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A B S T R A C T

The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by
a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–
Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of
fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution
that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field
component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation
in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal
flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of
the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven
analytically and illustrated numerically.
1. Introduction

In the general context of fluid dynamics, physically meaningful
exact solutions to the fundamental Euler and Navier–Stokes equations,
even those possessing some symmetries, are extremely challenging to
find. At the same time, when known, and even when rather simple,
such solutions represent a valuable resource, possibly on their own
as physical models, and/or as a basis to test numerical methods for
direct numerical simulations of more complex setups. The same is true
about solutions to ideal magnetohydrodynamics (MHD) equations and
related models. In recent years, some progress has been made in these
directions. For example, new conservation laws of Euler and Navier–
Stokes equations have been found in helical symmetry and in a new
time-dependent helical coordinate system [1,2]; new exact solutions of
Navier–Stokes equations were derived in [3] through similarity reduc-
tions; symmetry transformations mapping solutions of MHD equations
into families of new solutions were found [4,5]; families of new exact
plasma equilibria with axial and helical symmetry were derived in [6–
8], and so on. The geometrical feature of equilibrium fluid and plasma
models, the existence of flux (magnetic) surfaces to which the velocity
and/or magnetic field is tangent, is an essential component of modern
analysis of plasma phenomena (e.g., [9,10]).

In 1894 Micaiah John Muller Hill [11] published an article describ-
ing a sphere moving symmetrically with regards to an axis through a
stationary fluid. Using cylindrical coordinates and assuming that the

∗ Corresponding author.
E-mail addresses: jmk810@usask.ca (J.M. Keller), cheviakov@math.usask.ca (A.F. Cheviakov).

1 The Bragg–Hawthorne equation, called Grad-Shafranov equation in plasma physics, was first derived in 1898 by William Mitchinson Hicks, and only gained
popularity after being re-derived in 1950 by William Hawthorne and Stephen Bragg.

azimuthal velocity component is zero, Hill was able to find an exact
solution of equilibrium dynamic Euler equations that describes a vortex
represented by a set of toroidal flux surfaces inside the sphere and an
outside solution featuring velocity that decays towards infinity. In the
plasma physics context, in the magnetohydrodynamics approximation,
a static equilibrium of a plasma is described by the same equations
as a dynamic equilibrium fluid flow. A vortex-type solution in the
MHD framework was put forth by Morikawa [12] (see also [13–15]),
and then, more generally, by Bobnev [16] who considered a spherical
vortex in an ideally conducting fluid. In this work, several small mis-
takes were made, in particular, the plasma vortex described by Bobnev
in fact corresponded to a lower internal pressure on the magnetic
axis, and a higher outside pressure, and thus could not represent a
fireball in a vacuum as claimed by the author. Interestingly enough,
in 1995, R. Kaiser and D. Lortz [17] again considered the problem of a
spherical vortex in MHD equilibrium to model ball lighting, essentially
re-deriving the vortex solution Bobnev found earlier.

Axially symmetric equilibrium solutions of Euler incompressible
flows and static MHD equations satisfy the Bragg–Hawthorne equa-
tion.1 Broad literature is devoted to this equation, its variants, and
applications, for different forms of arbitrary functions it involves. Some
important works, including Refs. [12–15,17,18], considered the Bragg–
Hawthorne equation in spherical coordinates, which led to families
of particular exact solutions associated with spherical boundaries or
separatrices in fluid or plasma domains.
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In the current paper, first, we are interested in writing down a
modern and much simpler derivation of Hill’s spherical vortex, using
the Galilei symmetry admitted by fluid dynamics equations, going
to a moving frame of reference, and finding an equilibrium solution
there. The equilibrium solution of Euler’s equations in the moving
frame is found using axial symmetry, that is, with the help of the
corresponding reduction described by the Bragg–Hawthorne equation.
written in spherical coordinates (Section 2). In Section 3, we review
the problem of a stationary plasma vortex, and the corresponding
exact solution of static magnetohydrodynamics equations. This solution
family has a nonzero azimuthal magnetic field component. Using the
correspondence between static plasma equilibria and dynamic equilib-
rium fluid flow, the Hill’s vortex solution can be generalized to include
nonzero azimuthal velocity component (Section 4). Section 5 considers
spherical coordinate separation of variables for the Grad-Shafranov
equation to produce new exact MHD vortex-type solutions spanned by
toroidal magnetic surfaces and bounded by a current sheet. Finally,
in Section 6, we revisit the question of stability of Hill’s spherical
vortex itself. The linear instability of the Hill’s vortex with respect
to certain axisymmetric perturbations that preserve circulation was
shown in Ref. [19]. A nonlinear stability study was undertaken in the
paper [20] which was based on the perturbation of magnetic surfaces,
but contains few details, and results we were unable to reproduce. In
our study, the stability of the Hill’s vortex is examined by performing
an axisymmetric perturbation of the spherical boundary surface of the
vortex. The problem for such a perturbation is shown to yield a third-
order ODE eigenvalue problem, which has solutions corresponding to
unbounded exponential growth of certain perturbations, thus proving
the Hill’s vortex nonlinear instability. The paper is concluded with a
discussion in Section 7.

2. Hill’s spherical vortex: a modern derivation

A sphere of radius 𝑅 moving through a stationary fluid directed
long the 𝑧 axis can be modeled with the incompressible Euler equa-

tions. Starting with the equations of motion for an incompressible fluid

𝜕𝐕
𝜕𝑡

+ (𝐕 ⋅ ∇)𝐕 = − 1
𝜒

grad 𝑃 , (2.1a)

div 𝐕 = 0, (2.1b)

where 𝐕 denotes the fluid velocity, 𝑝 the pressure, and 𝜒 the density,
he well known result that the incompressible Euler equations are in-
ariant under a general Galilean transformations motivates the change
f variables

(𝐫, 𝑡) = 𝐯̃(𝐫 −𝑍(𝑡)𝐞𝑧) +𝑍′(𝑡)𝐞𝑧, 𝑃 (𝐫, 𝑡) = 𝑃 (𝐫 −𝑍(𝑡)𝐞𝑧). (2.2)

Here 𝑍(𝑡) is an arbitrary function of time and 𝐯̃, 𝑃 denote fluid
parameters measured in the corresponding moving frame of reference.

Assuming that the moving frame of reference is moving at the same
speed as the spherical vortex, and the density is constant, after omitting
the tilde on the new variables, the Euler equations can be written as

curl 𝐯 × 𝐯 = grad 𝐻, (2.3a)

div 𝐯 = 0, (2.3b)

where

𝐻 = −
(

𝑃
𝜒

+ 𝐯2
2

)

(2.4)

is a modified pressure term. In the rest of this section 𝐻 will simply
e referred to as the pressure. Assuming that the motion is axially
ymmetric, it is natural to use cylindrical coordinates (𝑟, 𝜙, 𝑧) and set
𝐯 and 𝐻 independent of the azimuthal angle 𝜙. In doing so, one can
educe (2.3) to the well known Bragg–Hawthorne equation

𝜕2𝜓
+
𝜕2𝜓

− 1 𝜕𝜓 + 𝐹 (𝜓)𝐹 ′(𝜓) = 𝑟2𝐻 ′(𝜓). (2.5)
2

𝜕𝑟2 𝜕𝑧2 𝑟 𝜕𝑟 R
In (2.5), 𝜓 is the stream function that arises from the incompressibility
condition (2.3b). Indeed, in the axial symmetry, (2.3b) has the form of
a two-dimensional divergence

div 𝐯 ≡ 1
𝑟
(𝑟𝑣𝑟)𝑟 + (𝑣𝑧)𝑧,

hich yields (𝑟𝑣𝑟)𝑟 + (𝑟𝑣𝑧)𝑧 = 0, and is the integrability condition of the
DEs

𝑣𝑟 = 𝜓𝑧, 𝑟𝑣𝑧 = −𝜓𝑟, (2.6)

efining the stream function. In terms of 𝜓 , the velocity is given by

𝐯 =
𝜓𝑧
𝑟
𝐞𝑟 +

𝐹 (𝜓)
𝑟

𝐞𝜙 +
−𝜓𝑟
𝑟

𝐞𝑧, (2.7)

nd 𝐹 , 𝐻 are arbitrary functions of 𝜓 . Following Hill’s assumption who
onsidered a two-component axially symmetric flow, the azimuthal
omponent of the velocity is set to zero, giving the condition

(𝜓) = 0. (2.8)

hen (2.8) holds, one has the simplified Bragg–Hawthorne equation

𝜕2𝜓
𝜕𝑟2

+
𝜕2𝜓
𝜕𝑧2

− 1
𝑟
𝜕𝜓
𝜕𝑟

= −𝑟2𝐻 ′(𝜓), (2.9)

nd the velocity given by

=
𝜓𝑧
𝑟
𝐞𝑟 +

−𝜓𝑟
𝑟

𝐞𝑧. (2.10)

n the case (2.8), from (2.9) and (2.10), it follows that the fluid vorticity
= curl 𝐯 is given by

= 𝑟2𝐻 ′(𝜓)𝐞𝜙. (2.11)

ence when the pressure is constant, 𝐻 = 𝐻0, one has 𝝎 = 0, which
corresponds to an irrotational flow.

