Analytical properties of nonlinear partial differential equations in shallow water theory and beyond

Alexey Shevyakov
(alt. spelling Alexei Cheviakov)

University of Saskatchewan, Saskatoon, Canada

CMS Winter Meeting 2022

December 3, 2022
Collaborators

- **Peng Zhao**, Shanghai Maritime University
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Navier-Stokes equations with forcing

\[
\begin{align*}
\rho_t + \text{div} \left(\rho v \right) &= 0, \\
\rho \left(v_t + (v \cdot \nabla)v \right) &= -\text{grad} \, P + \mu \Delta v + M
\end{align*}
\]

Euler equations

\[
\begin{align*}
\rho_t + \text{div} \left(\rho v \right) &= 0, \\
\rho \left(v_t + (v \cdot \nabla)v \right) &= -\text{grad} \, P
\end{align*}
\]
Euler equations

\[\rho_t + \text{div} (\rho \mathbf{v}) = 0, \]
\[\rho (\mathbf{v}_t + (\mathbf{v} \cdot \nabla)\mathbf{v}) = -\text{grad} \, P \]

Incompressible flows

- Local incompressibility: \(\text{div} \, \mathbf{v} = 0 \)
- Constant density (additional): \(\rho = \text{const} \)

Vorticity formulation

- Vorticity: \(\mathbf{\omega} = \text{curl} \, \mathbf{v} \)
- Incompressible Euler, vorticity formulation:
 \[\text{div} \, \mathbf{v} = 0, \]
 \[\text{curl} \, \mathbf{v} = \mathbf{\omega}, \]
 \[\mathbf{\omega}_t + \text{curl} \,(\mathbf{\omega} \times \mathbf{v}) = 0 \]
Euler equations: formulations and special cases

Euler equations

\[\rho_t + \text{div} (\rho \mathbf{v}) = 0, \]
\[\rho (\mathbf{v}_t + (\mathbf{v} \cdot \nabla)\mathbf{v}) = -\text{grad} \, P \]

Incompressible flows

- Local incompressibility: \(\text{div} \, \mathbf{v} = 0 \)
- Constant density (additional): \(\rho = \text{const} \)

Vorticity-stream function formulation

- Vorticity: \(\omega = \text{curl} \, \mathbf{v} \)
- Stream function: \(\text{div} \, \mathbf{v} = 0 \rightarrow \mathbf{v} = \text{curl} \, \psi \)
- Euler equations in vorticity-stream function formulation:
 \[\text{curl} \, (\text{curl} \, \psi) = \omega, \]
 \[\omega_t + \text{curl} \, (\omega \times \text{curl} \, \psi) = 0 \]
- Irrotational (potential) flows: \(\omega = 0 \)
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
free surface elevation $\eta(x, t)$

total fluid depth $h = h(x, t) = h_0 + \eta$

more generally: variable bottom topography $h_0 = h_0(x)$
(1+1)-dimensional fluid wave setup

- Euler problem in a water channel with free surface:

\[
\begin{align*}
U_x + W_z &= 0 \\
U_t + UU_x + WW_z &= \frac{1}{\rho} p_x \\
W_t + UW_x + WW_z &= \frac{1}{\rho} p_z \\
W &= 0 \quad \text{at} \quad z = 0 \\
W &= \eta_t + U\eta_x, \quad p = \rho g \eta \quad \text{at} \quad z = h(x, t)
\end{align*}
\]
Irrotational case: $\phi = \phi(x, z, t)$, $U = \phi_x$, $W = \phi_z$

Laplace problem in a time-dependent domain:

$$\phi_{xx} + \phi_{zz} = 0, \quad 0 < z < h(x, t)$$

$$\phi_z = 0 \quad \text{at} \quad z = 0$$

$$\eta_t + \phi_x \eta_x - \phi_z = 0 \quad \text{at} \quad z = h(x, t)$$

$$\phi_t + \frac{1}{2}(\phi_x^2 + \phi_z^2) + g\eta = 0 \quad \text{at} \quad z = h(x, t)$$
(1+1)-dimensional fluid wave setup

Small parameters: dispersion parameter $\delta = h_0/\lambda$, amplitude parameter $\varepsilon = A/h_0$

