Analytical properties of nonlinear partial differential equations in shallow water theory and beyond

Alexey Shevyakov (alt. spelling Alexei Cheviakov)
University of Saskatchewan, Saskatoon, Canada

CMS Winter Meeting 2022

December 3, 2022

Collaborators

- Peng Zhao, Shanghai Maritime University

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models
(4) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(10) Conclusions

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models

3 Higher-order and nonlocal models
(-) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(0) Conclusions

Euler and Navier-Stokes equations

Navier-Stokes equations with forcing

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{v})=0, \\
& \rho\left(\mathbf{v}_{t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\operatorname{grad} P+\mu \Delta \mathbf{v}+\mathbf{M}
\end{aligned}
$$

Euler equations

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{v})=0, \\
& \rho\left(\mathbf{v}_{t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\operatorname{grad} P
\end{aligned}
$$

Euler equations: formulations and special cases

Euler equations

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{v})=0, \\
& \rho\left(\mathbf{v}_{t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\operatorname{grad} P
\end{aligned}
$$

Incompressible flows

- Local incompressibility: $\operatorname{div} \mathbf{v}=0$
- Constant density (additional): $\rho=$ const

Vorticity formulation

- Vorticity: $\boldsymbol{\omega}=$ curl \mathbf{v}
- Incompressible Euler, vorticity formulation:

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0 \\
& \operatorname{curl} \mathbf{v}=\boldsymbol{\omega} \\
& \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \mathbf{v})=0
\end{aligned}
$$

Euler equations: formulations and special cases

Euler equations

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{v})=0, \\
& \rho\left(\mathbf{v}_{t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\operatorname{grad} P
\end{aligned}
$$

Incompressible flows

- Local incompressibility: $\operatorname{div} \mathbf{v}=0$
- Constant density (additional): $\rho=$ const

Vorticity-stream function formulation

- Vorticity: $\boldsymbol{\omega}=$ curl \mathbf{v}
- Stream function: $\operatorname{div} \mathbf{v}=0 \rightarrow \mathbf{v}=\operatorname{curl} \boldsymbol{\psi}$
- Euler equations in vorticity-stream function formulation:

$$
\begin{aligned}
& \operatorname{curl}(\operatorname{curl} \boldsymbol{\psi})=\boldsymbol{\omega} \\
& \boldsymbol{\omega}_{t}+\operatorname{curl}(\boldsymbol{\omega} \times \operatorname{curl} \boldsymbol{\psi})=0
\end{aligned}
$$

- Irrotational (potential) flows: $\boldsymbol{\omega}=0$

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models
4) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(5) Dispersion relations
(10) Conclusions

(1+1)-dimensional fluid wave setup

- free surface elevation $\eta(x, t)$
- total fluid depth $h=h(x, t)=h_{0}+\eta$
- more generally: variable bottom topography $h_{0}=h_{0}(x)$

(1+1)-dimensional fluid wave setup

- Euler problem in a water channel with free surface:

$$
\begin{aligned}
& U_{x}+W_{z}=0 \\
& U_{t}+U U_{x}+W U_{z}=-\frac{1}{\rho} p_{x} \\
& W_{t}+U W_{x}+W W_{z}=-\frac{1}{\rho} p_{z} \\
& W=0 \text { at } z=0 \\
& W=\eta_{t}+U \eta_{x}, \quad p=\rho g \eta \text { at } z=h(x, t)
\end{aligned}
$$

(1+1)-dimensional fluid wave setup

- Irrotational case: $\phi=\phi(x, z, t), U=\phi_{x}, W=\phi_{z}$
- Laplace problem in a time-dependent domain:

$$
\begin{aligned}
& \phi_{x x}+\phi_{z z}=0, \quad 0<z<h(x, t) \\
& \phi_{z}=0 \quad \text { at } z=0 \\
& \eta_{t}+\phi_{x} \eta_{x}-\phi_{z}=0 \quad \text { at } z=h(x, t) \\
& \phi_{t}+\frac{1}{2}\left(\phi_{x}^{2}+\phi_{z}^{2}\right)+g \eta=0 \quad \text { at } z=h(x, t)
\end{aligned}
$$

(1+1)-dimensional fluid wave setup

- Small parameters: dispersion parameter $\delta=h_{0} / \lambda$, amplitude parameter $\varepsilon=A / h_{0}$

Physical setups:

- Weakly nonlinear, dispersionless: $\delta^{2} \ll \varepsilon \ll 1$
- Weakly nonlinear, weakly dispersive: Boussinesq regime $\delta^{2} \sim \varepsilon \ll 1$
- Strongly nonlinear, weakly dispersive: $\delta^{2} \ll 1, \varepsilon=O(1)$