The arbitrary function 𝐻(𝜓) can be chosen such that (2.9) becomes
eparable in spherical coordinates, and the asymptotics of the pressure
(𝜓) is physically relevant. As far as separability of (2.9) goes, 𝐻 ′(𝜓)

enerally cannot be of higher degree than linear in 𝜓 .2 In regards
o the asymptotics, the pressure far away from the sphere must not
hange and needs to be the ambient pressure 𝐻0. In particular, one may
mploy a piecewise linear form of 𝐻(𝜓) with appropriate matching at
he boundary:

(𝜓) =

{

𝐻0 − 10𝛿𝜓, 𝜌 < 𝑅,
𝐻0, 𝜌 > 𝑅.

(2.12)

ere the coefficient 10𝛿 is chosen to make the calculation cleaner. The
roblem is now decomposed into two pieces: the rotational flow inside
he sphere, satisfying

(𝜓) = 𝐻0 − 10𝛿𝜓,
𝜕2𝜓
𝜕𝑟2

+
𝜕2𝜓
𝜕𝑧2

− 1
𝑟
𝜕𝜓
𝜕𝑟

= 10𝛿𝑟2, (2.13)

and the irrotational flow outside of the sphere, defined by

𝐻(𝜓̃) = 𝐻0,
𝜕2𝜓̃
𝜕𝑟2

+
𝜕2𝜓̃
𝜕𝑧2

− 1
𝑟
𝜕𝜓̃
𝜕𝑟

= 0. (2.14)

Along with these two equations, there is the condition that both
ieces must have matching pressure and velocity components at the
oundary of the sphere (𝑟2 + 𝑧2 = 𝑅2). For matching pressure, this
mplies that for the inside solution, 𝜓(𝑟, 𝑧) = 0 when 𝑟2 + 𝑧2 = 𝑅2. It
urns out that one can effectively seek solutions to (2.13) and (2.14) in
pherical coordinates (𝜌, 𝜃, 𝜙), in the separated form 𝜓(𝜌, 𝜃) = 𝑅(𝜌)𝛩(𝜃).
ere standard spherical coordinates are related to cylindrical coordi-
ates by 𝑟 = 𝜌 sin 𝜃, 𝑧 = 𝜌 cos 𝜃. Converting the above problem into
pherical coordinates gives
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

]

𝜓 = 10𝛿𝜌2 sin2 𝜃 (2.15)

2 Multiple exact solutions of the Bragg–Hawthorne equation and its general-
zations have been obtained in cases when it becomes linear; see, for example,
efs. [8,21–24].



Fundamental Plasma Physics 11 (2024) 100063J.M. Keller and A.F. Cheviakov

i

t

𝑇

𝛩

b
(

T
c
c
w

𝓁

B
0

𝑎

T

𝜓

h

T

w

inside the sphere, and
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

]

𝜓 = 0 (2.16)

outside the sphere. The velocity components inside and outside are
given by

𝐯𝑖𝑛 =
1

𝜌2 sin 𝜃
𝜕𝜓
𝜕𝜃

𝐞𝜌 −
1

𝜌 sin 𝜃
𝜕𝜓
𝜕𝜌

𝐞𝜃 , 𝐯𝑜𝑢𝑡 =
1

𝜌2 sin 𝜃
𝜕𝜓̃
𝜕𝜃

𝐞𝜌 −
1

𝜌 sin 𝜃
𝜕𝜓̃
𝜕𝜌

𝐞𝜃 .

(2.17)

Along with this, the matching conditions and the need for 𝜓(𝜌, 𝜃) to be
regular at 𝜌 = 0 give the following four boundary conditions

𝜓(𝑅, 𝜃) = 0, |𝜓(0, 𝜃)| < ∞,
𝜕𝜓
𝜕𝜃

|

|

|

|𝜌=𝑅
=
𝜕𝜓̃
𝜕𝜃

|

|

|

|𝜌=𝑅
,

𝜕𝜓
𝜕𝜌

|

|

|

|𝜌=𝑅
=
𝜕𝜓̃
𝜕𝜌

|

|

|

|𝜌=𝑅
.

(2.18)

A general solution for the inhomogeneous inside Eq. (2.15) is sought
n the form of 𝜓(𝜌, 𝜃) = 𝜓(𝜌, 𝜃)𝑔𝑒𝑛 + 𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 where 𝜓(𝜌, 𝜃)𝑔𝑒𝑛 is a

general solution to the homogeneous version of (2.15) given by
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

]

𝜓 = 0, (2.19)

and 𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 is a particular solution to (2.15). One particular solution
is easily found to be

𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 = 𝛿𝜌4 sin2 𝜃. (2.20)

The general solution to (2.19) is obtained by separation of variables,
𝜓(𝜌, 𝜃) = 𝑅(𝜌)𝛩(𝜃). Upon substitution the separated form into (2.19)
one arrives at two ODEs

𝜌2𝑅′′ − 𝑅 = 0, (2.21)

(

(− csc 𝜃)𝛩′)′ = 𝛩 csc 𝜃, (2.22)

where  is a separation constant to be determined. Using the change
of variables

𝑡 = cos 𝜃, 𝛩(𝜃) = 𝑇 (𝑡),

Eq. (2.22) becomes

(1 − 𝑡2)𝑇 ′′(𝑡) + 𝑇 (𝑡) = 0. (2.23)

This ODE can be connected to the associated Legendre ODE with the
transformation 𝑇 (𝑡) =

√

1 − 𝑡2𝑃 (𝑡), leading to

(1 − 𝑡2)𝑃 ′′(𝑡) − 2𝑡𝑃 ′(𝑡) +
(

 − 1
1 − 𝑡2

)

𝑃 (𝑡) = 0. (2.24)

The Eq. (2.24) is related to the associated Legendre ODE [17] given by

(1 − 𝑥2)𝑃 ′′(𝑥) − 2𝑥𝑃 ′(𝑥) +
(

𝑙(𝑙 + 1) − 𝑚2

1 − 𝑥2

)

𝑃 (𝑥) = 0. (2.25)

In particular, (2.24) matches (2.25) when 𝑚 = 1 and  = 𝓁(𝓁 + 1).
The Eq. (2.25) has nonsingular solutions on the interval [−1, 1] only
when 𝓁 and 𝑚 are integer values [25]. For 𝑚 = 1, the associated
Legendre polynomials have the form

𝑃𝓁(𝑥) = −
√

1 − 𝑥2 𝑑
𝑑𝑥

𝓁(𝑥), (2.26)

where 𝓁 refers to the 𝓁th order Legendre polynomial. One then arrives
at the regular solutions to (2.23) given by

𝑇𝓁(𝑡) = −(1 − 𝑡2) 𝑑
𝑑𝑡

𝓁 ,

hat can be written as

𝓁(𝑡) = (𝓁 + 1)𝓁+1(𝑡) − (𝓁 + 1)𝑡𝓁(𝑡). (2.27)

This gives 𝛩(𝜃) as
3

𝓁(𝜃) = (𝓁 + 1)𝓁+1(cos 𝜃) − (𝓁 + 1) cos 𝜃 𝓁(cos 𝜃). (2.28)
The value  = 𝓁(𝓁 + 1) can now be substituted into (2.21) and yields

𝜌2𝑅′′(𝜌) − 𝓁(𝓁 + 1)𝑅(𝜌) = 0.

The latter ODE has the solution

𝑅𝓁(𝜌) = 𝑎𝓁𝜌
𝓁+1 + 𝑏𝓁𝜌−𝓁 .

As the solution is required to be regular at 𝜌 = 0, 𝑏𝓁 will be set to zero.
Separated solutions to the homogeneous PDE (2.19) are therefore given
by

𝜓𝓁(𝜌, 𝜃) = 𝑎𝓁𝜌
𝓁+1𝛩𝓁(𝜃), 𝓁 = 0, 1, 2,… , (2.29)

giving the general solution for 𝜓 inside the sphere in terms of the
particular solution (2.20) and a Fourier series:

𝜓(𝜌, 𝜃) = 𝛿𝜌4 sin2 𝜃 +
∞
∑

𝓁=0
𝑎𝓁𝜌

𝓁+1𝛩𝓁(𝜃). (2.30)

The condition that the pressure be continuous across the spherical
oundary reduces to the condition that 𝜓(𝑅, 𝜃) = 0, as specified in
2.18). One consequently has
∞
∑

𝓁=0
𝑎𝓁𝑅

𝓁+1𝛩𝓁(𝜃) = −𝛿𝑅4 sin2 𝜃. (2.31)

he solutions 𝛩𝓁(𝜃) form a complete orthogonal basis, since (2.22) is a
lassical Sturm–Liouville second-order linear ODE with weight 𝑤(𝜃) =
sc 𝜃. Using the observation that 𝛩1(𝜃) = − sin2 𝜃 Eq. (2.31) can be
ritten as

∞
∑

=0
𝑎𝓁𝑅

𝓁+1𝛩𝓁(𝜃) = 𝛿𝑅4𝛩1(𝜃). (2.32)

y multiplying the above equation by −csc 𝜃 𝛩𝓁(𝜃) and integrating from
< 𝜃 < 𝜋 one arrives at

𝓁𝑅
𝓁+1 =

− ∫ 𝜋0 𝛿𝑅4 csc 𝜃 𝛩1(𝜃)𝛩𝓁(𝜃) 𝑑𝜃

− ∫ 𝜋0 csc 𝜃 𝛩2
𝓁(𝜃) 𝑑𝜃

.

The right hand side is zero due to the orthogonality of 𝛩𝓁(𝜃) for all 𝓁
except when 𝓁 = 1. In this case one obtains the condition that 𝑎1 = 𝛿𝑅2.

herefore the solution inside the sphere can be written as

(𝜌, 𝜃) = 𝛿𝜌2 sin2 𝜃(𝜌2 − 𝑅2). (2.33)

For the outside of the sphere, the solution is the same as the
omogeneous solution to (2.15), and is given by the series

𝜓̃(𝜌, 𝜃) =
∞
∑

𝓁=0

(

𝑐𝓁𝜌
𝓁+1 +

𝑑1
𝜌

)

𝛩𝓁(𝜃). (2.34)

he fourth condition in (2.18) yields
∞
∑

𝓁=0

(

𝑐𝓁(𝓁 + 1)𝑅𝓁 −
𝑑1
𝑅2

)

𝛩𝓁(𝜃) = 3𝛿𝑅3 sin2 𝜃. (2.35)

Using the orthogonality of 𝛩𝓁(𝜃) as discussed before, one again has
𝓁 = 1. Lastly, the third condition in (2.18) gives
(

𝑐𝓁𝑅
2 +

𝑑1
𝑅

)

= 0. (2.36)

hich leads to 𝑐1 = −𝑑1∕𝑅3. Substituting this back into (2.35) with
𝓁 = 1, one finally obtains the complete solution for the stream function
in the whole space. It is given by

𝜓(𝜌, 𝜃) =

⎧

⎪

⎨

⎪

⎩

𝛿𝜌2 sin2 𝜃(𝜌2 − 𝑅2), 𝜌 < 𝑅,
2
3
𝛿𝑅2 sin2 𝜃

(

𝜌3 − 𝑅3

𝜌

)

, 𝜌 > 𝑅.
(2.37)

This can be written in cylindrical coordinates as

𝜓(𝑟, 𝑧) =

⎧

⎪

⎨

⎪

𝛿
(

(𝑟2𝑧2 + 𝑟4) − 𝑅2𝑟2
)

, 𝑟2 + 𝑧2 < 𝑅2,
2 𝛿𝑅2𝑟2

(

1 − 𝑅3

2 2 3∕2

)

, 𝑟2 + 𝑧2 > 𝑅2.
(2.38)
⎩

3 (𝑟 + 𝑧 )
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The velocity components are consequently computed from (2.10)
and are given by

𝑣𝑟 =

⎧

⎪

⎨

⎪

⎩

2𝛿𝑟𝑧, 𝑟2 + 𝑧2 < 𝑅2,
2𝛿𝑅5𝑟𝑧

(𝑟2 + 𝑧2)5∕2
, 𝑟2 + 𝑧2 > 𝑅2,

(2.39a)

𝑣𝑧 =

⎧

⎪

⎨

⎪

⎩

2𝛿
(

𝑅2 − 𝑟2 − 𝑧2
)

, 𝑟2 + 𝑧2 < 𝑅2,
4
3
𝛿𝑅2 + 2𝛿𝑅5

3
(𝑟2 − 2𝑧2)
(𝑟2 + 𝑧2)5∕2

, 𝑟2 + 𝑧2 > 𝑅2.
(2.39b)

Moving back into the lab frame using the Galilei transformation
given by (2.2), one arrives at the following time-dependent fluid ve-
locity component expressions:

𝑉𝑟 =

⎧

⎪

⎨

⎪

⎩

2𝛿𝑟(𝑧 −𝑍(𝑡)), 𝑟2 + (𝑧 −𝑍(𝑡))2 < 𝑅2

2𝛿𝑅5𝑟(𝑧 −𝑍(𝑡))
(𝑟2 + (𝑧 −𝑍(𝑡))2)5∕2

, 𝑟2 + (𝑧 −𝑍(𝑡))2 > 𝑅2,
(2.40a)

and

𝑉𝑧 =

⎧

⎪

⎨

⎪

⎩

𝑍′(𝑡) + 2𝛿
(

𝑅2 − 𝑟2 − (𝑧 −𝑍(𝑡))2
)

, 𝑟2 + (𝑧 −𝑍(𝑡))2 < 𝑅2,

𝑍′(𝑡) + 4
3
𝛿𝑅2 + 2𝛿𝑅5

3
(𝑟2 − 2(𝑧 −𝑍(𝑡))2)
(𝑟2 + (𝑧 −𝑍(𝑡))2)5∕2

, 𝑟2 + (𝑧 −𝑍(𝑡))2 > 𝑅2.

(2.40b)

In particular, the center of the vortex moves along the 𝑧-axis according
to the position function 𝑍(𝑡). The pressure in the stationary frame of
reference is given by

𝐻(𝑟, 𝑧) =

{

𝐻0 − 10𝛿2
(

𝑟2
(

(𝑧 −𝑍(𝑡))2 + 𝑟2 − 𝑅2)) , 𝑟2 + (𝑧 −𝑍(𝑡))2 < 𝑅2,

𝐻0, 𝑟2 + (𝑧 −𝑍(𝑡))2 > 𝑅2.

