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ABSTRACT

We derive new exact closed-form solutions of magnetohydrodynamics equations, with and without dynamics, which model astrophysical
jets and other prolonged plasma configurations. The solutions are obtained in static and dynamic incompressible equilibrium settings, in
axial and helical symmetry assumptions, and are given in terms of Whittaker, Coulomb, and Heun special functions. For each symmetry,
two distinct families of physical solutions arise, corresponding to two distinct pressure profiles. One pressure profile models plasmas sup-
ported by an external pressure and is suitable for the description of plasma configurations in a medium, such as atmosphere. The second pro-
file features higher pressure inside the plasma domain and can model plasmas residing in a vacuum. Examples of static and dynamic
solutions in axially and helically symmetric settings, including solutions with boundary current sheets, are presented and discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165963

I. INTRODUCTION

The system of incompressible magnetohydrodynamics (MHD)
equations

@q
@t
þ div qV ¼ 0; (1.1a)

q
@V
@t
¼ qV� curlV� 1

l
B� curlB� gradP� q grad

jVj2

2
; (1.1b)

@B
@t
¼ curlðV� BÞ; (1.1c)

divB ¼ 0; divV ¼ 0; (1.1d)

and specifically, its incompressible equilibrium reduction, have been
broadly used in mathematical modeling of plasmas that occur as natu-
ral phenomena and in laboratory settings, including Earth magneto-
sheath, star formation environments, astrophysical jets, and plasma
confinement devices. In (1.1), q denotes the plasma density, B is the
magnetic induction vector, V is the plasma velocity vector, P is the
scalar pressure, and l is the magnetic permeability coefficient. More
general continuum plasma models take into account essential time
dependence, external forcing, more general equations of state, anisot-
ropy, nonzero resistivity and/or viscosity, and further physical effects
(see, e.g., Refs. 1 and 2 and references therein).

In this work, we are interested in exact solutions of the partial dif-
ferential equations (PDEs) (1.1) in applications to astrophysical jet
modeling. Jets are highly collimated streams of plasma that have been
observed in a variety of settings in radio, optical, X- and c-ray bands.
Astrophysical jets are associated with active galactic nuclei, young stel-
lar objects, neutron stars and black holes, as well as some pulsars and
microquasars.3,4 Well known examples include jets emitted by the
supergiant elliptical galaxy Messier 87 and the starburst galaxy
Centaurus A, in which plasma jets extend over �5� 103 and �106
light years, respectively.5,6 Common models of astrophysical jet forma-
tion by supermassive black holes are based on accretion of matter onto
the black hole and electrodynamic processes fueled by black hole’s
rotation energy. In a typical setting, twin opposite plasma jets are emit-
ted in the direction perpendicular to the accretion disk (see Refs. 3 and
7 and references therein). Astrophysical jets propagate in a vacuum or
in an ambient matter, such as previously ejected gas shells or interstel-
lar and intergalactic gas. In some cases, such as the jet in Messier 87,
plasma pressure within the jet can exceed ambient pressure, while in
pressure confinement models, the opposite might be possible.3

A natural approach to a simplified model of an astrophysical jet
is the assumption of a dynamic equilibrium @=@t � 0, and further, an
axial symmetry, as has been done for example in Ref. 8. However,
many of the observed jets (such as, for example, the jet in Messier 87)
do not appear axially symmetric, but rather exhibit an approximate
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helical symmetry (Ref. 9 and references therein). Helical symmetry
can be imposed as a coordinate reduction in the helical coordinate sys-
tem.10 Helical coordinates are a non-orthogonal coordinate triple
related to cylindrical coordinates, with coordinate curves defined by
straight lines in the z-direction and two families of opposite helices
wound on a given cylinder with a fixed radius. Helical symmetry
implies the independence of physical fields of one of the helical coordi-
nates, or in other words, the invariance of a configuration with respect
to a simultaneous z-translation and rotation around the z-axis. Helical
coordinates and helically invariant solutions have recently been play-
ing an increasingly prominent role in continuum mechanics.
Approximately helically invariant flows have been observed in a vari-
ety of physical settings, including combustion, propeller and wing rip
vortices in fluids and gases, blood flows, free surface flows from rotat-
ing nozzles, instability modes in laminar and turbulent swirl flows,
and plasma-related contexts, such as plasma discharges and plasma
confinement models (see, e.g., Refs. 11–20). Similar to axially symmet-
ric reductions, helically symmetric PDE systems can admit additional
structure, such as additional symmetry groups and conserved quanti-
ties.21–23 Time-dependent helical coordinates have been introduced.24

In the axially or helically symmetric assumption, static MHD
equilibrium equations reduce to a single scalar PDE: the Grad–
Shafranov (Bragg–Hawthorne) and the Johnson–Frieman–Kulsrud–
Oberman (JFKO) equation, respectively.25–28 Linear instances of these
equations have been used to obtain explicit infinite-parameter axially
and helically symmetric plasma equilibrium solutions.8,9,29,30 Such sol-
utions provide physically relevant models of astrophysical jets
stretched along the cylindrical axis. Lower pressure values near the
axis corresponds to models of jets propagating in an ambient medium;
the plasma velocity and the magnetic field in these solutions decrease
exponentially in terms of the cylindrical radius.

In this work, we present and analyze new exact steady and
unsteady MHD equilibria in both axially and helically symmetric set-
tings. In each setting, two families of solutions are derived: one family
corresponds to a jet model in an ambient medium and generalizes the
solutions in Refs. 8 and 9 the other family features higher plasma pres-
sure values on the jet axis and models jets in a vacuum. The new solu-
tions are also given by closed-form expressions, allow for superposition,
and can be chosen to behave periodically or non-periodically along the
jet axis.

The paper is organized as follows. In Sec. II, we briefly review the
physical requirements on solutions of the full MHD system as well as
and its axially and helically symmetric reductions. Section III is con-
cerned with axially symmetric solutions. Such solutions are con-
structed from the Grad–Shafranov PDE and correspond to two
different types of pressure profiles, the first with a higher pressure at
the boundary of the plasma domain, with the radial part written in
terms of Whittaker functions, and the second with a higher pressure
in the center of the plasma jet, with radial dependence in terms of
Coulomb wave functions. Examples of exact solutions satisfying natu-
ral physical requirements are presented for both solution families. In
Sec. IV, in the helical reduction in the static equilibrium MHD equa-
tions, the JFKO equation is separated and solutions are found again
for two different types of pressure profiles. Both solutions have a radial
dependence in terms of the confluent Heun function. Examples of the
first type of pressure profile are shown, including one from Ref. 9 that
arises as a special case. Examples of the second family of solutions

modeling stretched helically symmetric plasma configurations in a
vacuum are also presented. In Sec. V, Galas–Bogoyavlenskij transfor-
mations are used to transform the solutions found in Secs. III and IV
into non-stationary field-aligned physical exact solutions. The results
are summarized and discussed in Sec. VI.