(1+1)-dimensional fluid wave setup

- Shallow water models are written in terms of dimensionless versions of surface elevation $\eta(x, t)$ and the depth-averaged horizontal velocity

$$
u(x, t)=\frac{1}{h(x, t)} \int_{0}^{h(x, t)} U(x, z, t) d z .
$$

(1+1)-dimensional fluid wave setup

Non-dimensionalization:

$$
\begin{array}{lll}
t=\frac{\lambda}{c_{0}} t^{*}, & x=\lambda x^{*}, & z=h_{0} z^{*}, \\
\eta=A \eta^{*}, & h=h_{0} h^{*}, & \\
U=\varepsilon c_{0} U^{*}, & W=\varepsilon \delta c_{0} W^{*}, & u=\varepsilon c_{0} u^{*}, \\
\phi=\varepsilon c_{0} \lambda \phi^{*}, & \psi=\varepsilon c_{0} h_{0} \psi^{*}, & p=\varepsilon \rho c_{0}^{2} p^{*}
\end{array}
$$

(1+1)-dimensional fluid wave setup

- Zeroth-order approximation: $\eta_{t^{*}}^{*}=-u_{x^{*}}^{*}+O\left(\varepsilon, \delta^{2}\right), u_{t^{*}}^{*}=-\eta_{x^{*}}^{*}+O\left(\varepsilon, \delta^{2}\right)$
- Linear wave equations: $\eta_{t t} \simeq c_{0}^{2} \eta_{x x}, u_{t t} \simeq c_{0}^{2} u_{x x}, c_{0}=\sqrt{g h_{0}}$
- d'Alembert solution: $\eta^{*}=F\left(x^{*}-t^{*}\right)+G\left(x^{*}+t^{*}\right)+O\left(\varepsilon, \delta^{2}\right)$
- Unidirectional right- and left-propagating: $u^{*}=\eta^{*} \pm O\left(\varepsilon, \delta^{2}\right)$ (Burn's condition)

Some most common SW models

- starred: dimensionless, explicit ε, δ dependence
- canonical: dimensional and/or simplest forms

Some most common SW models

- Su-Gardner equations (SG) (also Serre or Green-Naghdi)

$$
\begin{aligned}
& u_{u^{*}}^{*}+\varepsilon u^{*} u_{x^{*}}^{*}+\eta_{x^{*}}^{*}=\frac{\delta^{2}}{3 h^{*}}\left(\left(h^{*}\right)^{3}\left(u_{x^{*} t^{*}}^{*}+\varepsilon u^{*} u_{x^{*} x^{*}}^{*}-\varepsilon\left(u_{x^{*}}^{*}\right)^{2}\right)\right)_{x^{*}} \\
& h_{t^{*}}^{*}+\varepsilon\left(h^{*} u^{*}\right)_{x^{*}}=0
\end{aligned}
$$

- ε not assumed small; bidirectional waves
- Dimensional:

$$
\begin{aligned}
& u_{t}+u u_{x}+g h_{x}=\frac{1}{3 h}\left(h^{3}\left(u_{x t}+u u_{x x}-\left(u_{x}\right)^{2}\right)\right)_{x} \\
& h_{t}+(h u)_{x}=0
\end{aligned}
$$

Some most common SW models

- The Boussinesq equation $\eta_{t^{*} t^{*}}^{*}=\eta_{x^{*} x^{*}}^{*}+\frac{3}{2} \varepsilon\left(\eta^{* 2}\right)_{x^{*} x^{*}}+\frac{\delta^{2}}{3} \eta_{x^{*} x^{*} x^{*} x^{*}}$
- Holds in the Boussinesq regime $\delta^{2} \sim \varepsilon \ll 1$; bidirectional waves
- Dimensional version: $\eta_{t t}=c_{0}^{2}\left(\eta+\frac{3}{2} \frac{\eta^{2}}{h_{0}}+\frac{1}{3} h_{0}^{2} \eta_{x x}\right)_{x x}$
- Canonical form: $u_{t t}=\alpha u_{x x}+\beta\left(u^{2}\right)_{x x}+\gamma u_{x x x x}$; S-integrable
- Regularized/"Bogolubsky" PDE: $u_{t t}=\alpha u_{x x}+\beta\left(u^{2}\right)_{x x}+\gamma u_{x x t t}$ same asymptotic approximation, non-integrable

Some most common SW models

- Korteweg-de Vries (KdV) $\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} x^{*}}^{*}=0$
- Unidirectional flow; Boussinesq regime
- Canonical form: $u_{t}+6 u u_{x}+u_{x x x}=0$
- S-integrable; multi-soliton solutions

