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A B S T R A C T

The classical Benjamin–Bona–Mahony equation (BBM equation) models unidirectional propagation of long
gravity surface waves of small amplitude. Unlike many other water wave models, it lacks the Galilean
invariance, which is an essential property of physical systems. It is shown that by an addition of a higher
asymptotic order nonlinear term, this deficiency can be corrected, giving rise to a new Galilei invariant
Benjamin–Bona–Mahony equation (iBBM equation). Moreover, further additional higher-order terms can be
chosen in a way that the augmented model preserves the energy conservation property along with Hamiltonian
and Lagrangian structures. The resulting equation is referred to as energy-preserving Benjamin–Bona–Mahony
equation (eBBM).

It is shown that both the classical BBM equation and the energy-preserving eBBM equations belong to a
one-parameter (𝛼) family that shares essentially the same local and nonlocal symmetries, conservation laws,
Hamiltonian, and Lagrangian structures, with the BBM and eBBM equations corresponding to parameter values
𝛼 = 0 and 𝛼 = 1 , respectively. Symmetry and conservation law classifications reveal a special case 𝛼 = 1∕3 ,
which is shown to correspond to a rescaled version of the celebrated integrable Camassa–Holm (CH) equation.
Local symmetries and conservation laws are computed, and numerical solution behaviour is compared for the
three BBM-type modes and the CH-equivalent eBBM 1∕3 model.
. Introduction

The celebrated Benjamin–Bona–Mahony equation (BBM equation)
as derived for the first time by D. Peregrine1 in perfect agreement
ith Arnold’s principlea. The BBM equation in scaled variables reads:

𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 = 0 , (1.1)

here subscripts (⋅) 𝑥 and (⋅) 𝑡 denote 𝜕 𝑥 and 𝜕 𝑡 — the partial derivative
ith respect to the spatial 𝑥 and temporal 𝑡 variables respectively.
he composition of these operators, e.g. 𝜕 2

𝑥 𝑡 applied to a (smooth)
unction 𝑢 is denoted by 𝑢 𝑥 𝑡 . The paper2 that gave the nameb to this
quation appeared six years later, along with one of the first numerical
tudies of its solitary wave interactions4 by the same authors. One
ear later, a mathematical analysis of the BBM equation was published

∗ Corresponding author.
E-mail addresses: shevyakov@math.usask.ca (A. Cheviakov), denys.dutykh@ku.ac.ae (D. Dutykh).

a This principle can be summarized in two following points:
The Arnold Principle If a notion bears a personal name, then this name is not the name of the discoverer.
The Berry Principle The Arnold Principle is applicable to itself.
b We have to mention here that in some papers another name was adopted for the same equation — Regularized Long Wave equation (RLW equation). To

omplete the description of various avatars of the BBM equation, we mention also that this equation without linear advection term was called Equal Width
quation (EW equation) in certain Ref. 3.

c They found this method to be the most accurate among all schemes considered in their studies.10,11.

in Ref. 5. The numerical scheme employed in Ref. 4 was based on the
analytical inversion of the elliptic operator 1 − 𝜕 2

𝑥 𝑥 , where 1 is the
identity operator in an appropriate functional space. These numerical
experiments demonstrated the inelastic nature of the head-on collision
in the BBM equation. We have to mention also another historical study6

of the solitary wave interactions in the BBM equation.
Regarding the numerical tools applied to solve numerically the

BBM equation, we already mentioned the integral formulation dis-
cretized with the classical trapezoidal rule used in Ref. 4. Later, this
method has been studied and further employed in Ref. 5. A finite
difference scheme has been proposed by D. H. Peregrine (1966)1 and
it was employed later by J. Hammack to study the wave generation
by impulsive bottom motion7 in the framework of the linear, weakly
nonlinear (he referred to it as the Peregrine–Benjamin–Bona–Mahony
equation (PBBM equation) to respect the correct historical attributions)
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and experimental measurements. This study had obvious applications
to the understanding of the tsunami generation processes.8,9 Another
second order two-level finite difference scheme has been proposed later
in Ref. 10. In the follow-up paper, Eilbeck and McGuire (1977) em-
ployed the three-level finite difference methodc to study the interaction
of solitary waves in the BBM equation. They came to a surprising
conclusion (the bold face is ours):

[ . . . ] It was found that the solitary waves passed through a strongly non-
linear interaction region and reappeared with their original amplitudes,
correct to a numerical error of ≲ 0.3% . Since this error is less than the
error for the single solitary waves test program this means that the RLW
solitary waves behave as true solitons to within the numerical error of
the calculation. The calculation was repeated with various values of the
soliton amplitude such that 𝑐 in (1.4) varied in the range 0.05 ≤ 𝑐 ≤ 1.0
and the ratio of the two soliton amplitudes, 𝑟 = 𝑐 1

𝑐 2
was varied in the

range 1.5 ≤ 𝑟 ≤ 10.0 . In all cases the typical collisional stability
of a soliton-like interaction was observed. [ . . . ]

One year earlier, Abdulloev et al. (1976) already found that the interac-
tion in the BBM equation was inelastic.12 Moreover, in 1979, P. Olver
proved that the BBM equation possesses only three local conservation
laws.13 Hence, it is not an 𝑆-integrable equation, in contrast to, for
example, the celebrated Korteweg–de Vries (KdV) equation14:

𝑢 𝑡 + 𝑢 𝑢 𝑥 + 𝑢 𝑥 𝑥 𝑥 = 0.

Hence, Eilbeck and McGuire attributed the inelastic effects to the
numerical error. At the same time, Eilbeck and McGuire made also
completely right observations about the solitary wave interactions in
their paper.11 To cite one example we can mention:

[ . . . ] The only obvious difference between the two solutions seems to be
that the KDV collision region is smaller than the RLW collision region.
This is presumably due to the fact that KDV solitons are narrower than
RLW solitons with the same amplitude, as can be seen from eqs. (1.3)
and (1.4). [ . . . ]

The need for more accurate simulations pushed L. R. T. Gardner
and G. A. Gardner (1990) to develop a Galerkin-type method based
on cubic 𝐵-splines for local solution representation on each element.15

Then, this method was applied to study the interaction of solitary waves
in the BBM equation, and the inelastic character of this interaction
was confirmed, in agreement with previous results of Abdulloev et al.
(1976).12 Moreover, L. R. T. Gardner and G. A. Gardner examined
also the emergence of solitary waves from the initial Maxwellian pulse
initial condition. Later, the continuous Galerkin methods for disper-
sive PDEs have been brought to perfection by V. Dougalis and his
school.16,17

Motivated by the apparent existing controversy between finite
difference and finite element methods predictions, the first Fourier-
type pseudo-spectral exponentially accurate method has been proposed
in Ref. 18. However, the final accuracy of pseudo-spectral methods
for nonlinear problems is crucially dependent on the employed anti-
aliasing technique (named the ‘restrain operator ’ in Ref. 18 or ‘filtering ’
in other studies such as Ref. 19).

At this point we shall stop the historical review of the BBM equa-
tion because all the references devoted to this equation are practically
uncountable. To name a few subsequent developments in the frame-
work of the BBM equation we shall just mention that the sharp well-
posedness for this equation was studied in Ref. 20, a multi-symplectic
numerical scheme was proposed in Ref. 21, the BBM equation on
networks has been considered in Ref. 22, the solitonic gas in KdV–
BBM equation has been studied in Ref. 23 and the optimal wave
generation process in the framework of the forced BBM equation was
studied in Ref. 24. One of the main (physical) drawbacks of the BBM
equation is the absence of the Galilean invariance. This question has
already been risen in the previous study of one of the authors of
2

the present manuscript.25 A remedy was proposed there. In this work
we continue to discuss the same issue from the point of view of the
modern symmetry and conservation law systematic analysis. On the
other hand, we focus on a specific family of equations to make the
perimeter of our study more embraced. For the first time, we extract
an integrable equation based on physical reasoning and symmetry-type
considerations. We hope that it will help the community to assess better
the rôle played by integrable models in nonlinear waves.

The present manuscript is organized as follows. The classical BBM
equation, its local symmetries, conservation laws, Hamiltonian and
Lagrangian formulations, and other properties are briefly reviewed in
Section 2. The new Galilei-invariant BBM-type model, asymptotically
equivalent to the BBM equation (in the sense specified below), called
the invariant Benjamin–Bona–Mahony equation (iBBM equation), is
derived and studied in Section 3. In particular, this equation is shown
to have an interesting exponential-type conserved quantity, but it lacks
the common conservation of energy present for the classical BBM
equation. In Section 4, by using the conservation law multiplier ideas
and adding another term of a higher asymptotic order, we obtain a
new PDE, referred to as the energy-preserving Benjamin–Bona–Mahony
equation (eBBM) equation, which has both the Galilean invariance
and energy conservation properties. Compared to the classical BBM
equation (1.1), it also admits an additional conservation law with a
time-dependent density. Similarly to the KdV equation and the classical
BBM equation (1.1), the potential form of the eBBM equation arises
from a Lagrangian variational formulation.

Both the classical BBM equation (1.1) and the eBBM equation are
members of a one-parameter family of PDEs (the so-called 𝛼-family)
onsidered in Section 5. All equations in this family share three com-
on point symmetries and three local conservation laws, including
conserved quantity corresponding to the Hamiltonian density. The

otential form of each PDE from the 𝛼-family yields a Lagrangian
ariational formulation. Local and nonlocal symmetry and local conser-
ation law computations and classifications with respect to the constant
arameter 𝛼 are performed. It is shown that additional symmetries
nd conservation laws arise in only two cases, one corresponding
o the eBBM (𝛼 = 1), and another one to 𝛼 = 1∕3. The latter
ase, referred to as eBBM 1∕3 equation, admits local symmetries and
onservation laws with characteristics of negative half-integer orders,
imilar to those of the well-known integrable Short Pulse equation (SP
quation) and Camassa–Holm (CH) models that appeared in the context
f nonlinear optics.26,27 Indeed, it turns out that the eBBM 1∕3 equation
s nothing but a scaled version of the celebrated integrable Camassa–
olm (CH) equation. The four models of interest in this paper, namely,

he BBM equation, the iBBM equation, the eBBM, and the eBBM 1∕3,
re investigated numerically in Section 6, in terms of the form and
ehaviour of solitary wave and transient solutions, and the numerical
onservation of energy.

. The classical BBM equation and its properties

The original BBM equation in scaled variables is given by

𝑡 +
√

𝑔𝑑 𝑣 𝑥 + 3
2
𝑣 𝑣 𝑥 − 𝑑2

6
𝑣 𝑥 𝑥 𝑡 = 0 , (2.1)

where 𝑑 is the still water depth, 𝑔 is the gravity acceleration constant
and 𝑣 (𝑥, 𝑡) is the horizontal velocity variable, usually associated with
he depth-averaged horizontal velocity of the fluid. After a further
escaling change of variables, the PDE (2.1) can be written in the form

𝑡 + 𝑢 𝑥 + 3
2
𝜀 𝑢 𝑢 𝑥 − 𝛿 2

6
𝑢 𝑥 𝑥 𝑡 = 0 , (2.2)

which explicitly contains the small parameters 𝜀 , 𝛿 . It is also assumed
that

𝜀 ∼ 𝛿 2 ≪ 1,
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which describes the well-known asymptotic Boussinesq regime.17 Un-
der the following rescaling

𝑢 ∶= 2
3 𝜀

𝑢 ∗ , 𝑥 ∶=

√

6
𝛿

𝑥 ∗ , 𝑡 ∶=

√

6
𝛿

𝑡 ∗ (2.3)

and after omitting the asterisks, one recovers the familiar form (1.1) of
the BBM equation. For the presentation of analytical results, we shall
use the BBM equation in the form (1.1) since it is the simplest one. We
also notice that by a translation change of variables 𝑢 ← 𝑤 − 1 , or by
a change of the reference frame and a subsequent rescaling, the BBM
equation (1.1) can be recast in a yet simpler form:

𝑤 𝑡 + 𝑤𝑤 𝑥 − 𝑤 𝑥 𝑥 𝑡 = 0.