II. IDEAL PLASMA EQUILIBRIA WITH AXIAL
AND HELICAL SYMMETRY
A. Magnetohydrodynamic systems

The isotropic MHD model (1.1) that describes ideal incompress-
ible plasmas is an extension of Euler equations with a forcing term cor-
responding to the electrodynamic Lorentz force. For a quasi-neutral
plasma with roughly an equal amount of ions and electrons, this force
can be written as f ¼ J� B. This isotropic model of plasma is suitable
when the mean free path of plasma particles is much less than the typi-
cal length scale of the problem. Assumptions of infinite conductivity
and negligible viscosity are valid for large magnetic and kinetic
Reynolds numbers (cf. Ref. 2 and references therein).

In the dynamic equilibrium setting @=@t ¼ 0; V 6¼ 0, the MHD
system (1.1) takes the following form:

div qV ¼ 0; (2.1a)

qV� curlV� 1
l
B� curlB� grad P � qgrad

jVj2

2
¼ 0; (2.1b)

curlðV� BÞ ¼ 0; (2.1c)

div B ¼ divV ¼ 0: (2.1d)

From the incompressibility condition and the continuity equation, it fol-
lows that V � gradq ¼ 0, which implies that in equilibrium flows the
plasma density does not change along streamlines. The electric current
density for anMHD plasma described by (1.1) or (2.1) is given by

J ¼ 1
l
curl B: (2.2)

A further reduction of (2.1) is the static equilibrium MHD system
(V ¼ 0) given by

divB ¼ 0; (2.3a)

curlB� B ¼ l gradP: (2.3b)

In (2.3), a scaling transformation can be employed to pass to a dimen-
sionless form with l¼ 1, which will be assumed below.

While multiple particular solutions of the above-mentioned
plasma models (2.1) and (2.3) can be constructed, many fail to satisfy
natural physical requirements. In addition to regularity and sufficient
smoothness of the dependent variables B, V, P, and q, such require-
ments would include the requirement of finite kinetic and magnetic
energies in the plasma domain V,ð

V
jVj2 dV ;

ð
V
jBj2 dV < þ1; (2.4)

and the pressure asymptotics

P! P0 ¼ const as jxj ! þ1: (2.5)

Assuming non-negative pressure values, one requires P0 ¼ 0 for
vacuum configurations, whereas P0 > 0 corresponds to a plasma
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supported by the pressure of an ambient medium. If the plasma
domain is unbounded in one direction z, the finite energy requirement
(2.4) may be restricted to a slice z1 � z � z2.

On the boundary surface @V of the plasma domain, the velocity
is not generally required to vanish, but may satisfy the no-leak condi-
tion on @V, which is given by takes the form V � n ¼ 0 in terms of the
outside normal n. The magnetic field also may be taken tangent to the
boundary, B � n ¼ 0, on the “inside” side of @V, and zero outside V.
In this case, the plasma domain boundary @V becomes a current sheet:
indeed, the integration of the PDE (2.2) is a domain transverse to the
boundary yields the surface electric current density given by

K ¼ B
l
� n on @V: (2.6)

An essential geometrical feature of dynamic MHD equilibria
(2.1) is the existence of two-dimensional magnetic surfaces wðxÞ
¼ const that contain both the magnetic field lines and plasma stream-
lines: grad w � V ¼ grad w � B ¼ 0 in V. For bounded plasma
domains, the domain boundary @V, is a magnetic surface itself. For
bounded V, the magnetic surfaces are generally topologically equiva-
lent to a set of nested tori,31 and the magnetic field lines and plasma
streamlines are dense on these surfaces. In the field-aligned case V ¼
kðxÞB as well as for Beltrami flows V ¼ 0; curl B ¼ aðxÞB, magnetic
surfaces may not be uniquely defined when magnetic field lines go to
infinity or form closed curves.32

B. Axially symmetric equilibrium reduction

Both the dynamic and the static plasma equilibrium PDE systems
(2.1) and (2.3) admit physical rotational and translational symmetries.
In cylindrical coordinates ðr;u; zÞ, the rotational symmetry is gener-
ated by the operator X ¼ @=@u, and rotationally invariant solutions
of (2.3) have the following form:

B ¼ Brðr; zÞer þ Buðr; zÞeu þ Bzðr; zÞez; P ¼ Pðr; zÞ: (2.7)

Bragg and Hawthorne,25 and later L€ust and Schl€uter,33 Grad and
Rubin,26 and Shafranov27 showed that in this case, the system (2.3) of
four PDEs reduces to a single PDE (the Grad–Shafranov equation),

wrr �
1
r
wr þ wzz þ IðwÞI0ðwÞ ¼ �r2P0ðwÞ; (2.8)

satisfied by the stream function w ¼ wðr; zÞ. The magnetic surfaces
are defined by w ¼ const, and the magnetic field and the pressure are
given by

B ¼ wz

r
er þ

IðwÞ
r

eu �
wr

r
ez; P ¼ PðwÞ; (2.9)

where IðwÞ and PðwÞ are arbitrary functions constant on magnetic
surfaces. [In (2.8) and (2.9), subscripts denote the respective partial
derivatives, and primes denote the derivatives of I and P by their argu-
ment.] Various exact solutions of the Grad–Shafranov equation have
been derived, in particular, when the terms IðwÞI 0ðwÞ and P0ðwÞ in
(2.8) are linear in w. We especially note the explicit axially symmetric
solutions obtained in Refs. 29 and 34 in spherical coordinates, corre-
sponding, respectively, to a localized moving fluid vortex and a plasma
ball, and Bogoyavlenskij’s axially symmetric solutions modeling
plasma jets,8 given by a linear superposition

wðr; zÞ ¼ e�br2 aNL
�
Nð2br2Þ þ

XN�1
n¼1

an sin ðxnz þ bnÞL�nð2br2Þ
 !

;

(2.10)
in terms of the primitive functions L�n of the Laguerre polynomials, fre-

quencies xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8bðN � nÞ

p
, arbitrary coefficients an, and phase

shifts bn, n ¼ 1;…;N . The solutions (2.10) arise for the linear
Grad–Shafranov equation for the choice of arbitrary functions

I ¼ aw; P ¼ P0 � 2b2w2; (2.11)

where P0, a, and b are arbitrary constants. In Sec. III, we obtain a
broader set of jet-like solutions of the plasma equilibrium model that
includes (2.10) as a special case.