Some most common SW models

- Benjamin-Bona-Mahony (BBM) $\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}-\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} t^{*}}^{*}=0$
- Coincides with the KdV in the Boussinesq regime approximation order: $\eta_{t^{*}}^{*}=-\eta_{x^{*}}^{*}+O\left(\varepsilon, \delta^{2}\right)$
- Canonical form: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- Non-integrable, not Galilei-invariant

Some most common SW models

- Kaup-Boussinesq

$$
\begin{aligned}
& u_{t}+u u_{x}+h_{x}=0 \\
& h_{t}+(h u)_{x}+\beta^{2} u_{x x x}=0
\end{aligned}
$$

- Dimensionless form:

$$
\begin{aligned}
& \hat{u}_{t^{*}}^{*}+\varepsilon \hat{u}^{*} \hat{u}_{x^{*}}^{*}+\eta_{x^{*}}^{*}=0, \\
& \eta_{t^{*}}^{*}+\left(\left(1+\varepsilon \eta^{*}\right) \hat{u}^{*}\right)_{x^{*}}+\frac{\delta^{2}}{3} \hat{u}_{x^{*} x^{*} x^{*}}^{*}=0
\end{aligned}
$$

- Bidirectional; Boussinesq regime; S-integrable

Some most common SW models

- Shallow water equations

$$
\begin{aligned}
& u_{t}+u u_{x}+h_{x}=0 \\
& h_{t}+(h u)_{x}=0
\end{aligned}
$$

- Dimensionless form:

$$
\begin{aligned}
& u_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\varepsilon u^{*} u_{x^{*}}^{*}=0 \\
& h_{t}^{*}+\left(h^{*} u^{*}\right)_{x^{*}}=0
\end{aligned}
$$

- Bidirectional; dispersionless regime $\delta \rightarrow 0$; C-integrable

Where do different SW models come from?

- Approximation regime: relations between ε and δ
- Order of asymptotic approximation
- Substitutions within the same order, such as $\eta_{t^{*}}^{*}=-u_{x^{*}}^{*}+O\left(\varepsilon, \delta^{2}\right)$
- Use of a velocity variable different from the depth-averaged horizontal velocity

$$
u(x, t)=\frac{1}{h(x, t)} \int_{0}^{h(x, t)} U(x, z, t) d z
$$

for example, velocity at a fixed depth: $u(x, t)=U\left(x, z_{0}, t\right)$

- Use of "artificial physics" for PDEs obtained from other considerations, such as integrability requirement, e.g., the Camassa-Holm equation

$$
u_{t}-u_{x x t}+3 u u_{x}-2 u_{x} u_{x x}-u u_{x x x}=0
$$

whose derivation was math-motivated

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models
(4) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(5) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(10) Conclusions

A nonlocal SW model

- The generalized shallow water equation

$$
\eta_{t}+\eta_{x}-\alpha \eta \eta_{t}+\beta \eta_{x} \partial_{x}^{-1} \eta_{t}-\eta_{x x t}=0
$$

with

$$
\partial_{x}^{-1} \eta_{t}=\int_{x}^{\infty} \eta_{t}(s, t) d s
$$

- Local (potential) form: $\eta=u_{x}$,

$$
u_{x t}+u_{x x}-\alpha u_{x} u_{x t}-\beta u_{x x} u_{t}-u_{x x x t}=0
$$

- S-integrable if and only if $\alpha / \beta=2$ or $\alpha / \beta=1$

A higher-order model with tension

- The combined Bona-Chen-Saut-Dullin-Gottwald-Holm system:

$$
\begin{aligned}
& \tilde{u}_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\varepsilon \tilde{u}^{*} \tilde{u}_{x^{*}}^{*}+\frac{\delta^{2}}{2}\left(\theta^{2}-1\right) \tilde{u}_{x^{*} x^{*} t^{*}}^{*}-\delta^{2} \sigma^{*} \eta_{x^{*} x^{*} x^{*}}^{*} \\
&-\frac{\varepsilon \delta^{2}}{2}\left(2\left(\eta^{*} \tilde{u}_{x^{*} t^{*}}^{*}\right)_{x}-\left(\theta^{2}+1\right) \tilde{u}_{x^{*}}^{*} \tilde{u}_{x^{*} x^{*}}^{*}-\left(\theta^{2}-1\right) \tilde{u}^{*} \tilde{u}_{x^{*} x^{*} x^{*}}^{*}\right) \\
&+\frac{5}{24} \delta^{4}\left(\theta^{2}-1\right)\left(\theta^{2}-\frac{1}{5}\right) \tilde{u}_{x^{*} x^{*} x^{*} x^{*} t^{*}}^{*}=O\left(\delta^{6}\right) \\
& \eta_{t^{*}}^{*}+\left(\left(1+\varepsilon \eta^{*}\right) \tilde{u}^{*}\right)_{x^{*}}+\frac{\delta^{2}}{2}\left(\theta^{2}-\frac{1}{3}\right) \tilde{u}_{x^{*} x^{*} x^{*}}^{*}+\frac{\varepsilon \delta^{2}}{2}\left(\theta^{2}-1\right)\left(\eta^{*} \tilde{u}_{x^{*} x^{*}}^{*}\right)_{x^{*}} \\
&+\frac{5}{24} \delta^{4}\left(\theta^{2}-\frac{1}{5}\right)^{2} \tilde{u}_{x^{*} x^{*} x^{*} x^{*} x^{*}}^{*}=O\left(\delta^{6}\right)
\end{aligned}
$$