Up to the last term of the same order, the BBM equation coincides with
the KdV and has the same travelling wave reduction ODE form, which
prompts the existence of solitary wave solutions to the BBM equation
even if their shape and velocity differ. Indeed, such solutions have been
found in Ref. 13.

2.1. Symmetries

The point symmetries of the PDE (1.1) are given by the following
infinitesimal generators:

X 1 = 𝜕 𝑡 , X 2 = 𝜕 𝑥 , X 3 = 𝑡 𝜕 𝑡 − (𝑢 + 1) 𝜕 𝑢 . (2.4)

As it can be seen, unlike the KdV, this model is not Galilean invariant as
it was diagnosed in Ref. 25. The global symmetry group corresponding
to X 1 in (2.4) is the time translation 𝑡 ∗ ∶= 𝑡 + 𝑎 , 𝑥 ∗ ∶= 𝑥 , 𝑢 ∗ ∶= 𝑢 ,
where 𝑎 ∈ R is the group parameter, with 𝑎 = 0 corresponding
to an identity transformation. Similarly, the symmetry generator X 2
corresponds to the spatial translation 𝑡 ∗ ∶= 𝑡 , 𝑥 ∗ ∶= 𝑥 + 𝑎 , 𝑢 ∗ = 𝑢 ,
nd the generator X 3 to the scaling of 𝑡 and 𝑢 + 1 :
∗ ∶= e− 𝑎 𝑡 , 𝑥 ∗ ∶= 𝑥 , 𝑢 ∗ + 1 ∶= e 𝑎 ( 𝑢 + 1 ) . (2.5)

e note that for the BBM equation in the form (2.2) involving the small
arameters, the infinitesimal generators (2.4) are given by

1 = 𝜕 𝑡 , X 2 = 𝜕 𝑥 , X 3 = 𝜀 𝑡 𝜕 𝑡 −
(

𝜀 𝑢 + 2
3

)

𝜕 𝑢.

It follows that the BBM equation (1.1), (2.2) is not Galilei-invariant.
owever, since it contains a small parameter in the form (2.2), one can
onsider the so-called approximate point symmetries28 with infinitesimal
enerators in the form

= X (0) + 𝜀X (1) +  ( 𝜀 2 ) . (2.6)

For the BBM equation in the form (2.2) involving small parameters,
considered with a single small parameter 𝜀 ∼ 𝛿 2 , we note that the
eroth-order part

𝑡 + 𝑢 𝑥 +  ( 𝜀 ) = 0

s linear. So, there are infinitely many approximate symmetries. In
articular, an approximate Galilean symmetry is present. It has the form
2.6) with X (0) = 𝜕 𝑢 and X (1) = 3

2 𝑡 𝜕 𝑥 . Finally, the approximate
alilean symmetry is given by

𝐺 = 𝜕 𝑢 + 3
2
𝜀 𝑡 𝜕 𝑥 , (2.7)

with the corresponding global group

𝑡 ∗ ∶= 𝑡 , 𝑥 ∗ ∶= 𝑥 + 3
2
𝑎 𝜀 𝑡 , 𝑢 ∗ ∶= 𝑢 + 𝑎,

involving the group parameter 𝑎 ∈ R .
Due to the presence of the translation symmetries X 1, 2 in (2.4), the

BBM equation admits a travelling wave reduction 𝑢 ( 𝑥, 𝑡 ) = 𝑞 ( 𝜉 ) ,
with 𝜉 = 𝑥 − 𝑐 𝑡 , with 𝑐 ∈ R . In particular, it has solitary travelling
wave solutions13 of the form

𝑢 ( 𝑥, 𝑡 ) = 3 𝑐 2 sech 2
[ 𝑐 (

𝑥 − 𝑡 + 𝑑
) ]

,

1 − 𝑐 2 2 1 − 𝑐 2

3

where 𝑐, 𝑑 ∈ R are arbitrary constants. The case |𝑐| > 1 corresponds
to a left-travelling wave of depression, while the case |𝑐| < 1 to a
right-travelling wave of elevation.

The BBM equation is not believed to be 𝑆-integrable or 𝐶-integrable.
In particular, no Lax pair has been found and the space of local
Conservation Law (CL) is only three-dimensional, as discussed below.

2.2. Conservation laws

The three local conservation laws holding on solutions of the BBM
equation (1.1) are given by

 𝑡 ( 𝑢 − 𝑢 𝑥 𝑥 ) +  𝑥

(

𝑢 + 𝑢 2

2

)

= 0 ,

(2.8)

 𝑡

( 1
2
( 𝑢 2 + 𝑢 2

𝑥 )
)

+  𝑥

( 1
3
𝑢 3 + 1

2
𝑢 2 − 𝑢 𝑢 𝑥 𝑡

)

= 0 ,

(2.9)

 𝑡

( 1
2
𝑢 2 + 1

6
𝑢 3

)

+

𝑥

( 1
8
𝑢 4 + 1

2
(𝑢 − 𝑢 𝑥 𝑡 + 1) 𝑢 2 − 𝑢 𝑢 𝑥 𝑡 + 1

2
( 𝑢 2

𝑥 𝑡 − 𝑢 2
𝑡 )

)

= 0 .

he above CL forms are unique up to a CL-equivalence.29 They are
eadily found from the multiplier (the so-called direct method) approach
see e.g., Ref.29 and references therein) from the respective multipliers

1 = 1 , 𝛬 2 = 𝑢 , 𝛬 3 = 𝑢 + 1
2
𝑢 2 − 𝑢 𝑥 𝑡 . (2.10)

he three corresponding (locally) conserved quantities in an arbitrary
nterval 𝑥 ∈ ( 𝑎, 𝑏 ) ⊆ R with vanishing boundary effects (either zero
r periodic boundary conditions), are given by

( 𝑡 ) = ∫

𝑏

𝑎
( 𝑢 − 𝑢 𝑥 𝑥 ) d𝑥 ,

d
d𝑡

= 0 , (2.11)

 ( 𝑡 ) = ∫

𝑏

𝑎

1
2
( 𝑢 2 + 𝑢 2

𝑥 ) d𝑥 , d
d𝑡

= 0 , (2.12)

 ( 𝑡 ) = 1
2 ∫

𝑏

𝑎

(

𝑢 2 + 1
3
𝑢 3

)

d𝑥 , d
d𝑡

= 0 . (2.13)

The first CL corresponds to the conservation of the momentum. The sec-
ond CL corresponds to the conservation of the kinetic energy. Indeed,
𝑢 2 and 𝑢 2

𝑥 represent the squares of the horizontal and verticald velocity
omponents. The meaning of the third conservation law will become
learer below. It has been shown in Ref. 13 that the above list of CLs
s complete.

.3. Hamiltonian and Lagrangian structure

The conservation law (2.13) corresponds to a Hamiltonian of the
BM equation (1.1), c.f. Ref. 25 [Section §2.2]. Indeed, the Hamiltonian
ormulation is provided by

𝑡 = J
𝛿
𝛿 𝑢

, (2.14)

where 𝛿∕𝛿 𝑢 denotes the usual variational derivative (that is, the Euler
operator; see e.g., Refs. 29, 31). The nonlocal symplectic operator J and
the Hamiltonian density are defined as

J =
(

1 − 𝜕 2
𝑥
)−1

⋅ ( −𝜕 𝑥 ) , (2.15)

 = 1
2 ∫R

(

𝑢 2 + 1
3
𝑢 3

)

d𝑥 , (2.16)

d In this footnote we clarify the connection between 𝑢 𝑥 with the vertical
elocity. Let us denote by (𝑈, 𝑉 ) the 2D velocity field in the fluid. If we

approximate the horizontal velocity 𝑈 by its depth-average value 𝑢 which does
not depend on the vertical coordinate 𝑦 , i.e., take 𝑈 ≈ 𝑢, then from the flow
incompressibility condition 𝑈 𝑥 + 𝑉 𝑦 = 0 and the bottom impermeability, we
obtain that 𝑉 = − ( 𝑦 + 𝑑 ) 𝑢 . For more details, refer to Ref. 30, Section §2.1.
𝑥
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with 1 being the identity operator.
The BBM equation (1.1) also arises from a variational principle. The

linearization of the PDE (1.1) is not self-adjoint as it stands. However,
the potential equation

𝑤 𝑥 𝑡 + 𝑤 𝑥 𝑥 + 𝑤 𝑥 𝑤 𝑥 𝑥 − 𝑤 𝑥 𝑥 𝑥 𝑡 = 0 (2.17)

written for the nonlocal variable 𝑤 ( 𝑥, 𝑡 ) defined through 𝑢 ∶= 𝑤 𝑥 ,
has a self-adjoint linearization, and arises from a Lagrangian action32

 [𝑤 ]
def
∶= − 1

2 ∫R

( 1
3
𝑤 3

𝑥 + 𝑤 2
𝑥 + 𝑤 𝑥 𝑤 𝑡 + 𝑤 𝑥 𝑥 𝑤 𝑥 𝑡

)

d𝑥 . (2.18)

3. A Galilei-invariant BBM equation

The invariant Benjamin–Bona–Mahony equation (iBBM equation)
equation was proposed in Ref. 25, Section §2.3 to recover the Galilean
invariance property by adding an asymptotically negligible term to
Eq. (1.1). The iBBM equation after rescaling (2.3) is given by

𝑢 𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0 . (3.1)

Note that in dimensionless variables involving the small parameters 𝜀
and 𝛿 , it has the form:

𝑢 𝑡 + 𝑢 𝑥 + 3
2
𝜀 𝑢 𝑢 𝑥 − 𝛿 2

6
𝑢 𝑥 𝑥 𝑡 − 𝜀 𝛿 2

4
𝑢 𝑢 𝑥 𝑥 𝑥 = 0 . (3.2)

From this last equation it can be seen that the last term has the
asymptotic order  ( 𝜀 2 ) ∼  ( 𝛿 4 ) ≪  ( 𝜀 + 𝛿 2 ) under the usual
Boussinesq regime assumption that 𝜀 ∼ 𝛿 2 .

We would like to note that in the iBBM equation, the second linear
term 𝑢 𝑥 cannot be removed by a translation of variables as before.
However, instead, one may be interested to consider also the iBBM
equation without the 𝑢 𝑥 term:

𝑢 𝑡 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0 . (3.3)

This model (3.3) has the following properties:

• From the physical point of view, it corresponds to the regime of
small gravity (𝑔 ≪ 1) and finite depth (𝑑 ∼ 1,

√

𝑔𝑑 ∼ 1).
• The scaling symmetry X 3 in (2.4) is preserved.