C. Helically symmetric equilibrium reduction

Helical coordinates ðr; g; nÞ are defined in terms of cylindrical
coordinates ðr;u; zÞ as

r; g ¼ uþ cz=r2; n ¼ z � cu; (2.12)

where c is a constant parameter related to the helical pitch h by h ¼
2pc (Fig. 1). The helical coordinates reduce to polar coordinates when
c¼ 0. Unlike polar coordinates, for a general c, the helical coordinates
ðr; g; nÞ are not orthogonal. However, one can introduce an orthogo-
nal unit vector triple

er ¼
rr
jrrj ; en ¼

rn
jrnj ; e?g ¼

r?g
jr?gj ¼ en � er; (2.13)

and express a generic vector field, for example, the magnetic induction
B and the velocity V, in that basis

B ¼ Brer þ Bueu þ Bzez ¼ Brer þ Bge?g þ Bnen ;

V ¼ Vrer þ Vueu þ Vzez ¼ Vrer þ Vge?g þ Vnen:
(2.14)

FIG. 1. Basis unit vectors in the helical coordinates. A helix n ¼ const for
c ¼ h=2p, where h is the z-pitch of the helix.
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The vector components in helical and cylindrical coordinates are
related as follows:

Bg ¼ B � e?g ¼ Q Bu þ c
r
Bz

� �
; Bn ¼ B � en ¼ Q Bz � c

r
Bu

� �
;

(2.15)

with the corresponding expressions for V. Here,

Q ¼ QðrÞ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p : (2.16)

Because the PDEs (2.1) and (2.3) admit rotational and translational
symmetries generated by @=@u and @=@z, they also admit a symmetry
generated by the linear combination Y ¼ @=@uþ c @=@z. The helical
variables r and n are the invariants associated with the symmetry Y,
and g is identified with a translational variable; see, e.g., Refs. 24 and
35. It turns out that imposing a helical symmetry @=@g ¼ 0 on (2.3) is
mathematically rather similar to the axial symmetry, and leads to a
single PDE

wnn

r2
þ 1

r
@

@r
r

r2 þ c2
wr

� �
þ IðwÞI0ðwÞ

r2 þ c2
þ 2cIðwÞ
ðr2 þ c2Þ2

¼ �lP0ðwÞ;

(2.17)

the famous Johnson–Frieman–Kulsrud–Oberman (JFKO) equation.28

Similar to the axially symmetric case, the level surfaces of the flux
function wðr; nÞ ¼ const define the magnetic surfaces, the pressure is
constant on those surfaces, P ¼ PðwÞ, and the magnetic field is given
by

B ¼
wn

r
er þ

rIðwÞ þ cwr

r2 þ c2
eu þ

cIðwÞ � rwr

r2 þ c2
ez: (2.18)

Helically symmetric fluid and plasma flows admit additional structure,
such as additional conservation laws.23 Exact solutions of helically
invariant flows include invariant solutions with respect to additional
symmetry reductions and helically invariant Beltrami flows for the
Navier–Stokes equations,36 and jet-like solutions to (2.17) presented in
Ref. 9. The latter are separated solutions that arise for the choice of
arbitrary functions (2.11) that make the JFKO equation (2.17) linear

wNmnðr; nÞ ¼ e�br2
�
aNB0NðsÞ þ rmBmnðsÞ

� amn cos
mn
c
þ bmn sin

mn
c

� ��
; (2.19)

whereN,m, and n are arbitrary positive integers, s ¼ 2br2 is a rescaled
radial variable, and the functions BmnðsÞ are polynomials of degree n
related to the Laguerre polynomials. Superpositions of the separated
solutions wNmnðr; nÞ yield new solutions of the JFKO equation with
multiple arbitrary parameters.9 In Sec. IV, we obtain a broader set of
jet-like solutions of the plasma equilibrium model that includes sepa-
rated solutions (2.19) and their combinations as special cases.

III. NEW EXACT AXIALLY SYMMETRIC PLASMA
EQUILIBRIA

The Grad–Shafranov equation (2.8) becomes linear when the
arbitrary functions have the following form (2.11):

PðwÞ ¼ P0 þ bwþ 1
2
aw2; IðwÞ ¼ aw; (3.1)

where a; b; a ¼ const. The linear homogeneous case corresponds to
b¼ 0 and includes (2.11) when a< 0. For (3.1) with b¼ 0, the
Grad–Shafranov equation is given by

wrr �
1
r
wr þ wzz þ ða2 þ ar2Þw ¼ 0; (3.2)

and admits separated solutions wðr; zÞ ¼ RðrÞZðzÞ satisfying

Z00 ¼ kZ; R00 � 1
r
R0 þ ða2 þ ar2 þ kÞR ¼ 0; (3.3)

where k is an arbitrary separation constant. Depending on the value of
a in the pressure term, one obtains two families of solutions corre-
sponding to two different types of pressure profiles. For the family
with a< 0, assuming plasma pressure is non-negative-definite, P
! P0 > 0 when jxj ! 1, and pressure values P < P0 occur within
the plasma domain V. For the second family with a> 0, one may
choose P> 0 inside V and P¼ 0 outside. The latter corresponds to
physical applications such as laboratory plasma confinement devices
and astrophysical plasma jets propagating in a vacuum (cf. Sec. IIA).

A. The first family of axially symmetric solutions

The first family of solutions arises when a ¼ �q2 < 0. This cor-
responds to the pressure profile PðwÞ ¼ P0 � 1

2 q
2w2 bounded above

by P0, and, thus, models axially symmetric plasma configurations in
an ambient medium. When the separation constant is a negative value
k ¼ �k2, k> 0, the corresponding separated solution describes a
plasma extended along the z axis. From (3.3), one has

Z ¼ C3 sin ðkzÞ þ C4 cos ðkzÞ: (3.4)

To solve the radial differential equation from (3.3), the substitution
s ¼ qr2; RðrÞ ¼ SðsÞ can be used to transform this equation into the
following form:

S00 þ � 1
4
þ a2 � k2

4qs

 !
S ¼ 0; (3.5)

which is related to the Whittaker ODE (ordinary differential equation)

y00ðsÞ þ � 1
4
þ d

s
þ 1=4� �2

s2

� �
yðsÞ ¼ 0; (3.6)

when

d ¼ a2 � k2

4q
; � ¼ 1

2
: (3.7)

From the general solution yðsÞ ¼ C1WMðd; �; sÞ þ C2WWðd; �; sÞ of
the Whittaker ODE in terms of the two Whittaker basis functions,
one, thus, obtains the general solution to (3.5). The corresponding sep-
arated solution of the linear Grad–Shafranov equation (3.2) is conse-
quently given by

wkðr; zÞ ¼ C1WM d;
1
2
; qr2

� �
þ C2WW d;

1
2
; qr2

� �� �
� ðC3 sin kz þ C4 cos kzÞ; (3.8)
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where C1, C2, C3, and C4 are free constants. It should be noted that due
to the linearity of (3.2), any linear combination of functions (3.8) yield
solutions to (3.2), including

Wðr; zÞ ¼
ð1
�1

wkðr; zÞ dk; (3.9)

where Ci ¼ CiðkÞ; i ¼ 1; 2; 3; 4, are arbitrary suitable distributions. It
should be noted that with the choice of Ci,

C1ðkÞ ¼
XN�1
n¼1

~an D k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4qn

p� �
; C2ðkÞ ¼ 0;

C3 ¼ an cos bn; C4 ¼ an sin bn;

(3.10)

where DðxÞ denotes the Dirac delta function, (3.9) yields Bogoyavlenskij’s
solution (2.10). This corresponds to (3.8) having d 2N.

It is easy to show that the separated solution (3.8) is globally
regular only when d 2N (see Appendix A). The global regularity,
in the sense of the absence of singularities of the magnetic field
components on the axis and sufficiently fast decay away from it, is,
thus, the feature of Bogoyavlenskij’s solutions (2.10). However, as
shown below, the solutions (3.8) for general d can be used to
describe physical plasmas in domains bounded in the radial
direction.

1. The first family of axially symmetric solutions:
Example 1

Two examples are considered for the first solution family. The
first utilizes the separated solution (3.8) for a case when d is not a posi-
tive integer. It should be noted that to achieve finite magnetic energy,
the domain of this solution needs to be restricted, with the physical
boundary involving a current sheet such as in formula (2.6). The mag-
netic surfaces and pressure values for the first example are shown in
Fig. 2(a), the magnetic energy density is shown in Fig. 2(b), and the
absolute value of the current density in Fig. 2(c), for the solution
parameters indicated therein. The dotted line marks the boundary of
the plasma domain.

2. The first family of axially symmetric solutions:
Example 2

The second example of first family of axial solutions is a linear
combination of the special case of (3.8) when d given by (3.7) takes
on positive integer values; this yields Whittaker functions related
to the Laguerre polynomials. This type of solutions was discussed
in Ref. 8 [see formula (2.10)]. A sample cross section of the mag-
netic surfaces and pressure values is shown in Fig. 3(a), and con-
tour plots of magnetic energy density and current density in Figs.
3(b) and 3(c). In this example, the magnetic field and currents are
concentrated about the center of the plasma jet, with jBj; jJj ! 0 as
r !1. Far from the axis, the pressure satisfies P! P0 ¼ const;
therefore, this global solution corresponds to a plasma propagating
in the ambient medium.

B. The second family of axially symmetric solutions

The next family of new solutions arises when a ¼ q2 > 0. This
corresponds to plasmas residing in vacuum: P¼ 0 outside of the
plasma domain V, and with P> 0 inside V. The separated solution
part for Z(z) given by (3.4) can be used. After transforming the radial
problem from (3.3) with x ¼ iqr2, where i is the imaginary unit, the
following ODE related to the Whittaker equation ODE (3.6) is
obtained (Fig. 3):

R00 þ � 1
4
þ i

k2 � a2

4qx

 !
R ¼ 0: (3.11)

Its general solution can be written in terms of Whittaker functions of a
complex argument and a complex parameter

RðrÞ ¼ C1WM �id; 1
2
; iqr2

� �
þ C2WW �id; 1

2
; iqr2

� �
; (3.12)

where d is given by (3.7).
The solution (3.12) can be written in terms of real-valued func-

tions and free constants, using a relationship between the Whittaker
functions and the Coulomb wave functions

FIG. 2. (a) A cross section of magnetic surfaces P ¼ const for an axially symmetric plasma equilibrium solution belonging to Family 1 (3.8), with
C1 ¼ 102; C2 ¼ 0; C3 ¼ 1; C4 ¼ 0, q¼ 0.1, a¼ 2, and k¼ 1. The bounding surface of the plasma domain is given by P0 ¼ 3:48� 10�5 and is shown with the dashed
line. The dimensionless pressure P ¼ P0 � q2w2=2 satisfies P> 0 inside this domain. (b) and (c) The corresponding magnetic energy density jBj2=2 and the magnitude of
the current density jJj.
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WM �id; 1
2
; iqr2

� �
¼ 2 i

CFð0;�d; qr2=2Þ
jCð1� idÞj ed�p=2: (3.13)

This provides the motivation to transform the radial problem (3.3)
into a related one of the Coulomb ODE type using x ¼ qr2=2, which
yields

R00 þ 1þ 2
a2 � k2

4qx

 !
R ¼ 0; (3.14)

and is related to the Coulomb wave ODE

y00ðsÞ þ 1� 2r
s
� LðLþ 1Þ

s2

� �
yðsÞ ¼ 0; (3.15)

with constant parameters r and L. The Coulomb equation has the
general solution yðsÞ ¼ C1 CFðL; r; sÞ þ C2 CGðL;r; sÞ in terms of the
two basis Coulomb special functions. One, thus, arrives at

RðrÞ ¼ C1 CF 0;�d;
q
2
r2

� �
þ C2 CG 0;�d;

q
2
r2

� �
: (3.16)

The second family of solutions to (3.2) corresponding to plasma con-
fined in a vacuum is, therefore, given by

wkðr; zÞ ¼ C1 CF 0;�d;
q
2
r2

� �
þ C2 CG 0;�d;

q
2
r2

� �� �
� ðC3 sin kz þ C4 cos kzÞ; (3.17)

where d (3.7) is the same as the first family. Again, any linear combi-
nation of the above-mentioned separated solution is also a solution

Wðr; zÞ ¼
ð1
�1

wkðr; zÞ dk; (3.18)

where Ci ¼ CiðkÞ; i ¼ 1; 2; 3; 4 are integrable functions or distri-
butions. It should be noted that due to the nature of CF and CG,
(3.17) may not globally not satisfy requirements stated in Sec. II
but may have finite magnetic energy and positive internal pressure
in a subdomain of R3 surrounded by a current sheet [formula
(2.6)].

1. The second family of axially symmetric solutions:
Examples

Solution belonging to the second family may be z-periodic, such
as separated solutions (3.17) for single k values or linear combinations
of solutions with rational k value ratios (Fig. 4) or non-periodic other-
wise. An example of a quasiperiodic solution is shown in Fig. 5. In that
example, the solution is given by a linear combination

wkðr; zÞ ¼ wk1ðr; zÞ þ 0:75wk2ðr; zÞ; (3.19)

where k1 ¼ 2; k2 ¼
ffiffiffi
2
p

, the values a¼ 5 and q ¼
ffiffiffi
3
p

defining PðwÞ
and IðwÞ are common for wk1 and wk2 , and the respective sets of con-
stant C1;C2;C3;C4 are given by ð1; 0; 1; 1Þ and ð1; 0; 1; 0Þ.

For the solutions of this family, magnetic surfaces given by nested
tori, and the locally highest pressure values are on the toroidal axes. A
spatially bounded plasma equilibria can be obtained through the trun-
cation of a solution to some toroidal magnetic surface that defines the
boundary of the plasma domain, and the introduction of a current
sheet. On the bounding magnetic surface, one may choose P¼ 0, and
consequently have P> 0 in the plasma domain, which corresponds to
a plasma equilibrium in a vacuum.

IV. HELICALLY SYMMETRIC EXACT PLASMA
EQUILIBRIA AND EXACT SOLUTIONS

Similarly to the axially symmetric case, helically symmetric
plasma configurations are described by a linear JFKO equation (2.17),

1
r2
@2w

@n2
þ 1

r
@

@r
r

r2 þ c2
@w
@r

� �
þ a2w
r2 þ c2

þ 2caw

ðr2 þ c2Þ2
þ rw ¼ �b;

(4.1)

when the pressure P is a quadratic and I a linear function of w,

PðwÞ ¼ P0 þ bwþ 1
2
rw2; IðwÞ ¼ aw: (4.2)

The second order PDE is linear homogeneous when b¼ 0. It admits
separated solutions wðr; uÞ ¼ RðrÞNðnÞ satisfying

N00 ¼ kN; (4.3a)

FIG. 3. A cross section of axially symmetric magnetic surfaces P ¼ const (first solution family with d 2N). (a) The colorbar shows the values of the dimensionless pressure
P ¼ P0 � q2w2=2, (b) the magnetic energy density jBj2=2, and (c) the magnitude of the current density jJj.
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r
r

r2 þ c2
R0

� �0
þ a2r2

r2 þ c2
þ 2car2

ðr2 þ c2Þ2
þ rr2

 !
R ¼ �kR: (4.3b)

Here, the separation constant, k is taken negative: k ¼ �x2, which, as
with the axial case, corresponds to a model of a plasma jet stretched
along the z axis: the helical part N is given by

NðnÞ ¼ C1 sin ðxnÞ þ C2 cosðxnÞ: (4.4)

in terms of arbitrary C1 and C2. Depending on the value of r in the
pressure term of (4.2), one again obtains two different families of solu-
tions R(r). Similarly to the axial cases discussed above, these solutions
correspond to two different types of pressure profiles. For
r < 0; P � P1 ¼ const > 0, with P! P1 when jxj ! 1. For the
other case when r > 0, one can choose P> 0 inside of the plasma
domain V and P¼ 0 outside of V.

A. The first family of helically symmetric solutions

The first family of solutions arises when r ¼ �j2 < 0, that is,
the pressure is given by PðwÞ ¼ P0 � ðj2w2Þ=2, being bounded
from above by some P0, with P! P0 when jxj ! 1, and models
plasmas supported by in a surrounding medium. Upon the substi-
tution of this pressure form and k ¼ �x2 the following equation
on R(r) arises:

FIG. 4. A cross section of magnetic surfaces w; P ¼ const for a sample axially
symmetric z-periodic plasma equilibrium solution belonging to a Family 2, (3.17),
with C1 ¼ 1; C2 ¼ 0; C3 ¼ 1; C4 ¼ 1, k¼ 2, a¼ 5, and q ¼

ffiffiffi
3
p

. The configu-
ration is z-periodic. The colorbar shows the values of the dimensionless pressure
P ¼ P0 þ q2w2=2.

FIG. 5. A cross section of axially symmet-
ric magnetic surfaces w; P ¼ const for a
non-z-periodic solution (3.19).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 092308 (2023); doi: 10.1063/5.0165963 30, 092308-7

Published under an exclusive license by AIP Publishing

 06 February 2024 19:55:52

pubs.aip.org/aip/php


r
r

r2 þ c2
R0

� �0
þ a2r2

r2 þ c2
þ 2car2

ðr2 þ c2Þ2
� j2r2

 !
R ¼ x2R: (4.5)

The solution can be written, for example, in terms of a pair of conflu-
ent Heun functions

RðrÞ ¼ e�jr2=2 ðC1r
bHCða; b;�2; c; d;�r2=c2Þ

þ C2r
�bHCða;�b;�2; c; d;�r2=c2ÞÞ; (4.6a)

where

a ¼ jc2; b ¼ cx; c ¼ c2ðc2j2 � a2 þ x2Þ
4

; (4.6b)

and

d ¼ 1� j2c4

4
þ a2 � x2

4
c2 þ ac

2
: (4.6c)

The above Heun functions form a basis of solutions of the conflu-
ent Heun equation

y00 � ð�x
2aþ ð�bþ aÞx þ bþ 1Þ

xðx � 1Þ y0

� ðð�ba� 2cÞx þ ðbþ 1Þaþ b� 2d þ 2Þ
2xðx � 1Þ y ¼ 0; (4.7)

that involves the parameters a, b, c, and d.
There exists necessary and sufficient conditions for the confluent

Heun function to yield polynomials, which are discussed thoroughly
in Ref. 37. These solutions correspond to solutions constructed in Ref.
9. In particular, for the confluent Heun functionHCða;b;�2; d; g; xÞ,
a necessary condition for the emergence of these polynomials is
d ¼ �aðnþ b=2Þ, where n is a positive integer that specifies the
degree of this polynomial. The sufficient condition comes from choos-
ing characteristic values of g that correspond to roots of the coefficient
of the ðnþ 1Þ degree of the series expansion. Further details can be
found in Ref. 37.

To explicitly avoid singularities at the origin, in examples that fol-
low, C2 will be set to zero. In this case, the separated solution family
can be written as

wxðr; nÞ ¼ e�jr2=2rbHCða; b;�2; c; d;�r2=c2ÞðC1 sin ðxnÞ
þ C2 cos ðxnÞÞ: (4.8)

A general class of solutions can be constructed as a discrete or continu-
ous linear combination of (4.8)

wðr; nÞ ¼
ð1
�1

wxðr; nÞ dx; Ci ¼ CiðxÞ; i ¼ 1; 2: (4.9)

1. Examples of the first family of helically invariant
solutions

Separated solutions (4.8) given in terms of the confluent Heun func-
tion contain a special case when the Heun function reduces to a polyno-
mial [see formula (2.19)]; this case was discussed in detail in Ref. 9.

The first example illustrates the general case when Heun func-
tions are not given by polynomials. The (x, y)-plane cross section of
the separated solution (4.8) with parameters

a ¼ 5:9; j ¼ 1; c ¼ 1; x ¼ 3=c; (4.10)

is shown in Fig. 6. The helical magnetic surfaces are helical cylinders
obtained by simultaneous lifting (along z) and rotation (around z) of
the shape in Fig. 6(a). The dashed line denotes a possible boundary
magnetic surface of the plasma configuration. The ambient pressure
value P0 is chosen so that P¼ 0 on the magnetic axis of each helical
cylinder.