- Nonzero surface tension coefficient σ^{*}
- Horizontal velocity u measured at an arbitrary dimensionless elevation $\theta \in[0,1]$ above the flat bottom
- Gives rise to many simpler SW models

A higher-order model with tension

- A higher-order single-PDE unidirectional version
- Can exclude \tilde{u}^{*} :

$$
\begin{aligned}
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*} & +\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6}\left(1-3 \sigma^{*}\right) \eta_{x^{*} x^{*} x^{*}}^{*}-\frac{3}{8} \varepsilon^{2}\left(\eta^{*}\right)^{2} \eta_{x^{*}}^{*} \\
& +\frac{\varepsilon \delta^{2}}{24}\left(\left(23+15 \sigma^{*}\right) \eta_{x^{*}}^{*} \eta_{x^{*} x^{*}}^{*}+2\left(5-3 \sigma^{*}\right) \eta^{*} \eta_{x^{*} x^{*} x^{*}}^{*}\right) \\
& +\frac{\delta^{4}}{360}\left(19-30 \sigma^{*}-45\left(\sigma^{*}\right)^{2}\right) \eta_{x^{*} x^{*} x^{*} x^{*} x^{*}}^{*}=O\left(\delta^{6}\right)
\end{aligned}
$$

- Generalizes the KdV

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models
(4) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws

8 Hamiltonian and multi-Hamiltonian structure
(-) Dispersion relations
(10) Conclusions

What is integrability?

- Many definitions, with unclear relationships
- C-integrability
- S-integrability
- Symmetry- and conservation law-integrability: existence of higher-order symmetries and conservation laws.
- Integrability in the Hirota sense: multi-soliton solutions
- Liouville ("complete") integrability: a Hamiltonian PDE system that has an infinite number of conserved densities in pairwise involution. True for bi-Hamiltonian PDE systems
- Formal integrability: existence of a recursion operator
- Painlevé integrability: pass the Painlevé test
- ...

Related analytical structures

- Lax pairs and zero-curvature representation
- Infinite-parameter and/or higher-order Lie-type symmetries
- Infinite-parameter and/or higher-order local conservation laws
- Painlevé property
- Variational principles and Lagrangian structure
- Hamiltonian and bi-Hamiltonian structure, recursion operators

C-integrability

C-integrability: "A nonlinear partial differential equation is called C-integrable if it can be solved by a Change of variables"

Example: the shallow water (SW) system

$$
\begin{aligned}
& u_{t}+u u_{x}+g h_{x}=0 \\
& h_{t}+(h u)_{x}=0
\end{aligned}
$$

- a point hodograph transformation

$$
x=x(h, u), \quad t=t(h, u), \quad h(x, t)=h, \quad u(x, t)=u
$$

- invertible linearization:

$$
\begin{aligned}
& x_{u}-u t_{u}+h t_{h}=0 \\
& x_{h}-u t_{h}+g t_{u}=0
\end{aligned}
$$

Another famous example: the Burgers equation $u_{t}+u u_{x}=\nu u_{x x}$

- the Hopf-Cole transformation $u=-2 \nu w_{x} / w$
- w satisfies the heat equation $w_{t}=\nu w_{x x}$

S-integrability

S-integrability: "the possibility of construction of solutions of a given PDE system using a Spectral transform technique"

- Main ingredient: a nontrivial Lax pair (L, P), isospectral flow

$$
\begin{aligned}
& \mathrm{L} \Psi=\lambda \Psi, \quad \Psi_{t}=\mathrm{P} \Psi \\
& \mathrm{~L}_{t}=[\mathrm{P}, \mathrm{~L}] \equiv \mathrm{PL}-\mathrm{LP}
\end{aligned}
$$

- More generally: a zero-curvature representation with matrix operators U, V

$$
\begin{aligned}
& \hat{\Psi}_{x}=\mathrm{U} \hat{\Psi}, \quad \hat{\Psi}_{t}=\mathrm{V} \hat{\Psi} \\
& \mathrm{U}_{t}-\mathrm{V}_{x}+[\mathrm{U}, \mathrm{~V}]=0
\end{aligned}
$$

