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Euler and Navier-Stokes equations

Navier-Stokes equations with forcing

ρt + div (ρv) = 0 ,

ρ(vt + (v · ∇)v) = − gradP + µ∆v +M

Euler equations

ρt + div (ρv) = 0 ,

ρ(vt + (v · ∇)v) = − gradP
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Euler equations: formulations and special cases

Euler equations

ρt + div (ρv) = 0 ,

ρ(vt + (v · ∇)v) = − gradP

Incompressible flows

Local incompressibility: div v = 0

Constant density (additional): ρ = const

Vorticity formulation

Vorticity: ω = curl v

Incompressible Euler, vorticity formulation:

div v = 0,

curl v = ω,

ωt + curl (ω × v) = 0
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Euler equations: formulations and special cases

Euler equations

ρt + div (ρv) = 0 ,

ρ(vt + (v · ∇)v) = − gradP

Incompressible flows

Local incompressibility: div v = 0

Constant density (additional): ρ = const

Vorticity-stream function formulation

Vorticity: ω = curl v

Stream function: div v = 0 → v = curlψ

Euler equations in vorticity-stream function formulation:

curl (curlψ) = ω ,

ωt + curl (ω × curlψ) = 0

Irrotational (potential) flows: ω = 0
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(1+1)-dimensional fluid wave setup

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

free surface elevation η(x , t)

total fluid depth h = h(x , t) = h0 + η

more generally: variable bottom topography h0 = h0(x)
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𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Euler problem in a water channel with free surface:

Ux +Wz = 0

Ut + UUx +WUz = −1

ρ
px

Wt + UWx +WWz = −1

ρ
pz

W = 0 at z = 0
W = ηt + Uηx , p = ρgη at z = h(x , t)
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𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Irrotational case: ϕ = ϕ(x , z , t), U = ϕx , W = ϕz

Laplace problem in a time-dependent domain:

ϕxx + ϕzz = 0 , 0 < z < h(x , t)

ϕz = 0 at z = 0

ηt + ϕxηx − ϕz = 0 at z = h(x , t)

ϕt +
1
2
(ϕ2

x + ϕ2
z) + gη = 0 at z = h(x , t)
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(1+1)-dimensional fluid wave setup

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Small parameters: dispersion parameter δ = h0/λ, amplitude parameter ε = A/h0

Physical setups:

Weakly nonlinear, dispersionless: δ2 ≪ ε≪ 1

Weakly nonlinear, weakly dispersive: Boussinesq regime δ2 ∼ ε≪ 1

Strongly nonlinear, weakly dispersive: δ2 ≪ 1, ε = O(1)
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(1+1)-dimensional fluid wave setup

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Shallow water models are written in terms of dimensionless versions of surface
elevation η(x , t) and the depth-averaged horizontal velocity

u(x , t) =
1

h(x , t)

∫ h(x,t)

0

U(x , z , t) dz .
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(1+1)-dimensional fluid wave setup

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Non-dimensionalization:

t =
λ

c0
t∗ , x = λ x∗ , z = h0 z

∗ ,

η = A η∗ , h = h0 h
∗ ,

U = εc0 U
∗ , W = εδc0 W

∗ , u = εc0 u
∗ ,

ϕ = εc0λϕ
∗ , ψ = εc0h0 ψ

∗ , p = ε ρ c20 p
∗
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(1+1)-dimensional fluid wave setup

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

Zeroth-order approximation: η∗t∗ = −u∗
x∗ + O(ε, δ2), u∗

t∗ = −η∗x∗ + O(ε, δ2)

Linear wave equations: ηtt ≃ c20 ηxx , utt ≃ c20 uxx , c0 =
√
gh0

d’Alembert solution: η∗ = F (x∗ − t∗) + G(x∗ + t∗) + O(ε, δ2)

Unidirectional right- and left-propagating: u∗ = η∗ ± O(ε, δ2) (Burn’s condition)
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Some most common SW models

11) The Camassa-Holm equation (Section 3.12)

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 . (CH)

12) The two-component Camassa-Holm equations (Section 3.13)

ut − uxxt + 3uux − 2uxuxx − uuxxx + ϱϱx = 0 ,

ϱt + (ϱu)x = 0 .
(2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a
possible set of relationships as per the corresponding Derivation sections.