Physical setups:
- Weakly nonlinear, dispersionless: $\delta^2 \ll \varepsilon \ll 1$
- Weakly nonlinear, weakly dispersive: Boussinesq regime $\delta^2 \sim \varepsilon \ll 1$
- Strongly nonlinear, weakly dispersive: $\delta^2 \ll 1$, $\varepsilon = O(1)$
Shallow water models are written in terms of dimensionless versions of surface elevation $\eta(x, t)$ and the depth-averaged horizontal velocity

$$u(x, t) = \frac{1}{h(x, t)} \int_0^{h(x, t)} U(x, z, t) \, dz.$$
(1+1)-dimensional fluid wave setup

Non-dimensionalization:

\[
\begin{align*}
\eta &= A \eta^*, \\
h &= h_0 h^*, \\
U &= \varepsilon c_0 U^*, \\
W &= \varepsilon \delta c_0 W^*, \\
u &= \varepsilon c_0 u^*, \\
\phi &= \varepsilon c_0 \lambda \phi^*, \\
\psi &= \varepsilon c_0 h_0 \psi^*, \\
p &= \varepsilon \rho c_0^2 p^*
\end{align*}
\]
(1+1)-dimensional fluid wave setup

Zeroth-order approximation: \(\eta_t^* = -u_x^* + O(\varepsilon, \delta^2) \), \(u_t^* = -\eta_x^* + O(\varepsilon, \delta^2) \)

Linear wave equations: \(\eta_{tt} \approx c_0^2 \eta_{xx} \), \(u_{tt} \approx c_0^2 u_{xx} \), \(c_0 = \sqrt{gh_0} \)

d’Alembert solution: \(\eta^* = F(x^* - t^*) + G(x^* + t^*) + O(\varepsilon, \delta^2) \)

Unidirectional right- and left-propagating: \(u^* = \eta^* \pm O(\varepsilon, \delta^2) \) (Burn’s condition)
11) The Camassa-Holm equation (Section 3.12)

\[u_t - u_{xxt} + 3uu_x - 2uxuxx - uuxxx = 0 . \] (CH)

12) The two-component Camassa-Holm equations (Section 3.13)

\[u_t - u_{xxt} + 3uu_x - 2uxuxx - uuxxx + \varrho \varrho_x = 0, \]
\[\varrho_t + (\varrho u)_x = 0. \] (2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a possible set of relationships as per the corresponding Derivation sections.

Figure 3.1: Shallow water models: a relationship diagram.

3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action of an external volumetric force \(F \) are given by

\[\text{div} \ v = 0, \]
\[\rho (v_t + (v \cdot \nabla) v) = -\text{grad} \ P + M. \] (3.2.1)

In (3.2.1), the density \(\rho \) may in fact be variable, satisfying the advection equation (1.2.5); however, a common assumption for fluids such as water is \(\rho = \text{const.} \) We additionally assume the external force is conservative, satisfying (1.2.7) (such as the gravity force, \(M = \rho g = 68 \)).

- starred: dimensionless, explicit \(\varepsilon, \delta \) dependence
- canonical: dimensional and/or simplest forms
Some most common SW models

- **Su-Gardner equations (SG)** (also Serre or Green-Naghdi)
 \[
 u_{t}^* + \varepsilon u^* u_x^* + \eta_x^* = \frac{\delta^2}{3h^*} (h^*)^3 \left(u_{x}^* {t}^* + \varepsilon u^* u_{x}^* x^* - \varepsilon (u_{x}^*)^2 \right) x^* \\
 h_{t}^* + \varepsilon (h^* u^*) x^* = 0
 \]
 - \(\varepsilon \) not assumed small; bidirectional waves
 - Dimensional:
 \[
 u_{t} + uu_{x} + gh_{x} = \frac{1}{3h} \left(h^3 \left(u_{x} + uu_{xx} - (u_{x})^2 \right) \right) _{x} \\
 h_{t} + (hu)_x = 0
 \]
Some most common SW models

- The Camassa-Holm equation (Section 3.12)
 \[u_{tt} - u_{xxt} + 3uu_x - 2u_{xx}u_{xx} - uu_{xxx} = 0 . \]
 (CH)

- The two-component Camassa-Holm equations (Section 3.13)
 \[u_{tt} - u_{xxt} + 3uu_x - 2u_{xx}u_{xx} - uu_{xxx} + \rho \rho_x = 0 , \]
 \[\rho_t + (\rho u)_x = 0 . \]
 (2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a possible set of relationships as per the corresponding Derivation sections.