Main application: exact solutions

- Inverse scattering
- Darboux transformation can be used to iterate solutions
- Multi-soliton solutions through Hirota's bilinear method

S-integrability

Lax pairs:

- Art or inspiration?
- Existence hinted by other analytical structure (bi-Hamiltonian form, symmetries, etc.)
- May be systematically constructed in WTC/Painlevé analysis

Example: Kaup-Boussinseq model

$$
\begin{aligned}
& u_{t}+u u_{x}+h_{x}=0 \\
& h_{t}+(h u)_{x}+\frac{1}{4} u_{x x x}=0
\end{aligned}
$$

- Lax pair:

$$
\Psi_{x x}=\left(\lambda^{2}-\lambda u-h+\frac{1}{4} u^{2}\right) \Psi, \quad \Psi_{t}=-\left(\lambda+\frac{1}{2} u\right) \Psi_{x}+\frac{u_{x}}{4} \Psi
$$

- ZCR: $\hat{\Psi}_{x}=\mathrm{U} \hat{\Psi}, \hat{\Psi}_{t}=\mathrm{V} \hat{\Psi}$ where

$$
\mathrm{U}=\left(\begin{array}{cc}
0 & 1 \\
\lambda^{2}-\lambda u-h+\frac{1}{4} u^{2} & 0
\end{array}\right), \quad \mathrm{V}=\frac{1}{4}\left(\begin{array}{cc}
u_{x} & -2(u+2 \lambda) \\
u_{x x} & -u_{x}-2(u+2 \lambda) \mathrm{D}_{x}
\end{array}\right)
$$

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models

- Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(5) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(0) Conclusions

Symmetries

- Symmetries are transformations of variables that preserve the solution set of the model
- Point symmetries:

$$
\begin{aligned}
& \left(z^{*}\right)^{i}=f^{i}(z, u ; \epsilon)=z^{i}+\epsilon \xi^{i}(z, u)+O\left(\epsilon^{2}\right), \quad i=1, \ldots, n \\
& \left(u^{*}\right)^{\mu}=g^{\mu}(z, u ; \epsilon)=u^{\mu}+\epsilon \eta^{\mu}(z, u)+O\left(\epsilon^{2}\right), \quad \mu=1, \ldots, m
\end{aligned}
$$

- More general: local

$$
\begin{aligned}
& \hat{z}^{i}=z^{i}, \quad i=1, \ldots, n, \\
& \hat{u}^{\mu}=u^{\mu}+\epsilon \zeta^{\mu}[u]+O\left(\epsilon^{2}\right), \quad \mu=1, \ldots, m,
\end{aligned}
$$

- Infinitesimal generators:

$$
\mathrm{X}=\xi^{i} \partial_{z^{i}}+\eta^{\mu} \partial_{u^{\mu}}, \quad \hat{\mathrm{X}}=\zeta^{\mu}[u] \partial_{u^{\mu}} .
$$

- Lie-type symmetries (and extensions like contact, higher-order, nonlocal, approximate, ...) can be systematically sought using Lie's algorithm

Symmetries

Some basic one-parameter Lie groups of point symmetries:

- Translations in space and time, generated by $\mathrm{X}_{1}=\partial_{x}, \mathrm{X}_{2}=\partial_{t}$, with global groups

$$
\begin{array}{ll}
x^{*}=x+\epsilon, \quad t^{*}=t, & u^{*}=u \\
x^{*}=x, \quad t^{*}=t+\epsilon, & u^{*}=u .
\end{array}
$$

- Scaling symmetries, generated by, for example, $\mathrm{X}=A x \partial_{x}+B t \partial_{t}+C u \partial_{u}$, where A, B, C are constants, with global group

$$
x^{*}=x e^{A \epsilon}, \quad t^{*}=t e^{B \epsilon}, \quad u^{*}=u e^{C \epsilon}
$$

- The Galilei symmetry, generated by, for example, $\mathrm{X}=t \partial_{x}+\partial_{u}$, with global group

$$
x^{*}=x+\epsilon t, \quad t^{*}=t, \quad u^{*}=u+\epsilon
$$

Main applications:

- Construction of invariant reductions, invariant solutions
- Mapping structures such as conservation laws; iterate exact solutions
- Can hint linearizing invertible transformations for C-integrable models
- Eequivalence transforms: mappings relating PDE families, parameter reduction

Symmetries

Symmetry families parameterized by arbitrary functions can lead to invertible linearization (C-integrability)

Example: An infinite-dimensional set of point symmetries of the SW equations

$$
\mathrm{X}_{\infty}=A \partial_{x}+B \partial_{t}
$$

where $(A, B)=(A(u, h), B(u, h))$ is an arbitrary solution of the linear PDE system

$$
u A_{u}+h A_{h}-\left(u^{2}-g h\right) B_{u}=0, \quad u B_{u}-h B_{h}-A_{u}=0
$$

Infinite countable hierarchies of higher-order symmetries of increasing order are associated with S-integrability (no guarantees!)