(NS)

(Euler:2D) (Burgers)

(SG)(Bsq) (BCS:DGH)

(cBsq)(2-CH) (KdV) (BCS:DGH:1)

(W:H)

(W)(KB)

(BBM)(ocBsq) (gSW)

(SW)

(CH)

Figure 3.1: Shallow water models: a relationship diagram.

3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68

starred: dimensionless, explicit ε, δ dependence

canonical: dimensional and/or simplest forms
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The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
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68

Su-Gardner equations (SG) (also Serre or Green-Naghdi)

u∗
t∗ + εu∗u∗

x∗ + η∗x∗ = δ2

3h∗

(
(h∗)3

(
u∗
x∗t∗ + εu∗u∗

x∗x∗ − ε(u∗
x∗)

2
))

x∗

h∗
t∗ + ε(h∗u∗)x∗ = 0

ε not assumed small; bidirectional waves

Dimensional:

ut + uux + ghx =
1

3h

(
h3
(
uxt + uuxx − (ux)

2
))

x

ht + (hu)x = 0
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3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68

The Boussinesq equation η∗t∗t∗ = η∗x∗x∗ +
3

2
ε
(
η∗2
)
x∗x∗

+
δ2

3
η∗x∗x∗x∗x∗

Holds in the Boussinesq regime δ2 ∼ ε≪ 1; bidirectional waves

Dimensional version: ηtt = c20

(
η +

3

2

η2

h0
+

1

3
h2
0ηxx

)
xx

Canonical form: utt = αuxx + β
(
u2
)
xx
+ γuxxxx ; S-integrable

Regularized/“Bogolubsky” PDE: utt = αuxx + β
(
u2
)
xx
+ γuxxtt

same asymptotic approximation, non-integrable
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3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68

Korteweg-de Vries (KdV) η∗t∗ + η∗x∗ + 3
2
ε η∗η∗x∗ + δ2

6
η∗x∗x∗x∗ = 0

Unidirectional flow; Boussinesq regime

Canonical form: ut + 6uux + uxxx = 0

S-integrable; multi-soliton solutions
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The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68

Benjamin-Bona-Mahony (BBM) η∗t∗ + η∗x∗ +
3

2
εη∗η∗x∗ − δ2

6
η∗x∗x∗t∗ = 0

Coincides with the KdV in the Boussinesq regime approximation order:
η∗t∗ = −η∗x∗ + O(ε, δ2)

Canonical form: ut + ux + uux − uxxt = 0

Non-integrable, not Galilei-invariant
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68

Kaup-Boussinesq
ut + uux + hx = 0

ht + (hu)x + β2uxxx = 0

Dimensionless form:

û∗
t∗ + εû∗û∗

x∗ + η∗x∗ = 0 ,

η∗t∗ +
(
(1 + εη∗)û∗)

x∗
+
δ2

3
û∗
x∗x∗x∗ = 0

Bidirectional; Boussinesq regime; S-integrable

A. Shevyakov (UofS, Canada) SW models and their analytical properties Dec. 3, 2022 10 / 35



Some most common SW models

11) The Camassa-Holm equation (Section 3.12)

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 . (CH)

12) The two-component Camassa-Holm equations (Section 3.13)

ut − uxxt + 3uux − 2uxuxx − uuxxx + ϱϱx = 0 ,

ϱt + (ϱu)x = 0 .
(2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a
possible set of relationships as per the corresponding Derivation sections.

(NS)

(Euler:2D) (Burgers)

(SG)(Bsq) (BCS:DGH)

(cBsq)(2-CH) (KdV) (BCS:DGH:1)

(W:H)

(W)(KB)

(BBM)(ocBsq) (gSW)

(SW)

(CH)

Figure 3.1: Shallow water models: a relationship diagram.

3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68

Shallow water equations
ut + uux + hx = 0

ht + (hu)x = 0

Dimensionless form:
u∗
t∗ + η∗x∗ + εu∗u∗

x∗ = 0

h∗
t + (h∗u∗)x∗ = 0

Bidirectional; dispersionless regime δ → 0; C-integrable
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Where do different SW models come from?