The travelling wave solutions to (3.3) are explicit exponentially decay-
ing peakons. If 𝜉 = 𝑥 − 𝑐 𝑡 , one gets the following reduction:

−𝑐 𝑢 ′ + 𝑢 𝑢 ′ + 𝑐 𝑢
′
− 𝑢 𝑢

′
= (𝑢 − 𝑐) (𝑢 ′ − 𝑢

′
) = 0,

here by primes we denote the ordinary derivatives with respect to 𝜉 .
t is not difficult to check that peakons

( 𝑥, 𝑡 ) = 𝐶 1 + 𝐶 2 e |𝑥 − 𝑐 𝑡| (3.4)

𝐶 1 , 𝐶 2 = const, are exact solutions to (3.3). Numerical simulations
suggest that isolated peakons (3.4) are stable only in the integrable
cases 𝑝 ∈ {0}2, 3 . The iBBM equation (3.3) is a part of the peakon
subfamily (𝜅 = 0) of the famous 𝑏-family of PDEs

𝑢 𝑡 + 2𝜅𝑢𝑥 + (𝑏 + 1) 𝑢 𝑢 𝑥 − 𝑏 𝑢 𝑥 𝑢 𝑥 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0 (3.5)

that includes the two well-known integrable models: the Degasperis–
Procesi equation33 (𝑏 = 3) and the Camassa–Holm equation34,35

(𝑏 = 2), which admit peakon solutions when 𝜅 = 0. The iBBM equation
(3.3) itself corresponds to 𝑏 = 0 .

3.1. Symmetries and conservation laws

The point symmetries of the iBBM equation (3.1) are given by

X 1 = 𝜕 𝑡 , X 2 = 𝜕 𝑥 , X 3 = 𝑡 𝜕 𝑥 + 𝜕 𝑢 , (3.6)

with Galilei invariance restored and the scaling symmetry lost, as com-
pared to the symmetries (2.4) of the BBM equation (1.1). In particular,
the generator X 3 corresponds to the global group
∗ ∗ ∗
𝑡 ∶= 𝑡 , 𝑥 ∶= 𝑥 + 𝑡 , 𝑢 ∶= 𝑢 + 𝑎 (3.7)

4

with the group parameter 𝑎 ∈ R . We note that for the iBBM
equation in the dimensionless form (3.2) explicitly involving small
scaling parameters, the exact point symmetries (3.6) become

X 1 = 𝜕 𝑡 , X 2 = 𝜕 𝑥 , X 3 = 3
2
𝜀 𝑡 𝜕 𝑥 + 𝜕 𝑢.

The latter exact symmetry generator coincides with the approximate
generator X𝐺 of the BBM equation (2.7).

No theoretical completeness result or the maximal order of local
conservation laws is known for the iBBM equation. Noting that the
equation has a Kovalevskaya form with respect to 𝑢 𝑥 𝑥 𝑥 , we employ
the direct construction (multiplier) method36,37 and restricting to the
third order multipliers of the form

𝛬 = 𝛬 ( 𝑥, 𝑡, 𝑢, 𝑢 𝑡, 𝑢 𝑥, 𝑢 𝑡 𝑡, 𝑢 𝑥 𝑡, 𝑢 𝑥 𝑥, 𝑢 𝑥 𝑥 𝑡, 𝑢 𝑥 𝑡 𝑡, 𝑢 𝑡 𝑡 𝑡 ).

Unlike the original BBM equation, the iBBM equation (3.1) in this
ansatz has two CLs corresponding to the multipliers

𝛬 1 = 1 , 𝛬 2 = e 𝑢 − 𝑢 𝑥 𝑥 .

The corresponding local CLs are given by

 𝑡 ( 𝑢 − 𝑢 𝑥 𝑥 ) +  𝑥

( 1
2
( 𝑢 2 + 𝑢 2

𝑥 ) + 𝑢 ( 1 − 𝑢 𝑥 𝑥 )
)

= 0 , (3.8a)

𝑡
(

e 𝑢 − 𝑢 𝑥 𝑥
)

+  𝑥
(

𝑢 e 𝑢 − 𝑢 𝑥 𝑥
)

= 0 . (3.8b)

he first CL (3.8a) describes the conservation of momentum property
the same conserved density as in (2.8) for the BBM equation), while
he two remaining local conservation laws do not hold for the iBBM
quation. In particular, the conservation of energy (2.9) does not carry
ver, being replaced by the exponential CL (3.8b). The respective global
onserved quantities for vanishing or periodic boundary conditions
ver an interval ( 𝑎, 𝑏 ) ⊆ R are given by

( 𝑡 ) = ∫

𝑏

𝑎
( 𝑢 − 𝑢 𝑥 𝑥 ) d𝑥 ,

d
d𝑡

= 0 ,

 ( 𝑡 ) = ∫

𝑏

𝑎
e 𝑢 − 𝑢 𝑥 𝑥 d𝑥 , d

d𝑡
= 0 .

No Lagrangian or Hamiltonian formulation is known for the iBBM
equation (3.1).

4. An energy-preserving Galilei-invariant BBM model

In the previous Section we observed that compared to the BBM
equation in the iBBM equation, the physically important Galilean in-
variance property was recovered, but the energy conservation law (2.9)
was lost. The goal of this Section is to add another higher-order  ( 𝛿 4 )
term to iBBM equation (3.2) to recover the conservation of energy as an
exact conservation law. We assume that the multiplier for the energy
CL is given by 𝛬 = 𝑢 as in the usual BBM equation (1.1). We observe
that the iBBM equation (3.1) taken with the same multiplier becomes

𝑢
(

𝑢 𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥
)

=  𝑡

( 1
2
( 𝑢 2 − 𝑢 𝑢 𝑥 𝑥 )

)

+

 𝑥

( 1
3
𝑢 3 + 1

2
𝑢 2 + 1

2
( 𝑢 𝑥 𝑢 𝑡 − 𝑢 𝑢 𝑥 𝑡 )

)

− 𝑢 2 𝑢 𝑥 𝑥 𝑥 ≡ 0 .

he last non-divergence term we have:
2 𝑢 𝑥 𝑥 𝑥 =  𝑥

(

𝑢 2 𝑢 𝑥 𝑥
)

− 2 𝑢 𝑢 𝑥 𝑢 𝑥 𝑥.

onsequently, we construct a new governing equation with an extra
erm:

𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 − 2 𝑢 𝑥 𝑢 𝑥 𝑥 = 0 . (4.1)

he same equation in dimensionless variables with small parameters is
iven by

+ 𝑢 + 3 𝜀 𝑢 𝑢 − 𝛿 2
𝑢 − 𝜀 𝛿 2

𝑢 𝑢 − 𝜀 𝛿 2
𝑢 𝑢 = 0 . (4.2)
𝑡 𝑥 2 𝑥 6 𝑥 𝑥 𝑡 4 𝑥 𝑥 𝑥 2 𝑥 𝑥 𝑥
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The last model has one more additional term (the last term) of the
order  ( 𝜀 𝛿 2 ) =  ( 𝛿 4 ) . If one uses the strictly asymptotic reason-
ing, these extra terms have to be neglected and one shall loose the
Galilean invariance and the energy conservation properties. The model
(4.1) (unscaled), (4.2) (in scaled variables) has another advantage of
having the energy CL with the same multiplier as the original BBM
equation. Moreover, since the new term is Galilean-invariant, it will
also have the Galilean boost symmetry as did the iBBM equation.
From now on, we shall refer to Eq. (4.1) as the energy-preserving
Benjamin–Bona–Mahony equation (eBBM).

Remark 4.1. The eBBM equation (4.1) appeared in physical (unscaled)
variables in Ref. 25, Remark 1, Equation (13) using a slightly differ-
ent variational (more precisely, Hamiltonian) reasoning. So, we refer
to Ref. 25, Section §2.3 for the Hamiltonian structure of the eBBM
equation. Later, this equation appeared (without the linear advection
term 𝑢 𝑥 , which can be easily removed by changing the frame of
reference) in Ref. 38 under the name of a regularized Burgers equation
(rB equation).

Remark 4.2. There is a striking similarity between the eBBM equation
and the 𝑝-family of PDEs non-zero dispersion, given by

𝑢 𝑡 + 𝜅 𝑢 𝑥 + (𝑝 + 1) 𝑢 𝑢 𝑥 − 𝑝 𝑢 𝑥 𝑢 𝑥 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0.

The case 𝜅 ≡ 0 corresponds to the peakon 𝑝-family (3.5) including
he Camassa–Holm (𝑝 = 2)34,35,39 and Degasperis–Procesi (𝑝 = 3)
ntegrable equations. However, it is not difficult to see that Eq. (4.1)
oes not belong to this PDE family. A similar model equation was
lso derived in Ref. 39, Equation (3.17)e as a unidirectional reduction
f the SGN system system. However, the authors recognized the lack
f the Galilean invariance in this equation, despite the beauty of its
erivation.

.1. Well-posedness theory

A class of nonlinear equations including the eBBM has been studied
n two papers by Z. Yin.40,41 The following local existence result has
een proven there:

heorem 4.1. Given an initial datum 𝑢 0 ∈ 𝐻 𝑠 (R ) with 𝑠 > 3
2 ,

hen there exists a maximal time 𝑇 ⋆ = 𝑇 ⋆ (

‖𝑢 0‖ 𝑠
)

> 0 and a unique
olution 𝑢 to Eq. (4.1) such that

= 𝑢 ( ⋅, 𝑢 0 ) ∈ 𝐶
(

[ 0, 𝑇 ⋆[ ; 𝐻 𝑠 (R )
)
⋂

𝐶 1 ( [ 0, 𝑇 ⋆[ ; 𝐻 𝑠−1 (R )
)

.

oreover, the solution depends continuously on the initial data, i.e. the
apping
𝑠 ⟶ 𝐶

(

[ 0, 𝑇 ⋆[ ; 𝐻 𝑠 (R )
)
⋂

𝐶 1 ( [ 0, 𝑇 ⋆[ ; 𝐻 𝑠−1 (R )
)

,

𝑢 0 ⟼ 𝑢 ( ⋅, 𝑢 0 )

s continuous. If 𝑇 ⋆ < +∞ , then

lim
↑ 𝑇 ⋆

‖𝑢 ( 𝑡, ⋅ )‖𝐻 𝑠 = +∞.

oreover, if 𝑠 ≥ 3 and 𝑇 ⋆ < +∞ , then

lim
↑ 𝑇 ⋆

inf
𝑥∈R

𝑢 𝑥 ( 𝑡, 𝑥 ) = −∞.

A better bound on the blow-up time 𝑇 ⋆ was obtained in Ref. 38:

heorem 4.2. Let the initial datum 𝑢 0 ∈ 𝐻 𝑠 be non-trivial with 𝑠 ≥ 2
nd let ∀ 𝑡 < 𝑇 ⋆ :

( 𝑡 )
def
∶= inf

𝑥∈R
𝑢 𝑥 ( 𝑡, 𝑥 ) < 0 < sup

𝑥∈R
𝑢 𝑥 ( 𝑡, 𝑥 )

def
=∶ 𝑀 ( 𝑡 ).

e More precisely, Equation (3.17) in Ref. 39 is given in physical variables
hile Equation (3.20) is its scaled version with a few extra typos.
5

• If |𝑚 ( 0 )| ≥ 𝑀 ( 0 ) , then

− 1
inf𝑥∈R 𝑢 0, 𝑥 ( 𝑥 )

≤ 𝑇 ⋆ ≤ − 2
inf𝑥∈R 𝑢 0, 𝑥 ( 𝑥 )

.

• If |𝑚 ( 0 )| < 𝑀 ( 0 ) , then there exists 𝑡⋆ such that 0 < 𝑡⋆ ≤
− 1

𝑚 ( 0 ) − 1
𝑀 ( 0 ) and 𝑚 ( 𝑡⋆ ) = −𝑀 ( 𝑡⋆ ) . Therefore,

𝑡⋆ + 1
sup𝑥∈R 𝑢 0, 𝑥 ( 𝑥 )

≤ 𝑇 ⋆ ≤ − 2
inf𝑥∈R 𝑢 0, 𝑥 ( 𝑥 )

.