The second example where linear combination of separated solu-
tions (4.8),

w ¼ w1 �
p
4

w2; (4.11)

where w1 is defined by the parameters (4.10), and for w2, x ¼
ffiffiffi
3
p

=c,
yields non-z-periodic magnetic surfaces shown in Fig. 7.

The third example from the first family of helically invariant sol-
utions is for the special case when the separated solution simplifies to
a product of a decaying exponential and polynomials [formula (2.19)].
This subfamily of global solutions was obtained by Bogoyavlenskij.9

Magnetic surfaces, pressure contours, and the corresponding magnetic
energy density are shown in Fig. 8.

FIG. 6. The (x, y)-cross section of a truncated helically symmetric physical solution from the first family. The pressure contour, magnetic energy density, and current density
magnitude can be seen from left to right.
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B. The second family of helically symmetric solutions

The second family arises when in (4.1) and (4.2), r ¼ j2 > 0.
This corresponds to the case when the pressure is higher inside the
plasma domain and lower outside, and is suitable to describe plasmas
in vacuum. The radial component satisfies the ODE (4.3b) with
r ¼ j2; its solution can be expressed in terms of the confluent Heun
functions with a complex exponential and complex parameters

RðrÞ ¼ e�ijr
2=2
�
C1r

bHC ia; b;�2; c; d;�r2=c2
� �

þ C2r
�bHC

�
ia;�b;�2; c; d;�r2=c2

��
; (4.12)

where a, b, c, and d are given above in (4.6). As above, we set C2 ¼ 0 in
(4.12). It is not obvious but is true that (4.12) yields a real-valued func-
tion. Keeping the regular part of (4.12), we consequently find that a

separated solution to (4.1) corresponding to helically symmetric plasma
in a vacuum or a lower pressure environment is generally given by

wxðr; nÞ ¼ e�ijr
2=2rbHCðia; b;�2; c; d;�r2=c2Þ

� C1 sin ðxnÞ þ C2 cos ðxnÞð Þ: (4.13)

A solution family is obtained as a discrete or a continuous linear com-
bination of (4.13)

wðr; nÞ ¼
ð1
�1

wxðr; nÞ dx; (4.14)

where C1 ¼ C1ðxÞ; C2 ¼ C2ðxÞ are arbitrary weighting distributions.
Similarity to the Coulomb wave functions for axially symmetric

equilibria (Sec. III B), the radial part R(r) (4.12) is a quasiperiodic

FIG. 7. Magnetic surfaces and pressure values for a linear combination (4.11) of helically invariant separated solutions (4.8) from the first helically invariant family, correspond-
ing to the same forms of PðwÞ and IðwÞ in the JFKO model (4.1). (a) An (x, y)-plane cross section and (b) An (r, z)-plane cross section.

FIG. 8. (a) Helically symmetric magnetic surfaces and pressure values P ¼ const for the first family of solutions: a sample exponential-polynomial solution Wðr; nÞ (2.19) with
N¼ 4, n¼ 0, m¼ 1, j ¼ 0:2, c¼ 1, aN ¼ an ¼ 1, and bn¼ 0. (b) The corresponding magnetic energy density values.
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function, and consequently, for a physical plasma equilibrium, plasma
domain must be restricted to within some chosen magnetic surface
w ¼ w0 outside of which P and B ¼ 0. This is again accomplished by
utilizing the boundary condition (2.6).

1. An example of the second family of helically invariant
solutions

We now illustrate separated solutions (4.12), choosing the helical
pitch parameter c and the arbitrary constants as follows:

c ¼ 1; C1 ¼ 1; C2 ¼ 0; a ¼ 3; j ¼ 4; x ¼ 1; P0 ¼ 0:

(4.15)

The global contours of the pressure PðwÞ ¼ j2w2=2 are shown in Fig.
9. We note the radial periodic behavior similar to the Coulomb wave
functions in the axially symmetric case (Fig. 4). It appears that for the
type of pressure configuration suitable for a plasma residing in vacuum
the solutions for both axial symmetry and helical symmetry have oscil-
latory nature in the radial variable. Details for the same configuration
truncated at a certain magnetic surface is shown in Fig. 10.

V. GENERALIZATIONS TO DYNAMIC EQUILIBRIA

Galas38 and Bogoyavlenskij39 established a family of nonlocal
symmetries of the dynamic MHD equilibrium equations (2.1) (see
also Ref. 40). If V, B, P, and q is a solution of (2.1), where the density
q is constant on both magnetic surfaces (or more generally, on mag-
netic field lines and plasma streamlines), then there exists an infinite
family of solutions V1; B1, P1, and q1 which, for a general l, can be
constructed by

B1 ¼ bðwÞBþ cðwÞ ffiffiffiffiffiffilq
p

V; V1 ¼
cðwÞ

aðwÞ ffiffiffiffiffiffilq
p Bþ bðwÞ

aðwÞV;

P1 ¼ CP þ CB2 � B2
1

2l
; q1 ¼ a2ðwÞq:

(5.1)

In (5.1), aðwÞ and bðwÞ are arbitrary functions constant on both mag-
netic fields lines and streamlines, and b2ðwÞ � c2ðwÞ ¼ C ¼ const is a
free constant. The transformation (5.1) preserves the magnetic surfa-
ces of the initial plasma configuration ðV;B;P;qÞ. In particular, start-
ing from a static equilibrium with V ¼ 0, the transformations (5.1)
produce an infinite set of solutions of the MHD system (2.1) with
motion:V 6¼ 0. Choosing, for example,

F1ðwÞ ¼ cðwÞ; F2ðwÞ ¼ aðwÞ ffiffiffiqp ; (5.2)

as free functions, one can map a static equilibrium ðB; PÞ to a dynamic
equilibrium solution family

FIG. 9. A cross section of magnetic surfaces w;P ¼ const for a sample separated
helically symmetric plasma equilibrium solution belonging to the second family
(4.13) with parameter choices (4.15). The colorbar shows the values of the dimen-
sionless pressure P ¼ j2w2=2.

FIG. 10. Truncated magnetic surfaces P ¼ const for the helically symmetric plasma equilibrium solution belonging to the second family (4.13) with parameter choices (4.15)
and boundary condition (2.6). (a) Magnetic surfaces and pressure values and (b) the corresponding magnetic energy density values.
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B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ F2

2ðwÞ
p

B; V1 ¼
F2
1ðwÞ

F2
2ðwÞ

ffiffiffi
l
p B;

P1 ¼ CP � F2
1ðwÞ

B2

2l
; q1 ¼ F2

2ðwÞ;
(5.3)

and, thus, transform the new axially and helically symmetric static
exact solutions constructed in Secs. III and IV into further new
dynamic solutions with V1 6¼ 0. All such dynamic solutions are field-
aligned: V1 k B1.

Note that the pressure in the dynamic MHD equilibrium model
(2.1) in general, and the transformed pressure P1 in (5.3), in particular,
are generally not constant on magnetic surfaces. It is also useful to note
that Galas–Bogoyavlenskij transformations preserve the difference of
kinetic and magnetic energy densities32

q1jV1j2

2
� jB1j2

2l
¼ qjVj2

2
� jBj

2

2l
: (5.4)

A. Example: A dynamic transformation of a new axially
symmetric solution

For the example of Sec. IIIA1 (Fig. 2), denote the static magnetic
field by Bst . The pressure is given by P ¼ P0 � ðq2w2Þ=2, and the mag-
netic fluxw by (3.8). Choosing the dimensionless free functions (5.2) to be

F1ðwÞ ¼
0:075
1þ w

; F2ðwÞ ¼ 1þ 0:7ðPðwÞÞ1=2; (5.5)

and letting C¼ 1, one transforms the static axially symmetric plasma
equilibrium ðBst ; PÞ into a dynamic axially symmetric equilibrium
ðV1;B1;P1; q1Þ (5.3). The pressure profiles and magnetic and kinetic
energy densities for the new dynamic solution is shown in Fig. 11.

B. Example: A new dynamic helically symmetric
plasma equilibrium configuration

Taking as a starting solution the second family of static helically
symmetric solutions of shown in Sec. IVB1, with the magnetic field
components and pressure given by

Bst ¼
wn

r
er þ

arwþ rwr

r2 þ c2
eu þ

caw� rwr

r2 þ c2
ez; P ¼ P0 þ

j2

2
w2;

(5.6)

where w is given by (4.13) and (4.15), and using the two arbitrary
functions forms

F1ðwÞ ¼ 2w2; F2ðwÞ ¼ 1þ w; (5.7)

and C¼ 1, through the transformation (5.3), we obtain a new dynamic
solution ðV1;B1;P1;q1Þ; V1 6¼ 0. The cross-sectional contours of the
magnetic surfaces of the static configuration (4.13) and (4.15), the
original profile of the pressure P, the contours of the transformed pres-
sure P1, and the magnetic energy density are plotted in Figs.
12(a)–12(c). The non-zero kinetic energy density of the dynamic solu-
tion is shown in Fig. 12(d).

VI. DISCUSSION

Axial and helical symmetries are approximately present in vari-
ous natural phenomena and laboratory settings, including fluid and
plasma flows (see, e.g., Refs. 8, 9, 29, 30, 36 and references therein for
reviews). In this paper, new exact explicit physical equilibrium solu-
tions to the system of MHD equations (1.1) were found in the classical
axial and helical symmetry reductions.

For the axially symmetric static equilibrium invariance reduction
(Sec. III), the introduction of the potential with the meaning of a mag-
netic flux function reduces the model to a single PDE, the
Grad–Shafranov equation (2.8). The arbitrary functions PðwÞ and
IðwÞ defining the pressure and the poloidal magnetic field can be cho-
sen so that the Grad–Shafranov equation linearizes. Separation of vari-
ables was used to find new solutions in terms of special functions;
these solutions generalize the well-known family obtained in Ref.
8 (see also Ref. 30). Two separate families of solutions arose, depend-
ing on the type of pressure configuration chosen. For the case in which
the plasma is surrounded by an ambient medium, the radial solution
component (3.8) is generally written in terms of Whittaker functions.
Depending on the parameter d (3.7), physical solutions may be
globally defined or restricted to a bounded domain with suitable
boundary conditions (2.6). Explicit examples are presented in Sec.
III A. The second family of solutions for the axially symmetric case
has the radial component written in terms of Coulomb wave func-
tions (Sec. III B). Solutions of this type are given by (3.17)
and (3.18). Sample representatives of this new solution family,

FIG. 11. The dynamic axially symmetric plasma equilibrium solution (5.3) and (5.5) corresponding to the static equilibrium solution shown in Fig. 2 above. (a) Pressure, (b)
magnetic energy density, and (c) kinetic energy density. The dashed line shows the magnetic surface corresponding to the plasma domain boundary [see Fig. 2(a)].
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featuring the positive pressure profile (higher pressure toward the
toroidal axis), are presented in Sec. III B 1.

For the helically invariant case (Sec. IV), the potential flux
function wðr; nÞ satisfies the JFKO equation (2.17) (which reduces
to the Grad–Shafranov equation in the limit of the vanishing heli-
cal pitch). Similarly to the axial case, a linear version of the JFKO
equation can be solved using separation of variables; the latter can
be combined to form a rather general class. Two different families
of solutions arise depending on the type of pressure configuration.
For plasmas confined in an ambient medium (Sec. IVA), the flux
function is found in terms of the confluent Heun function of a real
argument; yields physically meaningful magnetic field profiles
(see Sec. IVA 1). For certain special relations between solution

parameters, Heun functions reduce to polynomials; this is the case
obtained in terms of a decaying exponential and polynomials [for-
mula (2.19)]. This subfamily of global solutions was obtained by
Bogoyavlenskij.9

In Sec. V, Galas–Bogoyavlenskij transformations (5.1) and (5.3)
were applied to the new axially and helically symmetric static MHD
equilibria obtained earlier to yield exact field-aligned MHD equilib-
rium solutions with nonzero velocity: V1jjB1. Such dynamic configu-
rations share the set of magnetic surfaces with the original static
solutions and involve two arbitrary functions (5.2). In particular, the
plasma density q constant on magnetic surfaces is arbitrary for the
static MHD system and is transformed into arbitrary density q1 also
constant on the magnetic surfaces.