Approximation regime: relations between ε and δ

Order of asymptotic approximation

Substitutions within the same order, such as η∗t∗ = −u∗
x∗ + O(ε, δ2)

Use of a velocity variable different from the depth-averaged horizontal velocity

u(x , t) =
1

h(x , t)

∫ h(x,t)

0

U(x , z , t) dz

for example, velocity at a fixed depth: u(x , t) = U(x , z0, t)

Use of “artificial physics” for PDEs obtained from other considerations, such as
integrability requirement, e.g., the Camassa-Holm equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0

whose derivation was math-motivated
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A nonlocal SW model

𝑥d 

Ffff       fdfd 

 ∼ 𝐴 

 

 

  

𝑥 

𝑧 

𝑈 

ℎ ℎ0 

𝜂 

∼ 𝜆 

∼ 𝐴 

The generalized shallow water equation

ηt + ηx − αηηt + βηx∂
−1
x ηt − ηxxt = 0

with

∂−1
x ηt =

∫ ∞

x

ηt(s, t) ds

Local (potential) form: η = ux ,

uxt + uxx − αuxuxt − βuxxut − uxxxt = 0

S-integrable if and only if α/β = 2 or α/β = 1

A. Shevyakov (UofS, Canada) SW models and their analytical properties Dec. 3, 2022 13 / 35



A higher-order model with tension

The combined Bona-Chen-Saut-Dullin-Gottwald-Holm system:

ũ∗
t∗ + η∗x∗ + εũ∗ũ∗

x∗ +
δ2

2
(θ2 − 1)ũ∗

x∗x∗t∗ − δ2σ∗η∗x∗x∗x∗

− εδ2

2

(
2(η∗ũ∗

x∗t∗)x − (θ2 + 1)ũ∗
x∗ ũ

∗
x∗x∗ − (θ2 − 1)ũ∗ũ∗

x∗x∗x∗

)
+

5

24
δ4 (θ2 − 1)

(
θ2 − 1

5

)
ũ∗
x∗x∗x∗x∗t∗ = O(δ6)

η∗t∗ + ((1 + εη∗)ũ∗)x∗ +
δ2

2

(
θ2 − 1

3

)
ũ∗
x∗x∗x∗ +

εδ2

2
(θ2 − 1)(η∗ũ∗

x∗x∗)x∗

+
5

24
δ4
(
θ2 − 1

5

)2

ũ∗
x∗x∗x∗x∗x∗ = O(δ6)

Nonzero surface tension coefficient σ∗

Horizontal velocity ũ measured at an arbitrary dimensionless elevation θ ∈ [0, 1]
above the flat bottom

Gives rise to many simpler SW models
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A higher-order model with tension

A higher-order single-PDE unidirectional version

Can exclude ũ∗:

η∗t∗ + η∗x∗ +
3

2
εη∗η∗x∗ +

δ2

6
(1− 3σ∗)η∗x∗x∗x∗ − 3

8
ε2(η∗)2η∗x∗

+
εδ2

24
((23 + 15σ∗)η∗x∗η

∗
x∗x∗ + 2(5− 3σ∗)η∗η∗x∗x∗x∗)

+
δ4

360
(19− 30σ∗ − 45(σ∗)2)η∗x∗x∗x∗x∗x∗ = O(δ6)

Generalizes the KdV
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What is integrability?

Many definitions, with unclear relationships

C-integrability

S-integrability

Symmetry- and conservation law-integrability: existence of higher-order symmetries
and conservation laws.

Integrability in the Hirota sense: multi-soliton solutions

Liouville (“complete”) integrability: a Hamiltonian PDE system that has an infinite
number of conserved densities in pairwise involution. True for bi-Hamiltonian PDE
systems

Formal integrability: existence of a recursion operator

Painlevé integrability: pass the Painlevé test

...
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Related analytical structures

Lax pairs and zero-curvature representation

Infinite-parameter and/or higher-order Lie-type symmetries

Infinite-parameter and/or higher-order local conservation laws

Painlevé property

Variational principles and Lagrangian structure

Hamiltonian and bi-Hamiltonian structure, recursion operators
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C-integrability

C-integrability: “A nonlinear partial differential equation is called C-integrable if it can be
solved by a Change of variables”

Example: the shallow water (SW) system

ut + uux + ghx = 0

ht + (hu)x = 0

a point hodograph transformation

x = x(h, u) , t = t(h, u) , h(x , t) = h, u(x , t) = u

invertible linearization:
xu − u tu + h th = 0

xh − u th + g tu = 0

Another famous example: the Burgers equation ut + uux = νuxx

the Hopf-Cole transformation u = −2 ν wx/w

w satisfies the heat equation wt = ν wxx
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S-integrability

S-integrability: “the possibility of construction of solutions of a given PDE system using
a Spectral transform technique”

Main ingredient: a nontrivial Lax pair (L,P), isospectral flow

LΨ = λΨ, Ψt = PΨ,

Lt = [P,L] ≡ PL− LP

More generally: a zero-curvature representation with matrix operators U,V

Ψ̂x = UΨ̂ , Ψ̂t = VΨ̂ ,

Ut −Vx + [U,V] = 0

Main application: exact solutions

Inverse scattering

Darboux transformation can be used to iterate solutions

Multi-soliton solutions through Hirota’s bilinear method
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S-integrability

Lax pairs:

Art or inspiration?

Existence hinted by other analytical structure (bi-Hamiltonian form, symmetries,
etc.)

May be systematically constructed in WTC/Painlevé analysis

Example: Kaup-Boussinseq model

ut + uux + hx = 0

ht + (hu)x +
1

4
uxxx = 0

Lax pair:

Ψxx =

(
λ2 − λu − h +

1

4
u2

)
Ψ, Ψt = −

(
λ+

1

2
u

)
Ψx +

ux
4

Ψ

ZCR: Ψ̂x = UΨ̂, Ψ̂t = VΨ̂ where

U =

 0 1

λ2 − λu − h +
1

4
u2 0

 , V =
1

4

(
ux −2(u + 2λ)

uxx −ux − 2(u + 2λ)Dx

)
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Symmetries

Symmetries are transformations of variables that preserve the solution set of the
model

Point symmetries:

(z∗)i = f i (z , u; ϵ) = z i + ϵξi (z , u) + O(ϵ2) , i = 1, . . . , n

(u∗)µ = gµ(z , u; ϵ) = uµ + ϵηµ(z , u) + O(ϵ2) , µ = 1, . . . ,m

More general: local

ẑ i = z i , i = 1, . . . , n,

ûµ = uµ + ϵζµ[u] + O(ϵ2), µ = 1, . . . ,m,

Infinitesimal generators:

X = ξi ∂z i + ηµ ∂uµ , X̂ = ζµ[u] ∂uµ .

Lie-type symmetries (and extensions like contact, higher-order, nonlocal,
approximate, ...) can be systematically sought using Lie’s algorithm
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Symmetries

Some basic one-parameter Lie groups of point symmetries:

Translations in space and time, generated by X1 = ∂x , X2 = ∂t , with global groups

x∗ = x + ϵ , t∗ = t , u∗ = u ,

x∗ = x , t∗ = t + ϵ , u∗ = u .

Scaling symmetries, generated by, for example, X = Ax∂x + Bt ∂t + Cu ∂u, where A,
B, C are constants, with global group

x∗ = xeAϵ , t∗ = teBϵ , u∗ = ueCϵ .

The Galilei symmetry, generated by, for example, X = t ∂x + ∂u, with global group

x∗ = x + ϵt , t∗ = t , u∗ = u + ϵ .

Main applications:

Construction of invariant reductions, invariant solutions

Mapping structures such as conservation laws; iterate exact solutions

Can hint linearizing invertible transformations for C-integrable models

Eequivalence transforms: mappings relating PDE families, parameter reduction
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Symmetries

Symmetry families parameterized by arbitrary functions can lead to invertible linearization
(C-integrability)

Example: An infinite-dimensional set of point symmetries of the SW equations

X∞ = A ∂x + B ∂t ,

where (A,B) = (A(u, h),B(u, h)) is an arbitrary solution of the linear PDE system

uAu + hAh − (u2 − gh)Bu = 0 , uBu − hBh − Au = 0 .

Infinite countable hierarchies of higher-order symmetries of increasing order are
associated with S-integrability (no guarantees!)

Example: Korteweg-de Vries equation ut + 6uux + uxxx = 0:

X̂i = Ki ∂u, K0 = ux , K1 = 6uux + uxxx ,

K2 = 30u2ux + 20uxuxx + 10uuxxx + uxxxxx ,

. . .
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Symmetries

Symmetry-invariant: e.g., traveling wave u(x , t) = u(x − ct)

Example: Korteweg-de Vries equation ut + 6uux + uxxx = 0, single-soliton solution

u(x , t) =
a2

2
sech2

(a
2
(x − x0 − ct)

)
+ u0

5

0

5

10

2.5

0 210-1-2
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Symmetries

Multi-soliton solutions

For example, using Hirota’s bilinear method

0
1
2

5

4

3

2

251 20
15

10
50 0
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Symmetries

Cnoidal traveling waves for Su-Gardner equations

ut + uux + ghx =
1

3h

(
h3
(
uxt + uuxx − (ux)

