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Abstract
The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are
used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown
that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial
differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While
some relations between the BGI and FS approaches can be established, the two methods yield different approximate
symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family
includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family
of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave
breaking times are found numerically and using the approximate solutions, which yield comparable results.

1. Introduction

Perturbed differential equations (DE) are differential equations of the form

F[u; ε] = F0[u] + εF1[u] + . . .= 0,

involving a small parameter ε and may be considered a perturbation of some given differential equation
F0[u] = 0 that corresponds to ε = 0. Such small perturbations can disturb the Lie symmetry properties
of the unperturbed model in the sense that some or all exact point or local symmetries of the unperturbed
equation disappear from the symmetry classification of the perturbed PDE. In particular, the perturbed
model cannot have more symmetries holding for all values of ε than for a given value of ε, including
ε = 0. In order to find extra symmetry-like structures for models with a small parameter, several approx-
imate symmetry methods have been developed. Baikov, Gazizov and Ibragimov [4–6] introduced the
approximate symmetry transformation method that is based on expanding approximate symmetry gen-
erators with respect to the small parameter (the BGI method). A different approach to approximate
symmetries, developed by Fushchich and Shtelen (the FS method) [21], combines a perturbation tech-
nique with the symmetry group method by expanding the dependent variables in a Taylor series in the
small parameter and approximately replacing the original equations by a system of equations that are
the coefficients at different powers of the small parameter; the classical Lie symmetry method is conse-
quently applied to obtain symmetries of the new system. The BGI and FS approaches are not equivalent.

†Alternative English spelling: Alexey Shevyakov.
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They have been compared and used to obtain approximate symmetries and approximate solutions for
several PDE models [23, 46]. Burde [11] developed a new approach for approximate symmetries by
constructing equations that could be reduced by exact transformations to an unperturbed equation and
at the same time would coincide approximately with the perturbed equation.

In this paper, we consider the BGI and FS approximate symmetry frameworks for perturbed partial
differential equations (PDEs), with the main goal to investigate and compare the BGI and FS approxi-
mate symmetry structures of perturbed PDEs in more detail, and study their relations, and relate them
to the symmetry structure of the unperturbed equations.

The majority of differential equations involve arbitrary parameters or arbitrary functions. These
parameters have physical meanings and assume values in some ranges or belong to certain classes. Thus,
to study the symmetry properties of system of differential equations involving arbitrary elements, one
needs to investigate what happens to symmetries as these parameters assume special values. Namely,
one classifies admitted symmetries depending on the forms of the arbitrary elements. At the first step
towards the classification of symmetries of a differential equation-based model involving arbitrary ele-
ments, it is essential to find equivalence transformations for this model. Equivalence transformations
map the given DE system to another differential equation from the same general class [26, 30]. Lie
groups of equivalence transformations can be sought systematically using techniques similar to those
used to determine admitted Lie symmetry groups. The first group classification was given by Sophus Lie
for a class of linear second-order partial differential equations in two independent variables [29]. Later,
Ovsiannikov [35] found a complete classification for the nonlinear diffusion equation. More recently,
classification problems for PDEs and ODEs were widely considered by many researchers (see, e.g.,
[1, 19, 20, 24, 27, 31, 45]).

The main set of partial differential equations used in this paper as testbeds and physical examples of
interest for approximate symmetry computations and comparisons are one-dimensional nonlinear wave
equations. Extremely broad literature exists dedicated to various analytical methods and studies of such
models, including the studies of symmetry-related properties. In [2], group properties of the nonlinear
wave equation

utt = (f (u)ux)x, u = u(x, t) (1.1)

were studied (here and below, subscripts denote partial derivatives). Bluman and Cheviakov [8] extended
the group classification of (1.1) through a systematic construction of nonlocal symmetries. Point
symmetry classifications for the generalized PDE classes

utt = (f (x, u)ux)x, utt = (f (u)ux + g(x, u))x (1.2)

were considered in [42, 43]. The complete group classification for the PDE family

utt = f (x, ux)uxx + g(x, ux) (1.3)

was implemented in [7]. Further classifications of different classes of one-dimensional wave equation
can be found, for example, in [22, 28, 44, 48].

The study of wave propagation in nonlinear elastic materials has numerous applications in the study
of complex materials [38], medical imaging [37], and other areas [10]. Of particular interest are hyper-
elastic solids, a class of materials that act as ideal elastic solids, and more general classes of models of
this type. In particular, the stress within a hyperelastic solid is nonlinearly related to the deformation
through a strain energy density function. In many settings, finite displacements in hyperelastic materials
in one dimension reduce to nonlinear wave equations of the form

utt = R(ux)uxx, (1.4)

where R is the stored energy function [14, 18]. Among others, our goal here is to study and compare
exact and approximate symmetry properties and to construct approximate solutions for an important
special form of the PDE (1.4) describing fully nonlinear shear waves in a fiber-reinforced material:

utt = (c2 + ε T(ux))uxx, u = u(x, t), (1.5)
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where c> 0 is the linear wave speed and ε is a real parameter that controls the nonlinear term. The
above perturbed model describes waves in anisotropic fiber-reinforced elastic solids, such as biological
membranes, in general, and including the cases when fiber effects are relatively small (see, e.g., [18,
36]). While BGI and FS approximate symmetry classifications have been found for some models (see,
e.g., [27, 50] and references therein), the exact and approximate (BGI and FS) symmetry classification
for PDEs of the form (1.5) has not been considered and compared in detail in the literature.

As hyperbolic systems, wave equations possess characteristic curves (or surfaces) along which the
solutions to the equation are simplified. If the characteristic curves intersect, the solution may become
multi-valued. This is referred to as a shock or break in the wave and can have the physical meaning
of a discontinuous solution [25]. In elementary models, breaks often form when the leading edge of
the wave moves slower than the trailing edge, leading to a steeper and eventually vertical wave front.
There are multiple approaches to determine the breaking time of a wave. If one can explicitly determine
the characteristic curves, then their intersections and therefore the breaking time can be analytically
calculated. When characteristic curves are not known explicitly, a breaking criterion can be developed
based on the shape or velocity of the wave (see [47] and references therein). Tissier et al. [41] used local
energy dissipation in addition to a maximal slope criterion to determine the breaking time. In this paper,
we use approximate solution and finite-difference numerical simulations to find the approximate and
numerical wave breaking times for the perturbed one-dimensional wave equation (1.5) with T(ux) = u2

x .
The paper is organized as follows.
In Section 2, we review the framework of Lie point and local symmetries of perturbed and unper-

turbed PDEs in detail necessary for the further analysis. We also provide a minimal introduction to BGI
[4–6] and FS [21] approximate transformations and approximate symmetries for PDE models with a
small parameter.

In Section 3, we study and compare the BGI and FS approximate symmetry frameworks for a per-
turbed PDE. In particular, we discuss types of BGI and FS approximate symmetries that can arise,
including trivial BGI and FS approximate symmetries that have trivial action on O(1) solution com-
ponents. We classify stable and unstable point symmetries of a family of wave-type equation with
respect to the forms of the perturbation defined by an arbitrary function of two variables. For this exam-
ple, it is observed that FS symmetries are stable in more classification cases than BGI symmetries. It
is also shown (Section 3.4) that it is possible to have an unstable point symmetry of an unperturbed
PDE that yields a point or a higher-order approximate symmetry neither in BGI nor in FS framework.
This makes the PDE case radically different from the ODE case [40]. In Section 3.5, we derive a rela-
tion between BGI and FS approximate symmetries, holding in the case of specific forms of symmetry
components.

In Section 4, we classify exact and approximate (BGI and FS) point symmetries of the perturbed
wave equation (1.5) and use the results to construct approximate solutions of (1.5) in the case of
power T ,

utt =
(
c2 + εus

x

)
uxx. (1.6)

The approximate solutions are compared with numerical solutions for the most physically relevant case
s = 2 and show good agreement. Even for smooth initial conditions, the wave dynamics leads to finite-
time wave breaking. We use the numerically computed characteristic curves to approximate the wave
breaking time. It is shown that the behavior of the approximate solution arising from approximate sym-
metry approach, near the time of breaking, can be used to provide an alternative estimate of the wave
breaking time. There appears to be an inverse relationship between the wave breaking time and the small
parameter ε.

An overview of the results of the current paper and related open problems that would require
extensions of approximate symmetry methods are discussed in Section 6.

The current work uses GeM module [15–17] for the Maple symbolic suite to generate and simplify
determining equations for equivalence transformations and approximate symmetries.
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2. Lie groups of exact and approximate point and local symmetries

We now briefly review the framework of Lie point and local symmetries in comparison with the BGI
[4–6] and Fushchich–Shtelen [21] approximate symmetry frameworks for PDE models involving a small
parameter.

For simplicity of presentation and analysis, in this work, we consider single PDEs rather than PDE
systems.

Let x = (x1, x2, ..., xn), n> 1, and u = u(x) denote respectively the independent variables and the
dependent variable of a given problem. We also denote partial derivatives by subscripts: ∂u/∂xj ≡ uj,
etc., and the set of all partial derivatives of u of order k by ∂ ku. A general kth-order scalar PDE on u has
the form

F0[u] ≡ F0(x, u, ∂u, . . . , ∂ ku) = 0, k ≥ 1. (2.1)

We assume that the PDE (2.1) as it stands, or after a point transformation, is of generalized Kovalevskaya
type [33], that is can be written in a solved form with respect to the highest pure derivative of u by one of
the independent variables. In (2.1) and below, F0[u] and similar notation denotes differential functions
(i.e., functions depending on x, u, and derivatives of u up to some prescribed order s), defined in a
domain of the jet space Js(x|u). (The latter is viewed as a multi-dimensional space with coordinates
x, u, ∂u, . . . , ∂ su.) We also note that repeated indices, where appropriate, assume summation.

The solution set S of the PDE (2.1) in Js(x|u), s ≥ k, is a hypersurface defined by the relations
F0[u] = 0 and its differential consequences ∂F0[u] = 0, . . ., solved for the corresponding differential
consequences of the leading derivative, up to the highest order s. Any differential function f [u] can be
evaluated on the solution set of (2.1) by substituting the expressions of the leading derivative and its
differential consequences into f [u], and the result is denoted by f [u]|S or f [u]|F0[u]=0.

2.1. Local symmetries of a PDE

A one-parameter (a) Lie group of transformations

(x∗)i = f i(x, u; a) = xi + aξ i
0(x, u) + O

(
a2

)
, i = 1, 2, . . . , n,

u∗ = g(x, u; a) = u + aη0(x, u) + O
(
a2

)
,

(2.2)

in the space of the problem variables (x,u), with the corresponding infinitesimal generator

X0 = ξ i
0(x, u)

∂

∂xi
+ η0(x, u)

∂

∂u
, (2.3)

defines a point symmetry of the PDE (2.1) when the solution set of (2.1) is invariant under the action of
the mapping (2.2); that is, each solution u(x) is mapped to a solution u∗(x∗) of the same PDE. The local
condition of this invariance is given by the determining equation

X0(k)F0[u]
∣∣

F0[u]=0
= 0 (2.4)

in terms of the prolonged generator X0(k). The determining equation splits into an overdetermined PDE
system on the unknown symmetry components ξ i

0, η0 (see, e.g., [9, 33]).
For a point symmetry (2.2) of the PDE (2.1), the evolutionary (characteristic) form providing the

same mapping between solutions has the form

(x∗)i = xi, i = 1, 2, . . . , n,

u∗ = u + aζ0[u] + O
(
a2

)
,

(2.5)

with the evolutionary component ζ0[u] = η0(x, u) − uiξ
i
0(x, u), and the generator is given by

X̂0 = ζ0[u]
∂

∂u
. (2.6)
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Local (point, contact and higher-order) transformations and the related point, contact and higher-order
local symmetries of the PDE (2.1) generalize (2.5), (2.6) by allowing the evolutionary infinitesimal
components ζ0 = ζ0[u] to be general differential functions of u, depending on first- and/or higher-
order derivatives of u (see, e.g., [9, 33] and references therein). The invariance condition (2.4) is
replaced by

X̂0(k)F0[u]
∣∣

F0[u]=0
= 0. (2.7)

The prolongation of X̂0 is defined by [33]

X̂0(k) = ζ0

∂

∂u
+ ζ0

(1)
i

∂

∂ui

+ . . .+ ζ0
(k)
i1i2...ik

∂

∂ui1i2 ...ik

, (2.8)

where the higher-order components are computed using

ζ0
(1)
i = Diζ0, ζ0

(p)
i1i2 ...ip

= Dipζ0
(p−1)
i1i2...ip−1

,

for i, ij = 1, . . . , n, p = 2, 3, . . . , k.
A point or local symmetry of a PDE is trivial if its components vanish on the solution set of the

PDE (2.1). Trivial symmetries provide identity transformations (2.2), (2.5). Symmetry generators are
commonly simplified modulo trivial symmetries.

The following elementary example will serve as a basis of further examples involving PDEs with a
small parameter, and their exact and approximate symmetries.

Example 2.1. Consider a nonlinear wave-type equation [34]

utt = uxuxx, u = u(x, t). (2.9)

The exact symmetry generator for the PDE (2.9) is given by

X0 = ξ 1
0 (x, t, u)

∂

∂x
+ ξ 2

0 (x, t, u)
∂

∂t
+ η0(x, t, u)

∂

∂u
. (2.10)

The determining equations (2.4) yield the solution

ξ 1
0 = C4 + C6x, ξ 2

0 = C3 +
(

C6 − C5

2

)
t, η0 = C1 + C2t + (C5 + C6)u. (2.11)

Consequently, the PDE (2.9) admits a six-dimensional Lie algebra of point symmetries spanned by

X0
1 = ∂

∂u
, X0

2 = t
∂

∂u
, X0

3 = ∂

∂t
, X0

4 = ∂

∂x
,

X0
5 = u

∂

∂u
− t

2

∂

∂t
, X0

6 = t
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
.

(2.12)

2.2. Exact and approximate symmetries of a PDE with a small parameter

A general first-order perturbation of a PDE (2.1) is a partial differential equation

F[u; ε] = F0[u] + εF1[u] = o(ε) (2.13)

involving a small parameter ε. We assume that the perturbation F1[u] is regular, in the sense that the
Kovalevskaya forms of the unperturbed PDE (2.1) and its perturbation (2.13) have the same leading
derivatives.

2.2.1. Exact local symmetries
Exact point and local symmetry generators of (2.13) have the forms

Y = αi(x, u; ε)
∂

∂xi
+ β(x, u; ε)

∂

∂u
, Ŷ = ζ [u; ε]

∂

∂u
. (2.14)
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To find the exact symmetries of (2.13) holding for an arbitrary ε, one solves the determining equations
(2.4) or (2.7).

Since (2.13) is a PDE family that includes an arbitrary element ε, the dimension of Lie algebra
of point or local symmetries holding for a general ε cannot exceed that for some fixed ε, including
ε = 0. Therefore, the family (2.13) of perturbed PDEs will admit the same or smaller number of local
symmetries than its unperturbed version (2.1).

Example 2.2. We compute exact point symmetries of a perturbed version of the PDE (2.9),

utt + εuut = uxuxx (2.15)

holding for an arbitrary ε. The leading derivative utt can be chosen for both (2.9) and (2.15). We obtain
a Lie algebra of point symmetries spanned by

Y1 = X0
3 = ∂

∂t
, Y2 = X0

4 = ∂

∂x
, Y3 = 4

3
X0

5 − 1

3
X0

6 = −t
∂

∂t
− x

3

∂

∂x
+ u

∂

∂u
, (2.16)

a three-dimensional subalgebra of the six-dimensional Lie algebra of point symmetries (2.12) of the
unperturbed wave equation (2.9).

2.2.2. Baikov–Gazizov–Ibragimov approximate point and local symmetries
Approximate symmetries can be useful for finding additional symmetry-like structures for the perturbed
equation (2.13) that are not its exact symmetries but rather preserve (2.13) approximately, up to o(ε) [27].
A one-parameter Lie group of Baikov–Gazizov–Ibragimov (BGI) approximate point transformations
with the group parameter a, acting on the (x,u)-space, is given by

(x∗)i = f i(x, u; a, ε) = f i
0(x, u; a) + εf i

1(x, u; a) + o(ε), i = 1, ..., n,

(u∗) = g(x, u; a, ε) = g0(x, u; a) + εg1(x, u; a) + o(ε),
(2.17)

where, as in (2.2), f i
j , gj are sufficiently smooth functions. The generator of the approximate group (2.17),

up to o(ε), is

X = X0 + εX1 = (
ξ i

0(x, u) + εξ i
1(x, u)

) ∂

∂xi
+ (η0(x, u) + εη1(x, u))

∂

∂u
. (2.18)

Definition 2.1. The approximate group (2.17) of point transformations defines a BGI approximate point
symmetry of the PDE (2.13) if it satisfies the approximate invariance condition of (2.13) under the action
of (2.18):

(X0 (k) + εX1 (k))(F0[u] + εF1[u])

∣∣∣∣
F0[u]+εF1[u]=o(ε)

= o(ε). (2.19)

In (2.19), O(1) and O(ε) terms must vanish independently. It is easy to see that the O(1) term
yields the determining equation (2.4) for the invariance of the unperturbed equation (2.1) under a point
transformation X0 (2.3). Hence, the following result holds.

Theorem 2.1. If the PDE (2.13) is approximately invariant under an approximate group of BGI point
transformations with the generator (2.18) such that its O(1) part X0 �≡ 0, then the infinitesimal operator
X0 (2.3) is a generator of an exact point symmetry group of the unperturbed PDE (2.1).

The converse of the above result does not always hold. Indeed, as it will be seen in examples below,
if X0 (2.3) generates an exact point symmetry group of the unperturbed PDE (2.1), there may be no
corresponding BGI transformation (2.17) that approximately preserves the perturbed PDE (2.13). The
following definition is important.
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Definition 2.2. Suppose that the vector field X0 given by (2.3) is a generator of an exact point symmetry
group of the unperturbed PDE (2.1). If the perturbed PDE (2.13) admits an approximate generator X
(2.18) with its O(1) part given by X0, then X0 corresponds to a stable point symmetry of the unperturbed
PDE (2.1) (in the BGI sense). Otherwise, it corresponds to an unstable point symmetry of (2.1).

Below in this paper, Definition 2.2 will be used not only for BGI approximate point symmetries, but
more generally, for BGI and FS approximate point and local symmetries.

It is straightforward to show that O(ε) term of the determining equation (2.19) leads to the PDEs

X1 (k)F0[u]

∣∣∣∣
F0[u]=0

= H[u], (2.20)

where H is obtained from the coefficients of ε in the expression

−X0 (k)(F0[u] + εF1[u])

∣∣∣∣
F0[u]+εF1[u]=o(ε)

. (2.21)

It follows that in order to calculate all approximate BGI symmetries (2.17), (2.18) of the perturbed PDE
(2.13), one can take the following steps.

1. Compute all generators X0 (2.3) of exact point symmetry groups of the unperturbed PDE (2.1).
2. Use each X0 and the perturbation term F1[u] to compute H using (2.21).
3. Solve (2.20) to find the components of X1.

An alternative procedure for the calculation of BGI symmetries involves writing down exact symme-
try determining equations for F[u; ε] = 0 (cf. (2.13)), substituting ζ [u] = ζ0[u] + εζ1[u], and collecting
O(1) and O(ε) coefficients of each split determining equation.

Remark 2.1. The first-order condition (2.20) may (or may not) contain additional conditions on the
components ξ i

0, η0 of the unperturbed symmetry generator X0 (2.3). This leads to the symmetry gener-
ated by X0 being unstable (or respectively, stable). If all symmetries of the equations (2.1) are stable,
the perturbed equations (2.13) are said to inherit the symmetry structure of the unperturbed equations
[27].

Remark 2.2. Similarly to exact local transformations with generators of the form (2.3), one can define
more general local approximate BGI transformations with generators in evolutionary form given by

X̂ = X̂0 + εX̂1 = (ζ0[u] + εζ1[u])
∂

∂u
. (2.22)

Approximate local (including point, contact and higher-order) BGI symmetries of the perturbed PDE
(2.13) can be found using the same procedure as described above for point approximate BGI symmetries.
In particular, the analog of the first-order condition (2.20) takes the form(

ζ1

∂

∂u
+ ζ1

(1)
i

∂

∂ui

+ . . .+ ζ1
(k)
i1i2...ik

∂

∂ui1i2 ...ik

)
F0[u]

∣∣∣∣
F0[u]=0

= H[u], (2.23)

Theorem 2.1, the stability Definition 2.2 and Remark 2.1 concerning stability conditions of approximate
symmetries directly carry over to the case of general local BGI symmetries.

2.2.3. Fushchich–Shtelen approximate point and local symmetries
Unlike the BGI approach where the symmetry generator is expanded in a power series in terms of the
small parameter, the Fushchich–Shtelen method [21] applies the perturbation technique to the solution
u(x) and the given PDE. In particular, the solution is written as

u(x) = v(x) + εw(x) + o(ε). (2.24)
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Substituting (6.3) into the PDE (2.13) with a small parameter, expanding the result and setting to zero
the O(1) and O(ε) terms independently, one obtains a coupled system of equations on v(x) and w(x)
without the small parameter, given by

G1[v, w] ≡ F0[v] = 0, (2.25a)

G2[v, w] ≡ F0vw + F0vi
wi + F0vij

wij + ... + F0vi1 i2...ik
wi1i2...ik + F1[v] = 0. (2.25b)

It is clear that the first PDE (2.25a) is independent of w, and the second PDE (2.25b) is linear in w,
with the linear operator being the Frèchet derivative of the F0[u]. We refer to equations (2.25) as the
Fushchich–Shtelen system for the PDE (2.13). The PDE system (2.25) approximates the given PDE
(2.13), in the sense that each exact solution pair (v(x), w(x)) of (2.25) yields an approximate solution
(2.24) of the given PDE (2.13) up to the order o(ε). Note that the Fushchich–Shtelen system (2.25) is in
the extended Kovalevskaya form with respect to the similar leading derivatives of v and w as the leading
derivatives of u in the original PDE (2.13).

Definition 2.3. A Lie group of point transformations with the group parameter a

(x∗)i = f i(x, v, w; a) = xi + a λi(x, v, w) + O
(
a2

)
, i = 1, ..., n,

(v∗) = g(x, v, w; a) = v + a φ1(x, v, w) + O
(
a2

)
,

(w∗) = h(x, v, w; a) = w + a φ2(x, v, w) + O
(
a2

) (2.26)

with the generator

Z = λi(x, v, w)
∂

∂xi
+ φ1(x, v, w)

∂

∂v
+ φ2(x, v, w)

∂

∂w
(2.27)

defines a FS approximate point symmetry of the PDE (2.13) if it is an exact Lie point symmetry group
of the Fushchich–Shtelen system (2.25).

In a similar manner, a generalized local (point or higher-order) transformation group in the evolu-
tionary form

(x∗)i = xi, i = 1, ..., n,

(v∗) = v + aψ1[v, w] + O
(
a2

)
,

(w∗) = w + aψ2[v, w] + O
(
a2

) (2.28)

with the generator

Ẑ =ψ1[v, w]
∂

∂v
+ψ2[v, w]

∂

∂w
(2.29)

defines a local (point or higher-order) FS approximate symmetry of the PDE (2.13) if it is a local
symmetry of the Fushchich–Shtelen system (2.25).

It is important to know whether the FS approximate symmetry structure of a PDE (2.13) with a
small parameter is in some sense inherited from exact local symmetries of the unperturbed PDE (2.1).
Similarly to the BGI case, one can define stable and unstable symmetries in the Fushchich–Shtelen
framework.

Definition 2.4. Suppose X̂0 = ζ0[u] ∂/∂u (2.22) is a generator of an exact local symmetry group of the
unperturbed PDE (2.1). If the perturbed PDE (2.13) admits an approximate FS symmetry with generator
(2.29) where the v-component ψ1[v, w] ≡ ζ0[v], then X̂0 corresponds to a stable point symmetry of the
unperturbed PDE (2.1) (in the FS sense). Otherwise, it corresponds to an unstable point symmetry of
(2.1).
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Similarly to the case for BGI approximate symmetries, a FS approximate symmetry of a PDE (2.13)
given by (2.29) may be unstable because the second symmetry determining equation for the Fushchich–
Shtelen system (2.25)

Ẑ(k)G2[v, w]

∣∣∣∣
G1[v,w]=G2[v,w]=0

= 0

could contain additional conditions on the v-component ψ1.

Remark 2.3. An important feature of the Fushchich–Shtelen approximate symmetry framework is
the possibility of existence of approximate FS symmetries where the O(1) component ψ1[v, w] of the
generator (2.29) depends on O(ε) solution component w. An example is provided by the linear PDE
utt + εut = uxx which admits a point FS symmetry (2.29) with

ψ1[v, w] = tv + 2w + 2xtvx + (x2 + t2)vt,

ψ2[v, w] = 1

2
x2v − tw + 2xtwx + (x2 + t2)wt .

(2.30)

Such FS symmetries do not originate from stable local symmetries of the unperturbed PDE utt = uxx and
cannot arise in the BGI framework.

3. BGI and FS approximate symmetries: Properties, connections and examples
3.1. Trivial approximate symmetries
3.1.1. Trivial BGI approximate symmetries
Consider a local BGI approximate transformation with the evolutionary generator (2.22):

X̂ = X̂0 + εX̂1 = (ζ0[u] + εζ1[u])
∂

∂u
.

The determining equations (2.19) for the generator (2.22) to define a local symmetry of the PDE
(2.13) with a small parameter split into the O(1) part (2.4) and O(ε) part (2.20) with H defined by
(2.21). Suppose that the O(1) part of the generator vanishes: X̂0 = 0. In that case, the O(1) part (2.4)
of the approximate symmetry determining equations is satisfied identically, and (2.21) yields H = 0.
Consequently, the O(ε) part (2.20) of the determining equations (2.19) becomes

X̂1 (k)F0[u]

∣∣∣∣
F0[u]=0

= 0, (3.1)

which means that such X̂1 must be a local symmetry generator of the unperturbed equation (2.1). The
opposite is also true: if X̂0 is a local symmetry generator of the unperturbed equation (2.1), then

X̂ = εX̂0 (3.2)

is a BGI approximate symmetry generator of the perturbed PDE (2.13). In the light of the above, we call
a BGI approximate symmetry that has a generator with vanishing O(1) part

X̂ = εX̂1 = εζ1[u]
∂

∂u
(3.3)

a trivial BGI approximate symmetry. This triviality relates not to the trivial action of such symmetries
but rather to the fact that every local symmetry X̂0 of the unperturbed equation (2.1) is guaranteed to
yield a BGI approximate symmetry of the perturbed equation (2.13) having the form (3.2). The local
action of a trivial BGI approximate symmetry in the evolutionary form defined by (3.3) is given by

(x∗)i = xi, i = 1, 2, . . . , n,

u∗ = u + aεζ1[u] + O
(
a2

)
,

(3.4)

with the first Taylor term of the transformation having the order ∼ aε = o(a, ε).
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3.1.2. Trivial FS approximate symmetries
In a parallel fashion, one can define a trivial FS approximate symmetry of the perturbed PDE (2.13) as
one for which the local generator (2.29) has a special form with the vanishing transformation component
of the O(1) part of the solution ψ1 = 0, and ψ2[v, w] =ψ2[v]:

Ẑ = 0 +ψ2[v]
∂

∂w
. (3.5)

(The respective trivial point FS symmetry generator (2.27) has λi = λi(x, v), φ1 = 0, φ2 = φ2(x, v).) For
FS local symmetries with the generator of the form (3.5), it is straightforward to show that ψ2[v] is an
evolutionary component of the local symmetry of the unperturbed equation (2.1) generated by

X̂0 =ψ2[u]
∂

∂u
. (3.6)

Indeed, the action of (3.5) on the first PDE (2.25a) of Fushchich–Shtelen system is trivial, and the
action on the linear equation (2.25b) is equivalent to the local symmetry determining equation (2.7)
of the unperturbed PDE (2.1). The converse also holds: every local symmetry generator (3.6) of the
unperturbed equation yields a trivial FS approximate symmetry generator (3.5).

3.2. Types of approximate symmetries arising in classifications

In the computation of BGI approximate symmetries of a PDE (2.13) with a small parameter, the
following three types of symmetries can arise.

1. BGI approximate symmetries with generators (2.22) having X̂0 �= 0, X̂1 = 0 correspond to exact local
symmetries of the perturbed equation (2.13) (see Section 2.2.1).

2. BGI approximate symmetries with generators having X̂0 = 0, X̂1 �= 0 correspond to trivial BGI
approximate symmetries (Section 3.1.1).

3. Genuine BGI approximate symmetries have generators with both X̂0 �= 0 and X̂1 �= 0.

For FS approximate symmetries, the following three types can arise.

1. Symmetries with the same action on O(1) solution part v and O(ε) solution part w correspond to
exact local symmetries of the perturbed equation (2.13). For example, an exact scaling symmetry
with the generator u ∂/∂u admitted by the perturbed equation (2.13) is equivalent to a FS scaling
symmetry with the generator v ∂/∂v + w ∂/∂w.

2. Trivial FS approximate symmetries, as defined in Section 3.1.2.
3. Genuine FS approximate symmetries.

Genuine BGI and FS approximate symmetries are the main focus of the approximate symmetry study.

3.3. A computational example: Exact and approximate point symmetry classification for a
second-order nonlinear PDE with a small parameter

In this section, we compare exact point symmetries (2.12) of the (1+1)-dimensional wave-type equation
(2.9)

utt = uxuxx

with BGI and FS approximate point symmetry classifications for the family of perturbed equations

utt + εF1(u, ut) = uxuxx, (3.7)

where F1(u, ut) is an arbitrary function. The computation is limited to point symmetries for simplicity of
presentation. The cases for the arbitrary function F1(u, ut) are given modulo equivalence transformations
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Table 1. Stability of point symmetries (2.12) of the wave-type equation in terms of BGI and FS
approximate point symmetries of the perturbed PDE (3.7), depending on the form of the arbitrary
function F1

BGI cases, approximate
X̂0

i symmetry X̂i FS cases, approximate symmetry Ẑi

X̂0
1 = ∂

∂u
F1 = Q1(ut) + a1uut + a2u,

X̂1 =
(

1 − ε
( a1

10
t(tut + 4u)

+a2

2
t2
)) ∂

∂u

• F1 = ea3vQ4(vt) + a2vt + a1,

Ẑ1 = ∂

∂v
+ a3

( a2

10
t(tvt + 4v)

+w + a1

2
t2
) ∂

∂w• F1 = Q4(vt) + a1vvt + a2v,

Ẑ1 = ∂

∂v
−

( a1

10
t(tvt + 4v) + a2

2
t2
) ∂

∂w

X̂0
2 = t

∂

∂u
F1 = a1u2

t + a2ut + a3u + a4,

X̂2 =
(

t − ε
(a1

5
t(tut + 4u)

+1

6
t2(a3t + 3a2)

))
∂

∂u

• F1 = a1v2
t + a2vt + a3v + a4,

Ẑ2 =
t
∂

∂v
−

(
a1

5
t(tvt + 4v) + 1

6
t2(a3t + 3a2)

)
∂

∂w
• F1 = a3ea4vt + a2vt + a1,

Ẑ2 = t
∂

∂v
+(

a2a4

10
t(tvt + 4v) + a1a4 − a2

2
t2 + a4w

)
∂

∂w

X̂0
3 = ut

∂

∂u
F1 = F1(u, ut), X̂3 = ut

∂

∂u
F1 = F1(v, vt), Ẑ3 = vt

∂

∂v
+ wt

∂

∂w

X̂0
4 = ux

∂

∂u
F1 = F1(u, ut), X̂4 = ux

∂

∂u
F1 = F1(v, vt), Ẑ4 = vx

∂

∂v
+ wx

∂

∂w
X̂0

5 =(
u + tut

2

)
∂

∂u

F1 = u2Q2

(
ut/u3/2

) + a2ut + a1

X̂5 =
(

u + tut

2
+ ε

(
a1t2

+ a2

20
t(tut + 4u)

))
∂

∂u

F1 = va3 Q5

(
vt/v3/2

) + a2vt + a1,

Ẑ5 =
(

v + tvt

2

) ∂

∂v
+

(
(a3 − 1)w + twt

2

+ a2

20
(2a3 − 3)t(tvt + 4v) + a1a3

2
t2

)
∂

∂w
X̂0

6 = (
u − xux

−tut

) ∂
∂u

F1 = u−1Q3(ut) + a2ut + a1,

X̂6 =
(

u − xux − tut

−ε
(

a2

10
t(tut + 4u) + a1

2
t2

))
∂

∂u

F1 = va3 Q6(vt) + a2vt + a1,

Ẑ6 = (v − xvx − tvt)
∂

∂v
+

(
(a3 + 2)w − xwx − twt

+a2a3

10
t(tvt + 4v) + a1a3

2
t2
) ∂

∂w

t = C−1
1 t̃, x = C−2/3

1 x̃, u = ũ + 1

2
ε

(
1 − C−2

1

)
C2 t̃2, F1 = C2

1F̃1 − (
C2

1 − 1
)

C2, (3.8)

where C1 and C2 are arbitrary constants.
The PDE (2.9) admits six exact point symmetries given by (2.12). The BGI approximate point sym-

metries are computed and classified following the procedure described in Section 2.2.2, and the FS
approximate local symmetries are obtained following Section 2.2.3. In particular, the Fushchich–Shtelen
system (2.25) for (3.7) is given by

vtt − vxvxx = 0, wtt + F1(v, vt) − vxwxx − wxvxx = 0, (3.9)

where u(x, t) = v(x, t) + εw(x, t). For the Fushchich–Shtelen system (3.9), point equivalence transforma-
tions are given by (3.8) for x, t and F1, with dependent variable transformations

v = ṽ, w = w̃ + 1

2

(
1 − C−2

1

)
C2 t̃2. (3.10)
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The resulting classification is presented in Table 1. In the table, Qi denote arbitrary functions of their
arguments and aj arbitrary constants. The table is organized as follows. The first column lists evolution-
ary forms of the six point symmetry generators X0

k (2.12), k = 1, . . . , 6, of the unperturbed PDE (2.9).
The second column lists the forms of the arbitrary function F1(u, ut) for which the corresponding X0

k is
stable in the BGI sense, and the corresponding BGI approximate point symmetry of the perturbed wave
equation (3.7). The third column contains the same information for the FS approximate point symmetries
of the perturbed equation (3.7). Trivial approximate symmetries are not listed (see Section 3.1).

In Table 1, the generators of BGI and FS symmetries were sought in the evolutionary forms, depend-
ing on at most first derivatives of the fields. As a result, approximate BGI and FS point symmetries were
obtained, as well as some local first-order approximate FS symmetries. We also note that for the point
symmetry defined by X̂0

5 to be stable in the FS sense, the arbitrary function F1 = F1(v, vt) must satisfy
three coupled nonlinear PDEs. Because of the complexity of the latter, a general form of F1 could not
be obtained explicitly; however, it was verified that the form of F1 as listed satisfies those equations. The
same takes place for the point symmetry defined by X̂0

6 .
Table 1 illustrates differences between BGI and FS frameworks as there are stable symmetries in one

framework and unstable in the other framework. Some specific examples are listed below. The following
observations can be made.

• When F1(u, ut) = ut or F1 = const, all point symmetries (2.12) of the unperturbed PDE (2.9) are
stable as BGI and FS symmetries.

• For all forms F1(u, ut), the PDE (3.7) and the FS system (3.9) are invariant under t- and x-translations.
Consequently, the exact symmetries X̂0

3 and X̂0
4 reappear as BGI and FS approximate symmetries

without change.
• As an example, as seen in the first row corresponding to X̂0

1 , for F1 = uut, this symmetry is stable as a
point BGI approximate symmetry and as a local (but not point) first-order FS approximate symmetry.

• It can be separately proven that for every form of F1 where a symmetry X̂0
i is stable as a BGI point

approximate symmetry, it is also stable as a local (point or first-order) FS approximate symmetry.
• The converse is not true; for example, the scaling symmetry X̂0

6 is stable as a local FS approximate
symmetry for F1 = va3 Q6(vt) + a2vt + a1, but is only stable as a BGI approximate symmetry when
a3 = −1.

We also note that genuine BGI approximate symmetries are given by X̂1, X̂2, X̂5 and X̂6; similarly,
genuine FS approximate symmetries correspond to the local generators Ẑ1, Ẑ2, Ẑ5 and Ẑ6.

3.4. Instability of local symmetries of unperturbed PDEs in terms of higher-order approximate
symmetries: An example

For an ordinary differential equation (ODE), all local symmetries are stable in the BGI sense: each local
symmetry of a given ODE corresponds to an approximate BGI local, often higher-order, symmetry of
its perturbed version [40]. For a PDE, in general, this is not the case. For the BGI framework, differential
functions ζ1

(p)
i1i2 ...ip

in the determining equation (2.23) contain derivatives of u of orders higher than those
in the differential function ζ 1. It follows that the left-hand side of equation (2.23) splits into a system of
linear PDEs in ζ1. On the other side, the function H may contain derivatives of u with respect to other
variables different than those in the left-hand side of equation (2.23). This can lead to some constraints
on the unperturbed symmetry component ζ0; in that case, an exact local symmetry of the unperturbed
PDE (2.1) may not correspond to a local approximate BGI symmetry of the perturbed PDE (2.13). A
similar argument holds for FS approximate symmetries. The main reason, as it can be seen in the example
below, is the existence of multiple kinds of derivatives in PDEs and thus more restrictive conditions that
arise for ζ0 when the determining equations are being split with respect to higher-order derivatives.

As an illustration, consider the PDE (3.7) with F1(u, ut) = uut:
utt + εuut = uxuxx (3.11)
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and the related Fushchich–Shtelen system (3.9)

vtt − vxvxx = 0, wtt + vvt − vxwxx − wxvxx = 0. (3.12)

From Table 1, one can see that X̂0
2 = t ∂/∂u is unstable as a point symmetry in both BGI and FS

frameworks; that is, the point symmetry X̂0
2 admitted by the PDE (3.11) with ε = 0 corresponds to

no approximate point or first-order symmetry arising from BGI or FS approaches. First, we examine
whether or not it is possible to construct a local, possibly higher-order, BGI approximate symmetry of
(3.11) that would correspond to X̂0

2 . The generator of such a symmetry would have the form

X̂2 = C2X̂
0
2 + εX̂1

2 = (C2t + εζ1[u])
∂

∂u
, (3.13)

where C2 = const �= 0. The determining equation (2.23) for BGI local symmetries reads
(
D2

t ζ1 − uxD
2
xζ1 − uxxDxζ1

) ∣∣∣∣
utt=uxuxx

= H, (3.14)

where one readily finds

H = C2(tut + u). (3.15)

One can show by a direct computation that whatever the dependence of ζ1 on partial derivatives of u
is chosen to be, higher-order derivatives of u that arise in (3.14) lead to constraints on C2 that result in
C2 = 0, which means that no nontrivial BGI point symmetry (3.13) corresponding to X̂0

2 exists.
Second, we seek a local, possibly higher-order, approximate FS symmetry of the PDE (3.11) corre-

sponding to X̂0
2 . Such a symmetry would arise as an exact local symmetry of Fushchich–Shtelen system

(3.12). The corresponding evolutionary generator (2.29) has the form

Z =ψ1[v, w]
∂

∂v
+ψ2[v, w]

∂

∂w
. (3.16)

As noted in Section 2.2.3, the determining equation for the first equation of the system (3.12) is satisfied
when ψ1 = C2t as in X̂0

2 . Now the determining equation for the second PDE of (3.12) leads to
(
D2

tψ2 − vxD
2
xψ2 − vxxDxψ2

) ∣∣∣∣
vtt=vxvxx ,wtt=−vvt+vxwxx+wxvxx

= C2(tvt + v). (3.17)

It can be shown that for any dependence ψ2[v, w], constraints on C2 exist, leading to C2 = 0.
Consequently, there is no higher-order FS symmetry corresponding to the unstable point symmetry
X̂0

2 admitted by the wave equation (3.11) with ε = 0.

3.5. A relation between BGI and FS approximate symmetries

The computational example of Section 3.3 above illustrated the fact that BGI and FS frameworks can
yield rather different approximate point symmetry classifications for the same PDE with a small parame-
ter. However, in certain situations, the two approaches can lead to related results. We now show that for a
specific class of (1+1)-dimensional PDEs, a stable BGI approximate point symmetry always correspond
to a stable FS approximate local symmetry.

Consider the following class of PDEs on u(x,t), written in the Kovalevskaya form with respect to an
independent variable t:

∂nu

∂tn
= F0[u], F0[u] ≡ F0(x, t, u, ∂u, ∂2u, ..., ∂ ku), (3.18)

and its perturbed version with a small parameter ε:
∂nu

∂tn
= F0[u] + εF1[u], F1[u] ≡ F1(x, t, u, ∂u, ∂2u, ..., ∂�u). (3.19)
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A local BGI approximate symmetry of a PDE (3.19) has the form (2.22)

X̂ = X̂0 + εX̂1 = (ζ0[u] + εζ1[u])
∂

∂u
. (3.20)

As per Theorem 2.1 and Remark 2.2, the O(1) term in (3.20) corresponds to a local symmetry

X̂0 = ζ0[u]
∂

∂u
(3.21)

of the unperturbed equation (3.18).
In order to compute FS approximate symmetries of a PDE (3.19), we substitute u(x, t) = v(x, t) +

εw(x, t) + o(ε) into (3.19) and split the orders of ε to get the Fushchich–Shtelen system
∂nv

∂tn
= F0[v],

∂nw

∂tn
= F0vw + F0vi

wi + F0vij
wij + ... + F0vi1 i2...ik

wi1 i2...ik + F1[v]. (3.22)

The evolutionary generator of a local FS approximate symmetry has the form (2.29). The determining
equations (2.4) for exact local symmetries of (3.22) are

Ẑ(n)

(
∂nv

∂tn
− F0

)
= 0, (3.23a)

Ẑ(n)

(
∂nw

∂tn
− F0vw − F0vi

wi − F0vij
wij − ... − F0vi1 i2...ik

wi1i2...ik − F1

)
= 0, (3.23b)

holding on solutions of (3.22).

Theorem 3.1. If (3.20) is a BGI approximate local symmetry generator of a PDE (3.19) having the
specific form

X̂ = (ζ0(x, t) + εζ1(x, t, u, ux, ut))
∂

∂u
(3.24)

and additionally, F0[v] in (3.19) satisfies the following system of equations

ζ 0F0uu + ζ 0(1)

i F0uui
+ ζ 0(2)

i1i2
F0uui1 i2

+ ... + ζ 0(k)

i1i2...ik
F0uui1 i2...ik

= 0,

ζ 0F0uui
+ ζ 0(1)

i F0uiui
+ ζ 0(2)

i1i2
F0uiui1 i2

+ ... + ζ 0(k)

i1i2...ik
F0uiui1 i2...ik

= 0,

... (3.25)

ζ 0F0uui1 i2...ik
+ ζ 0(1)

i F0uiui1 i2...ik
+ ζ 0(2)

i1i2
F0ui1 i2 ui1 i2...ik

+ ... + ζ 0(k)

i1i2...ik
F0ui1 i2...ik ui1 i2...ik

= 0,

then

Ẑ = ζ 0(x, t)
∂

∂v
+ ζ 1(x, t, v, vx, vt)

∂

∂w
(3.26)

is a FS approximate local symmetry of the perturbed PDE (3.19) to the point symmetry generator X̂0 =
ζ 0 ∂/∂v of the unperturbed PDE (3.18).

Proof. We need to show that under the stated conditions, the determining equations (2.20) for BGI
approximate symmetries of (3.19) are equivalent to the determining equations for FS approximate sym-
metries. Since the first PDE of the Fushchich–Shtelen system (3.22) is the same as the unperturbed
equation (3.18), the first FS determining equation (3.23a) is satisfied for any ζ 0 and ζ 1 as long as ζ 0 is
an exact point symmetry component of (3.18).
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The second FS determining equation (3.23b) with ψ1 = ζ 0, ψ2 = ζ 1 can be rewritten as(
ζ 1(n)

t − ζ 1F0v − ζ 1(1)

i F0vi
− ζ 1(2)

i1i2
F0vi1 i2

− ... − ζ 1(k)

i1i2...ik
F0vi1 i2...ik

) ∣∣∣∣
∂nv/∂tn=F0

= G, (3.27)

where

G = w
(
ζ 0F0vv + ζ 0(1)

i F0vvi
+ ζ 0(2)

i1i2
F0vvi1 i2

+ ... + ζ 0(k)

i1i2...ik
F0vvi1 i2...ik

)
+ wi

(
ζ 0F0vvi

+ ζ 0(1)

i F0vivi
+ ζ 0(2)

i1i2
F0vivi1 i2

+ ... + ζ 0(k)

i1i2...ik
F0vivi1 i2...ik

)
+ ...

+ wi1i2...ik

(
ζ 0F0vvi1 i2...ik

+ ζ 0(1)

i F0vivi1 i2...ik
+ ζ 0(2)

i1i2
F0vi1 i2 vi1 i2...ik

+ ...

+ ζ 0(k)

i1i2...ik
F0vi1 i2...ik vi1 i2...ik

)
+ ζ 0F1v + ζ 0(1)

i F1vi
+ ... + ζ 0(�)

i1i2...i�
F1vi1 i2...i�

.

As ζ 0 and F0[v] satisfy (3.25), G reduces to

G = ζ 0F1v + ζ 0(1)

i F1vi
+ ... + ζ 0(�)

i1i2...i�
F1vi1 i2...i�

. (3.28)

Now, we proceed to check the determining equation (2.20) of BGI approximate symmetries for (3.19).
The left-hand side of (2.20) simplifies to(

ζ 1(n)

t − ζ 1F0u − ζ 1(1)

i F0ui
− ζ 1(2)

i1i2
F0ui1 i2

− ... − ζ 1(k)

i1i2...ik
F0ui1 i2...ik

) ∣∣∣∣
∂nu/∂tn=F0

which is equivalent to the left-hand side of (3.27). Now, the right-hand side of (2.20), the function H, is
the coefficient of ε in

−X̂0(n)

(
∂nu

∂tn
− F0 − εF1

) ∣∣∣∣
∂nu/∂tn=F0+εF1

. (3.29)

Since ζ 0 = ζ 0(x, t), none of the terms in (3.29) contains ∂nu/∂tn. Hence, the coefficient of ε in (3.29) is

H = X̂0(n)
F1 = ζ 0F1u + ζ 0(1)

i F1ui
+ ... + ζ 0(�)

i1i2...i�
F0ui1 i2...i�

. (3.30)

The latter is equivalent to G (3.28). It follows that the determining equation (3.5) of FS symmetries
for the system (3.22) and the determining equation (2.20) of BGI approximate symmetries for the PDE
(3.19) are equivalent. Hence, Ẑ (3.26) is a FS approximate local symmetry of the system (3.22).

The above theorem states that when a point symmetry of an unperturbed PDE yields a BGI approx-
imate point symmetry but not a FS approximate point symmetry of the perturbed PDE, under the
conditions of the theorem, there exists a corresponding higher-order FS approximate symmetry of the
perturbed PDE instead. This is illustrated by the following example.

Example 3.1 Consider again the PDE (3.11) utt + εuut = uxuxx. Using Table 1, we observe that X0
1 =

∂/∂u is unstable as a FS approximate point symmetry but it is a stable point symmetry in the sense of
BGI; the corresponding BGI generator is given by

X̂1 =
(

1 − ε

10
t(tut + 4u)

) ∂

∂u
,

with H (3.30) given by (3.15) with C1 = 1. Consider now the Fushchich–Shtelen system (3.12) for the
PDE (3.11). Using determining equation (3.5) for exact local symmetries of (3.12), one can find that

Ẑ1 = ∂

∂v
− 1

10
t(tvt + 4v)

∂

∂w
is a higher-order FS approximate symmetry generator of the PDE (3.11).

Remark 3.1. The conditions of Theorem 3.1 are not satisfied when ζ 0
u �= 0, ζ 0

ux
�= 0 or ζ 0

ut
�= 0.
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Example 3.2. The perturbed wave equation

utt + εuut = euuxx, (3.31)

admits an approximate point symmetry with the evolutionary form

X̂ = (2 − xux − εt (tut + 4))
∂

∂u
(3.32)

corresponding to the stable point symmetry X̂0 = ζ 0 ∂/∂u = (2 − xux) ∂/∂u. Here, ζ 0 = 2 − xux does
not satisfy the conditions of Theorem 3.1 since it involves ux. It turns out that X̂0 is unstable as a FS
approximate point symmetry of (3.31). Indeed, it is easy to check that

Ẑ = (2 − xvx)
∂

∂v
− t (tvt + 4)

∂

∂w
(3.33)

is not a local symmetry of the Fushchich–Shtelen system of the PDE (3.31) given by

vtt − vxvxx = 0, wtt + vvt − evwxx − evwvxx = 0. (3.34)

However, a direct computation shows that a slightly modified version of (3.33) given by

Ẑ = (2 − xvx)
∂

∂v
− (t(tvt + 4) + xwx)

∂

∂w
yields the corresponding first-order FS approximate symmetry.

4. Exact and approximate point symmetry classification of a one-dimensional perturbed wave
model in a fiber-reinforced solid

One-dimensional nonlinear wave equations

utt = K(ux)uxx (4.1)

on the unknown u(x,t) and various forms of K(ux) arise in multiple physical contexts, in particular, in
nonlinear mechanics [32]. The point symmetry classification of the PDE family (4.1) has been performed
by Oron and Rosenau [34]. If K(ux) = c2 = const, the PDE (4.1) becomes linear:

utt = c2uxx, (4.2)

and consequently, its Lie symmetry algebra is infinite-dimensional and consists of the vector fields of
the form

X0
∞ = (α1 + α2)

∂

∂t
+ c(α1 − α2)

∂

∂x
+ (C1u + β1 + β2)

∂

∂u
, (4.3)

parameterized by an arbitrary constant C1 and four arbitrary functions α1(x + ct), β1(x + ct), α2(x − ct),
and β2(x − ct).

In the current section, we consider a special form of the arbitrary function K(ux) = c2 + εQ(ux) in
(4.1), which yields a PDE family

utt = (c2 + εQ(ux))uxx (4.4)

with a small parameter ε. It is assumed that Q(ux) �= const. Such models arise, for example, in the analysis
of wave propagation in fiber-reinforced elastic solids [3, 13] with small fiber strengths. The PDEs (4.4)
are nonlinear perturbed versions of the linear PDE (4.2) and therefore have a reduced set of symmetries
compared to that of the linear wave equation. It is of interest to follow the algorithms presented in
Section 2 to compare the exact point symmetry classification of the PDE family (4.4) as it stands with
approximate (BGI and FS) point symmetries of the PDEs (4.4) viewed as perturbations of the linear
wave equation (4.2).

We classify exact and approximate (BGI and FS) point symmetries for (4.4). The classification is
performed with respect to the forms of the arbitrary function Q(ux), with each classification case holding
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for an arbitrary ε. In the classifications, cases are simplified using the equivalence transformations of
the perturbed equation (4.4), given by

t = C1 t̃ + C2, x = C3x̃ + C4, u = C5ũ + C6x̃ + C7 t̃ + C8,

c2 = C2
3

C2
1

c̃2, Q(ux) = C2
3

C2
1

Q̃(ũx̃), (4.5)

involving arbitrary constants Ci, i = 1, . . . , 8. It follows that by taking C1 = 1/c, C3 = C5 = 1, and other
constants zero, upon dropping tildes, one obtains the PDE (4.4) with c2 = 1:

utt = (1 + εQ(ux))uxx, (4.6)

which will be considered below.
The results below are presented modulo the equivalence transformations (4.5), usually without obvi-

ous trivial approximate symmetries (see Section 3.1); some trivial approximate symmetries will be
pointed out.

4.1. Exact point symmetries of the wave equation family (4.6)

The exact symmetry generator for the PDE (4.6) has the form

Y = ξ 1(x, t, u; ε)
∂

∂t
+ ξ 2(x, t, u; ε)

∂

∂x
+ η(x, t, u; ε)

∂

∂u
. (4.7)

The following cases arise, holding for an arbitrary ε and non-constant Q.

1. In the general case of arbitrary Q(ux), one has the five-dimensional Lie group of point symmetries
generated by

Y1 = ∂

∂t
, Y2 = ∂

∂x
, Y3 = ∂

∂u
, Y4 = t

∂

∂u
, Y5 = t

∂

∂t
+ x

∂

∂x
+ u

∂

∂u
, (4.8)

describing respectively translations in t, x, u, the Galilei transformation in the direction of the
displacement u, and a homogeneous space-time scaling.

2. In the case when Q(ux) = ux, the Lie algebra (4.8) is extended by a point symmetry generator

Y6 = x
∂

∂u
− ε

(
x
∂

∂x
+ 3t

2

∂

∂t

)
. (4.9)

4.2. BGI approximate point symmetry classification of the wave equation family (4.6)

The BGI approximate point symmetry generator for the PDE (4.6) has the form

X = X0 + εX1 = X0 + ε

(
ξ 1

1 (x, t, u)
∂

∂t
+ ξ 2

1 (x, t, u)
∂

∂x
+ η1(x, t, u)

∂

∂u

)
, (4.10)

where, according to Theorem 2.1, the freedom in X0 does not exceed that in X0
∞ (4.3). From the

determining equations (2.19) for BGI point symmetries, the following cases arise.

1. Q(ux) arbitrary: the O(1) and O(ε) components of the generator (4.10) are given by

X0 =(C1t + C2)
∂

∂t
+ (C1x + C3)

∂

∂x
+ (C1u + C4t + C5)

∂

∂u
, (4.11a)

X1 =(λ1 + λ2)
∂

∂t
+ (λ1 − λ2)

∂

∂x
+ (C6u + λ3 + λ4)

∂

∂u
, (4.11b)
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where Ci = const, λ1 and λ3 are arbitrary functions of x + t, and λ2 and λ4 are arbitrary functions of
x − t. Consequently, the nonlinear wave equation (4.6) for an arbitrary Q(ux) admits the approximate
point symmetries

X1 = t
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
, X2 = ∂

∂t
, X3 = ∂

∂x
, X4 = t

∂

∂u
, X5 = ∂

∂u
,

X∞ = ε

[
(λ1 + λ2)

∂

∂t
+ (λ1 − λ2)

∂

∂x
+ (C6u + λ3 + λ4)

∂

∂u

]
, (4.12)

which are, respectively, the re-numbered exact point symmetries (4.8), and a trivial approximate
symmetry X∞ corresponding to the infinite symmetry set (4.3) of the linear wave equation (4.2). The
difference between the freedom in (4.3) and the space spanned by X1, . . . , X5 in (4.12) corresponds
to unstable point symmetries of the linear wave equation.

2. Q(ux) = A ln (ux + B) + C, where A, B and C are arbitrary constants: here, the nonlinear wave
equation (4.6) admits an additional genuine approximate symmetry given by

Xg = (u + Bx)
∂

∂u
− ε

At

2

∂

∂t
. (4.13)

3. Q(ux) = ux: the exact symmetry generator (4.3) of the linear wave equation (4.2) reduces to

X0 = (C1t + C2)
∂

∂t
+ (C1x + C3)

∂

∂x
+ (C1u + β1 + β2)

∂

∂u
, (4.14)

and the O(ε) approximate symmetry components have the form

ξ 1
1 = λ1(x + t) + λ2(x − t) − 1

4

∫ t

(β2
′(x − t) + 2zβ1

′ ′ ((t − 2z)+ x)) dz,

ξ 2
1 = H(x, t), η1 =

(
C4 + β2

′(x − t) − β1
′(x + t)

4

)
u + λ3(x + t) + λ4(x − t), (4.15)

where H(x,t) is an arbitrary solution of the PDEs: Ht = ξ 1
1 x, Hx = ξ 1

1 t +
1

2

(
β1x + β2x

)
. In this third

case, the point symmetries of the unperturbed linear wave equation (4.2) with arbitrary β1(x + t) and
β2(x − t) remain stable and yield genuine approximate symmetries with O(ε) components given by
the terms in (4.15) that contain β1 and β2. In particular, a genuine approximate symmetry similar to
(4.13) is admitted:

Yg = x
∂

∂u
− ε

t

2

∂

∂t
. (4.16)

4.3. FS approximate point symmetry classification of the wave equation family (4.6)

For the perturbed PDE (4.6) with the solution form

u(x, t) = v(x, t) + εw(x, t) + o(ε), (4.17)

the Fuschich-Shtelen system (2.25) reads

vtt = vxx, wtt = wxx + Q(vx)vxx. (4.18)

The basic group of point equivalence transformations of the PDE system (4.18) is given by

t = C1 t̃ + C2, x = C3x̃ + C4,

v = C5ṽ + C6x̃ + C7 t̃ + C8, w = C5w̃ + C9x̃ + C10 t̃ + C11, (4.19)

c2 = C2
3

C2
1

, Q(ux) = C2
3

C2
1

Q̃(ũx̃),
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in terms of arbitrary constants C1, . . . , C11. We now find exact point symmetries of the system (4.18)
that correspond to FS approximate point symmetries of the PDE (4.6). The infinitesimal generator of
such symmetries has the form

Z = λ1(x, t, v, w)
∂

∂x
+ λ2(x, t, v, w)

∂

∂t
+ φ1(x, t, v, w)

∂

∂v
+ φ2(x, t, v, w)

∂

∂w
. (4.20)

The solution of the determining equations (2.4) leads to the following classification.

1. Q(vx) arbitrary:

Z1 = ∂

∂t
, Z2 = ∂

∂x
, Z3 = ∂

∂v
, Z4 = t

∂

∂v
,

Z5 = t
∂

∂t
+ x

∂

∂x
+ v

∂

∂v
+ w

∂

∂w
, Z6 = v

∂

∂w
, (4.21)

Z∞ = (β1(x + t) + β2(x − t))
∂

∂w
,

where β1 = β1(x + t) and β2 = β2(x − t) are arbitrary functions. In this general case, no genuine FS
approximate symmetries arise. Indeed, the generators Z1, . . . , Z5 mimic the exact point symmetry
generators (4.8), and Z6, Z∞ are trivial FS symmetries. Including the above general symmetries, and
modulo the equivalence transformations (4.19), the system (4.18) admits additional point symmetries
in the following cases.

2. Q(vx) = vs
x, s �= 0:

Z7 = v
∂

∂v
+ (s + 1)w

∂

∂w
. (4.22)

3. Q(vx) = evx :

Z7
′ = x

∂

∂v
+ w

∂

∂w
. (4.23)

The symmetries given by Z7 and Z7
′ are genuine FS approximate point symmetries of the perturbed

PDE (4.6). In particular, Z7 corresponds to a scaling which is different for O(1) and O(ε) components
of the approximate solution (4.17).

4.4. Summary

For an arbitrary Q, the perturbed one-dimensional wave equation (4.6) admits five exact symmetries
given by (4.8) and it has these five symmetries and a trivial approximate symmetry as BGI approximate
symmetries (4.12). For Q = ux, the equation (4.6) admits (4.8) and an additional exact symmetry given
by (4.9). For BGI classification with Q(ux) = ux, the PDE (4.6) has an infinite set of BGI approximate
symmetries with approximate symmetry components given by (4.15). Note that the exact symmetry
generator Y6 in (4.9)

Y6 = x
∂

∂u
− ε

(
3t

2

∂

∂t
+ x

∂

∂x

)
can be obtained from the BGI approximate components (4.15) by taking

β1 = x + t

2
, β2 = x − t

2
, λ1 = −11

16
(x + t), λ2 = 11

16
(x − t).

It follows that the BGI approximate symmetry classification of the wave equation (4.6) includes the
exact symmetry classification of (4.6) but corresponds to a subset of exact point symmetries (4.3) of the
unperturbed (linear) wave equation (4.2). An additional case appears in the BGI approximate symme-
try classification when Q = A ln (ux + B) + C, with a corresponding additional approximate symmetry
given by (4.13). This case does not arise in the FS symmetry classification.
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For an arbitrary Q, the PDE (4.6) admits exact point symmetry generators (4.8) and trivial approx-
imate symmetries given by (4.21). In comparison with the exact and BGI symmetry classifications of
(4.6), two different cases appear in FS approximate symmetry classification: Q = vs

x, s �= 0 and Q = evx .
For Q = vs

x, the PDE (4.6) admits an additional FS approximate symmetry given by (4.22). (By contrast,
in the exact and BGI symmetry classifications of (4.6), this case appears only when s = 1.) For Q = evx ,
a stable exact symmetry x ∂/∂u of the linear wave equation (4.2) yields a genuine FS approximate
symmetry of (4.6) given by (4.23).

5. Approximate and numerical solutions modeling breaking waves in fiber-reinforced materials

The displacements in shear waves propagating in an incompressible hyperelastic material with a single
family of fibers directed along the wave propagation are governed by a nonlinear one dimensional wave
equation

utt = (α+ 3βu2
x)uxx, u = u(x, t), (5.1)

where the constants α, β > 0 are the material parameters [13]. In this section, we consider wave equa-
tions (4.4) with Q(ux) = Bus

x, B> 0, s �= 0, which include the model (5.1). By a re-scaling of x, t and u,
these PDEs can be brought into a simpler form

utt = (1 + εus
x)uxx. (5.2)

5.1. Approximate solutions of the PDE (5.2) in the FS framework

Here we use Fuschich-Shtelen approximate symmetries to construct an approximate solution for the
PDE (5.2) in the usual FS form

u(x, t) = v(x, t) + εw(x, t) + o(ε). (5.3)

In the first-order of precision in ε, the equation (5.2) is equivalent to the Fuschich-Shtelen system (4.18)
with Q(vx) = vs

x:

vtt = vxx, wtt = wxx + vs
xvxx, (5.4)

which admits the symmetry generator (4.22). The corresponding characteristic equations are given by
dt

0
= dx

0
= dv

v
= dw

(s + 1)w
. (5.5)

Consequently, if v(x,t) is any solution for the first equation of the system (5.4), then the invariant solution
following from the characteristic equations (5.5) is given by w(x, t) = vs+1φ(x, t). Consider traveling wave
solutions of the first equation in (5.4):

v = g (x ± t) . (5.6)

Substituting (5.6) and w = gs+1φ into the second PDE of (5.4), one gets to the PDE in φ

gs+1 (φtt − φxx)+ 2(s + 1)gsg′ (±φt − φx)− (g′)sg′ ′ = 0. (5.7)

When s �= −1, the PDE (5.7) has a general solution

φ = g−s−1

[
h ± t(g′)s+1 − ∫ t

(g′)s+1 (±(2r − t) + x) dr

2(s + 1)

]
,

where h = h(x, t) satisfies htt = hxx. Similarly, when s = −1, the solution form changes to

φ = h ± 1

2
t ln (|g′|) .
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In light of the above results, the higher-order solution part w has the form

w =

⎧⎪⎪⎨
⎪⎪⎩

h ± t(g′)s+1 − ∫ t
(g′)s+1 (±(2r − t) + x) dr

2(s + 1)
, s �= −1,

h ± t ln (|g′|)
2

, s = −1.

(5.8)

Finally, when s �= −1, the perturbed equation (5.2) has the approximate solution (5.3) given by

u(x, t) = g(x ± t) + ε

[
h(x, t) ± t(g′)s+1 − ∫ t

(g′)s+1 (±(2r − t) + x) dr

2(s + 1)

]
+ o(ε) . (5.9a)

When s = −1, the approximate solution takes the form

u(x, t) = g(x ± t) + ε

(
h(x, t) ± t ln (|g′ (x ± t)| )

2

)
+ o(ε). (5.9b)

Example 5.1. As a specific example that will be used below, we consider the PDE (5.1) describing
shear waves in a fiber-reinforced solid, re-scaled to the form (5.2) with s = 2:

utt =
(
1 + ε (ux)

2
)

uxx, (5.10)

and assume in (5.1) that β/α ∼ ε
 1, which corresponds to weak fiber effects. We also choose v(x, t) =
exp (−(x − t)2). Then, the solution (5.9a) of the PDE (5.2) with h = 0 reduces to

u(x, t) = e−(x−t)2 + ε

6

[
8t (x − t)3 e−3(x−t)2 + 1

9

( (
12tx − 6t2 − 6x2 − 2

)
e−3(x−t)2

+ (
12tx + 6t2 + 6x2 + 2

)
e−3(x+t)2

)]
+o(ε). (5.11)

Note that for any fixed t, the approximate solution (5.11) approaches zero as x → ∞. Also, for any
x ∈ (−∞, ∞), the solution (5.11) is bounded as t → ∞. The solution (5.11) is not a purely right-traveling
wave solution but describes an evolving wave form (see Section 5.2 below). In particular, the PDE (5.10)
is known to have breaking wave-type solutions [13].

5.2. Numerical simulations of (5.10) and breaking waves

We now compute numerical solutions of the wave equation (5.10) in Example 5.1 in order to model its
breaking wave behavior (see Section 5.3 below for details) and provide a reference for comparison with
the approximate solutions developed in Section 5.1. Gaussian-type initial conditions corresponding to
a right-traveling wave and periodic boundary conditions

u(x, 0) = e−x2
, ut(x, 0) = 2xe−x2

, u(−L, t) = u(L, t), L> 0, t ∈ [0, T], (5.12)

are posed in the space-time domain x ∈ [−L, L], t ≥ 0, and the equation (5.10) is solved using an explicit
finite-difference cross-stencil scheme with constant spatial and temporal steps h̃, τ̃ . Following [12], we
use a conservative finite-difference scheme developed for the PDE (5.10):

Utť − Uxx̄ − ε
U3

x − U3
x̄

h̃
= 0, h̃ = 2L

M
, τ̃ = T

N
,

xm = −L + mh̃, m = 0, . . . , M, (5.13)

tn = 0 + nτ̃ , n = 0, . . . , N,
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(a) (b)

Figure 1. (a) Numerical and approximate profiles of u according to the PDE (5.10) (ε = 0.5) with
initial conditions (5.12) for L = 10, h = 0.01, τ = h/8, and t = 0, 2, 4, 6, 8. (b) Relative difference (5.15)
between numerical and approximate solutions.

with U = Un
m approximating the value of u(x, t) at the mesh node (xm, tn). Here, Utť and Uxx̄ represent the

second-order central differences, Ux the first-order forward difference and Ux̄ the first-order backward
difference:

Utť = Un+1
m − 2Un

m + Un−1
m

τ̃ 2
, Uxx̄ = Un

m+1 − 2Un
m + Un

m−1

h̃2
,

Ux = Un
m+1 − Un

m

h̃
, Ux̄ = Un

m − Un
m−1

h̃
. (5.14)

The numerical solutions provide a good agreement with approximate solutions (5.11), for a broad
range of values of ε, from the initial dimensionless time to the time close to the wave breaking. The
breaking time increases approximately as ε−1 as ε decreases (see Section 5.3 below). Here we present
sample computation results for a relatively large value of the small parameter, ε = 0.5. The computa-
tion is performed from t = 0 to t = 4 close to the wave breaking time. A comparison of the numerical
solution and the approximate solution (5.11) of PDE (5.10) with initial and boundary conditions (5.12)
at several time snapshots is presented in Figure 1(a). The relative difference at the time step tn between
the approximate and numerical solutions is calculated using 2-norms according to the formula

En = E(tn) = ||uapprox − unum||2

||uapprox||2

(5.15)

and is shown in Figure 1(b).

5.3. Estimates of wave breaking times using approximate and numerical solutions

As discussed in [13], the nonlinearity (1 + ε (ux)
2 ) leads to greater characteristic speed values at points

where |ux| is larger. This can lead to the intersection of characteristic curves, which corresponds to
the wave breaking and the formation of a shock. This behavior can be studied using the method of
characteristics. While for linear hyperbolic PDEs, such as the constant-coefficient wave equation utt =
c2uxx in the simplest case, characteristic curves can be found in terms of explicit formulas such as x =
x0 ± ct and lead to explicit exact solutions, the situation is significantly more complex for nonlinear
hyperbolic PDEs. Using the method described in [25, 49], one can show that the equation (5.10) can be
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reduced to the first-order characteristic form

ut = ± 1

2
√
ε

(√
ε ux

√
1 + ε (ux)

2 + ln

(√
ε ux +

√
1 + ε (ux)

2

))
(5.16)

on the characteristic curves
dx

dt
= ±

√
1 + ε (ux)

2 . (5.17)

In physical terms, the part of the wave with a time derivative given by (5.16) moves at a finite velocity
given by (5.17). The integration of (5.17) yields a constant of integration x0 that corresponds to the point
on the characteristic curve where t = t0 is some initial time. Thus, x = x(x0, t), from which ut(x(x0, t), t)
in (5.16) is a function of x0 and t. Similarly, ux(x(x0, t), t) in (5.17) is a function of x0 and t.

The formation of a shock where the solution becomes multi-valued takes place when characteristic
curves intersect. Without explicit knowledge of ux(x, t), no explicit solution x(x0, t) of (5.17) is available.
To estimate the breaking time Tb, we use time-progressing linear approximations to characteristic curves,
in conjunction with the finite-difference numerical solution of the PDE (5.10) described in Section 5.2.
At each time layer tn in (5.13), linearized characteristics are launched forward in time from each grid
point (xm, tn). The smallest time of the intersection of such characteristics estimates the wave breaking
time.

For example, when the numerical computation has reached the time layer t = tn, the linearized charac-
teristics are launched from each spatial grid point xm, m = 1, . . . , M − 1. In particular, the right-traveling
characteristics are approximated by the lines

x = xm + t
√

1 + ε (ux(xm, tn))
2, (5.18)

where ux = Ux is the first-order forward finite difference (5.14). To approximate the breaking time t =
τ numerically, we solve (5.18) for the time τ when two different characteristics intersect. Given two
starting points, xm1 and xm2 , we get the system

x = xm1 + τ

√
1 + ε

(
ux(xm1 , tn)

)2
, x = xm2 + τ

√
1 + ε

(
ux(xm2 , tn)

)2
. (5.19)

Solving for τ yields

τ = xm1 − xm2

m2 − m1

, (5.20)

where

mi =
√

1 + ε
(
ux(xmi , tn)

)2
, i = 1, 2 (5.21)

are the slopes of the characteristic lines. We choose xm1 and xm2 to be adjacent grid points,
xm1 + h̃ = xm2 . The numerator of (5.20) is constant, so the approximate breaking time corresponds to
the largest denominator of (5.20). We determine xm1 corresponding to the largest difference between the
slopes m1 and m2, then solve for τ .