FIG. 12. (a) The (x, y)-cross section of the helical magnetic surfaces and contours of the pressure P, for the sample helically invariant static plasma equilibrium solution in Sec.
IV B 1. (b) The transformed pressure P1, obtained from Galas–Bogoyavlenskij transformations (5.3) with (5.7). (c) The cross sections of the transformed magnetic energy den-
sity. (d) The cross sections of the kinetic energy density in the transformed dynamic plasma equilibrium. The dashed line shows the magnetic surface corresponding to the
plasma domain boundary [see Fig. 10(a)].
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It is well known from laboratory experiments that plasmas have
demonstrated a variety of instabilities (see, e.g., Ref. 2 and references
therein for a review). An important question that concerns any exact
plasma equilibria is, therefore, their stability with respect to various types
of perturbations. A general result of Friedlander and Vishik41 concerns
the instability of non-field-aligned equilibria. Ilin and Vladimirov42 state
that Galas–Bogoyavlenskij transformations do not introduce new
plasma instabilities (see also Ref. 43 for results on the stability of plasmas
with current-vortex sheets). For each exact static plasma equilibrium
solution, including those obtained above, it is, therefore, important to
study its stability with respect to various perturbations. In particular,
one can consider, analytically and/or numerically, the full time-
dependent MHD system (1.1) written in helical coordinates, that is, sys-
tem (B1) (see Appendix B). The dynamics of small perturbations is gov-
erned by solutions of the linearization of (B1) near a given static
helically symmetric equilibrium defined by V ¼ @=@g ¼ 0. A related
question is the question of choice of arbitrary functions (5.2) in
Galas–Bogoyavlenskij transformations that would corresponds to, for
example, the smallest total energy of the resulting plasma configuration.
The total energy density is given by e ¼ P þ qjVj2=2þ jBj2=2l; it is
neither preserved by Galas–Bogoyavlenskij transformations [cf. (5.4)]
nor is constant on magnetic surfaces. It would be of interest to develop a
version of a variational principle that would help calculate “optimal”
energy-minimizing forms of F1ðwÞ and F2ðwÞ.

A long-term strategic direction is computation and application of
exact and approximate solutions appropriate for the description of
plasmas in complex geometries of various experimental settings that
lack basic geometrical symmetries, such as stellarators and tokamaks,
using, for example, the approximate symmetry approach (see, e.g., Ref.
44 and references therein). Approximate symmetries, such as quasiax-
ial and qualihelical symmetry in toroidal geometry,45 manifest them-
selves in multiple plasma physics settings (e.g., Ref. 46).

In further work, it is also of interest to study the MHD system in
the Dierkes and Oberlack’s new time-dependent helical coordinates.24
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APPENDIX A: THE BEHAVIOR OF AXIALLY SYMMETRIC
SOLUTIONS OF THE FIRST FAMILY

Let us consider the radial part of the first family of axially sym-
metric separated solutions (3.8) (Sec. III A). When d 62N, the two
radial solution components have the following asymptotic behav-
ior.47 First, when r ! 0þ, one has47

WW j;
1
2
; qr2

� �
� 1

Cð1� dÞ :

Second, as r !1, the other radial solution component diverges,
behaving like

WMðd; 1=2; qr2Þ �
Cð2Þ

Cð1� dÞ e
qr2

2 ðqr2Þ�d !1:

It follows that the poloidal magnetic field component Buðr; zÞ
¼ IðwÞ=r ¼ aw=r is singular both on the z-axis and at infinity, and
the corresponding plasma equilibria solutions must be considered
in domains bordered by magnetic surfaces that are bounded and
separated from zero in the radial direction.

In the case when d 2N, the functions WMðd; 1=2; qr2Þ and
WWðd; 1=2; qr2Þ become linearly dependent and behave like

WMðd; 1=2; qr2Þ �WWðd; 1=2; qr2Þ � r2e �
qr2

2

� �
Lð1Þd�1ðqr

2Þ; (A1)

where LðaÞn ðxÞ denote the Laguerre functions; in particular, Lð1Þd�1ðxÞ
are polynomials of order d� 1. Using (2.9), one observes that Bu

and Br which behave like re �
qr2

2

� �
Ld�1ðqr2Þ in the r variable are

smooth, finite in the interval 0 � r <1, and go to zero for
r !1. Therefore, finite magnetic energy will be the case with these
components. For the last component, Bz ¼ �wr=r in (2.7) and
(2.9), it is easy to observe as well that Bz remains finite for
0 � r � 1. From the form of the components of B in terms of
(A1), it follows that the magnetic energy integralð

U
jBðxÞj2 d3x;

computed in a slab U defined by z1 � z � z2; 0 � r <1 is finite.

APPENDIX B: DYNAMIC MHD EQUATIONS IN HELICAL
COORDINATES

We now explicitly write the full time-dependent system (1.1)
of MHD equations in helical coordinates. Using the coordinate
forms (2.14) in the basis (2.13) and the coordinate transformation
(2.12), one arrives at the following PDEs. As before, subscripts
denote partial derivatives.

• The continuity equation qt þ div qV ¼ 0

qt þ qrV
r þ 1

rQ
ðqgV

g þ rqnV
nÞ ¼ 0: (B1a)

• The incompressibility condition div V ¼ 0

ðrVrÞr þ
1
Q
ððVgÞg þ rðVnÞnÞ ¼ 0: (B1b)
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• The absence of magnetic charges div B ¼ 0

ðrBrÞr þ
1
Q
ððBgÞg þ rðBnÞnÞ ¼ 0: (B1c)

• The momentum equations (1.1b)

ðVrÞt ¼
1

qr3Q

�
�r3Q0ððBgÞ2 þ ðBnÞ2Þ

þ Q3ð2rcðBgBn � qVgVnÞ þ c2qðVnÞ2Þ
þQðr2ðBgÞ2 � r3ðqVrðVrÞr þ BgðBgÞr þ BnðBnÞr þ PrÞÞ
þr3ððBrÞnBn � qðVrÞnVnÞ þ r2ððBrÞgBg � qðVrÞgVgÞ

�
;

(B1d)

ðVgÞt ¼
1

qrQ
ððrQ0 þ 2Q3 � QÞðBrBg � qVrVgÞ

þ rQðBrðBgÞr � qVrðVgÞrÞ
þ rððBgÞnBn � qðVgÞnVnÞ � ðBrðBrÞg
þBnðBnÞg þ qVgðVgÞg þ PgÞÞ; (B1e)

ðVnÞt ¼
1

qr2Q

�
r2Q0ðBrBn � qVrVnÞ

� 2cQ3ðBrBg � qVrVgÞ þ r2QðBrðBnÞr � qVrðVnÞrÞ
� r2ðBrðBrÞn þ BgðBgÞn þ qVnðVnÞn þ PnÞ
þ rðBgðBnÞg � qVgðVnÞgÞ

�
: (B1f)

• The magnetic field evolution equations (1.1c)

ðBrÞt ¼
1
Q
ðVrBn � BrVnÞn þ

1
rQ
ðVrBg � VgBrÞg; (B1g)

ðBgÞt ¼
2cQ2

r2
ðVnBr � VrBnÞ þ 1

Q
ðQðVgBr � VrBgÞÞr

þ 1
Q
ðVgBn � VnBgÞn; (B1h)

ðBnÞt ¼
2Q2

r
ðVnBr � BnVrÞ þ r

Q
Q
r
ðVnBr � VrBnÞ

� �
r

þ 1
rQ
ðVnBg � VgBnÞg: (B1i)

It is straightforward to verify that when B ¼ @=@g ¼ 0, the
PDEs reduce to helically invariant Euler equations and coincide
with Eq. (2.9) of Ref. 23 (�¼ 0).
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