Example: Korteweg-de Vries equation $u_{t}+6 u u_{x}+u_{x x x}=0$:

$$
\begin{aligned}
& \hat{\mathrm{X}}_{i}=K_{i} \partial_{u}, \quad K_{0}=u_{x}, \quad K_{1}=6 u u_{x}+u_{x x x} \\
& K_{2}=30 u^{2} u_{x}+20 u_{x} u_{x x}+10 u u_{x x x}+u_{x x x x x}
\end{aligned}
$$

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models

- Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(D) Dispersion relations
(10) Conclusions

Symmetries

- Symmetry-invariant: e.g., traveling wave $u(x, t)=u(x-c t)$
- Example: Korteweg-de Vries equation $u_{t}+6 u u_{x}+u_{x x x}=0$, single-soliton solution

$$
u(x, t)=\frac{a^{2}}{2} \operatorname{sech}^{2}\left(\frac{a}{2}\left(x-x_{0}-c t\right)\right)+u_{0}
$$

Symmetries

- Multi-soliton solutions
- For example, using Hirota's bilinear method

Symmetries

- Cnoidal traveling waves for Su-Gardner equations

$$
\begin{aligned}
& u_{t}+u u_{x}+g h_{x}=\frac{1}{3 h}\left(h^{3}\left(u_{x t}+u u_{x x}-\left(u_{x}\right)^{2}\right)\right)_{x} \\
& h_{t}+(h u)_{x}=0
\end{aligned}
$$

Symmetries

- Cnoidal traveling waves for Su-Gardner equations

$$
\begin{aligned}
& u_{t}+u u_{x}+g h_{x}=\frac{1}{3 h}\left(h^{3}\left(u_{x t}+u u_{x x}-\left(u_{x}\right)^{2}\right)\right)_{x}, \\
& h_{t}+(h u)_{x}=0
\end{aligned}
$$

Symmetries

- Solutions using "nonclassical symmetries":
- Example: merging solitons for the generalized shallow water equation

$$
\eta_{t}+\eta_{x}-\alpha \eta \eta_{t}+\beta \eta_{x} \partial_{x}^{-1} \eta_{t}-\eta_{x x t}=0
$$

Symmetries

- Weak peakon solutions for the Camassa-Holm equation

$$
u_{t}-u_{x x t}+3 u u_{x}-2 u_{x} u_{x x}-u u_{x x x}=0
$$

- A "close encounter" of two peakons

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models

- Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(0) Conclusions

Conservation laws

- Conservation laws provide local and global conserved quantities
- $(1+1)$-D:

$$
\mathrm{D}_{t} \Theta[u]+\mathrm{D}_{x} \Phi[u]=0
$$

- Global quantity:

$$
\frac{d}{d t} \mathcal{C}[u]=\frac{d}{d t} \int_{a}^{b} \Theta[u] d x=-\left.\Phi[u]\right|_{a} ^{b}
$$

- Divergence expressions can be systematically obtained using the multiplier method \& Euler operators

$$
\begin{aligned}
& \mathrm{D}_{i} Z^{i}[u] \equiv \Lambda_{\sigma}[u] R^{\sigma}[u]=0, \\
& \mathrm{E}_{u^{j}}\left(\Lambda_{\sigma}[u] R^{\sigma}[u]\right) \equiv 0, \quad j=1, \ldots, m
\end{aligned}
$$

Main applications:

- Conservative numerical methods
- Relations to C- and S-integrability
- Relations to symmetries (Noether's theorem)
- A tool to systematically construct nonlocally related (such as potential) PDE systems that lead to new results

Conservation laws

- Example: conservation laws for Su-Gardner equations

$$
\begin{aligned}
& u_{t^{*}}^{*}+\varepsilon u^{*} u_{x^{*}}^{*}+\eta_{x^{*}}^{*}=\frac{\delta^{2}}{3 h^{*}}\left(\left(h^{*}\right)^{3}\left(u_{x^{*} t^{*}}^{*}+\varepsilon u^{*} u_{x^{*} x^{*}}^{*}-\varepsilon\left(u_{x^{*}}^{*}\right)^{2}\right)\right)_{x^{*}} \\
& h_{t^{*}}^{*}+\varepsilon\left(h^{*} u^{*}\right)_{x^{*}}=0
\end{aligned}
$$