(2.41)

One additional boundary condition that can be considered is the be-
havior of the velocity far away from the spherical vortex. In particular,
if the fluid that the sphere is moving through is stationary, it is natural
to demand 𝑉𝑟, 𝑉𝑧 → 0 as 𝑟2 + 𝑧2 → ∞. The first limit for 𝑉𝑟 is trivially
satisfied, lim𝑟2+𝑧2→∞ 𝑣𝑟 = 0, however, for the 𝑧 component of velocity,
𝑣𝑧 one gets

lim
𝑟2+𝑧2→∞

𝑣𝑧 = 𝑍′(𝑡) + 4
3
𝛿𝑅2 = 0. (2.42)

This gives the additional condition that 𝑍′(𝑡) = − 4
3 𝛿𝑅

2, and implies
that for the ambient velocity to vanish at infinity, the group velocity
of the moving spherical vortex must be constant, with a speed that is
proportional to the square of the radius. :

𝑍(𝑡) = 𝑍0 −
4
3
𝛿𝑅2𝑡. (2.43)

An illustration of the Hill’s vortex cross-section is given in Fig. 1.
The vortex is comprised of nested toroidal flux surfaces on the inside
of the sphere, and unbounded flux surfaces in the outside region. The
spherical surface constitutes a separatrix between the two families of
the flux surfaces, with X-points where it meets the 𝑧-axis.

3. A stationary spherical plasma vortex

A similar problem to Hill’s spherical vortex is the concept of a
spherical vortex moving through an ideally conducting fluid. With this
problem, negligibly small fluid motion (𝐕 = 0) is assumed which
gives the starting point as the static equilibrium magnetohydrodynamic
(MHD) equations

curl 𝐁 × 𝐁 = 𝜇 grad 𝑃 , (3.1a)

div 𝐁 = 0, (3.1b)
4

Fig. 1. A cross-section of surfaces 𝐻(𝜓) = const in the lab frame given by (2.41). Here
𝑅 = 1, 𝐻0 = 1, 𝛿 = 1 and 𝑡 = 0. The black arrows correspond to the velocity vectors on
a given surface. Via the first equation of (2.3), both 𝐯 and curl 𝐯 are tangent to this
surface.

where 𝜇 is the magnetic permeability coefficient. Here, the main dif-
ferences between Hill’s spherical vortex and this stationary conducting
spherical vortex is: the search for 𝐯 inside and outside the sphere is
replaced with the search for the magnetic field 𝐁, and the azimuthal
component of this magnetic field is not assumed to be zero. Two
assumptions of this conducting spherical vortex are that the pressure
goes to a constant value taken to be zero at the boundary of the sphere
(similar to Hill’s spherical vortex), and every magnetic field component
goes to zero at the boundary. The last condition here regarding the
magnetic field is chosen in this way because asymptotically, the mag-
netic field must decay at least as quickly as a dipole moment. It was
shown in [17] that the only solution outside of the sphere consistent
with proper asymptotic behavior of the internal pressure and magnetic
field is 𝐁 = 0.

The spherical magnetic vortex is assumed to have inherent axial
symmetry which allows the reduction of (3.1) to a single PDE

𝜕2𝜓
𝜕𝑟2

+
𝜕2𝜓
𝜕𝑧2

− 1
𝑟
𝜕𝜓
𝜕𝑟

+ 𝐼(𝜓)𝐼 ′(𝜓) = −𝑟2𝑃 ′(𝜓). (3.2)

equivalent to the Bragg–Hawthorne equation (2.5) and called in the
MHD context the Grad-Shafranov equation. The magnetic field compo-
nents are given by

𝐁 =
𝜓𝑧
𝑟
𝐞𝑟 +

𝐼(𝜓)
𝑟

𝐞𝜙 −
𝜓𝑟
𝑟
𝐞𝑧. (3.3)

Inside of the sphere, the pressure 𝑃 (𝜓) and the arbitrary function
related to the toroidal magnetic field 𝐼(𝜓) are taken to be linear (as
any higher power series expansion of 𝑃 (𝜓) and 𝐼(𝜓) makes (3.2) not
separable in spherical coordinates). Therefore, these arbitrary functions
are written as (see, e.g., [15])

𝑃 (𝜓) = 𝑃0 − 𝛾𝜓, 𝐼(𝜓) = 𝜆𝜓. (3.4)

The Grad-Shafranov equation now becomes a second order linear ho-
mogeneous PDE. This equation can be converted to spherical coordi-
nates to yield
[

𝜕2 + sin 𝜃 𝜕 ( 1 𝜕 )

+ 𝜆2
]

𝜓 = 𝛾𝜌2 sin2 𝜃, (3.5)

𝜕𝜌2 𝜌2 𝜕𝜃 sin 𝜃 𝜕𝜃
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where the magnetic field is given by

𝐁 = 1
𝜌2 sin 𝜃

𝜕𝜓
𝜕𝜃

𝐞𝜌 +
𝐼(𝜓)
𝜌 sin 𝜃

𝐞𝜙 − 1
𝜌 sin 𝜃

𝜕𝜓
𝜕𝜌

𝐞𝜃 . (3.6)

Following a procedure similar to that of the previous section, 𝜓(𝜌, 𝜃) =
𝜓(𝜌, 𝜃)𝑔𝑒𝑛 + 𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 where 𝜓(𝜌, 𝜃)𝑔𝑒𝑛 is a general solution to the
homogeneous version of (3.5) given by
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

+ 𝜆2
]

𝜓 = 0, (3.7)

and

𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 =
𝛿
𝜆2
𝜌2 sin2 𝜃. (3.8)

The general solution to (3.7) is obtained by a separated solution
𝜓(𝜌, 𝜃) = 𝑅(𝜌)𝛩(𝜃). Upon substituting the separated form into (3.7) one
arrives at the two ODEs

𝜌2𝑅′′(𝜌) − (𝑐 + 𝜆2)𝑅(𝜌) = 0, (3.9)

(

(− csc 𝜃)𝛩′)′ = (csc 𝜃)𝛩. (3.10)

One can notice that (3.10) is the exact same as in the previous section
given by (2.22). Therefore, due to the sin2 𝜃 dependence in (3.8) and the
orthogonality of 𝛩𝓁(𝜃) given by (2.28), one can conclude in a similar
fashion to the previous section that the only value of 𝓁 which satisfies
the condition of the pressure 𝑃 going to the constant ambient pressure
𝑃0 on the boundary is 𝓁 = 1. This gives the following separated ansatz
to use:

𝜓(𝜌, 𝜃) = 𝐺(𝜌)𝜌2 sin2 𝜃. (3.11)

Upon substituting the above into Eq. (3.5), the second order linear ODE
on 𝐺(𝜌) is obtained:

𝐺′′(𝜌) + 4
𝜌
𝐺′(𝜌) + 𝐺(𝜌)𝜆2 = 𝛾. (3.12)

This ODE equation, along with the following physical conditions gives
a well posed eigenvalue problem [16].

1. To guarantee a finite magnetic energy inside the sphere, lim𝜌→0
|𝐺(𝜌)| < ∞.

2. The magnetic field components given by (3.6) must vanish at
the domain boundary, as discussed in [16,17], hence 𝐺′(𝑅) =
𝐺(𝑅) = 0.

3. The pressure must go to a constant ambient pressure 𝑃0 at the
boundary, which also implies 𝐺(𝑅) = 0.

One can show that the general solution to (3.12) is given by

𝐺(𝜌) = 𝐶1
𝜌𝜆 sin(𝜌𝜆) + cos(𝜌𝜆)

𝜌3
+ 𝐶2

𝜌𝜆 cos(𝜌𝜆) − sin(𝜌𝜆)
𝜌3

+
𝛾
𝜆2
. (3.13)

From the first condition above, 𝐶1 = 0. The second condition gives a
countable number of normalized eigenvalues 𝜆𝑛 = 𝜆𝑅 corresponding to
the 𝑛th root of the transcendental equation

𝑥2 tan 𝑥 − 3 tan 𝑥 + 3𝑥 = 0. (3.14)

Lastly, the third condition gives a value for 𝛾 depending on the value
of 𝜆𝑛,

𝛾𝑛 = −𝐶2𝜆
2
𝑛
𝜆𝑛 cos 𝜆𝑛 − sin 𝜆𝑛

𝑅5
. (3.15)

This gives the flux function inside of the sphere as

𝜓(𝜌, 𝜃) =

(

𝐶2
(𝜌𝜆𝑛∕𝑅) cos(𝜌𝜆𝑛∕𝑅) − sin(𝜌𝜆𝑛∕𝑅)

𝜌
+
𝜌2𝑅2𝛾𝑛
𝜆2𝑛

)

sin2 𝜃. (3.16)

which can be written in terms of a first order spherical Bessel function
of the first kind, 𝑗1 as

𝜓(𝜌, 𝜃) =

(

𝐶2
𝜌𝜆𝑛 𝑗1

(

𝜌𝜆𝑛
)

+
𝜌2𝑅2𝛾𝑛

2

)

sin2 𝜃. (3.17)
5

𝑅 𝑅 𝜆𝑛
Fig. 2. Pressure profile of static spherical vortex in ideally conducting fluid given by
𝑃 (𝜓𝑛) = 𝑃0 − 𝛾𝑛𝜓𝑛 where 𝜓𝑛 is given by (3.16) for 𝑅 = 1, 𝑛 = 1 and 𝐶2 = 1.

Outside of the sphere 𝜌 > 𝑅 all of the magnetic field components are
zero and the pressure is equal to the ambient pressure 𝑃0. An example
of this solution for 𝑛 = 1 has its pressure shown in Fig. 2.

A few other solutions are shown for higher values of 𝑛. In Fig. 3
pressure profiles 𝑃 (𝜓𝑛) = 𝑃0 − 𝛾𝑛𝜓𝑛 for 𝜓𝑛 given by (3.16) with 𝑛 = 2
and 𝑛 = 3 can be seen. In Fig. 4, 𝑛 = 4 and 𝑛 = 5.

4. A generalized version of Hill’s spherical vortex

In this section, we use the results of Section 3 to generalize the Hill’s
vortex in an ideal fluid (Section 2) onto the case of nonzero toroidal
velocity component.

In a moving frame of reference, assuming axial invariance, the Euler
equations (2.1) can be reduced to the Bragg–Hawthorne equation (2.5).
We start from said equation in spherical coordinates, now without the
assumption that the 𝜙-component of velocity (2.7) vanishes, which
meant 𝐹 (𝜓) = 0 (2.8). We have
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

]

𝜓 + 𝐹 (𝜓)𝐹 ′(𝜓) = −𝐻 ′(𝜓)𝜌2 sin2 𝜃. (4.1)

The arbitrary functions are again chosen as the highest power series
expansion in 𝜓 such that the PDE (4.1) becomes separable, and the
asymptotics of the pressure 𝐻(𝜓) and the toroidal velocity component
function 𝐹 (𝜓) behave physically. As far as separability of (4.1) goes,
both functions cannot be of higher degree then linear in 𝜓 . In regards
to the asymptotics, the pressure far away from the sphere is chosen to
not change, and thus needs to be the ambient pressure 𝐻0:

𝐻(𝜓) =

{

𝐻0 − 𝛾𝜓, 𝜌 < 𝑅,
𝐻0, 𝜌 > 𝑅.

(4.2)

Similarly, 𝐹 (𝜓) must also not change far away from the sphere. how-
ever, 𝐹 (𝜓) = 𝐹0 where 𝐹0 = const is not allowed as it corresponds to a
singular 𝑉 𝜙 (cf. (2.7)). This gives the free function form

𝐹 (𝜓) =

{

𝜆𝜓, 𝜌 < 𝑅,
0, 𝜌 > 𝑅.

(4.3)

The above ansatz allows one to decompose the spherical Bragg-
Hawthorne equation into two problems as before, one inside and one
outside of the sphere, namely:
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Fig. 3. Pressure profile of static spherical vortex in ideally conducting fluid given by 𝑃 (𝜓𝑛) = 𝑃0 − 𝛾𝑛𝜓𝑛 where 𝜓𝑛 is given by (3.16) for 𝐶2 = 1, 𝑅 = 1, 𝑛 = 2 on the left, and 𝑛 = 3
on the right.
Fig. 4. Pressure profile of static spherical vortex in ideally conducting fluid given by 𝑃 (𝜓𝑛) = 𝑃0 − 𝛾𝑛𝜓𝑛 where 𝜓𝑛 is given by (3.16) for 𝐶2 = 1, 𝑅 = 1, 𝑛 = 4 on the left, and 𝑛 = 5
on the right.
1. Rotational flow inside the sphere 𝜌 < 𝑅

𝐻(𝜓) = 𝐻0 − 𝛾𝜓, (4.4a)
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

+ 𝜆2
]

𝜓 = 𝛾𝜌2 sin2 𝜃. (4.4b)

2. Irrotational, force-free flow outside the sphere 𝜌 > 𝑅

𝐻(𝜓̃) = 𝐻0, (4.5a)
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

]

𝜓̃ = 0. (4.5b)

The velocity components inside and outside are given by

𝐯𝑖𝑛 =
1

𝜌2 sin 𝜃
𝜕𝜓
𝜕𝜃

𝐞𝜌 +
𝐹 (𝜓)
𝜌 sin 𝜃

𝐞𝜙 − 1
𝜌 sin 𝜃

𝜕𝜓
𝜕𝜌

𝐞𝜃 , (4.6)

and

𝐯𝑜𝑢𝑡 =
1

𝜌2 sin 𝜃
𝜕𝜓̃
𝜕𝜃

𝐞𝜌 −
1

𝜌 sin 𝜃
𝜕𝜓̃
𝜕𝜌

𝐞𝜃 , (4.7)

respectively. The matching condition for the pressure and velocity and
the regularity of 𝜓(𝜌, 𝜃) at 𝜌 = 0 yield the conditions

𝜓(𝑅, 𝜃) = 0, |𝜓(0, 𝜃)| < ∞,
𝜕𝜓
𝜕𝜃

|

|

|

|𝜌=𝑅
=
𝜕𝜓̃
𝜕𝜃

|

|

|

|𝜌=𝑅
,

𝜕𝜓
𝜕𝜌

|

|

|

|𝜌=𝑅
=
𝜕𝜓̃
𝜕𝜌

|

|

|

|𝜌=𝑅
.

(4.8)
6

From the last section, a solution inside the sphere that is bounded at
the origin was found to be

𝜓(𝜌, 𝜃) =
(

𝐶
𝜌𝜆 cos(𝜌𝜆) − sin(𝜌𝜆)

𝜌
+
𝛾
𝜆2
𝜌2
)

sin2 𝜃, (4.9)

and from the first section, the solution outside of the sphere is given
by

𝜓̃(𝜌, 𝜃) = 𝜌2 sin2 𝜃
(

𝐴 + 𝐵
𝜌3

)

. (4.10)

After applying the matching pressure boundary condition given by
the first equation in (4.8) one obtains the transcendental equation
between 𝜆 and 𝛾

𝐶𝜆2𝑅 cos(𝑅𝜆) − 𝐶𝜆 sin(𝑅𝜆) + 𝑅3𝛾 = 0. (4.11)

Using the third boundary condition in (4.8) one obtains

𝐴 = − 𝐵
𝑅3

, (4.12)

which gives the outside solution

𝜓̃(𝜌, 𝜃) = 𝐵𝜌2 sin2 𝜃
(

1 − 1
)

. (4.13)

𝜌3 𝑅3
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Lastly, the final boundary condition in (4.8) allows one to solve for
𝐵 in terms of the other constants, giving

𝐵 =
𝐶𝑅𝜆3 cos(𝑅𝜆) + 𝐶𝜆4𝑅2 sin(𝑅𝜆) − 𝐶𝜆2 sin(𝑅𝜆) − 2𝛾𝑅3

3𝜆2
. (4.14)

The three conditions on the constants given by (4.11), (4.12) and
(4.14) yield 𝜓(𝜌, 𝜃) in the whole space:

𝜓(𝜌, 𝜃)

=

(

𝐶
𝜌𝜆 cos(𝜌𝜆) − sin(𝜌𝜆)

𝜌
+
𝛾
𝜆2
𝜌2
)

sin2 𝜃, 𝜌 < 𝑅,

𝐶𝑅𝜆3 cos(𝑅𝜆)+𝐶𝜆4𝑅2 sin(𝑅𝜆)−𝐶𝜆2 sin(𝑅𝜆)−2𝛾𝑅3

3𝜆2
𝜌2 sin2 𝜃

(

1
𝑅3

− 1
𝜌3

)

, 𝜌 > 𝑅.