Finally, the global existence of conservative solutions,f not necessar-
ily vanishing as |𝑥| → +∞ was also established in Ref. 38, Section §4:

Theorem 4.3. Let 𝑢 0 ∈ 𝐻̇ 1 (R ) ∩ 𝐿∞ (R ) , where the homogeneous
Sobolev space 𝐻̇ 1 (R ) is defined as

𝐻̇ 1 (R )
def
∶= {𝑓 |‖𝑓 ′

‖ 2 < +∞}.

If there exists a Lipschitz function 𝜙 such that 𝜙 ′ ∈ 𝐿 1 (R ) with 𝑢 0 − 𝜙 ∈
𝐻 1 (R ) , then there exists a global conservative solutionf 𝑢 to Eq. (4.1) such
that 𝑢 ( 𝑡, ⋅ ) − 𝜙 ∈ 𝐻 1 (R ) for ∀ 𝑡 > 0 . In addition, for ∀ 𝑇 ⋆ > 0 ,
if lim

𝑡 ↑ 𝑇 ⋆
inf
𝑥∈R

𝑢 𝑥 ( 𝑡, 𝑥 ) = −∞ , then lim
𝑡 ↓ 𝑇 ⋆

sup
𝑥∈R

𝑢 𝑥 ( 𝑡, 𝑥 ) = +∞ . If 𝑢 0 ∈

𝐻 1 (R ) , then ∀ 𝑡 > 0 we have

∫R

(

𝑢 ( 𝑡, 𝑥 ) 2 + 𝑢 𝑥 ( 𝑡, 𝑥 ) 2
)

d𝑥 = ∫R

(

𝑢 0 ( 𝑥 ) 2 + 𝑢 0, 𝑥 ( 𝑥 ) 2
)

d𝑥.

The formation of singularity (i.e. the derivative blow-up) is observed
below by our numerical simulations.

4.2. Symmetries and conservation laws

The three point symmetries of the eBBM equation (4.1) coincide
with symmetries of the iBBM equation given by (3.6). In particular,
the Galilean invariance is preserved.

We now seek the CLs of the eBBM equation (4.1) with up to the
third-order multipliers:

𝛬 = 𝛬 ( 𝑥, 𝑡, 𝑢, 𝑢 𝑡, 𝑢 𝑥, 𝑢 𝑡 𝑡, 𝑢 𝑥 𝑡, 𝑢 𝑥 𝑥, 𝑢 𝑥 𝑥 𝑡, 𝑢 𝑥 𝑡 𝑡, 𝑢 𝑡 𝑡 𝑡 ).

It can be shown that the full set of such CLs is given by the four
conservation laws with multipliers

𝛬 1 = 1 ,

𝛬 2 = 𝑢 ,

3 = 𝑢 2 − 𝑢 2
𝑥 − 2 ( 𝑢 𝑥 𝑡 + 𝑢 𝑢 𝑥 𝑥 ) , (4.3a)

4 = 𝑥 − 𝑡 ( 𝑢 + 1 ) . (4.3b)

e observe that no third-order CLs arise; otherwise, the first two
ultipliers coincide with the multipliers (2.10) for the BBM equation,
hile the multiplier 𝛬 3 (4.3a) differs from the corresponding multiplier

or the BBM equation by the expression in parentheses. The multiplier
4 (4.3b) is new. The divergence forms of the local CLs, up to a CL

quivalence, are given by

𝑡 ( 𝑢 − 𝑢 𝑥 𝑥 ) +  𝑥

( 1
2
( 𝑢 2 − 𝑢 2

𝑥 ) + 𝑢 ( 1 − 𝑢 𝑥 𝑥 )
)

= 0 , (4.4)

𝑡

( 1
2
( 𝑢 2 + 𝑢 2

𝑥 )
)

+  𝑥

( 1
3
𝑢 3 + 1

2
𝑢 2 − 𝑢 ( 𝑢 𝑥 𝑡 + 𝑢 𝑢 𝑥 𝑥 )

)

= 0 , (4.5)

𝑡

( 1
3
𝑢 3 + (𝑢 − 1) 𝑢 2

𝑥

)

+  𝑥

( 1
4
( 𝑢 4 + 𝑢 4

𝑥 ) + 1
3
𝑢 3 − ( 𝑢 2 − 𝑢 2

𝑥 ) 𝑢 𝑥 𝑡 +

𝑢 2 𝑢 2
𝑥 𝑥 − 𝑢 2

𝑡 + 𝑢 2
𝑥 𝑡 − 𝑢 𝑢 2

𝑥 − 1
2
𝑢 2 𝑢 2

𝑥 − 2 𝑢 𝑢 𝑡 𝑢 𝑥 +

( 𝑢 2
𝑥 − 𝑢 2 + 2 𝑢 𝑥 𝑡 + 𝑢 𝑢 𝑥 𝑥 ) 𝑢 𝑢 𝑥 𝑥

)

= 0 , (4.6)

f For the definition of a conservative solution we refer to Ref. 38,
Definition 4.1.
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e
s
a
s
(
t

I

 𝑡

(

(

𝑡 − 𝑥 + 1
2
𝑡 𝑢

)

( 𝑢 − 𝑢 𝑥 𝑥 )
)

+  𝑥

( 1
3
𝑡 𝑢 3 −

( 1
2
𝑥 + 𝑡 ( 𝑢 𝑥 𝑥 − 1 )

)

𝑢 2 +
(

( 𝑡 − 𝑥 ) ( 𝑢 𝑥 𝑥 − 1 ) + 1
2
( 𝑢 𝑥 + 𝑡 𝑢 𝑡 𝑥 )

)

𝑢 +

1
2
(

2 + 𝑡 𝑢 𝑡 + ( 𝑥 − 𝑡 ) 𝑢 𝑥
)

𝑢 𝑥

)

= 0 . (4.7)

The first CL (4.4) of the eBBM equation (4.1), with 𝛬 1 = 1 ,
orresponds to the conservation of momentum, and has the same
onserved quantity  ( 𝑡 ) (2.11) as the BBM equation (1.1). Similarly,
he second CL (4.5) with 𝛬 2 = 𝑢 has the conserved quantity  ( 𝑡 )
2.12) which is the total kinetic energy, equal to that for the BBM
quation (1.1). For the third CL (4.6), the conserved quantity is

( 𝑡 ) = ∫

𝑏

𝑎

( 1
3
𝑢 3 + (𝑢 − 1) 𝑢 2

𝑥

)

d𝑥 , d
d𝑡

= 0 , (4.8)

which is conserved provided the suitable boundary conditions at ∞ ≤
𝑎 < 𝑏 ≤ +∞ . The conserved quantity (4.8) is related to the
Hamiltonian structure of the eBBM equation (4.1), as shown below. The
final CL (4.7) has the associated conserved quantity

 ( 𝑡 ) = ∫

𝑏

𝑎

(

𝑡
(

1 + 1
2
𝑢
)

− 𝑥
)

( 𝑢 − 𝑢 𝑥 𝑥 ) d𝑥 , (4.9)

with an explicitly 𝑥- and 𝑡-dependent conserved density. Under suitable
oundary conditions, (4.9) is a constant, and can be written as  ( 𝑡 ) =
onst, or

( 𝑡 ) =  0 ( 𝑡 ) + 𝑡 ⋅  1 ( 𝑡 ) , (4.10)

with

 0
def
∶= − ∫

𝑏

𝑎
𝑥 ( 𝑢 − 𝑢 𝑥 𝑥 ) d𝑥 ,

 1
def
∶= ∫

𝑏

𝑎

(

1 + 1
2
𝑢
)

( 𝑢 − 𝑢 𝑥 𝑥 ) d𝑥 .

aking (4.10) similar to the ‘‘centre of mass theorem’’ arising in contin-
um mechanics and describing the motion of the centre of mass (see,
.g., Ref. 42, Equation (3.24)).

It is possible to show that the eBBM equation (4.1) can be writ-
en in a Hamiltonian form.25, Section §2.3 The Hamiltonian is a linear
ombination of the conserved energy  ( 𝑡 ) (2.12) and the quantity
( 𝑡 ) (4.8). Also, similarly to the BBM equation (1.1), the eBBM

quation (4.1) has a Lagrangian variational formulation, specifically, a
otential form that is an Euler–Lagrange equation for some Lagrangian
ensity. Details are presented in Section 5 below, where we consider a
ore general one-parameter family of PDEs that includes both the BBM

quation (1.1) and eBBM equation (4.1), sharing common Lagrangian
nd Hamiltonian structures.

. The 𝜶-family of BBM-type equations

Let us consider a one-parameter family of equations

𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝛼 ( 𝑢 𝑢 𝑥 𝑥 𝑥 + 2 𝑢 𝑥 𝑢 𝑥 𝑥 ) = 0 , (5.1)

ith 𝛼 ∈ R . The PDE (5.1) reduces to the BBM equation (1.1)
hen 𝛼 = 0 , and to the eBBM equation (4.1) when 𝛼 = 1 . It

s straightforward to show that the parameter 𝛼 in Eq. (5.1) cannot
e removed by a rescaling or other simple equivalence transformation
see e.g.,43 and references therein). In dimensionless variables, the PDE
amily (5.1) has the form

𝑡 + 𝑢 𝑥 + 3
2
𝜀 𝑢 𝑢 𝑥 − 𝛿 2

6
𝑢 𝑥 𝑥 𝑡 − 𝛼 𝜀 𝛿 2

4
( 𝑢 𝑢 𝑥 𝑥 𝑥 − 2 𝑢 𝑥 𝑢 𝑥 𝑥 ) = 0,

he 𝛼-term having the highest asymptotic order  ( 𝜀 2 ) ∼  ( 𝛿 4 ) in
the so-called Boussinesq regime 𝜀 ∼ 𝛿 2 , c.f. Ref. 17.

In this section, we study the properties of the PDE PDE family
5.1) common for all equations, including the BBM equation (1.1) and
BBM equation (4.1), such as common symmetries, conservation laws,
agrangian and Hamiltonian structures, and classify with respect to 𝛼
o reveal cases that have special properties.
6

5.1. Common symmetries, conservation laws, and hamiltonian structure of
the 𝛼-family

The point symmetries of the family of PDEs (5.1) holding for all 𝛼
are given by the generators

X 1 = 𝜕 𝑡 , (5.2a)

2 = 𝜕 𝑥 , (5.2b)

3 = ( 𝛼 − 1 ) 𝑡 𝜕 𝑡 + 𝛼 𝑡 𝜕 𝑥 + ( 1 + ( 1 − 𝛼 ) 𝑢) 𝜕 𝑢 , (5.2c)

atching (2.4) for 𝛼 = 0 , and (3.6) for 𝛼 = 1 . In particular, when
= 0 , the generator X 3 yields the scaling symmetry group (2.5)

olding for the BBM equation (1.1), and when 𝛼 = 1 , X 3 yields the
alilei group (3.7) holding for the eBBM equation (4.1). The latter is

he only Galilei-invariant representative of the PDE family (5.1).
A direct computation shows that there are no higher-order symme-

ries for any member of the family (5.1) depending on derivatives of 𝑢
p to the second-order, i.e., with generators of the form

̂ = 𝜁 ( 𝑥, 𝑡, 𝑢, 𝑢 𝑡, 𝑢 𝑥, 𝑢 𝑡 𝑡, 𝑢 𝑥 𝑡, 𝑢 𝑥 𝑥 ) 𝜕 𝑢 , (5.3)

xcept the point symmetries (5.2). Moreover, one can show there are
o symmetries holding for an arbitrary 𝛼 with components depending
n 𝑥 , 𝑡 , 𝑢 , and 𝑥-derivatives of 𝑢 up to order five.

