising in CL classification:

(1) General case: $(C L$ dim $)=1$.
(2) Degasperis-Procesi equation: $b=3,(C L \operatorname{dim})=3$.

- Camassa-Holm equation: $b=2,(C L \operatorname{dim})=2$.
- Maple example:

