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© Euler and Navier-Stokes
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Euler and Navier-Stokes equations

Navier-Stokes equations with forcing

pe +div(pv) =0,
p(vi+ (v-V)v)=—grad P+ pAv+M

Euler equations

| A\

pt +div(pv) =0,
p(ve+ (v-V)v) = —grad P
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Euler equations: formulations and special cases

Euler equations

pe +div (pv) =0,
p(ve+ (v-V)v) = —grad P

V.

Incompressible flows

@ Local incompressibility: divv =0

o Constant density (additional): p = const

V.

Vorticity formulation

e Vorticity: w = curlv

@ Incompressible Euler, vorticity formulation:

divv =0,

curlv = w,

we+curl (w xv) =0

A. Shevyakov (UofS, Canada) SW models and their analytical properties



Euler equations: formulations and special cases

Euler equations

pe +div (pv) =0,
p(ve+ (v-V)v) = —grad P

v

Incompressible flows

o Local incompressibility: divv =0

o Constant density (additional): p = const

v

Vorticity-stream function formulation

e Vorticity: w = curlv

@ Stream function: divv=0 — v =curly
o Euler equations in vorticity-stream function formulation:
curl (curly) = w,

we + curl (w x curlyp) =0

o Irrotational (potential) flows: w =0
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© Shallow water models
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(141)-dimensional fluid wave setup

o free surface elevation 7n(x, t)

o total fluid depth h = h(x,t) = ho +n

@ more generally: variable bottom topography ho = ho(x)

A. Shevyakov (UofS, Canada)

SW models and their analytical properties

Dec. 3, 2022




(141)-dimensional fluid wave setup

@ Euler problem in a water channel with free surface:
U+ W;=0
1
Ut + UUX + WUz = _;px

1
Wt + UWX + WWZ = _;Pz

W=0 at z=0
W =mn:+Unx, p=pgn at z=h(x,t)
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(141)-dimensional fluid wave setup

@ Irrotational case: ¢ = ¢(x, z,t), U= ¢x, W = ¢,

o Laplace problem in a time-dependent domain:
Oxx + 22 =0, 0 < z< h(x,t)
¢,=0 at z=0
N+ ¢xx — ¢z =0 at z=h(x,t)

G+ 3(d%+82)+gn=0 at z=h(x,t)
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(141)-dimensional fluid wave setup

@ Small parameters: dispersion parameter § = ho/)\, amplitude parameter ¢ = A/hg

Physical setups:

@ Weakly nonlinear, dispersionless: FPxexl
@ Weakly nonlinear, weakly dispersive: Boussinesq regime 6% ~ & < 1

o Strongly nonlinear, weakly dispersive: 6> < 1, e = O(1)
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(141)-dimensional fluid wave setup

@ Shallow water models are written in terms of dimensionless versions of surface
elevation 7n(x, t) and the depth-averaged horizontal velocity

1 h(x,t)
u(x,t) = TEm) /0 U(x,z,t)dz.
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(141)-dimensional fluid wave setup

Non-dimensionalization:

tzit*, x=Ax", z=hoz",
Co
n=An", h= ho h™,

— * B * — *
U=eqU", W=edogW*, u=ccu”,

¢ =cc¢*, P=cahv*, p=cpcp’
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(141)-dimensional fluid wave setup

o Zeroth-order approximation: 7« = —ujx + O(e, 6?), uf» = —nix + O(g, 6%)
o Linear wave equations: 7 ~ cg Mxs Ust cg Ugx, Co = \/gho
o d'Alembert solution: n* = F(x* — t*) 4+ G(x* + t*) + O(e, 6%)

o Unidirectional right- and left-propagating: u* = n* + O(g, §?) (Burn’s condition)
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Some most common SW models

(NS)

(Eule@\ (Burgers)

[ (Bsq) } [ (SG) H (SW) } [Bcs DGH) %@
AN ~

(cBbq)} (KaV) H (BCS:DGH:1) } [ (KB) H (W) }

{ (CH) } {(ochq)} {(BBM)} (gSW)

@ starred: dimensionless, explicit €, 6 dependence

@ canonical: dimensional and/or simplest forms
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Some most common SW models

[(En]er:ZD)] [(Bnrgers)]

[ (Bsq) ] [ (sL) H (SW) ] [(BCS.DGH)}—»[ (\\':H)]

|

(2(H) (Bsq) K(l\) H(B(ISD(;H:U] [ (KB) H (W) ]

w ncﬂxq nn\l (g5W)

o Su-Gardner equations (SG) (also Serre or Green-Naghdi)

*

Ufe + eutule + My = 3h* ((h*)3 (g pe + eU™ Ufn — (U )2)))(*
e +e(h*u™)x =0

@ ¢ not assumed small; bidirectional waves
@ Dimensional:
1
ue + uux + ghe = (P (uxt + vt — (ux)?)),
he + (hu)x =0

2022

A. Shevyakov (UofS, Canada) SW models and their analytical properties Dec. 3,



Some most common SW models

[(Eulvr:‘zD) ] [ (Bm’gora)]

[ (Bsq) ] [ (S%) H (SW) ] [(Bcsrcﬂ)}—[ (\\r)]

((‘Bsq)] [(K(]V) ]——[(BCS:DGH:])] [ (KB) H (W) ]

| [ ] |

[ (2-CH) ]

. . 3 52
The Boussinesq equation  nfspx = Mixy + € (%) oo + ?n:*x*x*x*

Holds in the Boussinesq regime 62 ~ ¢ < 1; bidirectional waves
2

Dimensional version: ns = ¢2 ( n+ 3n + lhgnxx
2h 3 »

Canonical form: uw = ati + B (U%) | + Ythooo; S-integrable

Regularized/ “Bogolubsky” PDE: uy = auw + 3 (u2)xx + Y Usxtt
same asymptotic approximation, non-integrable
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Some most common SW models

[(E\\lvr:‘_)D) ] [ (Bm»gm)]

[ (Bsq) ] [ (S%) H (SW) ] [(Bcsrcﬂ)}—[ (\xr)]

((‘Bsq)] [(K(]V) ]——[(BCS:DGH:])] [ (KB) H (W) ]

[ (2-CH) ]

| [ ] |

Korteweg-de Vries (KAV) 75 + 15 + 361 nfe + 52 nfeyeye =0

Unidirectional flow; Boussinesq regime

Canonical form: u; + 6uux + Uwx =0

S-integrable; multi-soliton solutions
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Some most common SW models

[(E\\lvr:‘_)D) ] [ (Bm»gm)]

[ (Bsq) ] [ (S%) H (SW) ] [(Bcsrcﬂ)}—[ (\xr)]

((‘Bsq)] [(K(]V) ]——[(BCS:DGH:])] [ (KB) H (W) ]

| [ ] |

2

Benjamin-Bona-Mahony (BBM) nf« + ni + %577*77:* - %n:*x*t* =0

[ (2-CH) ]

o Coincides with the KdV in the Boussinesq regime approximation order:
Nie = —ni- + O(e, 8%)

@ Canonical form: u; + ux + Uty — Uxe = 0

@ Non-integrable, not Galilei-invariant
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Some most common SW models

[(E\\lvr:‘_)D) ] [ (Bm»gm)]

[ (Bsq) ] [ (S%) H (SW) ] [(Bcsrcﬂ)}—[ (\xr)]

((‘Bsq)] [(K(]V) ]——[(BCS:DGH:])] [ (KB) H (W) ]

| [ ] |

[ (2-CH) ]

o Kaup-Boussinesq
ur + uux + hx =0

ht + (hu)x + BQUXXX =0
@ Dimensionless form:
O + el + - =0,
2

* K\ Ak 0
Nex + ((1+577 )i )X* +§

A~k
Ogrynyx =0

o Bidirectional; Boussinesq regime; S-integrable
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Some most common SW models

[(E\\lvr:‘_)D) ] [ (Bm»gm)]

[ (Bsq) ] [ (S%) H (SW) ] [(Bcsrcﬂ)}—[ (\xr)]

((‘Bsq)] [(K(]V) ]——[(BCS:DGH:])] [ (KB) H (W) ]

| [ ] |

[ (2-CH) ]

@ Shallow water equations
ur + uux + hx =0

he + (hu)x =0

@ Dimensionless form:
ufs + M +euuie =0

i+ (h*u™) =0

o Bidirectional; dispersionless regime § — 0; C-integrable
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Where do different SW models come from?

@ Approximation regime: relations between € and §

Order of asymptotic approximation

Substitutions within the same order, such as njx = —u}- + O(g, §?)

@ Use of a velocity variable different from the depth-averaged horizontal velocity

1 h(x,t) U J
t) = — t
u(x,t) hx, D) /O (x,z,t)dz
for example, velocity at a fixed depth: wu(x,t) = U(x, zo, t)

@ Use of “artificial physics” for PDEs obtained from other considerations, such as
integrability requirement, e.g., the Camassa-Holm equation

Up — Usxt + 3UUx — 2UxUsx — Ulysx = 0

whose derivation was math-motivated
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© Higher-order and nonlocal models
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A nonlocal SW model

@ The generalized shallow water equation
e+ 1 — Qe + Brx05 e — Thoa = 0

with -
a;lm = / ne(s, t) ds

X
o Local (potential) form: n = uy,
Uxt + Uxx — QUxUxt — /Buxxut — Uxxxt = 0

@ S-integrable if and only if /8 =2o0r a/f =1
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A higher-order model with tension

@ The combined Bona-Chen-Saut-Dullin-Gottwald-Holm system:

*

~k * ~K o~k 62 ~% *
Upx + Nyx + EU Uygx + ?(92 — 1)ux*x*t* — 520' Tl x x*

2

- % (2(n*a;‘*t* )x = (6% + 1) Bn o — (6% — 1)a*ﬁ:*x*x*)
5 4 2 2 1Y) .. _ 6

+ g 007 = 1) <0 - g) Begnneer = O(8°)

* K\ ~k 52 1 ~k 62 * ook
e (e )8 + G (= 3) B + O = D0 )

c o5t (2 L 20* = 0(6°%)

24 5 IX* x*x*xHEx* —

@ Nonzero surface tension coefficient o*

@ Horizontal velocity i measured at an arbitrary dimensionless elevation 6 € [0, 1]
above the flat bottom

o Gives rise to many simpler SW models
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A higher-order model with tension

@ A higher-order single-PDE unidirectional version

@ Can exclude i*:
* * 3 * * 62 * * 3 * *
Mer e+ S M + o (1= 307 e scner — gez(n )2

62 *\ k% *) Kk
+ 827 ((23 + 150 )nx*nx*x* + 2(5 —30 )77 nx*x*x*)

64 * *\2) % 6
— (19 — —45(o oyt xrr = O
+ 360( 9 300 5( ) )]x X X x* x ((S )

@ Generalizes the KdV

A. Shevyakov (UofS, Canada) SW models and their analytical properties Dec. 3, 2022



Outline

© Integrability
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What is integrability?

Many definitions, with unclear relationships
C-integrability
S-integrability

Symmetry- and conservation law-integrability: existence of higher-order symmetries
and conservation laws.

Integrability in the Hirota sense: multi-soliton solutions

Liouville (“complete”) integrability: a Hamiltonian PDE system that has an infinite
number of conserved densities in pairwise involution. True for bi-Hamiltonian PDE
systems

Formal integrability: existence of a recursion operator

Painlevé integrability: pass the Painlevé test
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Related analytical structures

@ Lax pairs and zero-curvature representation
o Infinite-parameter and/or higher-order Lie-type symmetries
@ Infinite-parameter and/or higher-order local conservation laws

o Painlevé property

Variational principles and Lagrangian structure

Hamiltonian and bi-Hamiltonian structure, recursion operators
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C-integrability

C-integrability: “A nonlinear partial differential equation is called C-integrable if it can be
solved by a Change of variables”

Example: the shallow water (SW) system

us + uux + ghy =0
he + (hu)x =0

@ a point hodograph transformation

x = x(h, u), t=t(h,u), h(x,t) = h, u(x,t)=u

@ invertible linearization:
Xy —uty,+hty, =0

Xp—uth+gty =0
Another famous example: the Burgers equation u; + uux = viux

o the Hopf-Cole transformation u = —2v wy/w

@ w satisfies the heat equation wy = v wix
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S-integrability

S-integrability: “the possibility of construction of solutions of a given PDE system using
a Spectral transform technique’

@ Main ingredient: a nontrivial Lax pair (L, P), isospectral flow
Ly =)V, Vv, =Py,

L. =[P,L] = PL — LP

@ More generally: a zero-curvature representation with matrix operators U, V
U, =00, b, =v¥,
U:—V,+[U,V]=0
Main application: exact solutions
@ Inverse scattering

@ Darboux transformation can be used to iterate solutions

o Multi-soliton solutions through Hirota’s bilinear method
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S-integrability

Lax pairs:
@ Art or inspiration?

o Existence hinted by other analytical structure (bi-Hamiltonian form, symmetries,
etc.)

@ May be systematically constructed in WTC/Painlevé analysis

Example: Kaup-Boussinseq model
ur +uux+ he =0
i+ (e + 3t = 0
o Lax pair:
Yy = <)\2—/\u—h+%u2> v, v = ()\—F%u) Vot FV

o ZCR: U, = UV, U, = VU where

1 [ ux —2(u+2))
U= 1 R Ve
N —du—ht g’ 0 4\t  —ux—2(u+2))Dy

A. Shevyakov (UofS, Canada)
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© Symmetries
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o Symmetries are transformations of variables that preserve the solution set of the
model

Point symmetries:
(z°) = fi(z,u;€) = 2" + €€'(z, u) + O(€?), i=1,...,n
(u*)* = g'(z,u; €) = u* + en®(z, u) + O(¢?), pw=1....,m
@ More general: local
=7 i=1,...,n
" = ut + eCul + O(®), pu=1,...,m,

o Infinitesimal generators:

X=¢0,+n" 0w,  X=C"[u]dun.

Lie-type symmetries (and extensions like contact, higher-order, nonlocal,
approximate, ...) can be systematically sought using Lie's algorithm
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Some basic one-parameter Lie groups of point symmetries:

@ Translations in space and time, generated by X; = 0x, X2 = 9, with global groups

x"=x+e, t" =1t, ut =u,

*

x"=x, t"=t+e, ut=u.

@ Scaling symmetries, generated by, for example, X = Ax0x + Bt 0; + Cu 0y, where A,
B, C are constants, with global group

A B c
x* = xe™°, t" = te"°, u* = ue"“.

@ The Galilei symmetry, generated by, for example, X = t 0x + 9., with global group

* *

x* = x+et, t"=1t, U =u+e.

Main applications:
@ Construction of invariant reductions, invariant solutions
@ Mapping structures such as conservation laws; iterate exact solutions

@ Can hint linearizing invertible transformations for C-integrable models

Eequivalence transforms: mappings relating PDE families, parameter reduction
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Symmetry families parameterized by arbitrary functions can lead to invertible linearization
(C-integrability)
Example: An infinite-dimensional set of point symmetries of the SW equations
Xoo = Abx + B0,
where (A, B) = (A(u, h), B(u, h)) is an arbitrary solution of the linear PDE system
uA, + hA, — (u* — gh)B, =0, uB, — hBy — A, = 0.

Infinite countable hierarchies of higher-order symmetries of increasing order are
associated with S-integrability (no guarantees!)

Example: Korteweg-de Vries equation u: 4+ 6uuy + Usxx = 0:

X,‘ = K,' 6,_,, KO = Ux, Kl = 6qu + Usxx 5
K2 = 30U2UX + 20uxux>< + 10uuxx>< + Usoox 5
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© Exact solutions
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Symmetries

o Symmetry-invariant: e.g., traveling wave u(x, t) = u(x — ct)
o Example: Korteweg-de Vries equation u; + 6uuy + Uxx = 0, single-soliton solution

82 2 (a
u(x,t) = > sech (E(X — X0 — ct)) + wo
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@ Multi-soliton solutions

o For example, using Hirota's bilinear method
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Symmetries

o Cnoidal traveling waves for Su-Gardner equations

e + i+ ghy = (P (uxt + vt — (ux)?)) ,

3h
he + (hu)x =0
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Symmetries

o Cnoidal traveling waves for Su-Gardner equations

U + uux + ghx - % (h3 (Uxt + Ul — (uX)2))x 5

he + (hu)x =0

fS, Canada) SW models and their analytical prop



@ Solutions using “nonclassical symmetries”:

@ Example: merging solitons for the generalized shallow water equation

Ne + Nx — anne + B1x0y "N — Mo = 0
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@ Weak peakon solutions for the Camassa-Holm equation

Ut — Ut + 3UlUx — 2UxUsx — Ul = 0

@ A “close encounter” of two peakons

0.5

i

-4 -2
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@ Conservation laws
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Conservation laws

Conservation laws provide local and global conserved quantities

(141)-D:

D:O[u] + D,®[u] = 0.

Global quantity:
9 o= 2 /b@[u] dx = —ou]|”
dt Cdt f, N a

Divergence expressions can be systematically obtained using the multiplier method
& Euler operators

D; Z'[u] = Ao [u] R°[u] = 0,
E,j (A[u]lR[u]) =0, j=1,....m

Main applications:
o Conservative numerical methods
@ Relations to C- and S-integrability
@ Relations to symmetries (Noether’s theorem)

@ A tool to systematically construct nonlocally related (such as potential) PDE
systems that lead to new results
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Conservation laws

@ Example: conservation laws for Su-Gardner equations

52
ub Feutul 0k = e (h*)? (Ul e + U™ Ufe e — €Ul )2))X*

o +e(h*u™)x =0

D: h+ Dx(hu) =0,
De(hu) + Dy (he? + %ghz + %h?’(uf — e — ue) ) =0,
Dt(%h(u2+gh+%h2uf))

+D, (hu( v +gh+ 5 Ll —%hz(uxwruuxx))) =
D (4~ bt — 3h2uxx) +D, ( W + gh+ hheu, + %h%ﬁ— %h2uuxx) =0,

Dt(h(tu—x)) +Dx(hu(tu—x)+ %gthz—&— %th3(u>2< — Uy — uuxx)) =0

Dec. 3, 2022
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Conservation laws

o Example: conservation laws for the KdV u; + 6uuy + tpx =0

@ An infinite set of polynomial higher-order CLs related to S-integrability

Deu4De(36° + u) =0,

1 1
D; <§u2> + Dy <2u3 — Eui + uuxx> =0,

1 1
Dy <u3 - §u§> + Dy (gu4 + ugur + 307U + 5qu> =0,
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Conservation laws

o dimensionless Korteweg-de Vries (KdV)
* + * +§€ * ok +672 * -0
Me* Tx* 2 N Mx* 6 Thxxxxxx =
@ versus Benjamin-Bona-Mahony (BBM):
2

