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1. Introduction

The proposed Matlab-based code fills a given three-dimen-
ional domain with spheres of radii following any prescribed
andom distribution of sphere available in Matlab. The moti-
ation behind the creation of this code was to build a Discrete
lement Method (DEM) model of the powder bed 3D printing
rocess. The initial step in such a model was the determination
f the initial location of a packing of individual particles within
he powder bed domain, and which particles were in contact.
his posed a problem to which no simple solution was readily
vailable. Indeed, finding an optimal packing of unequal spheres
s a challenging task [1]. Previous DEM models (e.g., Refs. [2,3])
elied on the particle dynamics approach to determine location
ith gravitational and inter-particle forces; the interaction and
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final positions of the spheres was determined using Newtonian
mechanics. This required particle–particle and particle–boundary
collision detection, as well as calculation of contact forces [2].
For a large number of particles, such calculations can be highly
computationally expensive. Since our only concern was the fi-
nal placement on the particles, the current code was designed
to bypass the dynamics of powder settling and find a way to
determine the rest location of the particles based on geometrical
considerations.

Random sphere packing has broad applications, including DEM
modeling, granular dynamics, radiosurgery for treating brain tu-
mors [1], optimal packing problems, etc. Other sphere packing
methods have similar aims [4,5], however they did not meet
our needs. Vast literature is dedicated to a related but differ-
ent problem of random packing of equally-sized spheres (see,
e.g., Refs. [6,7] and references therein).

The goal for the program presented below was not to find the
optimal packing, but rather a packing of unequal spheres which
closely models a realistic packing of metal powder particles in
ttps://doi.org/10.1016/j.softx.2022.101051
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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he powder bed printing process. In the simplest setting where
he total domain to be filled can be represented as a union of
arallelepiped-shaped bricks, initially, a brick is filled with the
istribution of spheres, and then is used as a building block
o achieve the desired volume. The symmetry of the brick is
xploited to keep track of particle contacts.
Two related methods were developed, and are available to the

ser within the current Matlab-based package. Each consists of
a part responsible for filling a single brick and a part that builds
the volume.

For Method 1, the approach to filling the unit brick, an ar-
bitrary parallelepiped-shaped volume, the main sphere fitting
function, a typical program sequence and three run examples
are discussed in Section 2. The first method randomly fills the
edges of the unit brick, then the faces, and then the volume,
which results in a unit brick filled with a non-symmetric spherical
distribution. The total domain may coincide with a single brick,
or be made of several bricks in x, y, and z directions; in the latter
case, the total domain is constructed by reflections of the unit
brick about its faces, providing boundary sphere contacts.

For the second method, details and examples are provided in
Section 3. In Method 2, unlike Method 1, for the unit brick, only
one edge is filled in each direction, and four parallel copies of
each are made. Similarly, only three faces in each plane are filled
with random spheres, and are copied onto the opposite ones.
This yields a unit brick that has identical opposite faces (but a
non-symmetric volume filling), and hence a direct copy–paste
of unit bricks can be used to fill a larger total domain. Another
difference of Method 2 from Method 1 is that instead of being
fully inside of the unit brick and touching the brick faces, in
Method 2, centers of the spheres on each face are located on the
brick faces themselves.

Example 3 (Section 4) illustrates an application of the geo-
metric approach to create a spherical filling of a more complex-
shaped domain: a parallelepiped with the subtraction of two
hemispheres centered in the middles of two opposite faces in the
x-direction.

A physical example containing a simple model considering
discrete laser-induced heat-based bonding in powder bed 3D
printing process is considered in Section 5, following Ref. [8]. The
physical principles and constants are described in Section 5.1, and
a result of a simulated print of a small square are presented in
Section 5.2.

In examples used in the current work, Weibull and Gamma
probability distribution of spherical radii [9,10] were employed.
The Weibull and Gamma distribution parameters were chosen
to correspond to powder bed additive manufacturing involving
steel spheres. The presented software supports all probability
distributions provided in Matlab.

The paper is concluded with a summary discussion in Sec-
tion 6.

2. Filling a domain with spheres: Method 1

The first method, as well as the second method described later,
can be used to fill any parallelepiped-shaped domain V with a
given random distribution of spheres.

The domain V can be filled either in a completely random
manner, or for a quicker computation, it can be subdivided into
smaller standard parallelepipeds (‘‘unit bricks"). In the latter case,
a single brick would be filled with spheres randomly, and bricks
can be copied and joined, as explained below, any prescribed
number of times in x, y, and z directions, to create a filling of
V . In the former case, the full domain V is treated as a single unit
brick.

During the spherical filling, positions and radii of random
spheres are recorded, as well as pairwise connections between
touching spheres, and sets of sphere indices corresponding to
spheres lying on each face of V .