$\mathrm{D}_{t} h+\mathrm{D}_{\times}(h u)=0$,

$$
\begin{aligned}
& \mathrm{D}_{t}(h u)+\mathrm{D}_{\times}\left(h u^{2}+\frac{1}{2} g h^{2}+\frac{1}{3} h^{3}\left(u_{x}^{2}-u_{x t}-u u_{x x}\right)\right)=0, \\
& \mathrm{D}_{t}\left(\frac{1}{2} h\left(u^{2}+g h+\frac{1}{3} h^{2} u_{x}^{2}\right)\right)
\end{aligned}
$$

$$
+\mathrm{D}_{x}\left(h u\left(\frac{1}{2} u^{2}+g h+\frac{1}{2} h^{2} u_{x}^{2}-\frac{1}{3} h^{2}\left(u_{x t}+u u_{x x}\right)\right)\right)=0
$$

$$
\mathrm{D}_{t}\left(u-h h_{x} u_{x}-\frac{1}{3} h^{2} u_{x x}\right)+\mathrm{D}_{x}\left(\frac{1}{2} u^{2}+g h+h h_{t} u_{x}+\frac{1}{2} h^{2} u_{x}^{2}-\frac{1}{3} h^{2} u u_{x x}\right)=0
$$

$$
\mathrm{D}_{t}(h(t u-x))+\mathrm{D}_{x}\left(h u(t u-x)+\frac{1}{2} g t h^{2}+\frac{1}{3} t h^{3}\left(u_{x}^{2}-u_{x t}-u u_{x x}\right)\right)=0
$$

Conservation laws

- Example: conservation laws for the $\mathrm{KdV} u_{t}+6 u u_{x}+u_{x x x}=0$
- An infinite set of polynomial higher-order CLs related to S-integrability

$$
\begin{aligned}
& \mathrm{D}_{t} u+\mathrm{D}_{x}\left(3 u^{2}+u_{x x}\right)=0 \\
& \mathrm{D}_{t}\left(\frac{1}{2} u^{2}\right)+\mathrm{D}_{x}\left(2 u^{3}-\frac{1}{2} u_{x}^{2}+u u_{x x}\right)=0 \\
& \mathrm{D}_{t}\left(u^{3}-\frac{1}{2} u_{x}^{2}\right)+\mathrm{D}_{x}\left(\frac{9}{2} u^{4}+u_{x} u_{t}+3 u^{2} u_{x x}+\frac{1}{2} u_{x x}^{2}\right)=0
\end{aligned}
$$

Conservation laws

- dimensionless Korteweg-de Vries (KdV)

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} x^{*}}^{*}=0
$$

- versus Benjamin-Bona-Mahony (BBM):

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}-\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} t^{*}}^{*}=0
$$

- same order of asymptotic approximation!
- KdV is S-integrable; it has an infinite hierarchy of higher-order local CLs
- BBM is not integrable; it has exactly three local CLs

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models
(3) Higher-order and nonlocal models
(5) Integrability
(5) Symmetries
(5) Exact solutions
(7) Conservation laws
(8) Hamiltonian and multi-Hamiltonian structure
(2) Dispersion relations
(10) Conclusions

Hamiltonian structure

A Hamiltonian evolution equation:

$$
u_{t}=K[u]=\mathcal{D} \cdot \frac{\delta H}{\delta u}
$$

Main applications:

- Conserved Hamiltonian density, Casimirs
- Hamiltonian version of Noether's theorem
- Bi-Hamiltonian \& multi-Hamiltonian structures; recursion operators

A bi-Hamiltonian system:

$$
u_{t}=K_{1}[u]=\mathcal{D} \cdot \frac{\delta H_{1}}{\delta u}=\mathcal{E} \cdot \frac{\delta H_{0}}{\delta u}
$$

- Recursion operator:

$$
\mathcal{R}=\mathcal{E} \cdot \mathcal{D}^{-1}
$$

Hamiltonian structure

- Example: a tri-Hamiltonian structure for the SW system

$$
\begin{gathered}
u_{t}+u u_{x}+g h_{x}=0, \\
h_{t}+(h u)_{x}=0 \\
H_{0}=\frac{1}{2}\left(h u^{2}+g h^{2}\right), \quad H_{1}=h u, \quad H_{2}=h, \\
\mathcal{D}_{0}=-\left(\begin{array}{cc}
0 & \mathrm{D}_{x} \\
\mathrm{D}_{x} & 0
\end{array}\right), \quad \mathcal{D}_{1}=-\frac{1}{2}\left(\begin{array}{cc}
2 g \mathrm{D}_{x} & u \mathrm{D}_{x}+u_{x} \\
u \mathrm{D}_{x} & h \mathrm{D}_{x}+\mathrm{D}_{x} h
\end{array}\right), \\
\mathcal{D}_{2}=-\left(\begin{array}{cc}
g\left(u \mathrm{D}_{x}+\mathrm{D}_{x} u\right) \quad\left(\begin{array}{c}
1 \\
2 \\
u^{2}+2 g h
\end{array}\right) \mathrm{D}_{x}+u u_{x}+g h_{x} \\
\left(\frac{1}{2} u^{2}+2 g h\right) \mathrm{D}_{x}+g h_{x} & u h \mathrm{D}_{x}+\mathrm{D}_{\times} u h
\end{array}\right)
\end{gathered}
$$