2
))

x
,

ht + (hu)x = 0

100

10-4

0

-0.5 0 0.5
10-81 1.5

0.5

1
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Symmetries

Cnoidal traveling waves for Su-Gardner equations

ut + uux + ghx =
1

3h

(
h3
(
uxt + uuxx − (ux)

2
))

x
,

ht + (hu)x = 0
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Symmetries

Solutions using “nonclassical symmetries”:

Example: merging solitons for the generalized shallow water equation

ηt + ηx − αηηt + βηx∂
−1
x ηt − ηxxt = 0

5

0
0

1

2

-10
0

10 -5
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Symmetries

Weak peakon solutions for the Camassa-Holm equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0

A “close encounter” of two peakons

0

0.5

1

1

0

-1

42-2 0-2-4
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Conservation laws

Conservation laws provide local and global conserved quantities

(1+1)-D:
DtΘ[u] +DxΦ[u] = 0 .

Global quantity:
d

dt
C[u] = d

dt

∫ b

a

Θ[u] dx = −Φ[u]
∣∣∣b
a
,

Divergence expressions can be systematically obtained using the multiplier method
& Euler operators

Di Z
i [u] ≡ Λσ[u]R

σ[u] = 0,

Euj (Λσ[u]R
σ[u]) ≡ 0, j = 1, . . . ,m

Main applications:

Conservative numerical methods

Relations to C- and S-integrability

Relations to symmetries (Noether’s theorem)

A tool to systematically construct nonlocally related (such as potential) PDE
systems that lead to new results
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Conservation laws

Example: conservation laws for Su-Gardner equations

u∗
t∗ + εu∗u∗

x∗ + η∗x∗ =
δ2

3h∗

(
(h∗)3

(
u∗
x∗t∗ + εu∗u∗

x∗x∗ − ε(u∗
x∗)

2
))

x∗

h∗
t∗ + ε(h∗u∗)x∗ = 0

Dt h +Dx(hu) = 0 ,

Dt(hu) +Dx

(
hu2 +

1

2
gh2 +

1

3
h3
(
u2
x − uxt − uuxx

))
= 0 ,

Dt

(1
2
h
(
u2 + gh +

1

3
h2u2

x

))
+Dx

(
hu
(1
2
u2 + gh +

1

2
h2u2

x −
1

3
h2(uxt + uuxx)

))
= 0 ,

Dt

(
u − hhxux −

1

3
h2uxx

)
+Dx

(1
2
u2 + gh + hhtux +

1

2
h2u2

x −
1

3
h2uuxx

)
= 0 ,

Dt

(
h(t u − x)

)
+Dx

(
h u(t u − x) +

1

2
g t h2 +

1

3
t h3(u2

x − uxt − u uxx)
)
= 0
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Conservation laws

Example: conservation laws for the KdV ut + 6uux + uxxx = 0

An infinite set of polynomial higher-order CLs related to S-integrability

Dt u +Dx(3u
2 + uxx) = 0 ,

Dt

(
1

2
u2

)
+Dx

(
2u3 − 1

2
u2
x + uuxx

)
= 0 ,

Dt

(
u3 − 1

2
u2
x

)
+Dx

(
9

2
u4 + uxut + 3u2uxx +

1

2
u2
xx

)
= 0 ,

...
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Conservation laws

dimensionless Korteweg-de Vries (KdV)

η∗t∗ + η∗x∗ +
3

2
ε η∗η∗x∗ +

δ2

6
η∗x∗x∗x∗ = 0

versus Benjamin-Bona-Mahony (BBM):

η∗t∗ + η∗x∗ +
3

2
εη∗η∗x∗ − δ2

6
η∗x∗x∗t∗ = 0

same order of asymptotic approximation!