- The Boussinesq equation
 \[\eta_{t^* t^*} = \eta^{*}_{x^* x^*} + \frac{3}{2} \varepsilon (\eta^{*2})_{x^* x^*} + \frac{\delta^2}{3} \eta^{*}_{x^* x^* x^* x^*} \]

- Holds in the Boussinesq regime \(\delta^2 \sim \varepsilon \ll 1; \) bidirectional waves

- Dimensional version:
 \[\eta_{tt} = c_0^2 \left(\eta + \frac{3}{2} \frac{\eta^2}{h_0} + \frac{1}{3} h_0^2 \eta_{xx} \right)_{xx} \]

- Canonical form:
 \[u_{tt} = \alpha u_{xx} + \beta (u^2)_{xx} + \gamma u_{xxxx} ; \) S-integrable

- Regularized/“Bogolubsky” PDE:
 \[u_{tt} = \alpha u_{xx} + \beta (u^2)_{xx} + \gamma u_{xxtt} \]
 same asymptotic approximation, non-integrable
Some most common SW models

- **Korteweg-de Vries (KdV)**
 \[\eta^*_t + \eta^*_x + \frac{3}{2} \varepsilon \eta^*_x \eta^*_x + \frac{\delta^2}{6} \eta^*_x \eta^*_x \eta^*_x = 0 \]

- Unidirectional flow; Boussinesq regime

- Canonical form: \(u_t + 6uu_x + u_{xxx} = 0 \)

- S-integrable; multi-soliton solutions
Some most common SW models

11) The Camassa-Holm equation (Section 3.12)
\[u_t - u_{xxx} + 3u u_x - 2u_x u_{xx} - uu_{xxx} = 0. \] (CH)

12) The two-component Camassa-Holm equations (Section 3.13)
\[u_t - u_{xxx} + 3u u_x - 2u_x u_{xx} - uu_{xxx} + \rho \rho_x = 0, \]
\[\rho_t + (\rho u) x = 0. \] (2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a possible set of relationships as per the corresponding Derivation sections.

- **Benjamin-Bona-Mahony (BBM)**
 \[\eta_{t*} + \eta_{x*} + \frac{3}{2} \varepsilon \eta_{x*} \eta_{x*} - \frac{\delta^2}{6} \eta_{x* x* t*} = 0 \]

- Coincides with the KdV in the Boussinesq regime approximation order:
 \[\eta_{t*} = -\eta_{x*} + O(\varepsilon, \delta^2) \]

- Canonical form: \[u_t + u_x + uu_x - u_{xxt} = 0 \]

- Non-integrable, not Galilei-invariant
Some most common SW models

- **Kaup-Boussinesq**

 \[u_t + uu_x + h_x = 0 \]

 \[h_t + (hu)_x + \beta^2 u_{xxx} = 0 \]

- **Dimensionless form:**

 \[\hat{u}^*_{t^*} + \varepsilon \hat{u}^* \hat{u}_{x^*} + \eta_{x^*} = 0, \]

 \[\eta_{t^*} + ((1 + \varepsilon \eta^*) \hat{u}^*)_{x^*} + \frac{\delta^2}{3} \hat{u}_{x^*x^*x^*} = 0 \]

- **Bidirectional; Boussinesq regime; S-integrable**
Some most common SW models

- **Shallow water equations**
 \[u_t + uu_x + h_x = 0 \]
 \[h_t + (hu)_x = 0 \]

- **Dimensionless form:**
 \[u^*_t + \eta^*_x + \varepsilon u^* u^*_x = 0 \]
 \[h^*_t + (h^* u^*)_x = 0 \]

- **Bidirectional; dispersionless regime** \(\delta \to 0; \text{C-integrable} \)
Where do different SW models come from?

- Approximation regime: relations between ε and δ
- Order of asymptotic approximation
- Substitutions within the same order, such as $\eta^* = -u^*_x + O(\varepsilon, \delta^2)$
- Use of a velocity variable different from the depth-averaged horizontal velocity

$$u(x, t) = \frac{1}{h(x, t)} \int_0^{h(x, t)} U(x, z, t) \, dz$$

for example, velocity at a fixed depth: $u(x, t) = U(x, z_0, t)$

- Use of “artificial physics” for PDEs obtained from other considerations, such as integrability requirement, e.g., the Camassa-Holm equation

$$u_t - u_{xxt} + 3uu_x - 2u_xu_{xx} - uu_{xxx} = 0$$

whose derivation was math-motivated
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
The generalized shallow water equation

\[\eta_t + \eta_x - \alpha \eta \eta_t + \beta \eta_x \partial_x^{-1} \eta_t - \eta_{xxt} = 0 \]

with

\[\partial_x^{-1} \eta_t = \int_x^\infty \eta_t(s, t) \, ds \]