2.1. Method 1: filling the unit brick

The initial step in the first method of filling up a unit brick
with a given distribution of spheres consists in placing a sphere
of average radius in each corner of the brick, then filling the edges
between each adjacent corners with contacting spheres with sizes
drawn randomly from the same distribution, and then filling faces
the same way. After all faces are finished, the remaining volume is
filled. When a new sphere is placed, neighboring spheres in con-
tact with the new one are recorded. This way, when the volume
is filled, there is a list containing all pairs of spheres that are in
contact. As new spheres are placed, a list of other spheres that are
in contact with the given one is kept, based on a constant dimen-
sionless parameter ε that specifies acceptable separation/overlap
of two particles to be considered in contact. Particles that are
considered ‘‘close" (controlled by another constant dimensionless
parameter δ) are stored as possible ‘‘parents’’. When a new sphere
needs to be placed, to determine its location, the program runs
through the list of possible ‘‘parents’’, as explained below, and
the new sphere is placed to be in contact with possible parent
particles (while we work in 3D, the idea is shown in 2D in Fig. 1).
This is achieved by solving a system of equations

∥xn−x1∥ = Rn+R1, ∥xn−x2∥ = Rn+R2, ∥xn−x3∥ = Rn+R3,

where xi ∈ R3, i = 1, 2, 3 is the triplet parent spheres, xn is the
unknown position of the center of the new sphere, and Ri denote
the corresponding radius.

Once the new sphere is placed in its putative position, a check
is run to see if it overlaps with any other spheres. If it does,
then the current putative location is discarded, and the sphere is
matched with the next set of possible parents. Once the sphere is
placed and does not intersect with any other spheres, its location
and contacts are stored, and the next sphere’s radius is randomly
drawn from the given distribution. If a given new sphere does
not fit with any of the parents, it is discarded, and a new sphere
radius is randomly drawn.

We note that in Method 1, unlike the following Method 2, each
edge and face of the unit brick is covered with a different random
set of spheres.

2.2. Method 1: filling a parallelepiped-shaped volume

When a unit brick is filled, it may be used ‘‘as is" to repre-
sent the full domain V filled with spheres in a non-symmetric
random manner, or as a building block to build larger volumes
in a relatively small amount of computing time, by exploiting
the symmetry of the unit brick. Method 1 of volume filling is
employed to generate a parallelepiped of size m × n × p, where
m, n and p are the numbers of unit bricks in x, y and z direction
respectively.

In Method 1, information about the spheres that are in contact
with the unit brick’s faces is used to fill the desired volume by
reflecting the unit brick symmetrically with respect to its face
planes, so that spheres on the faces would be in direct contact
with spheres in a symmetric copy of the unit brick. This process
is repeated until desired length is met, and then is repeated in
the perpendicular directions. Thus instead of a time-consuming
process of space filling with spheres, the coordinates of spheres in
additional bricks are computed simply through symmetry trans-
formations of coordinates of spheres in the original unit brick, and
radii and contact information are copied directly.
2
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Fig. 1. New sphere in contact with parent spheres: a 2D cartoon.

.3. Method 1: the main sphere fitting function

The Matlab function Method1GenerateSpheres.m imple-
ments Method 1 of unit brick generation and volume filling as
described above. The input and output parameters are given in
the order of appearance.

Input parameters:

• ProbabilityDistr: a Matlab probability distribution of
the radii of spherical particles. This object can be created us-
ing the Matlab makedist function. For a given distribution,
we call r̄ the average sphere radius.

• FaceGoal: fraction of the unit brick face area covered by
spheres in contact with it.

• BodyGoal: fraction of the unit brick volume filled by
spheres.

• SphereContactParameter: The contact parameter ε,
within [0, 1]. If two spherical particles are within
SphereContactParameter × r̄ of each other, they are
considered to be in contact.

• ParentParameter: the ‘‘parent parameter" δ, within [0, 1].
If two spherical particles are within ParentParameter× r̄
of each other, they are considered to be potential ‘‘parents"
to further particles.

• BrickSideLengths: an array of three values correspond-
ing to absolute lengths (in physical units) of the unit brick
sides along x, y, and z.

• BrickNumbers: an array of three integer values specifying
numbers of copies of the unit brick in x, y, and z directions
required to build the total volume V .

The function Method1GenerateSpheres.m uses the pre-
scribed probability distribution to fill with spheres the paral-
lelepiped V having physical dimensions in x, y and z directions
given by

Li = BrickSideLengths(1) × BrickNumbers(i), i = 1, 2, 3.

(2.1)

Output parameters:

• FinalNSpheres: The total final number of spheres in the
total domain V .

• UnitBrickNSpheres: The number of spheres in each unit
brick.

• Positions: a matrix(x1 · · · xn · · ·

y1 · · · yn · · ·

z1 · · · zn · · ·

)
of dimension 3 × FinalNSpheres; the first row stores the
x-coordinates, second row stores the y-coordinates, and the
third row the z-coordinates of all spheres in V . Thus the nth
column of the Positions matrix gives the coordinates of
the nth sphere.

• Radii: a 1 × FinalNSpheres matrix that stores the radii
of all spheres in the whole domain V . The nth entry is the
radius of the nth sphere.