In the case of an arbitrary 𝛼 , the 𝛼-family (5.1) admits three local
onservation laws with multipliers

1 = 1 , (5.4a)

2 = 𝑢 , (5.4b)

3 = 𝑢 2 − 2 𝑢 𝑥 𝑡 − 𝛼 ( 𝑢 2
𝑥 + 2 𝑢 𝑢 𝑥 𝑥 ) . (5.4c)

t follows that all PDEs from the family (5.1) conserve the momentum
multiplier (5.4a), conserved quantity  ( 𝑡 ) (2.11)) and energy (multi-
lier (5.4b), conserved quantity  ( 𝑡 ) (2.12)). These conservation laws
re shared with the BBM equation (1.1) and the eBBM equation (4.1).
he multiplier 𝛬 3 , also common for the whole 𝛼-family (5.1), yields a
odified version of the conserved quantity (4.8):

𝛼 ( 𝑡 ) = ∫

𝑏

𝑎

( 1
3
𝑢 3 + ( 𝛼 𝑢 − 1 ) 𝑢 2

𝑥

)

d𝑥 ,
d 𝛼
d𝑡

= 0 .

The latter, taken in a linear combination with  ( 𝑡 ) (2.12), leads to a
conserved quantity

 𝛼 ( 𝑡 ) = 1
2 ∫

𝑏

𝑎

(

𝑢 2 + 1
3
𝑢 3 + 𝛼 𝑢 𝑢 2

𝑥

)

d𝑥 ,
d 𝛼
d𝑡

= 0.

hich defines a Hamiltonian for the whole 𝛼-family (5.1). Indeed, the
DEs (5.1) can be written in the Hamiltonian form (2.14) with the
ame symplectic operator J (2.15) as the one for the original the BBM
quation (1.1).

.2. The potential 𝛼-family and its Lagrangian structure

It is straightforward to show that similarly to the KdV and the BBM
quations, the PDEs of the 𝛼-family (5.1) as it stands does not have a
elf-adjoint Fréchet derivative, and hence does not directly arise from
variational principle for any Lagrangian functional. This can also be

een from the obvious differences between conservation law multipliers
5.4) and the evolutionary forms of symmetries (5.2), which contradicts
he first Noether theorem (c.f.31).

However, the 𝛼-family (5.1) has a potential Lagrangian formulation.
n fact, upon the introduction of the potential variable 𝑤 = 𝑤 ( 𝑥, 𝑡 )

defined by
def
𝑢 ∶= 𝑤 𝑥 , (5.5)
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the 𝛼-family (5.1) is written in the potential form

𝑤 𝑡 𝑥 + 𝑤 𝑥 𝑥 + 𝑤 𝑥 𝑤 𝑥 𝑥 − 𝑤 𝑥 𝑥 𝑥 𝑡 − 𝛼 (𝑤 𝑥 𝑤 𝑥 𝑥 𝑥 𝑥 + 2𝑤 𝑥 𝑥 𝑤 𝑥 𝑥 𝑥 ) = 0 ,

(5.6)

which, for every 𝛼 , is nonlocally related to the corresponding PDE (5.1)
(that is, the correspondence between solutions 𝑢 ( 𝑥, 𝑡 ) and 𝑤 ( 𝑥, 𝑡 ) is
one-to-many; see e.g., Ref. 29). One can show that the linearization of
(5.6) is self-adjoint. The homotopy formula31, Theorem 5.92 can be used
to construct the Lagrangian density, which up to equivalence is readily
found to be

 [𝑤 ]
def
∶= − 1

2 ∫R

( 1
3
𝑤 3

𝑥 + 𝑤 2
𝑥 + 𝑤 𝑥 𝑤 𝑡 + 𝑤 𝑥 𝑥 𝑤 𝑥 𝑡 + 𝛼 𝑤 𝑥 𝑤

2
𝑥 𝑥

)

d𝑥 ,

(5.7)

The Lagrangian (5.7) is different from the Lagrangian (2.18) of the po-
tential BBM equation (2.17) only by the last term. It is straightforward
to check that the Euler–Lagrange equation
𝛿
𝛿 𝑤

= 0

ields the potential equation (5.6) for each value of the parameter 𝛼 .
It is of interest to briefly consider symmetries and conservation

aws of the potential 𝛼-family (5.6). The first reason for that is that
he potential 𝛼-family equations (5.6) are nonlocally related to the
DEs (5.1), and hence the local symmetries and conservation laws of
5.1) vs. (5.6) might differ (c.f.29). Secondly, since the PDEs (5.6) arise
rom a variational principle, the first Noether theorem will provide an
vident relation between their local symmetries and conservation laws.
eeking local symmetries of the potential 𝛼-family equations (5.6) in
volutionary form

̂ = 𝜁 ( 𝑥, 𝑡, 𝑤, 𝑤 𝑥, 𝑤 𝑥 𝑥, 𝑤 𝑥 𝑥 𝑡, 𝑤 𝑥 𝑥 𝑥 ) 𝜕𝑤 , (5.8)

holding for all 𝛼 ∈ R , we find the admitted symmetry generator
components

𝜁 1 ∶= 𝑤 𝑡 , (5.9a)

𝜁 2 ∶= 𝑤 𝑥 , (5.9b)

𝜁 3 ∶= 𝑥 − ( 𝛼 − 1 ) (𝑤 + 𝑡 𝑤 𝑡 ) − 𝛼 𝑡𝑤 𝑥 , (5.9c)

𝜁 4 ∶= 2 ( 𝑥 − 𝑡 𝑤 𝑥 ) + ( 𝛼 − 1 ) 2 𝑡 (𝑤 2
𝑥 𝑥 + 2𝑤 𝑥 𝑤 𝑥 𝑥 𝑥 ) (5.9d)

+ ( 𝛼 − 1 )
(

2𝑤 + 𝑡 ( 2𝑤 𝑥 𝑥 𝑡 + 𝑤 2
𝑥 𝑥 + 2𝑤 𝑥 𝑤 𝑥 𝑥 𝑥 − 𝑤 2

𝑥 )
)

,

𝜁 5 ∶= 𝑤 2
𝑥 − 2𝑤 𝑥 𝑥 𝑡 − 𝛼 (𝑤 2

𝑥 𝑥 + 2𝑤 𝑥 𝑤 𝑥 𝑥 𝑥 ) , (5.9e)

𝜁𝐹 ∶= 𝐹 ( 𝑡 ) . (5.9f)

The generators (5.8) with 𝜁 1 and 𝜁 2 correspond to the time and space
translation point symmetries X 1 = 𝜕 𝑡 , X 2 = 𝜕 𝑥 of the 𝛼-family (5.1)
(c.f. (5.2)). The local symmetry with 𝜁 3 (5.9c) corresponds to the point
symmetry X 3 = 𝛼 𝑡 𝜕 𝑥 + ( 𝛼 − 1 ) 𝑡 𝜕 𝑡 + ( 𝑥 − ( 𝛼 − 1 )𝑤 ) 𝜕𝑤 of
(5.1), which includes the Galilei group only when 𝛼 = 1 , that is, only
for the potential form of the eBBM equation (4.1) itself. The generator
with 𝜁 4 (5.9d) is generally a higher-order symmetry generator, which
also degenerates into the Galilei group X 4 = 𝑡 𝜕 𝑥 + 𝜕𝑤 when 𝛼 = 1 .
For 𝛼 ≠ 1 , the symmetry component 𝜁 4 yields a nonlocal higher-
order symmetry of the corresponding PDE from the 𝛼-family (5.1) (c.f.
Ref. 29). The local generator X̂ 5 with symmetry component 𝜁 5 (5.9e) is
a higher-order symmetry of the potential equations (5.6) for each 𝛼 . It
corresponds to the local conservation law multiplier 𝛬 3 (5.4) of the PDE
family (5.1), and also to a point symmetry X = 𝜕 𝑡 + 𝜕 𝑥 of the eBBM
family (5.1), which can be verified by a prolongation and a substitution
of 𝑢 𝑥 𝑥 𝑡 on solutions (5.1). The local symmetry generator with 𝜁𝐹 (5.9f)
admitted by the potential family (5.6) is its point symmetry 𝑤 ∶=
𝑤 + 𝐹 ( 𝑡 ) , with no projection on the space of variables ( 𝑥, 𝑡, 𝑢 ) of the
eBBM equation (4.1), related to the non-uniqueness of the definition
(5.5) of the potential up to an arbitrary function of time. Higher than
7

second order local symmetries and conservation laws of the potential 𝛼-
family (5.6) can be sought and classified with respect to the parameter
𝛼 (see Section 5.3 below).

Since the potential 𝛼-family (5.6) arises from a Lagrangian, by
Noether theorem, its variational symmetries yield conservation law
multipliers. A brief computation shows that indeed,

𝛬 1 = 𝜁 1 , 𝛬 2 = 𝜁 2 , 𝛬 5 = 𝜁 5 , 𝛬𝐹 = 𝜁𝐹

are local conservation law multipliers of the potential 𝛼-family (5.6),
whereas the local symmetries with 𝜁 3 and 𝜁 4 are not variational, and
have no corresponding conservation laws. The multiplier 𝛬𝐹 corre-
sponds to a conservation law

 𝑡
(

𝐹 ( 𝑡 ) (𝑤 𝑥 − 𝑤 𝑥 𝑥 𝑥 )
)

+  𝑥

(

−𝐹 ′ ( 𝑡 ) (𝑤 − 𝑤 𝑥 𝑥 ) +

𝐹 ( 𝑡 )
(

𝑤 𝑥 ( 1 − 𝛼 𝑤 𝑥 𝑥 𝑥 ) + 1
2
(𝑤 2

𝑥 − 𝛼 𝑤 2
𝑥 𝑥 )

))

= 0 , (5.10)

olding for an arbitrary function 𝐹 ( 𝑡 ) , which is a nonlocal conservation
aw of the 𝛼-family (5.1) (see e.g.29). Indeed, the spatial flux in (5.10)
s explicitly dependent on the potential 𝑤 = ∫ 𝑢 d𝑥 itself, and hence
s not equivalent to any local expression in terms of 𝑢 . The conserved
ensity in (5.10),

𝐹
def
∶= 𝐹 ( 𝑡 ) (𝑤 𝑥 − 𝑤 𝑥 𝑥 𝑥 ) ≡ 𝐹 ( 𝑡 ) ( 𝑢 − 𝑢 𝑥 𝑥 )

s, however, a local quantity in terms of the dependent variable 𝑢 of
5.6).