- Recursion operators:

$$
\mathcal{R}_{1}=\mathcal{D}_{1} \cdot \mathcal{D}_{0}^{-1}, \quad \mathcal{R}_{2}=\mathcal{D}_{2} \cdot \mathcal{D}_{0}^{-1}, \quad \mathcal{R}_{3}=\mathcal{D}_{2} \cdot \mathcal{D}_{1}^{-1}
$$

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models

3 Higher-order and nonlocal models
(5) Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(5) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(10) Conclusions

Dispersion relations

- Stability of equilibrium
- Linearization about $u=u_{0}(x)$:

$$
u^{\mu}(x, t)=u_{0}^{\mu}+\epsilon u_{1}^{\mu} e^{i(k x-\omega t)}, \quad \mu=1 \ldots, m
$$

- Dispersion relations:

$$
\omega=\omega(k), \quad c=\frac{\omega}{k}=c(k)
$$

- Stability: $\operatorname{Im} \omega=0$ for all k
- Dispersion: linearized waves of different wavelengths travel at different speeds

Dispersion relations

- Full water wave problem:

$$
\begin{aligned}
& \phi_{x x}+\phi_{z z}=0, \quad 0<z<h(x, t) \\
& \phi_{z}=0 \quad \text { at } \quad z=0 \\
& \eta_{t}+\phi_{x} \eta_{x}-\phi_{z}=0, \quad \phi_{t}+\frac{1}{2}\left(\phi_{x}^{2}+\phi_{z}^{2}\right)+g \eta=0 \quad \text { at } \quad z=h(x, t)
\end{aligned}
$$

- Perturbation of zero state:

$$
h=h_{0}+\eta, \quad \eta=\epsilon \eta_{0} e^{i(k x-\omega t)}, \quad \phi=\epsilon f(z) e^{i(k x-\omega t)}
$$

- Dispersion relation:

$$
\omega^{2}=g k \tanh k h_{0}, \quad c=c_{0} \sqrt{\frac{\tanh k h_{0}}{k h_{0}}}
$$

Dispersion relations

Compare:

- Full water wave dispersion relation:

$$
\omega^{2}=g k \tanh k h_{0}, \quad c=c_{0} \sqrt{\frac{\tanh k h_{0}}{k h_{0}}}
$$

- SG:

$$
\omega=\frac{c_{0} k}{\sqrt{1+h_{0}^{2} k^{2} / 3}}, \quad c=\frac{c_{0}}{\sqrt{1+h_{0}^{2} k^{2} / 3}}
$$

- KdV:

$$
\omega=c_{0} k\left(1-\frac{1}{6} h_{0}^{2} k^{2}\right), \quad c=c_{0}\left(1-\frac{1}{6} h_{0}^{2} k^{2}\right)
$$

- BBM:

$$
\omega=\frac{c_{0} k}{1+h_{0}^{2} k^{2} / 6}, \quad c=\frac{c_{0}}{1+h_{0}^{2} k^{2} / 6}
$$

- SW: $c \neq c(k)$ so no dispersion

$$
\omega^{2}=c_{0}^{2} k^{2}, \quad c=c_{0}=\sqrt{g h_{0}}
$$

Outline

(1) Euler and Navier-Stokes
(2) Shallow water models

3 Higher-order and nonlocal models

- Integrability
(5) Symmetries
(6) Exact solutions
(7) Conservation laws
(5) Hamiltonian and multi-Hamiltonian structure
(9) Dispersion relations
(10) Conclusions

Some most common SW models

A diagram of physical relations between some shallow water models:

PDE naming and the Arnold's principle

Arnold's principle

If a model bears a name, it is not the name of the person who discovered it

Examples:

- Korteweg-de Vries \rightarrow Boussinesq (25 years earlier)
- Su-Gardner (Green-Naghdi) \rightarrow Serre (13 and 21 years earlier)
- Camassa-Holm \rightarrow Fokas and Fuchssteiner (12 years earlier)

Some other elements

Too many things left out...

- Variational/Lagrangian structure: self-adjointness of linearization
- Painlevé property: all linear equations pass; related to integrability; Camassa-Holm as counterexample
- Solution existence, uniqueness, stability
- Numerical aspects
- MANY extended PDE models
- Multi-dimensional versions
- ... and more ...

Thank you for your attention!