• Contacts: keeps track of which particles are in contact.
This matrix consists of two columns; a pair of entries in the
same row is the pair of indices of two spheres that are in
contact.

• ListXmin, ListYmin, ListZmin, ListXmax, ListYmax,
ListZmax: single-column matrices, each storing all indices
of spherical particles in the Positions matrix that are in
contact with the respective boundaries of the total domain V
corresponding to minimal x, minimal y, minimal z, maximal
x, maximal y, and maximal z.

2.4. Method 1: a typical program sequence and run examples

As a run example for the first method of volume filling, we
choose the Weibull distribution [9,10] for the sphere radii, given
by the probability density function (PDF)

f (r; λ, k) =
k
λ

( r
λ

)k−1
e−(r/λ)k , (2.2)

where r ≥ 0 is the dimensional random variable describing the
sphere radius, λ > 0 is the scale parameter measured in the
same length units as the random variable r , and k > 0 is the
dimensionless shape parameter. The distribution (2.2) has the
mean value

r̄ = λ Γ

(
1 +

1
)

, (2.3)

k

3
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here Γ is the gamma function. For the current example, we
hoose random sphere parameters corresponding to powder bed
D printing process with 316L stainless steel powder [9],

= 15.7 µm, k = 3.55, r̄ ≃ 14.14 µm. (2.4)

We note that in the literature, in particular, that devoted to
additive manufacturing, diameters of spherical particles are often
used instead of radii. For example, the diameter-based value λ =

1.4 µm is used in Ref. [9] (see Ref. [9] Table 1, steel sample S2).
The Matlab script

xample1A_Method1_Generate_and_Plot.m listed in
ppendix A below specifies the probability distribution (2.2),
nd defines the main parameters for the run, including the
haracteristics of the domain to be filled with spheres, and the
ariables controlling the sphere sizes (2.4) and the surface and
olume fill ratios. The description of some commands and the
un parameters used in the script are also listed in Appendix A.
he script calls the main volume filling function
ethod1GenerateSpheres.m, saves the data, and plots the
esulting graphs.

xample 1A. In the first example run for Method 1, the following
nput parameters were used.

• ProbabilityDistr: Weibull (2.2), (2.4).
• FaceGoal: 0.8.
• BodyGoal: 0.55.
• SphereContactParameter: 0.2.
• ParentParameter: 0.5.
• BrickSideLengths: [1; 1; 1]*std_length, where
std_length = 15 r̄ .

• BrickNumbers: [2; 2; 1].

We note that a reference value for the face goal parameter
an be computed as the ratio of the sphere projection area to the
rea of a square with side length 2r . Similarly, the body goal is
stimated as the ratio of sphere to circumscribed brick volume
atio, which yields

FaceGoal ∼ (πr2)/(2r)2 = π/4 ≃ 0.78,
BodyGoal ∼ (4πr3/3)/(2r)3 ≃ 0.52. (2.5)

Values of FaceGoal and BodyGoal optimal for a specific appli-
cation can be determined experimentally.

The sphere generating script
Example1A_Method1_Generate_Plot.m is also used to pro-
duce the plots and save figure files for the current example.
Fig. 2 (a, c, e) shows the unit brick, its internal structure, and
the histogram of actual particle sizes compared to the probability
density of the given distribution (2.2) for Example 1A.

Example 1B. Here we use the same setup as in Example 1A, with
a larger unit brick side length:

std_length = 30 r̄,

and consequently, four times as many spheres per unit cube.
The unit cube and the sphere size histogram for this example
are shown in Fig. 2 (b, d, f). In particular, the actual sphere size
distribution histogram in Fig. 2 (f) is closer to the given Weibull
distribution than that for Example 1A (Fig. 2 (e)); this is due to
an increased freedom of fitting random-sized spheres into a unit
cube that is larger (relative to r̄) than that in Example 1A.

Fig. 3 show the construction of the total volume V made of
2 × 2 × 1 unit cubes, and the connectivity graph joining pairs
of particles that are in contact, located within the horizontal slab
z = (0.6 ± 0.3)× std_length.

Table 1
Sample desktop computation times T numbers of spheres N in a unit cube for
Examples 1A and 1B, for the total domain V built of 2 × 2 × 1 unit cubes of
different side lengths, for two different values of the sphere contact parameter.
Cube side
length

Sphere contact parameter

0.1 0.2

15 r̄ (Example 1A) T = 6 min, N = 450 T = 2 min, N = 412
30 r̄ (Example 1B) T = 187 min, N = 3075 T = 40 min, N = 2867

Examples 1A and 1B: computation times. Computations were
performed on Matlab 2021a, using a Dell workstation with two
Xeon processors, 32 logical processors, and 128 GB memory.
The computation times listed in Table 1 below depend on the
dimensions size of the unit brick and the numbers of unit bricks
BrickNumbers along the axes to form the total domain V .
A strong dependence of the computation times on
SphereContactParameter ε is observed. (All computations
were also tested on an Intel i7-based laptop with one physical and
four logical processors and 16 GB memory, resulting on average
in 1.5 to three times longer computations).

We also note that plotting can take a relatively long time,
similar to the computation time of sphere filling, due to a large
number of spherical particles, each represented by a graphi-
cal object with multiple faces in the Matlab sphere plotting
routine.

Example 1C: non-cubical unit bricks. In the current example, we
use a function similar to Example 1’s
Example1A_SpherePackingMethod1_Generate.m to call the
main sphere fitting function Method1GenerateSpheres.m with
different parameters:

• ProbabilityDistr: Weibull distribution (2.2), (2.4) of
sphere radii,

• FaceGoal: 0.8,
• BodyGoal: 0.55,
• SphereContactParameter: 0.2,
• ParentParameter: 0.5,
• BrickSideLengths: [1.2; 1.7; 1]*std_length, where
std_length = 15 r̄ ,

• BrickNumbers: [4; 4; 2].

As a result, the total domain V of size 4× 4× 2 = 32 unit bricks
is filled with spheres. Each unit brick is non-cubical, with size
lengths specified in BrickSideLengths.

Fig. 4 shows the resulting unit brick and the spheres touching
the sides corresponding to the minimal and the maximal x-value,
as well as the total build of the domain V .

The total computation of the Method 1 sphere filling of the
total domain V using 32 unit bricks specified above, on the
same hardware/software configuration took about 10 min. For
comparison, if the same volume V is constructed from four larger
bricks instead, that is,

• BrickSideLengths: [1.2; 1.7; 1]*std_length, where
std_length = 30 r̄ ,

• BrickNumbers: [2; 2; 1],

the computation time is increased to approximately 160 min.

3. Filling a domain with spheres: Method 2

Similarly to the first method, the second method is used to
fill a parallelepiped-shaped domain V with one or more unit
4
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Fig. 2. (a) Example 1A: a unit cube with side length 15 r̄ filled with spheres using Method 1 with and Weibull distribution (2.2), (2.4). (c) Spheres in middle 1/3 of
he cube, showing the internal structure of the filled cube. (e) Actual sphere radius distribution in the obtained sample, compared to the given Weibull distribution
2.2), (2.4). (b,d,f) Same plots Example 1B: a unit cube with side length 30 r̄ .
5
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Fig. 3. (a) Example 1B: two unit cubes joined to form a 2 × 1 row — top view. (b) Two rows (four unit cubes) joined to form the final domain V . (c) The connectivity
raph for a horizontal slab subdomain of the unit cube of Example 1B (the spheres are scaled down to 40% of their actual sizes to visualize connections).

ricks packed with random spheres whose radii follow a given
robability distribution.
One of the main differences in the second method from the

irst one is the fact that instead of being fully inside of the unit
rick and touching the brick faces (Method 1), in Method 2,
enters of the spheres on each face are located on the faces them-
elves. This results in somewhat different-looking unit bricks.
nother difference lies in the symmetry of edges and faces. When
illing the unit brick, Method 2 starts by placing equal spheres
nto all corners; then, unlike the first method, only one edge
s then filled in each (x, y, and z) direction, and four parallel
opies of each edge are made, to fill all 12 edges of the unit
rick. Similarly, only three faces (in xy, yz, and xz planes) are
illed with random spheres, and these facies are copied onto the
pposite ones. Finally, the unit brick volume is filled with random

spheres. As a result of this procedure, a unit brick with symmetric
faces but a non-symmetric volume filling is obtained. In order to
construct a sphere filling for the total domain V when it is made
of several unit bricks, the unit brick is directly copied as many
times as required in x, y, and z directions; the face symmetry
provides a seamless fit when unit bricks are joined together.

3.1. Method 2: the main sphere fitting function

Parallel to Method 1, Method 2 is implemented in Matlab,
in the function named Method2GenerateSpheres.m, which has
the same parameters as the Method 1 function (see Section 2.3).
The function uses any prescribed probability distribution, fills the
unit brick, and then the domain constructed from unit bricks, as
specified. All input and output parameters in the Method 2 sphere
6
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Fig. 4. (a) Example 1C: the unit brick with side lengths 15 r̄ × [1.2, 1.7, 1] filled with spheres using Method 1 with and Weibull distribution (2.2), (2.4). (b) Spheres
angent to the brick sides corresponding to the minimal and the maximal x. (c) the total domain V: 4 × 4 × 2 unit bricks.

itting function also coincide with those for Method 1, making
he two methods fully interchangeable, yet leading to different
illings.

.2. Method 2: a typical program sequence and a run example

xample 2. In the current example for Method 2, we chose a
ifferent probability distribution for sphere sizes: the Gamma
istribution given by the probability density function (PDF)

(r; k, θ ) =
1

Γ (k)
xk−1

θ k e−x/θ , (3.1)

here r ≥ 0 is the dimensional random variable describing the
phere radius, θ > 0 is the scale parameter measured in the same
nits as the random variable r , and k > 0 is the dimensionless
hape parameter. The distribution (3.1) has the mean value

¯ = k θ. (3.2)

For the current example, we choose random sphere parameters
similar to Example 1 above, so that the average radius approxi-
mately matches that of (2.4)

θ = 7 µm, k = 2, r̄ = 14 µm. (3.3)

The script Example2_Method2_Generate_and_Plot.m
(Appendix B) was used to call the sphere filling function
Method2GenerateSpheres.m with the input parameters listed
below.

• ProbabilityDistr: Gamma (3.1), (3.3).
• FaceGoal: 1.0.
• BodyGoal: 0.9.
• SphereContactParameter: 0.1.
• ParentParameter: 0.5.
• BrickSideLengths: [1; 1; 1]*std_length, where
std_length = 30 r̄ (see (3.3)).

• BrickNumbers: [2; 2; 1].
7
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Fig. 5. (a) Example 2: a unit brick (cube) with side length 30 r̄ filled with spheres using Method 2 with Gamma distribution (3.1), (3.3) (unit cube clipped to its size,
howing the centers of the spheres on the faces). (b) Same as (a) where the full unit cube is shown in a larger domain. (c) The probability function of the theoretical
amma distribution (3.1), (3.3) vs. the histogram of actual particle sizes in the unit cube. (d) The top and bottom of the total volume V made of 2 × 2 × 1 unit
ricks contain eight identical copies of a horizontal face of the unit cube.

ere the total domain V is constructed of 2 × 2 × 1 unit bricks
which are cubes in this example). We note the higher values for
aceGoal and BodyGoal than used in Method 1 examples. This
s natural because for Method 2, centers of boundary spheres are
ocated on the faces, which results in higher relative area and
olume occupied by the spheres in the unit brick. Optimal values
or face and body goals can be chosen by the user experimentally,
epending on a particular application.
Fig. 5 shows the unit cube with spheres centered on faces

compare with Fig. 2 (a)) and the z-boundaries of the total volume
, consisting of the same repeating copies of the unit cube face
n the x = y = 0 plane.

Table 2 contains run times for computations analogous to
hose performed for Method 1 and listed in Table 1. Interestingly,
or Method 2, unlike Method 1 (cf. Table 1), the computation
imes for the smaller sphere contact parameter 0.1 are not signif-
cantly different, (in fact, are smaller than) the computation times
or the contact parameter value 0.2 (which remains true when the

Table 2
Sample desktop computation times T numbers of spheres N in a unit cube for
Example 2 with Gamma distribution (3.1), (3.3) , for the total domain V built
of 2× 2× 1 unit bricks of different side lengths, for two different values of the
sphere contact parameter.
Cube side
length

Sphere contact parameter

0.1 0.2

15 r̄ T = 7 s, N = 160 T = 11 s, N = 178
30 r̄ T = 14 min, N = 1757 T = 15 min, N = 1771

Weibull distribution of Example 1 is used in Method 2 instead of
the Gamma distribution).

We have also performed runs of Method 2 with the same
Weibull distribution (2.2), (2.4) as in Method 1 (resulting graphs
are not shown). In this case, using Method 2, the computation
times finish faster than those done with Method 1, and the
8
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Table 3
Sample desktop computation times T numbers of spheres N in a unit cube for
xample 2 with Weibull distribution (2.2), (2.4), for the total domain V built of
× 2 × 1 unit cubes of different side lengths, for two different values of the
phere contact parameter (cf. Table 1 for Method 1).
Cube side
length

Sphere contact parameter

0.1 0.2

15 r̄ T = 4 min, N = 591 T = 4 min, N = 594
30 r̄ T = 32 min, N = 3332 T = 38 min, N = 3606

computations also result in bigger numbers of spheres in the unit
cube (compare Table 1 for Method 1 with Table 3 for Method 2).

4. Example 3: a more complex-shaped domain

The next example builds on the same framework as Methods
and 2 of sphere filling, extending to a non-parallelepiped-

haped domain. In this example, the domain V is similar to a
ingle unit brick in Methods 1 and 2, with the subtraction of
wo hemispheres centered in the middles of two opposite faces
orresponding to x = 0 and the maximal x. The radii of these
pheres must be less or equal to 1/2 of the smallest of the brick
imensions.
A special sphere generating function

xample3GenerateSpheres.m has been created for this ex-
mple. The input and output parameters for this function are
utlined below. The parameter set for
xample3GenerateSpheres.m is smaller than that for the
phere generating functions in Methods 1 and 2, but the meaning
emains the same (see Section 2.3).

nput parameters:

• ProbabilityDistr: a Matlab probability distribution of
the radii of spherical particles. The average sphere radius is
denoted by r̄ .

• BrickSideLengths: an array of three values correspond-
ing to absolute lengths (in physical units) of the unit brick
sides along x, y, and z.

• HemisphereRadii: an array containing two values corre-
sponding to the radii (in physical units) of the two hemi-
spheres centered in the middles of two opposite faces cor-
responding to x = 0 and the maximal x, defining the
computation domain.

• FaceGoal: fraction of the domain boundary face area cov-
ered by projections of spheres in contact with it.