An additional important conservation law arises for the potential
-family (5.6). In fact, the left-hand side of each Eq. (5.6) is a total
-derivative:

𝑥

(

𝑤 𝑡 + 𝑤 𝑥 + 1
2
𝑤 2

𝑥 − 𝑤 𝑥 𝑥 𝑡 − 𝛼
( 1
2
𝑤 2

𝑥 𝑥 + 𝑤 𝑥 𝑤 𝑥 𝑥 𝑥

))

= 0,

which can be written as

𝑤 𝑡 + 𝑤 𝑥 + 1
2
𝑤 2

𝑥 − 𝑤 𝑥 𝑥 𝑡 − 𝛼
( 1
2
𝑤 2

𝑥 𝑥 + 𝑤 𝑥 𝑤 𝑥 𝑥 𝑥

)

= 𝐶 , (5.11)

for an arbitrary constant 𝐶 . For every fixed value of the parameter 𝛼 ,
the solution set integrated potential 𝛼-family (5.11) is in a not-one-to-
one relationship with solutions of PDEs from the 𝛼-family (5.1). Indeed,
every solution 𝑤 ( 𝑥, 𝑡 ) of (5.11) for a fixed 𝐶 yields a solution 𝑢 = 𝑤 𝑥
of (5.1). Conversely, any solution 𝑢 ( 𝑥, 𝑡 ) of (5.1) corresponds to a
family of solutions of (5.11) for some specific 𝐶 , given by 𝑤 ( 𝑥, 𝑡 ) =
∫ 𝑢 d𝑥 and defined up to a free additive constant.

We note that in addition to (5.6), other potential systems nonlocally
related to the 𝛼-family (5.1) can be constructed, using each of the three
linearly independent conservation law multipliers (5.4) to obtain three
independent pairs of potential equations. Such potential equations
can be used by themselves (singlet potential systems), in pairs (couplet
potential systems), and all together (the triplet potential system), and may
lead to new nonlocal symmetries and/or nonlocal conservation laws of
the 𝛼-family of PDEs (5.1), including new results for the original BBM
equation (1.1) and the eBBM (4.1).29,44

5.3. Local conservation law and symmetry classification of the 𝛼-family

Since the PDE family (5.1), as well as its potential form (5.6), in-
volve a arbitrary element 𝛼 , its local symmetries and conservation laws,
as well as other mathematical properties can be classified according to
𝛼 (see e.g. Ref. 29 and references therein). In Section 5.1, symmetries
and conservation laws that arise for an arbitrary 𝛼 were listed. We now
use the GeM package for Maple,36,37,43,45 along with Maple rifsimp
routine, to generate, classify, and solve local symmetry and conserva-
tion law determining equations for the PDE families (5.1) and (5.6).
We refer also to Ref. 46 for an alternative approach to the computation
of conservation laws based on symmetries and adjoint symmetries.
Namely, this work brought a new one-to-one correspondence between
conservation laws and pairs of symmetries and adjoint symmetries for

non-variational equations.
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First, classifying local conservation laws of the 𝛼-family (5.1) with
third-order multipliers, the following cases are distinguished:

1. In the general case with arbitrary 𝛼 , as reported above, only three
common local conservation laws arise, with multipliers (5.4).

Remark 5.1. We note that the BBM equation (1.1) with 𝛼 = 0 and its
three conserved quantities (2.11)–(2.13) belong to this general case.

2. An additional local conservation law (4.7) with multiplier (4.3b)
arises when 𝛼 = 1; this is the case of the eBBM equation (4.1).

3. When 𝛼 = 1
3 , the PDE

𝑡 + 𝑢 𝑥 + 𝑢 𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 1
3
𝑢 𝑢 𝑥 𝑥 𝑥 − 2

3
𝑢 𝑥 𝑢 𝑥 𝑥 = 0 . (5.12)

turns out to be the only other special case when additional conservation
laws arise. We shall refer to the PDE (5.12) as the eBBM 1∕3 equation.

he PDE equation (5.12) admits three common-family multipliers (5.4)
nd additional conservation laws, including ones with local multipliers

(

1∕3
)

4 = 5 𝑢 3 + ( 9 − 4 𝑢 𝑥 𝑥 ) 𝑢 2 (5.13a)
− ( 𝑢 2

𝑥 + 6 𝑢 𝑥 𝑡 ) 𝑢 + 6 ( 𝑢 𝑥 𝑢 𝑡 + 3 𝑢 𝑡 𝑡 ) ,

𝛬
(

1∕3
)

5 = 1
(2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3)1∕2

, (5.13b)

𝛬
(

1∕3
)

6 =
𝑢 𝑥 𝑥 𝑥 𝑥 − 1

2 ( 2 𝑢 + 3 )
(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 5∕2

+ 5
2

𝑢 2
𝑥 𝑥 𝑥 + 𝑢 𝑥 ( 𝑢 𝑥 − 2 𝑢 𝑥 𝑥 𝑥 )
(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 7∕2

.

(5.13c)

riting these conservation laws as

𝑡  𝑗 [ 𝑢 ] +  𝑥  𝑗 [ 𝑢 ] = 0 , 𝑗 = 4, 5, 6,

he conserved densities and fluxes are found to be, up to equivalence,

4 [ 𝑢 ]
def
∶= 5 𝑢 4 + 12 𝑢 3 + ( 26 𝑢 2

𝑥 + 4 𝑢 2
𝑥 𝑥 ) 𝑢

2 +

( 𝑢 2
𝑥 𝑢 𝑥 𝑥 + 24 𝑢 2

𝑥 + 36 𝑢 𝑡 𝑡 ) 𝑢 − 36 𝑢 𝑡 𝑡 𝑢 𝑥 𝑥, (5.14a)

4 [𝑢]
def
∶= 4 𝑢 5 − 2

3
( 4 𝑢 𝑥 𝑥 + 2 𝑢 𝑥 𝑥 𝑥 𝑥 − 21 ) 𝑢 4

− 1
3
( 20 𝑢 𝑥 𝑢 𝑥 𝑥 𝑥 + 24 𝑢 𝑥 𝑥 + 84 𝑢 𝑥 𝑡 − 32 𝑢 2

𝑥 − 36 ) 𝑢 3 +

2 ( 6 𝑢 𝑡 𝑢 𝑥 𝑥 𝑥 + 8 𝑢 𝑥 𝑡 𝑢 𝑥 𝑥 − 2 𝑢 2
𝑥 𝑢 𝑥 𝑥 − 24 𝑢 𝑥 𝑡

+ 12 𝑢 𝑡 𝑡 + 3 𝑢 2
𝑥 − 22 𝑢 𝑥 𝑢 𝑡 ) 𝑢 2

+
(

36 ( 𝑢 𝑡 𝑡 − 𝑢 𝑥 𝑡 𝑡 𝑡 ) − 24 ( 𝑢 𝑥 𝑥 𝑢 𝑡 𝑡 + 𝑢 𝑥 𝑢 𝑡 )

+ 8 𝑢 𝑥 𝑢 𝑥 𝑥 𝑢 𝑡 + 3 𝑢 2
𝑥 𝑢 𝑥 𝑡

)

𝑢

+ 36 𝑢 𝑥 𝑢 𝑡 𝑡 𝑡 − 3 𝑢 3
𝑥 𝑢 𝑡 , (5.14b)

 5 [ 𝑢 ]
def
∶=

√

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3 , (5.14c)

 5 [𝑢]
def
∶= 1

3

(

𝑢
√

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
)

, (5.14d)

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 5∕2

⋅  6 [ 𝑢 ]
def
∶= 2

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 2 +

( 2 𝑢 + 3 )
(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
)

+ 3 ( 𝑢 2
𝑥 𝑥 𝑥 − 𝑢 2

𝑥 ) (5.14e)

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 5∕2

⋅  6 [ 𝑢 ]
def
∶=

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 3 + ( 𝑢 + 3 )

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 2 +

2 ( 𝑢 2
𝑥 − 𝑢 𝑥 𝑢 𝑥 𝑥 𝑥 + 𝑢 𝑥 𝑡 )

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
)

− 2
(

𝑢 𝑢 + 3 ( 𝑢 − 𝑢 )
)

𝑢 + 𝑢 𝑢 2 . (5.14f)
𝑥 𝑡 𝑥 𝑥 𝑡 𝑥 𝑥 𝑥 𝑥
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urther higher-order conservation laws exist for the eBBM 1∕3 equa-
ion (5.12) but are technically challenging to obtain by the multiplier
ethod. Local symmetry classification of the 𝛼-family (5.1) in the

nsatz (5.3) reveals no additional cases compared to the symmetries
5.2). A higher-order symmetry classification

̂ = 𝜁 (𝑢, 𝑢 𝑥, 𝑢 𝑥 𝑥, 𝑢 𝑥 𝑥 𝑥, 𝑢 𝑥 𝑥 𝑥 𝑥, 𝑢 𝑥 𝑥 𝑥 𝑥 𝑥 ) 𝜕 𝑢 (5.15)

ields two additional higher-order symmetries arising in the case 𝛼 =
∕3, that is, for the eBBM 1∕3 equation (5.12). The first additional

symmetry is a third-order symmetry given by

X̂ 4 =
𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑥

(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 3∕2

𝜕 𝑢 , (5.16a)

nd the second is fifth-order symmetry of the form

̂ 5 = 𝐴[𝑢]

2
(

2 ( 𝑢 − 𝑢 𝑥 𝑥 ) + 3
) 9∕2

𝜕 𝑢 , (5.16b)

here
𝐴[𝑢] = (8𝑢2𝑥𝑥 − 8(2𝑢 + 3)𝑢𝑥𝑥 + 8𝑢2 + 24𝑢 + 18)𝑢𝑥𝑥𝑥𝑥𝑥

+20(2(𝑢 − 𝑢𝑥𝑥) + 3)(𝑢𝑥𝑥𝑥 − 𝑢𝑥)𝑢𝑥𝑥𝑥𝑥 + 35𝑢2𝑥𝑥𝑥(𝑢𝑥𝑥𝑥 − 3𝑢𝑥)

+ (20𝑢2𝑥𝑥 + 105𝑢2𝑥 − 20𝑢2 − 60𝑢 − 45)𝑢𝑥𝑥𝑥 − 28𝑢𝑥𝑢2𝑥𝑥
+8(2𝑢 + 3)𝑢𝑥𝑢𝑥𝑥 − (35𝑢2𝑥 − 12𝑢2 − 36𝑢 − 27)𝑢𝑥.

5.4. Equivalence between eBBM 1∕3 and the Camassa–Holm equation

The additional conservation law multipliers (5.13b), (5.13c) and
symmetry generators (5.16) arising for the eBBM 1∕3 equation (5.12)
involving fractional-order powers are similar to higher-order symme-
tries and conservation laws of the integrable Short Pulse equation (SP
equation)

𝑣 𝑥 𝑡 − 𝑣 − 1
6
( 𝑣 3 ) 𝑥 𝑥 = 0 (5.17)

and the Camassa–Holm (CH) equation

𝑢 𝑡 + 3 𝑢 𝑢 𝑥 − 2 𝑢 𝑥 𝑢 𝑥 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0 . (5.18)

The SP equation (5.17) arises in nonlinear optics.26 It is an 𝑆-integrable
equation possessing a Lax pair and a bi-Hamiltonian structure.47–49

While small 𝐻2 norm solutions of the SP equation exist globally for
nfinite time, large norm solutions blow up in finite time, with the
mplitude remaining bounded and solution slope becoming steeper.50

It is related to the quasilinear Klein–Gordon equation (see e.g. Refs. 51,
2 and references therein). In particular, the PDE (5.17) is known to
ossess local conservation laws with multipliers53

1 =
𝑣 𝑥

( 𝑣 2
𝑥 + 1 ) 1∕2

, (5.19a)

2 =
𝑣 𝑥 𝑥 𝑥

( 𝑣 2
𝑥 + 1) 5∕2

− 5
2

𝑣 𝑥 𝑣 2
𝑥 𝑥

( 𝑣 2
𝑥 + 1 ) 7∕2

. (5.19b)

The Camassa–Holm equation (5.18) is a part of the family (3.5); it
models unidirectional wave propagation in shallow water over a flat
bottom. It is also a bi-Hamiltonian 𝑆-integrable equation, admitting in-
finite sequences of local and nonlocal conservation laws, with local den-
sities involving fractional-order denominators of increasing orders,27

highly similar to (5.14c) and (5.14e). In particular, the first two conser-
vation law multipliers of the local sequence for the CH equation (5.18)
are given by

𝛬 1 = 2
(𝑢 − 𝑢𝑥𝑥)1∕2

, (5.20a)

2 =
𝑢 − 𝑢𝑥𝑥𝑥𝑥

(𝑢 − 𝑢𝑥𝑥)5∕2
− 5

4
(𝑢𝑥 − 𝑢𝑥𝑥𝑥)2

(𝑢 − 𝑢𝑥𝑥)7∕2
. (5.20b)

The local conservation law multiplier pairs (5.19), (5.20), and
(5.13b), (5.13c) are very similar. While the short pulse equations and
the CH are not equivalent, one can observe that indeed, the eBBM
 1∕3
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Fig. 1. Comparison of solitary wave solutions to four BBM-type equations (1.1), (3.1), (4.1), and (5.12) for various values of the propagation celerity 𝑐 . Only the right half of
solutions is shown. These solutions have to be extended by symmetry to negative values of 𝜉 .
𝜉
w

(

equation is related to the CH by a local scaling transformation. For
example, a time scaling 𝑡 = 3𝜏 and the change of notation 𝜏 → 𝑡 maps
the PDE (5.12) into the Camassa–Holm equation with 𝜅 = 3∕2:

𝑢 𝑡 + 3𝑢𝑥 + 3 𝑢 𝑢 𝑥 − 2 𝑢 𝑥 𝑢 𝑥 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢 𝑢 𝑥 𝑥 𝑥 = 0,

which can be further mapped into the form (5.18) without the 𝑢𝑥 term
by a Galilean transformation

𝑥 = 𝑥 ∗ − 𝜅 𝑡 ∗, 𝑡 = 𝑡 ∗, 𝑢 = 𝑢 ∗ − 𝜅, 𝜅 = 3
2
,

nd a subsequent omission of the asterisks. This demonstrates that
he PDE eBBM 1∕3 the only integrable member of the BBM 𝛼-family
5.1). We would like to mention also that the Hamiltonian and quasi-
amiltonian structures associated with integrable equations can be
onstructed based on the trace identity54 and the variational identity.55

ef. 55 presents a variational identity which generates Hamiltonian
tructures. This variational identity is a generalization of the one pre-
ented earlier in Ref. 54.

. Numerical investigations

In this section we perform a comparative numerical studies of the
odels discussed above. Namely, we shall compare the BBM equation

1.1), the iBBM equation (3.1), the eBBM equation (4.1), and the
BBM equation (5.12).
1∕3

9

6.1. Solitary wave solutions

After substituting the travelling wave ansatz 𝑢 ( 𝑥, 𝑡 ) ∶= 𝑢 ( 𝜉 ) , with
∶= 𝑥 − 𝑐 𝑡 , into the governing equations (1.1), (3.1), (4.1), (5.12)

e obtain four following ODE reductions correspondingly:

( 1 − 𝑐 ) 𝑢 ′ + 𝑐 𝑢
′
+

( 1
2
𝑢 2

) ′
= 0 ,

( 1 − 𝑐 ) 𝑢 ′ + 𝑐 𝑢
′
+

( 1
2
𝑢 2

) ′
− 𝑢 𝑢

′
= 0 ,

( 1 − 𝑐 ) 𝑢 ′ + 𝑐 𝑢
′
+

( 1
2
𝑢 2

) ′
− 𝑢 𝑢

′
− 2 𝑢 ′ 𝑢 ′′ = 0 ,

( 1 − 𝑐 ) 𝑢 ′ + 𝑐 𝑢
′
+

( 1
2
𝑢 2

) ′
− 1

3
𝑢 𝑢

′
− 2

3
𝑢 ′ 𝑢 ′′ = 0 ,

where the primes denote the derivatives with respect to the variable
𝜉 . In this Section we are interested in solitary wave solutions, which
have the characteristic property that the function 𝑢 ( 𝜉 ) together with all
its derivatives decays exponentially at infinity. It allows us to integrate
once each equation above with respect to 𝜉 to lower the order of ODEs:

( 𝑐 − 1 ) 𝑢 − 𝑐 𝑢 ′′ = 1
2
𝑢 2 def

=∶  1 ( 𝑢 ) ,

𝑐 − 1 ) 𝑢 − 𝑐 𝑢 ′′ = 1
2
𝑢 2 − 𝑢 𝑢 ′′ + 1

2
(

𝑢 ′ ) 2 def
=∶  2 ( 𝑢 ) ,

( 𝑐 − 1 ) 𝑢 − 𝑐 𝑢 ′′ = 1 𝑢 2 − 𝑢 𝑢 ′′ − 1 (

𝑢 ′ ) 2 def
=∶  ( 𝑢 ) ,
2 2 3
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Fig. 2. Comparison of solitary wave solutions in the phase plane to four BBM-type equations (1.1), (3.1), (4.1), and (5.12) for various values of the propagation celerity 𝑐 . Only
the upper half is shown. These portraits have to be extended by symmetry to negative values of 𝑢 ′ .
( 𝑐 − 1 ) 𝑢 − 𝑐 𝑢 ′′ = 1
2
𝑢 2 − 1

3
𝑢 𝑢 ′′ − 1

6
(

𝑢 ′ ) 2 def
=∶  4 ( 𝑢 ) .

t can be seen that each equation above has the following form:

⋅ 𝑢 =  𝑖 ( 𝑢 ),

here 
def
∶= ( 𝑐 − 1 )1 − 𝑐 𝜕 2

𝜉 𝜉 is the common linear operator (1 is
he identity operator) and  𝑖 ( 𝑢 ) is a quadratically nonlinear operator,
hich depends on the model equation. In order to find numerically

he solitary wave profiles, it is natural to employ the classical Petvi-
shvili iteration.56–59 We note that for the original BBM equation the
olitary waves are available analytically. We have not been able to find
nalytical solutions to other equations considered in this study.

The numerically computed profiles to all four models are presented
n Fig. 1. The numerical computations show that the BBM equation,
BBM and eBBM 1∕3 share exactly the same speed–amplitude relation,
hile the iBBM equation stands apart from this point of view. At

he level of the SW shape, the nonlinearly enhanced models seem to
ave faster decay properties for the same celerity parameter than the
lassical BBM equation. We would like to underline the fact that the
lassical BBM equation and the integrable eBBM 1∕3 model have SWs
ith a very similar shape. In order to illustrate better the shape of

btained SW solutions, we depict them on the phase plane in Fig. 2.

10
6.2. Dynamics: the transient solutions

For the sake of completeness of our numerical study, we would
like to shed some light on the behaviour of unsteady solutions under
the dynamics of considered systems. In order to solve numerically
the family of BBM-type equations (1.1), (3.1), (4.1), and (5.12) we
employ the classical Fourier-type pseudo-spectral method with peri-
odic boundary conditions (similar to one we employed in Ref. 60).
Moreover, with these boundary conditions all the integrals of locally
conserved quantities do not evolve in time. In the simulations presented
below we use 𝑁 = 8 192 Fourier modes. For the time stepping we
use a Variable Step Variable Order (VSVO) Adams–Bashforth–Moulton
Predict Evaluate Correct Evaluate (PECE) solver of orders from 1 to 13 .
The highest order used in practice is 12 , however, a formula of order 13
is used to form the error estimate and the routine ode113 does local
extrapolation to advance the integration up to the order 13 . This solver
was found to be the most efficient for this problem among Matlab
ODE suite.61

6.2.1. Bump evolution
As the first test case, we study the evolution under governing equa-

tions dynamics of a non-monotonic initial condition. More precisely,

we choose as the initial condition the same infinitely smooth bump for
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Fig. 3. Unsteady solution to four BBM-type models (1.1), (3.1), (4.1), and (5.12) taken at 𝑡 = 5 . The slight ‘wiggles’ visible on the zoom around the singularity in the eBBM
solution come from the loss of the regularity.
all four models (1.1), (3.1), (4.1), and (5.12):

𝑢 ( 𝑥, 0 ) = e−
1
2 𝑥 2

.

he computational domain is chosen so that the solution decays below
he machine precision before reaching the boundary for the time hori-
on of our unsteady simulations. A snapshot of four numerical solutions
aken at the same final moment of time 𝑡 = 5 is shown in Fig. 3.
t can be seen that all numerical solutions, except one, are smooth.
he inspection of the Fourier power spectrum (more precisely, its
symptotic decay properties) confirms this conclusion. The solution to
he iBBM equation developed to this time much sharper gradients than
he original BBM or eBBM 1∕3 solutions. However, the most interesting
ransformations happened in the eBBM model. In perfect agreement
ith the well-posedness theory, this solution developed a singularity

n the derivative. We may conjecture a peakon (or cuspon) emergence
rom a smooth non-monotonic initial condition. The inspection of the
ourier power spectrum also indicates the loss of regularity since its
ecay becomes algebraic. Unfortunately, the pseudo-spectral method
ecomes much less efficient for such (weakly-)singular solutions. A
imilar phenomenon of the peakon emergence from smooth initial
onditions has been observed earlier in the capillary–gravity Serre–
reen–Naghdi system (SGN system) for the critical Bond number.62

he existence of cusped solitary waves was studied in Hamiltonian
egularizations of NSWE.63 Indeed, in the critical regime, this system
ecomes dispersionless. However, in the present case the dispersion is
resent, which makes it pretty interesting. We may reasonably con-
ecture also that the iBBM equation will also develop a finite time
ingularity on larger times because we were able to find analytical
eakon-type solutions (3.4) in it.

The evolution of the energy  ( 𝑡 ) (2.12) during the transient sim-
lation is shown in Fig. 4. It is interesting to discuss the behaviour
f this quantity in different models. First of all, without any surprise,
his quantity was conserved to the machine precision in the BBM
nd eBBM 1∕3 equations. The quantity  ( 𝑡 ) is not conserved by the
BBM equation dynamics, which explains a very fast grow of this
uantity along the numerical solution to (3.1). Finally, this quantity
s perfectly conserved by the eBBM dynamics until 𝑡 ≈ 3 , where the
ubstantial loss of solution regularity happens, which explains the slight
row (about 0.015%) of this quantity in the numerical solution. The
on-conservation of the energy after singularity formation has been
bserved numerically and confirmed theoretically before in Ref. 63
or a different model, which gives more confidence in our numerical
esults. Moreover, this observation confirms one more time the finite
ime singularity formation in the eBBM equation.

.2.2. Solitary waves collisions
In order to test the eventual integrability of considered models, we

et up the test-case with solitary wave interactions. It is already known
11
Fig. 4. Evolution of the total energy in four models (1.1), (3.1), (4.1), and (5.12)
considered in our numerical study during the unsteady bump evolution simulation.

that the BBM equation is not integrable. However, the question remains
open for three other models under consideration.

More precisely, since we are dealing with unidirectional models, we
consider the overtaking collision of two right-going solitary waves in a
periodic domain [ −140, 140 ] . Initially at 𝑡 = 0 , the solitary waves
are located at 𝑥 = ±50 . The left solitary wave has the velocity
𝑐 l = 1.3 and the right one 𝑐 r = 1.05 . The initial configuration is
depicted in Fig. 5. The solitary waves are computed in all models with
the Petviashvili iteration employed above (see Section 6.1). Then, this
initial condition was simulated in all four models (1.1), (3.1), (4.1),
and (5.12) until the final time 𝑡 = 𝑇 ∶= 750 , when the interaction
happened and two solitary waves had time to separate. A zoom on the
computational domains at the final simulation time is shown in Fig. 6.
It can be seen on panel (a) that the interaction of solitary waves in the
BBM equation is inelastic as it was correctly discovered numerically
in Ref. 12 and described theoretically in Ref. 64. We see also that the
interaction is inelastic and iBBM and eBBM equations (see panels (b, c)
in Fig. 6). On the other hand, the collision appears to be perfectly elastic
in the eBBM 1∕3 equation as the radiative component is totally absent on
the corresponding panel (d) of Fig. 6. This fact is not surprising since
thanks to the existing relation between the eBBM 1∕3 equation (5.12)
and the integrable CH equation.
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e

Fig. 5. The initial condition (𝑡 = 0) in all overtaking collision simulations involving the BBM-type models (1.1), (3.1), (4.1), and (5.12). Higher solitary wave moves faster, which
xplains the name of this type of collision.
Fig. 6. Zoom on numerical solutions after the overtaking collision at 𝑡 = 750 of two solitary waves with initial speeds of 𝑐 l = 1.3 and 𝑐 l = 1.05 .
7. Conclusions and perspectives

The well known Benjamin–Bona–Mahony equation (BBM equation)
(1.1), (2.1) is a physically interesting nonlinear long wave model
possessing a number of remarkable properties, including an improved
dispersion relation (compared to the KdV), energy conservation and
Hamiltonian and Lagrangian formulations, but lacking the physically
important Galilei symmetry that corresponds to the invariance with
respect to the choice of a physical frame of reference. We show how the
Galilean invariance property can be recovered in the framework of BBM
equation while preserving simultaneously the energy conservation, as
well as other important analytical properties (Section 2). In Section 3,
the Galilei-invariant extension of the BBM equation, the iBBM equation
model (3.1), is introduced. However, it turns out that iBBM equation
does not conserve energy, preserving rather a related exponential quan-
tity (3.8b). Using a multiplier argument, a nonlinear term of the order
12
 ( 𝜀 𝛿 2 ) is added to the iBBM equation. The resulting energy-preserving
Benjamin–Bona–Mahony equation (eBBM) Eq. (4.1) is similar to the
famous 𝑝-family of PDEs (3.5), has four local conservation laws in-
cluding energy and a new time-dependent conserved quantity, has
a Hamiltonian structure, and a potential formulation arising from a
variational principle. For all equations we systematically discuss the
infinitesimal point symmetries and conservation laws.

In Section 5, it was shown that both BBM and eBBM equations
belong to a one-parameter PDE family (5.1) whose member PDEs
share common local symmetry, conservation law, Hamiltonian and
Lagrangian structures. Local symmetry and conservation law classifica-
tions of the 𝛼-family (5.1) show two particular cases with additional
structure: 𝛼 = 1 corresponding to the eBBM equation, and 𝛼 =
1∕3 leading to the new PDE (5.12) called the eBBM 1∕3 equation. The
latter model admits additional higher-order symmetries and conser-

vation laws, including ones with fractional-order components. These
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structures are similar to the properties of the integrable Short Pulse
equation (SP equation) (5.17) and the well known Camassa–Holm (CH)
(CH) equation (5.18). In Section 5.4, it was shown that indeed, a point
transformation relating eBBM 1∕3 and CH exists.

Finally, in Section 6, comparative numerical studies of the BBM
equation, iBBM equation, eBBM, and eBBM 1∕3 models were performed.
While the solitary wave interaction was elastic in the eBBM 1∕3 (CH)
case, it was inelastic in all other models under consideration. Numer-
ical tracking of the evolution of energy (2.12) during the transient
simulation displayed machine-precision conservation for the BBM and
eBBM 1∕3 equations, lack of conservation for the iBBM equation dynam-
ics, and perfect conservation by the eBBM dynamics until the loss of
solution regularity, confirming the finite time singularity formation in
the eBBM equation.

7.1. Perspectives

Open problems for future work include the study of possible phys-
ical applications and further analytical properties of the 𝛼-family of
PDEs (5.1). In particular, one can use local conservation laws with mul-
tipliers (5.4) holding for all members of the 𝛼-family (5.1) to construct
potential systems, and classify nonlocal symmetries and CLs of this PDE
family within the framework of non-locally related systems.44

Regarding the perspectives of this study, the same type of tech-
niques can be applied to various Boussinesq-type equations, since many
of the systems of this kind also lack the Galilean invariance and/or
the energy conservation properties. Some of such systems have been
addressed in Refs. 25, 65. Nevertheless, there are still many models
that can be improved using the methods presented in this study. More-
over, the extension to two-dimensionalg systems will be another step
towards more physically sound modelling of long dispersive water wave
propagation. The symmetry analysis of these models can be performed
similarly to these recent studies.66–68

Funding

A. Cheviakov is grateful to NSERC of Canada for research support
through the Discovery grant RGPIN-2019-05570. He also acknowledges
the hospitality of the Laboratory of Mathematics (LAMA UMR 5127) of
the University Savoie Mont Blanc during his visit in 2017. D. Dutykh
acknowledges support from the Fédération de Recherche en Mathé-
matiques Auvergne–Rhône–Alpes (FR 3490). The work of D. Dutykh
has also been supported by the French National Research Agency,
through Investments for Future Program (ref. ANR-18-EURE-0016 —
Solar Academy). This publication is based upon work supported by
the Khalifa University of Science and Technology under Award No.
FSU-2023-014.

CRediT authorship contribution statement

A. Cheviakov: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Writing – review & editing. D. Dutykh: Con-
ceptualization, Software, Formal analysis, Investigation, Data curation,
Writing – original draft, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

g Here we mean the two horizontal dimensions in space or (2 + 1), 2DH in
other notations.
13
References

1. Peregrine DH. Calculations of the development of an undular bore. J Fluid Mech.
1966;25(02):321–330.

2. Benjamin TB, Bona JL, Mahony JJ. Model equations for long waves in nonlinear
dispersive systems. Philos Trans Royal Soc A. 1972;272:47–78.

3. Gardner LRT, Gardner GA. Solitary waves of the equal width wave equation. J
Comput Phys. 1992;101(1):218–223.

4. Bona JL, Pritchard WG, Scott LR. Solitary-wave interaction. Phys Fluids.
1980;23:438–441.

5. Bona JL, Pritchard WG, Scott LR. An evaluation of a model equation for water
waves. Philos Trans Royal Soc A. 1981;302:457–510.

6. Courtenay Lewis J, Tjon JA. Resonant production of solitons in the RLW equation.
Phys Lett A. 1979;73(4):275–279.

7. Hammack J. A note on tsunamis: Their generation and propagation in an ocean
of uniform depth. J Fluid Mech. 1973;60:769–799.

8. Dias F, Dutykh D. Dynamics of tsunami waves. In: Ibrahimbegovic A, Kozar I,
eds. Extreme Man-Made and Natural Hazards in Dynamics of Structures. Dordrecht,
Netherlands: Springer; 2007:35–60.

9. Dias F, Dutykh D, O’Brien L, Renzi E, Stefanakis T. On the modelling of tsunami
generation and tsunami inundation. Procedia IUTAM. 2014;10:338–355.

10. Eilbeck JC, McGuire GR. Numerical study of the regularized long-wave equation.
I. Numerical methods. J Comp Phys. 1975;19(1):43–57.

11. Eilbeck JC, McGuire GR. Numerical study of the regularized long-wave equation.
II. Interaction of solitary waves. J Comp Phys. 1977;23(1):63–73.

12. Abdulloev KO, Bogolubsky IL, Makhankov VG. One more example of inelastic
soliton interaction. Phys Lett A. 1976;56(6):427–428.

13. Olver PJ. Euler operators and conservation laws of the BBM equation. Math Proc
Cambridge Philos Soc. 1979;85(1):143–160.

14. Gardner CS, Greene JM, Kruskal MD, Miura RM. Korteweg–de Vries equation
and generalizations. VI. Methods for exact solution. Commun Pure Appl Math.
1974;27(1):97–133.

15. Gardner LRT, Gardner GA. Solitary waves of the regularised long-wave equation.
J Comput Phys. 1990;91(2):441–459.

16. Dougalis VA, Karakashian OA. On some high-order accurate fully discrete Galerkin
methods for the Korteweg–de Vries equation. Math Comp. 1985;45(172):329–345.

17. Dougalis VA, Mitsotakis DE. Theory and numerical analysis of Boussinesq
systems: A review. In: Kampanis NA, Dougalis VA, Ekaterinaris JA, eds. Ef-
fective Computational Methods in Wave Propagation. New York, NY: CRC Press;
2008:63–110.

18. Guo BY, Cao WM. The Fourier pseudospectral method with a restrain operator
for the RLW equation. J Comput Phys. 1988;74(1):110–126.

19. Clamond D, Dutykh D. Non-dispersive conservative regularisation of nonlinear
shallow water (and isentropic Euler equations). Commun Nonlinear Sci Numer
Simul. 2018;55:237–247.

20. Bona JL, Tzvetkov N. Sharp well-posedness results for the BBM equation. Discrete
Contin Dyn Syst. 2009;23:1241–1252.

21. Li H, Sun J. A new multi-symplectic Euler box scheme for the BBM equation.
Math Comp Model. 2013;58(7–8):1489–1501.

22. Mugnolo D, Rault JF. Construction of exact travelling waves for the Benjamin–
Bona–Mahony equation on networks. Bull Belg Math Soc Simon Stevin.
2014;21(3):415–436.

23. Dutykh D, Pelinovsky E. Numerical simulation of a solitonic gas in KdV and
KdV-BBM equations. Phys Lett A. 2014;378(42):3102–3110.

24. Nersisyan H, Dutykh D, Zuazua E. Generation of 2D water waves by moving
bottom disturbances. IMA J Appl Math. 2015;80(4):1235–1253.

25. Duran A, Dutykh D, Mitsotakis D. On the Galilean invariance of some nonlinear
dispersive wave equations. Stud Appl Math. 2013;131(4):359–388.

26. Schäer T, Wayne CE. Propagation of ultra-short optical pulses in cubic nonlinear
media. Phys D. 2004;196(1–2):90–105.

27. Lenells J. Conservation laws of the Camassa–Holm equation. J Phys A Math Theor.
2005;38(4):869–880.

28. Baikov VA, Gazizov RK, Ibragimov NK. Approximate symmetries. Mat Sb.
1988;136(178):435–450. (4(8)).

29. Bluman GW, Cheviakov AF, Anco SC. Applications of Symmetry Methods to Partial
Differential Equations. New York, NY: Springer; 2010.

30. Clamond D, Dutykh D, Mitsotakis D. Conservative modified Serre–Green–Naghdi
equations with improved dispersion characteristics. Commun Nonlinear Sci Numer
Simul. 2017;45:245–257.

31. Olver PJ. Applications of Lie Groups to Differential Equations. 2nd ed. New York,
NY: Springer-Verlag; 1993. In: Graduate Texts in Mathematics; vol. 107.

32. Morrison PJ, Meiss JD, Cary JR. Scattering of regularized-long-wave solitary
waves. Phys D. 1984;11(3):324–336.

33. Degasperis A, Procesi M. Asymptotic integrability. In: Degasperis A, Gaeta G, eds.
Symmetry and Perturbation Theory. River Edge, NJ: World Scientific; 1999:23–37.

34. Fuchssteiner B, Fokas AS. Symplectic structures, their bäcklund transformations
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