(4.15)

This solution (4.15) of the spherical Grad-Shafranov Eqs. (4.4) and (4.5)
is a more general version of the original Hill’s spherical vortex stream
function (2.37) because:

• The 𝜙 component of the velocity is non-zero inside of the sphere,
whereas Hill’s original vortex solution had 𝑉𝜙 = 0.

• There is the choice of freedom for three constants, 𝐶, 𝜆 or 𝛾, and
𝑅, whereas Hill’s original solution only has a choice of freedom
for 𝑅 and one constant 𝛿.

The asymptotics of the velocity field outside of the sphere behaves
in a suitable manner as this is the same outside solution of Hill’s
spherical vortex, given in cylindrical coordinates by (2.39a) and (2.39b)
which has correct asymptotics as discussed in [11].

One interesting remark in relation to the MHD vortex of Section 3
is that if the outside magnetic field in the vortex must vanish outside,
which corresponds in this case to the coefficient of the outside solution
given in (4.15) as 𝐵, then this problem reduces to the problem in
the previous section, and the Eqs. (4.11) and (4.14) reduce to the
transcendental equations given by (3.14) and (3.15) as they should.
This requirement was briefly discussed in [17].

5. Spherical coordinate separation of variables for the Grad-
Shafranov equation in the context of the MHD vortex

In Section 3 above, a separated solution in spherical coordinates
to the Grad-Shafranov Eq. (5.1) was obtained to satisfy boundary
conditions that correspond to a spherical vortex moving through a
stationary fluid. During this, the behavior of 𝛩𝑙(𝜃) given by (2.28) was
restricted to 𝓁 = 1 to satisfy the boundary conditions. In this section, a
fully separated solution is considered in its own right.

Proceeding as in Section 3 up until (3.10), the linear Grad-Shafranov
equation in spherical coordinates
[

𝜕2

𝜕𝜌2
+ sin 𝜃

𝜌2
𝜕
𝜕𝜃

( 1
sin 𝜃

𝜕
𝜕𝜃

)

+ 𝜆2
]

𝜓 = 𝛾𝜌2 sin2 𝜃. (5.1)

which corresponds to the free functions from Section 3 given by 𝐼(𝜓) =
𝜆𝜓 and 𝑃 (𝜓) = 𝑃0 − 𝛾𝜓 . A solution in the form of 𝜓(𝜌, 𝜃) = 𝜓(𝜌, 𝜃)𝑔𝑒𝑛 +
𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 is sought with

𝜓(𝜌, 𝜃)𝑝𝑎𝑟𝑡 =
𝛾𝜌2 sin2 𝜃

𝜆2
.

Separated solutions for the homogeneous version of (5.1) are sought in
the form

𝜓(𝜌, 𝜃) = 𝑅(𝜌)𝛩(𝜃). (5.2)

The homogeneous version of Eq. (5.1) then reduces to the two ODEs

𝜌2𝑅′′(𝜌) − ( + 𝜆2)𝑅(𝜌) = 0, (5.3)

𝛩′′(𝜃) − cos 𝜃
sin 𝜃

𝛩′(𝜃) + 𝑐𝛩(𝜃) = 0, (5.4)

where  is a separation constant to be determined. In Section 2, the
separation constant was found to be  = 𝓁(𝓁 + 1) for 𝓁 ∈ N with a
7

Fig. 5. A cross-section of magnetic surfaces where the magnetic surfaces are shown
by 𝑃 (𝜓) = const for 𝑃 = 𝑃0 − 𝛾𝜓 where 𝜓 is given by (5.9). Here 𝛾 = 1, 𝜆 = 1, 𝑛 = 5,
𝑎𝑙 = 𝓁, 𝓁 = 1, 2, 3, 4, 5. Any toroidal surface can be considered a truncated solution with
some outer surface described by a current sheet (see, e.g., [8] for details).

solution to (5.4) given by

𝛩𝓁(𝜃) = (𝓁 + 1)𝓁+1(cos 𝜃) − (𝓁 + 1) cos 𝜃 𝑙(cos 𝜃). (5.5)

The ODE (5.3) yields

𝜌2𝑅′′(𝜌) − (𝓁(𝓁 + 1) + 𝜆2)𝑅(𝜌) = 0. (5.6)

This has a solution in terms of the Bessel function of the first kind

𝑅𝓁(𝜌) =
√

𝜌
(

2𝓁 + 1
2

, 𝜌𝜆
)

. (5.7)

A separated solution to the homogeneous version of (5.1) is thus given
by (5.2) with (5.5) and (5.7):

𝜓𝓁(𝜌, 𝜃) =
√

𝜌
(

2𝓁 + 1
2

, 𝜌𝜆
)

(

(𝓁+1)𝓁+1(cos 𝜃)−(𝓁+1) cos 𝜃𝓁(cos 𝜃)
)

.

(5.8)

Because the PDE (5.1) is linear, any linear combination of the
separated solutions (5.8) with the addition of the particular solution
will also be a solution. This can be written in a general way as

𝜓(𝜌, 𝜃) =
𝛾𝜌2 sin2 𝜃

𝜆2
+

𝑛
∑

𝓁=0
𝑎𝓁𝜓𝓁(𝜌, 𝜃) (5.9)

(see also [15]). Clearly this solution is no longer related to the spherical
vortex but is an MHD equilibrium solution that can be considered in
its own. A sample profile 𝑃 = 𝑃0 − 𝛾𝜓 of constant pressure surfaces, or
equivalently, magnetic surfaces of this static MHD configuration with
𝜓 given by (5.9) can be seen in Fig. 5.

Recall that natural physical requirements on MHD solutions are
regularity and sufficient smoothness of the dependent variable (the
components of 𝐁 in (3.1), (3.3), and the corresponding behavior of the
flux function 𝜓). Additionally, such conditions include the requirement
of finite magnetic energy in the plasma domain  ,

∫
𝐁2

2𝜇
𝑑𝑉 < +∞, (5.10)

and the pressure asymptotics

𝑃 → 𝑃 = const as |𝐱| → +∞. (5.11)
0
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Assuming nonnegative pressure values, one requires 𝑃0 = 0 for vacuum
configurations, whereas 𝑃0 > 0 corresponds to a plasma supported
by the pressure of an ambient medium. If the plasma domain is un-
bounded in one direction 𝑧, the finite energy requirement (5.10) may
be restricted to a slice 𝑧1 ≤ 𝑧 ≤ 𝑧2.

On the boundary surface 𝜕 of the plasma domain, if the magnetic
field does not vanish there, it is commonly tangent to the boundary,
𝐁⋅𝐧 = 0, on the ‘‘inside’’ side of 𝜕 , and zero outside  . In this case, the
plasma domain boundary 𝜕 is a magnetic surface that simultaneously
is a current sheet. Indeed, recall that the volumetric current density is
related to the magnetic field by the equation

𝐉 = 1
𝜇

curl 𝐁. (5.12)

Integration of the PDE (5.12) in a domain transverse to the boundary
yields the surface electric current density given by

𝐊 = 𝐁
𝜇

× 𝐧, (5.13)

that is, the current sheet coinciding with 𝜕 .
Axially symmetric configurations like the one depicted in Fig. 5,

i.e., solutions following from the separated ansatz (5.2) and their linear
combinations (5.9), will often have magnetic surfaces given by closed
curves in the (𝑥, 𝑧) cross-section planes, that is, have the shape of tori
in three dimensions. Such magnetic surfaces, when endowed with a
current sheet as described above, may serve as the boundaries of plasma
domain, with plasma confined within such a surface and magnetic field
vanishing outside. Such configurations yield valid MHD equilibrium
solutions satisfying all necessary physical conditions.

In the context of fluid dynamics, solutions described above, with
𝐁 ≡ 𝐯 now denoting the fluid velocity, may be similarly restricted to
a domain bounded by a given flux surface, with that surface being a
vorticity sheet instead of the current sheet for the MHD model.