Local (potential) form: \(\eta = u_x \),

\[u_{xt} + u_{xx} - \alpha u_x u_{xt} - \beta u_{xx} u_t - u_{xxx} = 0 \]

S-integrable if and only if \(\alpha/\beta = 2 \) or \(\alpha/\beta = 1 \)
A higher-order model with tension

- The combined Bona-Chen-Saut-Dullin-Gottwald-Holm system:

\[
\tilde{u}_t^* + \eta_x^* + \varepsilon \tilde{u}^* \tilde{u}_x^* + \frac{\delta^2}{2} (\theta^2 - 1) \tilde{u}_{xx}^* - \delta^2 \sigma^* \eta_{xxx}^*
\]

\[- \frac{\varepsilon \delta^2}{2} \left(2(\eta^* \tilde{u}_{xx}^*)_x - (\theta^2 + 1) \tilde{u}_x^* \tilde{u}_x^* - (\theta^2 - 1) \tilde{u}^* \tilde{u}_{xx}^* \right)
\]

\[+ \frac{5}{24} \delta^4 (\theta^2 - 1) \left(\theta^2 - \frac{1}{5} \right) \tilde{u}_{xx}^* = O(\delta^6)
\]

\[\eta_t^* + ((1 + \varepsilon \eta^*) \tilde{u}^*)_x + \frac{\delta^2}{2} \left(\theta^2 - \frac{1}{3} \right) \tilde{u}_{xx}^* + \frac{\varepsilon \delta^2}{2} (\theta^2 - 1)(\eta^* \tilde{u}_{xx}^*)_x
\]

\[+ \frac{5}{24} \delta^4 \left(\theta^2 - \frac{1}{5} \right)^2 \tilde{u}_{xx}^* = O(\delta^6)
\]

- Nonzero surface tension coefficient \(\sigma^*\)

- Horizontal velocity \(\tilde{u}\) measured at an arbitrary dimensionless elevation \(\theta \in [0, 1]\) above the flat bottom

- Gives rise to many simpler SW models
A higher-order model with tension

- A higher-order single-PDE unidirectional version

- Can exclude \tilde{u}^*:

$$
\eta_{t^*} + \eta_{x^*} + \frac{3}{2} \varepsilon \eta^* \eta_{x^*} + \frac{\delta^2}{6} (1 - 3 \sigma^*) \eta_{x^* x^* x^*} - \frac{3}{8} \varepsilon^2 (\eta^*)^2 \eta_{x^*} \\
+ \frac{\varepsilon \delta^2}{24} ((23 + 15 \sigma^*) \eta_{x^* x^*} \eta_{x^*} + 2 (5 - 3 \sigma^*) \eta^* \eta_{x^* x^* x^*}) \\
+ \frac{\delta^4}{360} (19 - 30 \sigma^* - 45 (\sigma^*)^2) \eta_{x^* x^* x^* x^* x^*} = O(\delta^6)
$$

- Generalizes the KdV
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
What is integrability?

- Many definitions, with unclear relationships
- C-integrability
- S-integrability
- Symmetry- and conservation law-integrability: existence of higher-order symmetries and conservation laws.
- Integrability in the Hirota sense: multi-soliton solutions
- Liouville (“complete”) integrability: a Hamiltonian PDE system that has an infinite number of conserved densities in pairwise involution. True for bi-Hamiltonian PDE systems
- Formal integrability: existence of a recursion operator
- Painlevé integrability: pass the Painlevé test
- ...
Related analytical structures

- Lax pairs and zero-curvature representation
- Infinite-parameter and/or higher-order Lie-type symmetries
- Infinite-parameter and/or higher-order local conservation laws
- Painlevé property
- Variational principles and Lagrangian structure
- Hamiltonian and bi-Hamiltonian structure, recursion operators
C-integrability

C-integrability: “A nonlinear partial differential equation is called C-integrable if it can be solved by a Change of variables”

Example: the shallow water (SW) system

\[
\begin{align*}
 u_t + uu_x + gh_x &= 0 \\
 h_t + (hu)_x &= 0
\end{align*}
\]