KdV is S-integrable; it has an infinite hierarchy of higher-order local CLs

BBM is not integrable; it has exactly three local CLs
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Hamiltonian structure

A Hamiltonian evolution equation:

ut = K [u] = D · δH
δu

Main applications:

Conserved Hamiltonian density, Casimirs

Hamiltonian version of Noether’s theorem

Bi-Hamiltonian & multi-Hamiltonian structures; recursion operators

A bi-Hamiltonian system:

ut = K1[u] = D · δH1

δu
= E · δH0

δu

Recursion operator:
R = E · D−1
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Hamiltonian structure

Example: a tri-Hamiltonian structure for the SW system

ut + uux + ghx = 0 ,

ht + (hu)x = 0

H0 =
1

2

(
hu2 + gh2

)
, H1 = hu , H2 = h ,

D0 = −

(
0 Dx

Dx 0

)
, D1 = −1

2

(
2gDx uDx + ux

uDx hDx +Dxh

)
,

D2 = −

 g(uDx +Dxu)

(
1

2
u2 + 2gh

)
Dx + uux + ghx(

1

2
u2 + 2gh

)
Dx + ghx uhDx +Dxuh


Recursion operators:

R1 = D1 · D−1
0 , R2 = D2 · D−1

0 , R3 = D2 · D−1
1 ,
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Dispersion relations

Stability of equilibrium

Linearization about u = u0(x):

uµ(x , t) = uµ
0 + ϵuµ

1 e
i(kx−ωt), µ = 1 . . . ,m,

Dispersion relations:

ω = ω(k), c =
ω

k
= c(k).

Stability: Imω = 0 for all k

Dispersion: linearized waves of different wavelengths travel at different speeds
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Dispersion relations

Full water wave problem:

ϕxx + ϕzz = 0 , 0 < z < h(x , t),

ϕz = 0 at z = 0 ,

ηt + ϕxηx − ϕz = 0 , ϕt +
1
2
(ϕ2

x + ϕ2
z) + gη = 0 at z = h(x , t)

Perturbation of zero state:

h = h0 + η, η = ϵη0 e
i(kx−ωt), ϕ = ϵf (z) e i(kx−ωt)

Dispersion relation:

ω2 = gk tanh kh0, c = c0

√
tanh kh0

kh0
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Dispersion relations

Compare:

Full water wave dispersion relation:

ω2 = gk tanh kh0, c = c0

√
tanh kh0

kh0

SG:

ω =
c0 k√

1 + h2
0 k

2/3
, c =

c0√
1 + h2

0 k
2/3

KdV:

ω = c0 k

(
1− 1

6
h2
0k

2

)
, c = c0

(
1− 1

6
h2
0k

2

)
BBM:

ω =
c0k

1 + h2
0 k

2/6
, c =

c0
1 + h2

0 k
2/6

SW: c ̸= c(k) so no dispersion

ω2 = c20 k
2 , c = c0 =

√
gh0
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Some most common SW models

A diagram of physical relations between some shallow water models:

11) The Camassa-Holm equation (Section 3.12)

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 . (CH)

12) The two-component Camassa-Holm equations (Section 3.13)

ut − uxxt + 3uux − 2uxuxx − uuxxx + ϱϱx = 0 ,

ϱt + (ϱu)x = 0 .
(2-CH)

There are multiple ways to derive PDE systems mentioned in this work. Figure 3.1 shows a
possible set of relationships as per the corresponding Derivation sections.

(NS)

(Euler:2D) (Burgers)

(SG)(Bsq) (BCS:DGH)

(cBsq)(2-CH) (KdV) (BCS:DGH:1)

(W:H)

(W)(KB)

(BBM)(ocBsq) (gSW)

(SW)

(CH)

Figure 3.1: Shallow water models: a relationship diagram.

3.2 Euler equations in two dimensions

The Euler equations describing the dynamics of an incompressible inviscid fluid under the action
of an external volumetric force F are given by

divv = 0 ,

ρ(vt + (v · ∇)v) = − gradP +M .
(3.2.1)

In (3.2.1), the density ρ may in fact be variable, satisfying the advection equation (1.2.5);
however, a common assumption for fluids such as water is ρ = const. We additionally assume
the external force is conservative, satisfying (1.2.7) (such as the gravity force, M = ρg =

68
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PDE naming and the Arnold’s principle

Arnold’s principle

If a model bears a name, it is not the name of the person who discovered it

Examples:

Korteweg-de Vries → Boussinesq (25 years earlier)

Su-Gardner (Green-Naghdi) → Serre (13 and 21 years earlier)

Camassa-Holm → Fokas and Fuchssteiner (12 years earlier)
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Some other elements

Too many things left out...

Variational/Lagrangian structure: self-adjointness of linearization

Painlevé property: all linear equations pass; related to integrability; Camassa-Holm
as counterexample

Solution existence, uniqueness, stability

Numerical aspects

MANY extended PDE models

Multi-dimensional versions

... and more ...
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The end

Thank you for your attention!
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