6. Instability of the Hill’s spherical vortex

Consider the surface of the sphere 𝜌 = 𝑅 corresponding to the
oundary of the Hill’s spherical vortex (Section 2). The dynamic equa-
ion satisfied by the stream function 𝜓 , found in Hill’s paper [11], is
iven by
(

𝜕
𝜕𝑡

+ 1
𝑟
𝜕𝜓
𝜕𝑧

𝜕
𝜕𝑟

− 1
𝑟
𝜕𝜓
𝜕𝑟

𝜕
𝜕𝑧

)[

1
𝑟2

(

𝜕2𝜓
𝜕𝑧2

+
𝜕2𝜓
𝜕𝑟2

− 1
𝑟
𝜕𝜓
𝜕𝑟

)]

= 0. (6.1)

The main step in the current analysis is the introduction of an axisym-
metric perturbation

𝜌↦ 𝜌 ⋅ (1 + 𝜖ℎ(𝜃, 𝑡)) (6.2)

of the Hill’s solution (2.37) inside the sphere. The substitution yields
the time-dependent stream function

𝜓(𝜌, 𝜃) = 𝛿𝜌2(1 + 𝜖ℎ(𝜃, 𝑡))2 sin2 𝜃(𝜌2(1 + 𝜖ℎ(𝜃, 𝑡))2 − 𝑅2). (6.3)

This perturbed solution is now substituted into the spherical version
of the dynamic 𝜓-Eq. (6.1), in order to analyze the dynamics of the
perturbation ℎ(𝜃, 𝑡). Specifically, we substitute 𝜌 = 𝑅 to analyze the
perturbation of the spherical boundary surface of the vortex itself.
Discarding terms beyond the first order in 𝜖, the following third order
PDE for ℎ(𝜃, 𝑡) (the ℎ-equation) is obtained:

2𝑅𝛿 sin 𝜃 𝜕
3ℎ
𝜕𝜃3

+ 𝜕3ℎ
𝜕𝑡𝜕𝜃2

+ 6𝑅𝛿 cos 𝜃 𝜕
2ℎ
𝜕𝜃2

+ 3cos 𝜃
sin 𝜃

𝜕2ℎ
𝜕𝑡𝜕𝜃

−40𝑅𝛿
sin 𝜃

(

cos2 𝜃 − 17
20

) 𝜕ℎ
𝜕𝜃

+ 20 𝜕ℎ
𝜕𝑡

= 0.
(6.4)

The ℎ-equation is a linear homogeneous PDE and thus is separable: one
can seek its solutions as ℎ(𝜃, 𝑡) = 𝛩(𝜃)𝑇 (𝑡) where 𝛩(𝜃) and 𝑇 (𝑡) satisfy
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the separated ODEs

𝑑3𝛩
𝑑𝜃3

= −3
( cos 𝜃
sin 𝜃

+ 𝜆
6𝑅𝛿 sin 𝜃

) 𝑑2𝛩
𝑑𝜃2

+
(

20 cos
2 𝜃

sin2 𝜃
− 3 cos 𝜃

2𝑅𝛿 sin2 𝜃
𝜆 − 17

sin2 𝜃

)

𝑑𝛩
𝑑𝜃

− 10 𝜆
𝑅𝛿 sin 𝜃

𝛩,

(6.5)

𝑑𝑇
𝑑𝑡

= 𝜆𝑇 . (6.6)

where 𝜆 is the eigenvalue.3
The 𝑇 -equation above has the exponential solution 𝑇 (𝑡) = 𝐴𝑒𝜆𝑡.

The 𝛩 Eq. (6.5) can be converted into a simpler equation with the
transformation 𝑧 = cos 𝜃 with 𝛩(𝜃) = 𝑍(𝑧). This gives

(1−𝑧2)𝑑
3𝑍
𝑑𝑧3

−(2𝐾 + 6𝑧) 𝑑
2𝑍
𝑑𝑧2

+8
(

2 + 𝐾𝑧
1 − 𝑧2

)

𝑑𝑍
𝑑𝑧

− 40𝐾
1 − 𝑧2

𝑍 = 0, (6.7)

where 𝜆 = 4𝐾𝑅𝛿. Solutions to (6.7) can be expressed as a linear combi-
nation of the following functions written in terms of the hypergeometric
functions

𝑍1 = 

([

3
4
+

√

89
4

, 3
4
−

√

89
4

]

, 1
2
, 𝑧2

)

, (6.8a)

𝑍2 = 𝑧

([

5
4
+

√

89
4

, 5
4
−

√

89
4

]

, 3
2
, 𝑧2

)

, (6.8b)

3 = −𝑍1 ∫

𝑧

𝑧0
𝑧(𝑧+1)1+

𝜆
4𝑅𝛿 (𝑧−1)1−

𝜆
4𝑅𝛿 𝑍2𝑑𝑧+𝑍2 ∫

𝑧

𝑧0
(𝑧+1)1+

𝜆
4𝑅𝛿 (𝑧−1)1−

𝜆
4𝑅𝛿 𝑍1𝑑𝑧.

(6.8c)

ere 𝑧0 is an arbitrary constant satisfying 𝑧0 < 𝑧. One should notice
hat both the first and second solution of (6.8) do not depend on the
eparation constant 𝜆. This is because (6.7) can be written as

=
(

𝑑
𝑑𝑧

− 2𝐾
1 − 𝑧2

)

, (6.9)

here

≡
(

1 − 𝑧2
) 𝑑2𝑍
𝑑𝑧2

− 4𝑧𝑑𝑍
𝑑𝑧

+ 20𝑍 = 0. (6.10)

Here (6.10) has the general solution

𝑍 = 𝐶1𝑍1 + 𝐶2𝑍2 (6.11)

where 𝑍1 and 𝑍2 are given in (6.8).
Because 𝜆 appears neither in 𝑍1 nor in 𝑍2, there will exist ℎ(𝜃, 𝑡)

which grows exponentially in time because 𝜆may be positive. However,
one must check and make sure that these ℎ(𝜃, 𝑡) that grow in time
correspond to regular surfaces 𝜓 = const. One such ℎ(𝜃, 𝑡) that gives
regular surfaces utilizes 𝑍1 given above by (6.8a). This yields ℎ(𝜃, 𝑡) as

ℎ(𝜃, 𝑡) = 𝐴𝑒𝜆𝑡

([

3
4
+

√

89
4

, 3
4
−

√

89
4

]

, 1
2
, cos2 𝜃

)

(6.12)

his is now substituted into (6.3). After expanding out, and converting
ack to cylindrical coordinates, one arrives at the stream function form

𝜓(𝑟, 𝑧, 𝑡) = 𝛿𝑟2(𝑟2 + 𝑧2 − 𝑅2)

−2𝐴𝜖2𝛿𝑟2𝑒𝜆𝑡(𝑅2 − 2𝑟2 − 2𝑧2)

([

3
4
+

√

89
4

, 3
4
−

√

89
4

]

, 1
2
, 𝑟2

𝑟2 + 𝑧2

)

.

(6.13)

3 It is interesting to note that because (6.5) is third-order, there is no analog
f Sturm–Liouville theory, and no guarantee of the possibility to obtain a
eneral solution as a linear combination of modes described by (6.5), (6.6).
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Fig. 6. Circle: the cross-section of the unperturbed spherical surface 𝜓(𝑟, 𝑧, 𝑡) = 0 (6.13)
at 𝑡 → −∞ or 𝜖 = 0. Curves: the evolution of the cross-section of the axisymmetric
perturbed surface 𝜓(𝑟, 𝑧, 𝑡) = 0 (6.13) for 𝜖 = 0.0001, 𝛿 = 1, 𝑅 = 1, 𝐴 = 1, 𝜆 = 1, at
several different times 0 < 𝑡 < 16.

Several plots of the evolution of the surface 𝜓 = 0 are shown in Fig. 6.
All instances of the surfaces shown in Fig. 6 are regular smooth axially
symmetric surfaces. Despite the irregular look of these surfaces, the
implicit derivative 𝑑𝑧∕𝑑𝑟 of (6.13) when 𝜓(𝑟, 𝑧, 𝑡) = 0 can be shown
to be zero on the cylindrical axis 𝑟 = 0. The spherical surface in Fig. 6
corresponds to 𝑡→ −∞ or 𝜖 = 0, that is, a vanishing perturbation.

The above analysis leads to the following conclusion that Hill’s
spherical vortex is in general not linearly stable with respect to stream
function surface perturbations described by (6.3).