- a point hodograph transformation

\[
\begin{align*}
 x &= x(h, u), \\
 t &= t(h, u), \\
 h(x, t) &= h, \\
 u(x, t) &= u
\end{align*}
\]

- invertible linearization:

\[
\begin{align*}
 x_u - u t_u + h t_h &= 0 \\
 x_h - u t_h + g t_u &= 0
\end{align*}
\]

Another famous example: the Burgers equation \(u_t + uu_x = \nu u_{xx} \)

- the Hopf-Cole transformation \(u = -2 \nu w_x / w \)
- \(w \) satisfies the heat equation \(w_t = \nu w_{xx} \)
S-integrability: “the possibility of construction of solutions of a given PDE system using a Spectral transform technique”

- **Main ingredient:** a nontrivial Lax pair \((L, P)\), isospectral flow
 \[
 L \psi = \lambda \psi, \quad \psi_t = P \psi,
 \]
 \[
 L_t = [P, L] \equiv PL - LP
 \]

- **More generally:** a zero-curvature representation with matrix operators \(U, V\)
 \[
 \hat{\psi}_x = U \hat{\psi}, \quad \hat{\psi}_t = V \hat{\psi},
 \]
 \[
 U_t - V_x + [U, V] = 0
 \]

Main application: exact solutions

- **Inverse scattering**
- **Darboux transformation** can be used to iterate solutions
- **Multi-soliton solutions through Hirota’s bilinear method**
S-integrability

Lax pairs:
- Art or inspiration?
- Existence hinted by other analytical structure (bi-Hamiltonian form, symmetries, etc.)
- May be systematically constructed in WTC/Painlevé analysis

Example: Kaup-Boussinseq model

\[
\begin{align*}
 u_t + uu_x + h_x &= 0 \\
 h_t + (hu)_x + \frac{1}{4}u_{xxx} &= 0
\end{align*}
\]

Lax pair:

\[
\psi_{xx} = \left(\lambda^2 - \lambda u - h + \frac{1}{4}u^2 \right) \psi, \quad \psi_t = -\left(\lambda + \frac{1}{2}u \right) \psi_x + \frac{u_x}{4} \psi
\]

ZCR: \(\hat{\psi}_x = U \hat{\psi}, \hat{\psi}_t = V \hat{\psi} \) where

\[
U = \begin{pmatrix} 0 & 1 \\ \lambda^2 - \lambda u - h + \frac{1}{4}u^2 & 0 \end{pmatrix}, \quad V = \frac{1}{4} \begin{pmatrix} u_x & -2(u + 2\lambda) \\ u_{xx} & -u_x - 2(u + 2\lambda) D_x \end{pmatrix}
\]
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Symmetries

- **Symmetries** are transformations of variables that preserve the solution set of the model.

- **Point symmetries:**

 \[(z^*)^i = f^i(z, u; \epsilon) = z^i + \epsilon \xi^i(z, u) + O(\epsilon^2), \quad i = 1, \ldots, n\]

 \[(u^*)^\mu = g^\mu(z, u; \epsilon) = u^\mu + \epsilon \eta^\mu(z, u) + O(\epsilon^2), \quad \mu = 1, \ldots, m\]

- More general: local

 \[\hat{z}^i = z^i, \quad i = 1, \ldots, n,\]

 \[\hat{u}^\mu = u^\mu + \epsilon \zeta^\mu[u] + O(\epsilon^2), \quad \mu = 1, \ldots, m,\]

- Infinitesimal generators:

 \[X = \xi^i \partial_{z^i} + \eta^\mu \partial_{u^\mu}, \quad \hat{X} = \zeta^\mu[u] \partial_{u^\mu} .\]

- **Lie-type symmetries** (and extensions like contact, higher-order, nonlocal, approximate, ...) can be systematically sought using Lie’s algorithm.
Symmetries

Some basic one-parameter Lie groups of point symmetries:

- Translations in space and time, generated by $X_1 = \partial_x$, $X_2 = \partial_t$, with global groups
 \[
 x^* = x + \epsilon, \quad t^* = t, \quad u^* = u,
 \]
 \[
 x^* = x, \quad t^* = t + \epsilon, \quad u^* = u.
 \]

- Scaling symmetries, generated by, for example, $X = Ax \partial_x + Bt \partial_t + Cu \partial_u$, where A, B, C are constants, with global group
 \[
 x^* = xe^{A\epsilon}, \quad t^* = te^{B\epsilon}, \quad u^* = ue^{C\epsilon}.
 \]