>k + * + §E >k * _ i >k _ 0
Tlex Thx* 2 Tl Tx= 6 Thee xx % =

@ same order of asymptotic approximation!
o KdV is S-integrable; it has an infinite hierarchy of higher-order local CLs

o BBM is not integrable; it has exactly three local CLs
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© Hamiltonian and multi-Hamiltonian structure
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Hamiltonian structure

A Hamiltonian evolution equation:

oH
ut:K[u]:D~E

Main applications:
o Conserved Hamiltonian density, Casimirs
@ Hamiltonian version of Noether's theorem

@ Bi-Hamiltonian & multi-Hamiltonian structures; recursion operators

A bi-Hamiltonian system:

_ _ OHy o Ho
Ut—Kl[U]—D E_g (5U
@ Recursion operator:
R=E-DF
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Hamiltonian structure

o Example: a tri-Hamiltonian structure for the SW system

us + uux + ghy =0,

he + (hu)x =0
Ho = % (hu2+gh2), Hi=hu, Ho=h,
O Dx 1 2ng UDX + Ux
Do = — , Di=—= ,
D« 0 2\ uD. hD.+Dyh
1,
g(uDyx + Dyu) Eu + 2gh | Dy + uuy + ghx
D, — 1
<§u2 + 2gh> D, + ghy uhDy + Dyuh
@ Recursion operators:
Ri=D:-Dyt, Ro=Ds-Dy", Rs =D, -Dit,
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© Dispersion relations
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Dispersion relations

o Stability of equilibrium

@ Linearization about u = up(x):

U (x, t) = ut + el D =1 m,
@ Dispersion relations:
w = w(k), c= % = c(k).

o Stability: Imw = 0 for all k

Dispersion: linearized waves of different wavelengths travel at different speeds
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Dispersion relations

o Full water wave problem:
Gxx + P2z =0, 0 < z < h(x,t),
¢.=0 at z=0,
Me+ ¢xix — 02 =0, e+ 3(¢% +2) +gn =0 at z=h(x,t)
@ Perturbation of zero state:
h=ho+mn, n = eno e Y, ¢ = ef(2) PG
@ Dispersion relation:

tanh khg

w2 = gk tanh kho, c=oac Kho
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Dispersion relations

Compare:

o Full water wave dispersion relation:

w? = gk tanh kho, c=q tanh kho
kho
e SG:
o co k c= Co
V1I+ k23 V1+h k23
e KdV:
w=ck 1—1h§k2 ) c=a 1—1h§k2
6 6
o BBM:
Cok Co
W= —">—, C=—5—5—=
1+ h2k2/6 14+ h2k2/6
@ SW: ¢ # c(k) so no dispersion

w2:C§k2, C:COZ\/gho
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@ Conclusions
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Some most common SW models

A diagram of physical relations between some shallow water models:

(NS)

(Eule@\ (Burgers)

{ (Bsq) } { (SQ) H (SW) } {(BCS;DGH)]—. (W:H)

[(Q_CH)} [(chq)} {(Kd\/) }—[(BCS:DGH:I)} { (KB) H (W) }

a
=
)
[«
=
w
=
E
s}
z

(gSW)
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PDE naming and the Arnold's principle

Arnold's principle

If a model bears a name, it is not the name of the person who discovered it

Examples:
o Korteweg-de Vries — Boussinesq (25 years earlier)
o Su-Gardner (Green-Naghdi) — Serre (13 and 21 years earlier)

o Camassa-Holm — Fokas and Fuchssteiner (12 years earlier)
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Some other elements

Too many things left out...

@ Variational/Lagrangian structure: self-adjointness of linearization

@ Painlevé property: all linear equations pass; related to integrability; Camassa-Holm
as counterexample

@ Solution existence, uniqueness, stability
@ Numerical aspects

o MANY extended PDE models

@ Multi-dimensional versions

@ ... and more ...

A. Shevyakov (UofS, Canada) SW models and their analytical properties Dec. 3, 2022



Thank you for your attention!
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