7. Discussion

The self-propelling Hill’s vortex (2.40) moving in an ambient asymp-
totically stationary fluid is a remarkable exact closed-form analytic
solution of the ideal inviscid fluid dynamics equations. As shown in
Section 2, instead of a tedious derivation presented in the original
Hill’s work [11], Hill’s vortex solution can be obtained systemati-
cally from the equilibrium Euler equations (2.1): through the use of
Galilei transformation (2.2) to pass to the moving frame of refer-
ence (Eqs. (2.3)), the use of axially symmetric velocity representation
(2.7), with vanishing azimuthal component (2.8), through the stream
function 𝜓 that satisfies the Bragg–Hawthorne equation (2.5). The
latter is subsequently considered in the linear case (2.12), converted
to spherical coordinates, and solved by separation of variables inside
and outside the spherical domain (Eqs. (2.15) and (2.16)), to yield the
stream function in cylindrical coordinates (2.38). The corresponding
velocity components (2.39) in the moving frame and (2.40) in the
laboratory frame are continuous across the spherical boundary; velocity
components in the stationary frame of reference satisfy 𝑉𝑟, 𝑉𝑧 → 0 as
𝑟2+𝑧2 → ∞, and the pressure outside the vortex is the constant ambient
pressure (see (2.41)).

Equilibrium fluid flow Eqs. (2.3) coincide with static magnetohy-
drodynamic Eqs. (3.1), with velocity in the former corresponding to the
magnetic field in the latter. We show that the plasma vortex solution
obtained by Bobnev [16] and Kaiser and Lortz [17] (see also Refs. [12–
14]) is a generalization of the Hill’s vortex that can be obtained in the
same manner when one proceeds without the assumption of a vanishing
9
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azimuthal vector field component (Section 3). Indeed, through the in-
dicated correspondence, this solution yields a generalized azimuthally
rotating fluid vortex with the stream function (4.15) (Section 4).

The Bragg–Hawthorne/Grad-Shafranov equation in spherical coor-
dinates (5.1) can be solved in the linear case by separation of variables,
with the general solution (5.9) being a linear combination a particular
solution and any number of separated solutions. This solution family
contains multiple solutions whose flux surfaces are bent cylinders or
tori, with no symmetry other than axial (Section 5; see, e.g., Fig. 5).
In the context of plasma physics, spherical coordinates were used in
Refs. [12–14,17,18] and other works to obtain families of exact static
MHD equilibrium solutions. While such solutions do not usually satisfy
physical requirements of finite energy, constant pressure, and magnetic
field vanishing at infinity, in all space, special boundary conditions
can be chosen corresponding to various physical situations. For exam-
ple, a plasma configuration can be artificially ‘‘truncated’’ to restrict
the plasma domain to the inside of any given, for example, toroidal
magnetic surface which is simultaneously considered to be a current
sheet. Outside of that surface, magnetic field is set to zero; this setup
satisfies the material equations across the plasma domain boundary.4
In the context of fluid dynamics, one is thus able to use families of
separated solutions, and the general solution (5.9) in particular, as a
stream function of a fluid flow confined within some chosen toroidal
flux surface serving also as a vorticity sheet, with no fluid motion
outside that domain.

More general linear (e.g., [8] and references therein) and nonlinear
ansätze for the arbitrary functions in (2.5), (3.2) have been used in the
literature. For example, Solov’ev [26] used a power series expansion
𝜓 about the magnetic axis, and obtained cubic solutions that yield
toroidal surfaces of ellipse-shaped cross-sections near the magnetic
axis, and more generally, magnetic surfaces with separatrices (see
formula (19) in [27]).

In Section 6, we revisited the question of stability of the original
Hill’s vortex. Considering a perturbation (6.2) of the spherical vortex
boundary, we arrived at a cubic linear homogeneous Eq. (6.4) for the
perturbation ℎ(𝜃, 𝑡) in spherical coordinates. Separation of variables
yielded an exponential time dependence and a third-order spatial ODE.
It was shown that remarkably, some solutions of this ODE do not
involve the spectral parameter, and therefore can correspond to ex-
ponential growth of ℎ(𝜃, 𝑡) in time. A specific example was presented
in Fig. 6 which shows a mode of decomposition of the spherical
vortex boundary. In comparison, an earlier study [19] used a different
approach: it considered linear stability of Hill’s vortex with respect
to axisymmetric perturbations that preserve circulation, which led to
a linear integrodifferential perturbation equation and an eigenvalue
problem arising from the consideration of the dynamics of linearized
perturbations of the boundary of the Hill’s vortex. Both stable and un-
stable eigenmodes were identified; the unstable eigenmodes were given
by peaks localized at the rear stagnation point. This is in agreement
with our analysis that showed growing perturbations of a similar kind
located near both front ad rear stagnation points. It remains an open
problem to study the stability of the generalized Hill’s vortex with
nonzero azimuthal component (Section 4).

In the context of plasma dynamics it is important to mention Galas-
Bogoyavlenskij symmetry transformations [4,5]

𝐁1 = 𝑏(𝜓)𝐁 + 𝑐(𝜓)
√

𝜇𝜒𝐕, 𝐕1 =
𝑐(𝜓)

𝑎(𝜓)
√

𝜇𝜒
𝐁 +

𝑏(𝜓)
𝑎(𝜓)

𝐕,

𝑃1 = 𝐶𝑃 +
𝐶𝐁2 − 𝐁2

1
2𝜇

, 𝜒1 = 𝑎2(𝜓)𝜒
(7.1)

4 We note that on other equilibrium solutions, for example, ones given in
efs. [21,22], the current density may vanish on the plasma domain boundary.
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that map solutions 𝐕, 𝐁, 𝑃 and 𝜒 (plasma density) of equilibrium MHD
equations

div 𝜒𝐕 = 0,

𝜒𝐕 × curl 𝐕 − 1
𝜇
𝐁 × curl 𝐁 − grad 𝑃 − 𝜒grad𝐕2

2
= 0,

curl (𝐕 × 𝐁) = 0,
div 𝐁 = div 𝐕 = 0

nto an infinite family of solutions 𝐕1, 𝐁1, 𝑃1 and 𝜒1. In (7.1), the
ensity 𝜒 must be constant on both magnetic surfaces (or more gen-
rally, on magnetic field lines and plasma streamlines), 𝑎(𝜓) and 𝑏(𝜓)
re arbitrary functions constant on both magnetic fields lines and
treamlines, and 𝑏2(𝜓) − 𝑐2(𝜓) = 𝐶 = const is a free constant. The

transformations (7.1) can be used to construct further exact explicit
dynamic plasma equilibrium solutions, in particular, field-aligned so-
lutions with nonzero plasma velocity, from static MHD configurations
described in Sections 3 and 5 above. For a compact static equilibrium
bounded by a magnetic surface, the new magnetic field and velocity
will be tangent to that surface, satisfying closed boundary conditions.
It is worth noting that Throumoulopoulos et al. [28] showed that if
the plasma magnetic field has finite toroidal and poloidal components,
axisymmetric equilibrium with purely poloidal flow is not possible
except when the toroidal component of the magnetic field vanishes.

There exists broad literature that includes multiple models and
solutions in the domain of the current contribution. In particular, field-
aligned solutions, for axially symmetric cases different from those an-
alyzed in this work and certain helically symmetric settings, were con-
sidered in [6,7,24]. Equations for field-aligned and non-field-aligned
dynamic incompressible MHD equilibria in a particular ansatz were
obtained in [29], and their exact solutions for sheared flows were found
in [27]. A generalized Grad-Shafranov equation describing anisotropic
plasmas and the corresponding toroidal analytic equilibrium solutions
were obtained in [30]. Bogoyavlenskij-type transformations and the
corresponding field-aligned analytical solutions for anisotropic plasmas
were considered in [31]. In relation to those results and results pre-
sented in this paper, in future work, it is of interest to develop further
closed-form exact solutions corresponding to physical plasma equilib-
ria, in particular, configurations in the anisotropic plasma regime, and
analyze their stability. In more general settings for Grad-Shafranov-type
and similar models, when the governing equations are essentially not
linearizable, it is intended to use the theory of approximate symme-
tries [32–34] to work towards constructing approximate solutions of
such PDE models.
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