- The Galilei symmetry, generated by, for example, $X = t \partial_x + \partial_u$, with global group
 \[
 x^* = x + \epsilon t, \quad t^* = t, \quad u^* = u + \epsilon.
 \]

Main applications:

- Construction of invariant reductions, invariant solutions
- Mapping structures such as conservation laws; iterate exact solutions
- Can hint linearizing invertible transformations for C-integrable models
- Equivalence transforms: mappings relating PDE families, parameter reduction
Symmetry families parameterized by arbitrary functions can lead to invertible linearization (C-integrability)

Example: An infinite-dimensional set of point symmetries of the SW equations

\[X_\infty = A \partial_x + B \partial_t , \]

where \((A, B) = (A(u, h), B(u, h))\) is an arbitrary solution of the linear PDE system

\[u A_u + h A_h - (u^2 - gh) B_u = 0 , \quad u B_u - h B_h - A_u = 0 . \]

Infinite countable hierarchies of higher-order symmetries of increasing order are associated with S-integrability (no guarantees!)

Example: Korteweg-de Vries equation \(u_t + 6uu_x + u_{xxx} = 0 \):

\[\hat{X}_i = K_i \partial_u , \quad K_0 = u_x , \quad K_1 = 6uu_x + u_{xxx} , \]
\[K_2 = 30u^2 u_x + 20u_x u_{xx} + 10uu_{xxx} + u_{xxxx} , \]
\[\ldots \]
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Symmetries

- **Symmetry-invariant:** e.g., traveling wave \(u(x, t) = u(x - ct) \)

- **Example:** Korteweg-de Vries equation \(u_t + 6uu_x + u_{xxx} = 0 \), single-soliton solution
 \[
 u(x, t) = \frac{a^2}{2} \operatorname{sech}^2 \left(\frac{a}{2}(x - x_0 - ct) \right) + u_0
 \]
Symmetries

- Multi-soliton solutions

- For example, using Hirota’s bilinear method
Symmetries

- **Cnoidal traveling waves** for Su-Gardner equations

\[
 u_t + uu_x + gh_x = \frac{1}{3h} \left(h^3 (u_{xt} + uu_{xx} - (u_x)^2) \right)_x ,
\]

\[
 h_t + (hu)_x = 0
\]
Cnoidal traveling waves for Su-Gardner equations

\[u_t + uu_x + gh_x = \frac{1}{3h} \left(h^3 (u_{xt} + uu_{xx} - (u_x)^2) \right)_x , \]
\[h_t + (hu)_x = 0 \]
Symmetries

- Solutions using “nonclassical symmetries”:

- Example: merging solitons for the generalized shallow water equation

\[
\eta_t + \eta_x - \alpha \eta \eta_t + \beta \eta_x \partial_x^{-1} \eta_t - \eta_{xxt} = 0
\]
Symmetries

- Weak peakon solutions for the Camassa-Holm equation

\[u_t - u_{xxt} + 3uu_x - 2u_x u_{xx} - uu_{xxx} = 0 \]

- A “close encounter” of two peakons
1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Conservation laws

- **Conservation laws** provide local and global conserved quantities

- (1+1)-D:
 \[D_t \Theta[u] + D_x \Phi[u] = 0. \]

- Global quantity:
 \[\frac{d}{dt} C[u] = \frac{d}{dt} \int_a^b \Theta[u] \, dx = -\Phi[u] \bigg|_a^b, \]

- Divergence expressions can be **systematically obtained using the multiplier method & Euler operators**
 \[D_i Z^i[u] \equiv \Lambda_\sigma[u] R^\sigma[u] = 0, \]
 \[E_{\omega j} (\Lambda_\sigma[u] R^\sigma[u]) \equiv 0, \quad j = 1, \ldots, m \]

Main applications:

- **Conservative numerical methods**
- Relations to C- and S-integrability
- Relations to symmetries (Noether’s theorem)
- A tool to systematically construct **nonlocally related** (such as potential) PDE systems that lead to new results
Conservation laws