• BodyGoal: fraction of the domain volume filled by spheres.
• SphereContactParameter: the contact parameter, within

[0, 1]. If two spherical particles are within
SphereContactParameter × r̄ of each other, they are
considered to be in contact.

Output parameters:

• NSpheres: The total number of random spheres placed into
the domain V .

• Positions: a matrix of coordinates of the random spheres
(see Section 2.3).

• Radii: a vector storing the radii of all random spheres in
the total domain V (see Section 2.3).

• Contacts: A matrix containing sphere pairs that are in
contact (see Section 2.3).

Example 3A. In the first sample run, we use the Weibull distri-
bution (2.2), (2.4) to fill a domain V based on a cube-shape with
side length

std_length = 30 r̄ (4.1)

(for Weibull distribution, r̄ is given by (2.3)), with the sub-
traction of two hemispheres of equal radii 0.5 × std_length.
A script Example3A_Cube_Hemisph_Generate_and_Plot.m
(Appendix C) calls the sphere placing routine
Example3GenerateSpheres.m with the following parameters.

• ProbabilityDistr: Weibull (2.2), (2.4).
• BrickSideLengths: [1; 1; 1]*std_length.
• HemisphereRadii: [0.5; 0.5]*std_length.
• FaceGoal: 0.4.
• BodyGoal: 0.4.
• SphereContactParameter: 0.1.

This example took 49 min to complete in the workstation con-
figuration (138 min in the laptop configuration). The resulting
spherical arrangement is shown in Fig. 6 (a).
Example 3B. In the second sample run, the same Weibull dis-
tribution (2.2), (2.4) and the typical domain size (4.1) are used
to fill a domain based on a non-cubical brick, with subtrac-
tion of two hemispheres of non-equal radii. A script based on
Example3A_Brick_Hemisph_Generate_and_Plot.m of Exam-
ple 3A calls the sphere placing routine with different domain and
computation parameters, as follows.

• ProbabilityDistr: Weibull (2.2), (2.4).
• BrickSideLengths: [1.3; 1; 1]*std_length.
• HemisphereRadii: [0.2; 0.4]*std_length.
• FaceGoal: 0.4.
• BodyGoal: 0.4.
• SphereContactParameter: 0.2.

The resulting spherical filling and related graphs is shown in
Fig. 6 (b,c,d). This computation took 41 min to complete in the
workstation configuration (144 min in the laptop configuration).
The resulting sphere size distribution histogram (Fig. 6 (d)) shows
a good agreement with the given probability density function.

5. A physical example: bonding modeling in powder bed 3D
printing process

We now use the sphere packing Method 2 to model heat-
based bonding in the additive manufacturing process that uses a
metal powder bed and a guided laser beam to heat the spherical
particles and thus form bonds between them, as described in
Ref. [8]. Particle size distribution for 316L stainless steel powder
is approximated by the Weibull distribution (2.2), (2.4) [9,10].

5.1. The heat source and powder bed models

For the heat source model, physical assumptions are as fol-
lows.

• The heat flux from laser into the ith spherical particle is
given by

qilaser = Q
ri3

rℓ3
,

where Q is the total power of the laser, ri is the radius of
the particle, and rℓ is the radius of the laser beam.

• The heat flux from convection is

q = k (T − T ) ,
iconv b R i

9
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Fig. 6. (a) Example 3A: a unit cube with side length (4.1) minus two equal hemispheres, filled with random spheres and Weibull distribution (2.2), (2.4). (b) Example
3B: a similar computation with a non-cubic domain minus two non-equal hemispheres. (c) The computational domain and first parent sphere parents for Example
3B. (d) Actual sphere radius distribution in Example 3B, compared to the given Weibull distribution.

where kb is the heat transfer coefficient, and TR is the tem-
perature of the surrounding air.

• The heat flux between two particles is given by

qij = kt
(
Tj − Ti

)
,

where kt is the thermal conductivity, and Ti, Tj denote the
temperatures of particles i and j. The total heat flux into the
ith particle thus becomes

qi = qilaser + qiconv +

N∑
qij.

• Using the discrete time stepping t1, t2 = t1 + ∆t , . . . , the
temperature update for the ith particle is expressed by

T t+∆t
i = T t

i +
qti

miCp
∆t,

where T t
i is the particle’s temperature at the previous time

step, T t+∆t
i is the temperature at the following time step,

qti is the total initial energy flux, mi is the mass of the ith
spherical particle, and Cp denotes the material specific heat.

• If particles i and j are in contact, and both above the sinter-
ing temperature T , a bond is formed between them.
j=1 s

10
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K

p

Fig. 7. A simulated print of a square (Section 5). (a) The printing domain (size in µm). (b) The laser beam path. (c) Second pass of the laser (temperature scale in
elvins). (d) Final pass of the laser.

The following sample values for the simulated print using the
arameters below were adapted from Ref. [9].