The meaning of τ is thus the estimated time from tn to the wave breaking time Tb; one consequently
has an estimate

Tb ∼ tn + τ . (5.22)

As the wave evolves, the slopes of the linearized characteristics will change and therefore so will τ .
To account for this, at each time step, we repeat the calculation for τ . We use the first-order forward
finite-difference approximation to compute ux in (5.21) at each time step. Figure 2(a) shows a plot of the
value of the time to the break τ versus the time at which it was calculated, for several values of ε.

Alternatively, one can numerically estimate the wave breaking time by defining it as the time when
min(uxx) ≤ δ for some negative number δ. Choosing for example δ = −30, and using the second-order
central difference approximation to the derivative for uxx in the numerical solution, we calculate the
numerical break time for each ε. Using Richardson extrapolation of the break time values found with
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(a) (b)

Figure 2. (a) Estimates (solid color) and numerical (black dashed) values for the time to break τ (5.20)
for ε = 0.1, 0.2, . . . , 1 (right to left). (b) Numerical wave profiles of uxx (ε = 0.5) for t = 0, 1, 2.

Figure 3. (a) Characteristic curves found by numerical integration of (5.17) with ε = 0.5. The blue
horizontal line is the breaking time as determined by Richardson extrapolation. (b) The same plot as
(a) with fewer characteristic lines shown. The thick red characteristic lines correspond to the earliest
intersection.

spatial step sizes h̃ = 0.01 and h̃ = 0.005 and temporal step size τ̃ = 0.00125, we found the break times
for each ε in the limit as h̃ → 0 as shown in Figure 2(a). This approach uses the fact that as the wave
approaches the breaking time, the second spatial derivative uxx tends to negative infinity (see Figure 2(b)).

We determined the actual, non-linearized characteristic curves by numerically integrating (5.17). The
curves are shown in Figure 3.

It is interesting that one can also approximately determine the wave breaking time from the approx-
imate solution (5.11) by finding the time when the second spatial derivative uxx of the approximate
solution develops an additional root, as shown in Figure 4. This corresponds to an additional inflection
point in the wave itself, which can be observed in Figure 1(a) closer to the wave breaking.

The numerically determined break time values (τnum) and the approximate-determined break time
values (τapprox) are given in Table 2. Both sets of data are also plotted in Figure 5. The results suggest
that the wave breaking time behaves like τ ∼ ε−1.
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Table 2. Numerical and approximate wave breaking time esti-
mates for the PDE (5.10) vs. the small parameter values (ε)

ε τnum τapprox

1 1.3888 1.6050
0.9 1.1510 1.7875
0.8 1.6713 2.0175
0.7 1.8712 2.3263
0.6 2.1425 2.7363
0.5 2.5138 3.3238
0.4 2.3300 4.1150
0.3 3.0575 5.4988
0.2 5.7625 8.3162
0.1 10.9125 16.6737

Figure 4. Wave profiles of the approximate solution uxx (ε = 0.5) for t = 0, 1, 3, 3.5. Note the develop-
ment of extra roots as time increases.

6. Discussion

In this paper, we considered exact and approximate symmetries of partial differential equations with
small parameter, in the Baikov–Gazizov–Ibragimov (BGI) [4–6] and the Fushchich–Shtelen (FS) [21]
frameworks. The goals of this paper were to study relations, properties and applications of approximate
symmetries of perturbed PDEs in comparison with exact symmetries of the unperturbed and perturbed
PDEs and to use the approximate symmetries to construct approximate solutions of nonlinear PDEs.

For ordinary differential equations with a small parameter, all BGI approximate symmetries are sta-
ble: each symmetry of an unperturbed equation reappears as a point or higher-order approximate BGI
symmetry [40]. For PDEs, the situation is different: we found that the point symmetry of the unper-
turbed PDE, in general, does not correspond to a point or a higher-order approximate symmetry of the
perturbed model. The main reason of this symmetry instability is that the determining equations (2.23)

https://doi.org/10.1017/S0956792522000407 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000407


26 M. R. Tarayrah et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Figure 5. Numerical and approximate-derived break times τ as a function of ε.

for BGI local symmetries of the perturbed PDE (2.13), whatever the dependence of the approximate
symmetry components ζ 1 (2.22), always contains derivatives of u higher than those in ζ 1. This leads
to a split system of PDEs in ζ 1 with some restrictions on the unperturbed symmetry components ζ 0. A
similar argument holds in FS framework. As an illustration, in Section 3.4, we showed that there was no
higher-order (BGI and FS) approximate symmetry for the perturbed PDE (3.11) corresponding to the
point symmetry t∂/∂u of the unperturbed wave equation (2.9).

A detailed stability classification of point symmetries of the nonlinear wave equation (2.9) in terms
of approximate BGI and FS frameworks was performed in Section 3.3. The results illustrate that the two
approximate symmetry are significantly different. Yet as shown in Section 3.5, there exists a connection
between the BGI and FS approximate symmetries; in particular, each stable BGI point symmetry of
the form (ζ 0(x, t) + εζ 1(x, t, u, ux, ut))∂/∂u yields a higher-order approximate FS symmetry in the form
ζ 0(x, t)∂/∂v + ζ 1(x, t, v, vx, vt)∂/∂w (Theorem 3.1).

In the FS framework, we found that there exist FS approximate point symmetries of perturbed PDEs
that do not correspond to the stable point symmetries of the unperturbed models and also cannot appear
in the BGI framework (Remark 2.3). In such FS symmetries, the O(1) and O(ε) solution and symme-
try components ‘mix’ together; in particular, the O(1) symmetry component depends on O(ε) solution
component. An example is given by (2.30).

The classifications of exact and approximate (BGI and FS) symmetries of a perturbed PDE not only
illustrates differences between these approximate symmetry approaches but also leads to different types
of approximate symmetries that can be used to construct approximate solutions for the given PDE. In
Section 4, exact and approximate point symmetries for the perturbed one-dimensional wave equation
(4.6) arising in the context of nonlinear waves in elastic materials were classified. It was shown that
the exact symmetry classification of the perturbed PDE (4.6) is included in the BGI approximate sym-
metry classification of (4.6). Moreover, the classifications of BGI and Fushchich–Shtelen approximate
symmetries of (4.6) yielded different classification cases in terms of the arbitrary constitutive function.
While the BGI classification included a logarithmic case that did not appear in the FS classification,
two new cases appeared in the FS classification: Q(vx) = vs

x and Q(vx) = evx that did not arise in the BGI
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framework except for s = 1. All these cases yielded genuine BGI and FS approximate point symmetries
for the nonlinear wave equation (4.6).

In Section 5, for the nonlinear wave PDE family (5.2) with a small power nonlinearity, an FS approxi-
mate symmetry generator was used to derive explicit families of approximately invariant solutions (5.9).
For the case of quadratic nonlinearity (5.10), these approximate solutions were compared with finite-
difference numerical solutions based on the method of characteristics. The latter indicate the appearance
of breaking waves from smooth initial conditions in finite time. Though the approximate solutions
remain smooth, their behavior can be used to predict the breaking times; these breaking times showed a
good agreement with those estimated from the numerical computations. Both approaches indicate that
the breaking time is inversely proportional to the magnitude of the small parameter that controls the
nonlinearity.

The current work employed GeM module [15–17] for Maple symbolic manipulation software to gen-
erate and simplify determining equations for approximate symmetry and equivalence transformation
components, the determining equations which were subsequently solved with standard Maple routines.

The approximate symmetry area still contains many open questions, including the general question
of whether or not there exists some ‘unified’ approach that would include, and perhaps extend, both BGI
and FS approximate symmetry frameworks. Another related open question is that of systematic compu-
tation of approximate conservation laws and approximately conserved quantities of dynamic ODEs and
PDEs, and relations between such conservation laws and approximate symmetries. An obvious area of
application of approximate conservation laws is the development and validation of specialized numerical
methods for nonlinear DE models with small parameters.

A further extension of interest is the computation of approximate symmetries of DEs that include
higher-order perturbation terms:

F[u;ε] = F0[u] + εF1[u] + . . .+ εNFN[u] = o(εN), N > 1 (6.1)

(cf. (2.13)). Examples of such situation arise, for instance, in weakly nonlinear shallow water-type equa-
tions with very weak dispersion. For higher-order perturbations (6.1), it is natural to generalize the BGI
symmetry generator (2.22)

X̂ = X̂0 + εX̂1 + . . .+ εNX̂N , (6.2)

and the FS solution representation (6.3) to

u(x) = v1(x) + εv2(x) + . . .+ εNvN+1(x) + o(ε). (6.3)

It is of interest to work out details and examples of approximate symmetry computations for such higher-
order perturbations. An even further extension would include the consideration of singularly perturbed
DEs where setting the small parameter ε = 0 changes the order of the differential equation or a PDE
class it belongs to.

Another open area in the domain of approximate symmetries involves DE systems with more than one
independent small parameters. Such models arise in multiple contexts. For instance, the dimensionless
Serre–Su–Gardner–Green–Naghdi equations [39]

ut + εuux + hx = δ2

3h

(
(h)3

(
uxt + εuuxx − ε(ux)

2
))

x
,

ht + (hu)x = 0

involve two independent parameters ε and δ; a dimensionless viscoelastic wave model [13]

utt =
(
α+ 3βu2

x

)
uxx + ηux

[(
8u2

x + 2
)

uxxutx + (
2u2

x + 1
)

uxutxx

]
+ ζu3

x

[(
24u2

x + 4
)

uxxutx + (
4u2

x + 1
)

uxutxx

]
includes four real parameters, three of which may be small: β, η, ζ 
 α.
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