- Example: conservation laws for Su-Gardner equations

\[
\begin{align*}
 u_t^* + \varepsilon u^* u_x^* + \eta_x^* &= \frac{\delta^2}{3h^*} \left((h^*)^3 \left(u_{x^* t^*}^* + \varepsilon u^* u_{x^* x^*}^* - \varepsilon (u_{x^*}^*)^2 \right) \right)_{x^*}, \\
 h_t^* + \varepsilon (h^* u^*)_{x^*} &= 0
\end{align*}
\]

\[
\begin{align*}
 D_t h + D_x (hu) &= 0, \\
 D_t (hu) + D_x \left(hu^2 + \frac{1}{2} gh^2 + \frac{1}{3} h^3 (u_x^2 - u_{xt} - uu_{xx}) \right) &= 0, \\
 D_t \left(\frac{1}{2} h \left(u^2 + gh + \frac{1}{3} h^2 u_x^2 \right) \right) + D_x \left(hu \left(\frac{1}{2} u^2 + gh + \frac{1}{2} h^2 u_x^2 - \frac{1}{3} h^2 (u_{xt} + uu_{xx}) \right) \right) &= 0, \\
 D_t \left(u - hh_x u_x - \frac{1}{3} h^2 u_{xx} \right) + D_x \left(\frac{1}{2} u^2 + gh + hh_t u_x + \frac{1}{2} h^2 u_x^2 - \frac{1}{3} h^2 uu_{xx} \right) &= 0, \\
 D_t \left(h(t u - x) \right) + D_x \left(hu(t u - x) + \frac{1}{2} g t h^2 + \frac{1}{3} t h^3 (u_x^2 - u_{xt} - uu_{xx}) \right) &= 0
\end{align*}
\]
Conservation laws

- **Example:** conservation laws for the KdV \(u_t + 6uu_x + u_{xxx} = 0 \)
- **An infinite set** of polynomial higher-order CLs related to \(S \)-integrability

\[
D_t u + D_x(3u^2 + u_{xx}) = 0,
\]
\[
D_t \left(\frac{1}{2}u^2\right) + D_x \left(2u^3 - \frac{1}{2}u_x^2 + uu_{xx}\right) = 0,
\]
\[
D_t \left(u^3 - \frac{1}{2}u_x^2\right) + D_x \left(\frac{9}{2}u^4 + u_xu_t + 3u^2u_{xx} + \frac{1}{2}u_{xx}^2\right) = 0,
\]
\[\vdots\]
Conservation laws

- dimensionless Korteweg-de Vries (KdV)

\[
\eta_{t^*} + \eta_{x^*} + \frac{3}{2} \varepsilon \eta \eta_{x^*} + \frac{\delta^2}{6} \eta_{x^* x^* x^*} = 0
\]

- versus Benjamin-Bona-Mahony (BBM):

\[
\eta_{t^*} + \eta_{x^*} + \frac{3}{2} \varepsilon \eta \eta_{x^*} - \frac{\delta^2}{6} \eta_{x^* x^* x^* t^*} = 0
\]

- same order of asymptotic approximation!

- KdV is **S-integrable**; it has an **infinite hierarchy** of higher-order local CLs

- BBM is **not integrable**; it has **exactly three** local CLs
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. **Hamiltonian and multi-Hamiltonian structure**
9. Dispersion relations
10. Conclusions
Hamiltonian structure

A Hamiltonian evolution equation:

\[u_t = K[u] = \mathcal{D} \cdot \frac{\delta H}{\delta u} \]

Main applications:

- Conserved Hamiltonian density, Casimirs
- Hamiltonian version of Noether's theorem
- Bi-Hamiltonian & multi-Hamiltonian structures; recursion operators

A bi-Hamiltonian system:

\[u_t = K_1[u] = \mathcal{D} \cdot \frac{\delta H_1}{\delta u} = \mathcal{E} \cdot \frac{\delta H_0}{\delta u} \]

Recursion operator:

\[\mathcal{R} = \mathcal{E} \cdot \mathcal{D}^{-1} \]
Example: a tri-Hamiltonian structure for the SW system

\[u_t + uu_x + gh_x = 0, \]
\[h_t + (hu)_x = 0 \]

\[H_0 = \frac{1}{2} \left(hu^2 + gh^2 \right), \quad H_1 = hu, \quad H_2 = h, \]

\[D_0 = - \begin{pmatrix} 0 & D_x \\ D_x & 0 \end{pmatrix}, \quad D_1 = -\frac{1}{2} \begin{pmatrix} 2gD_x & uD_x + u_x \\ uD_x & hD_x + D_xh \end{pmatrix}, \]
\[D_2 = - \begin{pmatrix} g(uD_x + D_xu) & \left(\frac{1}{2}u^2 + 2gh \right)D_x + uu_x + gh_x \\ \left(\frac{1}{2}u^2 + 2gh \right)D_x + gh_x & uhD_x + D_xuh \end{pmatrix} \]