• Total power of the laser: Q = 100 W.
• Thermal conductivity of air: τa = 0.262 W/(m · K).
• Thermal conductivity of steel: τs = 15 W/(m · K).
• Heat transfer coefficient at the air boundary: kb = πτaravg/2

= 2.9090 × 10−6 W/K.
• Heat transfer coefficient of steel: kt = πτsravg/2 = 3.3309×

10−4 W/K.
• Specific heat capacity of steel Cp = 0.5 J/(g · K).
• Steel density ρ = 8 × 10−12 g/(µm)3.
• Mass of a spherical particle mi = (4π/3) ρ r3i .
• Laser radius rℓ = 50µm.
• Ambient air temperature: TR = 300 K.
• Sintering temperature: Ts = 1000 K.

5.2. A simulated print of a square

A sample powder bed was generated using Method 2 (Sec-
tion 3) with parameters

• ProbabilityDistr: Weibull (2.2), (2.4),
• FaceGoal: 1.0,
• BodyGoal: 0.9,

• SphereContactParameter: 0.1,
• ParentParameter: 0.5,
• BrickSideLengths: [1; 1; 0.12] * std_length, where
std_length = 30 r̄ ,

• BrickNumbers: [6; 6; 1].

The computation took around five minutes, yielding the domain
of size ∼ 2545 × 2545 × 50.89 µm, with the average particle
radius 14.14 µm (Fig. 7 (a)). A laser path shown in Fig. 7 (b) was
chosen to simulate the print of a small square in the middle of the
domain by building thermally induced connections between the
particles. Figs. 7 (c,d) show the temperature maps on the second
and the final laser pass. Fig. 8 depicts particles that were bonded
in the result of the simulated print process and the top view of
the bond graph.

The current software is useful for models and applications
that employ a discrete approach where interactions between
discrete particles, which can be modeled by spheres, become
important. For such applications, a three-dimensional domain of
interest needs to be filled with a large number of contacting non-
overlapping spheres of sizes randomly drawn from a prescribed
probability distribution. The current code employs geometrical
principles to place initial spheres and then insert new spheres so
that they are in contact with previous ones, in a random fash-
ion. User-specified parameters include the domain dimensions,
11
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Fig. 8. The simulated print of a square (Section 5). (a) Particles bonded during the simulated print (b) Bonds formed between particles.

the desired probability distribution, and the desired surface and
volume fractions of the spheres on the surface and in the bulk of
the domain. The output includes sphere center locations, sphere
radii, and the connectivity graph defined by pairs of spheres in
contact with each other. The resulting sphere filling can be easily
visualized using standard Matlab plotting capabilities. Examples
re included.

. Discussion and impact

The current manuscript describes a Matlab implementation
f a geometry-based algorithm for filling a three-dimensional
omain with spheres whose radii are randomly distributed ac-
ording to a given probability distribution. Two methods, Method
and Method 2 (Section 2) fill a parallelepiped-shaped domain
ith spheres, using one or more copies of a standard ‘‘unit brick"

ormed with user-prescribed sizes. The two methods are imple-
ented as freely interchangeable Matlab functions with iden-

ical input and output parameters. The methods differ in the
lacement principle and symmetry of spheres on the faces of
he unit domain. Examples of using various sphere radius dis-
ributions and different domain shapes are included. The output
f the presented code includes sphere center locations, sphere
adii, and the connectivity graph defined by pairs of spheres
n contact with each other. The resulting sphere filling can be
asily visualized using standard Matlab plotting capabilities. An
xample in Section 4 illustrates the technique for spherical fill-
ng of a more complex domain shape involving hemispherical
oundaries.
The presented software will be useful in models and ap-

lications that employ a discrete approach where interactions
etween a large number of randomly sized discrete particles,
odeled by spheres, become important. Applications include the
odel of heat-induced connections between discrete metal par-

icles in additive manufacturing (powder bed 3D printing) that
erved as the main motivation for this work (see Section 5).
ther application areas that can directly benefit from the use
f this software are various models of filtration, percolation and
iffusion in granular media that arise, for example, in geological

sciences, life sciences, filtration-related industrial applications,
and waste management.

The code presented in this work can be efficiently adapted
to generate spherical fillings of domains of different sizes and
shapes, using any common particle size probability distribution
from those available in Matlab.

The versatility of the presented algorithms in terms of domain
shapes and sizes and particle size probability distributions make
these algorithms rather different from those that generate ran-
dom or non-random close packings of spheres (or other objects)
of the same size (see, e.g., [6,7]). A common measure of optimality
of the latter designs is the volume fraction φ occupied by the
repeated object. It is well known that random close packings of
identical spheres can attain φ ∼ 0.64, whereas the face-centered
cubic lattice corresponds to φ ∼ 0.74 ([6] and references therein).
The code presented in the current work, however, aims essen-
tially at problems where spherical radii are unequal, following
a given nonsingular (usually continuous) probability distribu-
tion that models a specific physical situation. The provided code
therefore can be used in conjunction with a shooting method to
estimate close-to-maximal volume fraction occupied by spherical
particles in any given setup without the need to perform actual
experiments. It can also be used to approximately solve the
inverse problem of estimating the particle size distribution in
situations where direct measurements are not feasible.
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A
ppendix A. Data generation and plotting script for sphere packing Method 1, Example 1 A