Recursion operators:

\[R_1 = D_1 \cdot D_0^{-1}, \quad R_2 = D_2 \cdot D_0^{-1}, \quad R_3 = D_2 \cdot D_1^{-1}, \]
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Dispersion relations

- Stability of equilibrium

- Linearization about \(u = u_0(x) \):

 \[
 u^\mu(x, t) = u_0^\mu + \epsilon u_1^\mu e^{i(kx - \omega t)}, \quad \mu = 1 \ldots, m,
 \]

- Dispersion relations:

 \[
 \omega = \omega(k), \quad c = \frac{\omega}{k} = c(k).
 \]

- **Stability:** \(\text{Im} \omega = 0 \) for all \(k \)

- **Dispersion:** linearized waves of different wavelengths travel at different speeds
Dispersion relations

- Full water wave problem:

\[
\phi_{xx} + \phi_{zz} = 0, \quad 0 < z < h(x, t),
\]

\[
\phi_z = 0 \quad \text{at} \quad z = 0,
\]

\[
\eta_t + \phi_x \eta_x - \phi_z = 0, \quad \phi_t + \frac{1}{2} (\phi_x^2 + \phi_z^2) + g \eta = 0 \quad \text{at} \quad z = h(x, t)
\]

- Perturbation of zero state:

\[
h = h_0 + \eta, \quad \eta = \epsilon \eta_0 e^{i(kx - \omega t)}, \quad \phi = \epsilon f(z) e^{i(kx - \omega t)}
\]

- Dispersion relation:

\[
\omega^2 = gk \tanh kh_0, \quad c = c_0 \sqrt{\frac{\tanh kh_0}{kh_0}}
\]
Dispersion relations

Compare:

- **Full water wave dispersion relation:**
 \[\omega^2 = gk \tanh kh_0, \quad c = c_0 \sqrt{\frac{\tanh kh_0}{kh_0}} \]

- **SG:**
 \[\omega = \frac{c_0 k}{\sqrt{1 + h_0^2 k^2 / 3}}, \quad c = \frac{c_0}{\sqrt{1 + h_0^2 k^2 / 3}} \]

- **KdV:**
 \[\omega = c_0 k \left(1 - \frac{1}{6} h_0^2 k^2\right), \quad c = c_0 \left(1 - \frac{1}{6} h_0^2 k^2\right) \]

- **BBM:**
 \[\omega = \frac{c_0 k}{1 + h_0^2 k^2 / 6}, \quad c = \frac{c_0}{1 + h_0^2 k^2 / 6} \]

- **SW:** \(c \neq c(k) \) so no dispersion
 \[\omega^2 = c_0^2 k^2, \quad c = c_0 = \sqrt{gh_0} \]
Outline

1. Euler and Navier-Stokes
2. Shallow water models
3. Higher-order and nonlocal models
4. Integrability
5. Symmetries
6. Exact solutions
7. Conservation laws
8. Hamiltonian and multi-Hamiltonian structure
9. Dispersion relations
10. Conclusions
Some most common SW models

A diagram of physical relations between some shallow water models:

- (NS)
- (Euler:2D)
- (Burgers)
- (BSq)
- (SG)
- (SW)
- (BCS:DGH)
- (2-CH)
- (cBSq)
- (KdV)
- (BCS:DGH:1)
- (KB)
- (W:H)
- (CH)
- (ocBSq)
- (BBM)
- (W)
- (gSW)
PDE naming and the Arnold’s principle

Arnold’s principle
If a model bears a name, it is not the name of the person who discovered it

Examples:

- Korteweg-de Vries \rightarrow Boussinesq (25 years earlier)
- Su-Gardner (Green-Naghdi) \rightarrow Serre (13 and 21 years earlier)
- Camassa-Holm \rightarrow Fokas and Fuchssteiner (12 years earlier)
Too many things left out...

- **Variational/Lagrangian structure**: self-adjointness of linearization
- **Painlevé property**: all linear equations pass; related to integrability; Camassa-Holm as counterexample
- Solution existence, uniqueness, stability
- Numerical aspects
- MANY extended PDE models
- Multi-dimensional versions
- ... and more ...
Thank you for your attention!