• Main file: Example1A_Method1_Generate_and_Plot.m
• Output:

– Fig. 2(b,d,f).
– Figure similar to Fig. 3(a,b) for Example 1B.
– Matlab data file Example1A_Method1_Results.mat

• Required additional files (in the same folder):

– Method1GenerateSpheres.m: the main Method 1 sphere filling routine
– Auxiliary routine files for Method1GenerateSpheres.m:

∗ M1Position2Xmax.m
∗ M1Position2Xmin.m
∗ M1Position2Ymax.m
∗ M1Position2Ymin.m
∗ M1Position2Zmax.m
∗ M1Position2Zmin.m
∗ M1Position3.m
∗ M1Search2D.m
∗ M1Search3D.m

The description of some commands and run parameters used in the script is as follows.

• rng(0): Set Matlab pseudorandom seed to zero (default).
• Weibull_scale, Weibull_shape: the distribution parameters λ, k in (2.4).
• ProbabilityDistribution: the Matlab distribution variable for the PDF (2.2), (2.4).
• cube_side_length: side length of a unit cube; here 15 times the average sphere radius r̄ .
• FaceGoal, BodyGoal: minimal percentages of area and volume fill ratios of cube sides. Here 0.8 and 0.55.
• BrickSideLengths = [1;1;1]* std_length where std_length = 15 r̄ .
• BrickNumbers = [2;2;1]: numbers of unit bricks in x, y, z directions, making up the total domain V .
• SphereContactParameter, ParentParameter: the contact and the parent parameter (see Section 2.3). Here 0.2 and 0.5.

%% Matlab s c r i p t f o r Example 1A : Method 1 , using Weibull d i s t r i b u t i o n
% Produces the sphere f i l l i n g o f the domain V and p l o t s o f F igure 2 (a , c , e ) and f i g u r e s s im i l a r to F ig . 3 (a , b )
% Required f i l e s :
% ∗ Method1GenerateSpheres .m −− main sphere f i l l i n g rout ine
% ∗ Aux i l i a r y rout ine f i l e s f o r Method1GenerateSpheres .m :
% − M1Position2Xmax .m
% − M1Position2Xmin .m
% − M1Position2Ymax .m
% − M1Position2Ymin .m
% − M1Position2Zmax .m
% − M1Position2Zmin .m
% − M1Position3 .m
% − M1Search2D .m
% − M1Search3D .m

clear a l l ; close a l l ; clc ;

%% Sphere Packing parameters : Weibull d i s t r i b u t i o n

% −− use Weibull d i s t r i b u t i o n implemented in Matlab
% with parameters from Steuben , I l i opou l o s , Michopoulos (2016)

rng (0) ; %random seed zero : Matlab de fau l t
Weibull_scale = 31.4/2; % s ca l e parameter lambda fo r the radius in Weibull d i s t r i b u t i o n ; in micrometers . The s ca l e parameter

f o r ∗diameter∗ i s 31 . 4 .
Weibull_shape = 3.55; % shape parameter k in Weibull d i s t r i b u t i o n ; d imens ionless

Probab i l i tyD is t r ibut ion = makedist ( ’Weibull ’ , ’ a ’ , Weibull_scale , ’ b ’ , Weibull_shape ) ;

average_radius = mean( P robab i l i tyDis t r ibut ion ) ;
FaceGoal = 0 .8 ; % des i red sphere / face area f r a c t i o n ; recommended fo r Method 1: 0 .8
BodyGoal = 0.55; % des i red sphere / volume f r a c t i o n ; recommended fo r Method 1: 0.55

%Unit b r i ck : here uni t cube
std_length = 15∗average_radius ;
BrickSideLengths = [1;1;1]∗ std_length ;
13
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%numbers o f cubes in x , y , z d i r e c t i on s to f i l l the t o t a l domain V
BrickNumbers = [2 ;2 ;1 ] ;

SphereContactParameter = 0 .2 ; %Thi s i s the contact parameter , within [ 0 , 1 ] . I f p a r t i c l e s are within SphereContactParameter∗
average_radius o f each other , they are cons idered to be in contact

ParentParameter = 0 .5 ; %Thi s i s the parent parameter , within [ 0 , 1 ] . I f p a r t i c l e s are within ParentParameter∗average_radius o f
each other , they are cons idered to be po t en t i a l parents

%% Run the sphere generat ion Method 1 algorithm and save r e s u l t s .

t i c ;
[ FinalNSpheres , UnitBrickNSpheres , Posit ions , Radii , Contacts , ListXmin , ListYmin , ListZmin , ListXmax , ListYmax , ListZmax ] =

. . .
Method1GenerateSpheres ( . . .

P robab i l i tyDis t r ibut ion , . . .
FaceGoal , BodyGoal , . . .
SphereContactParameter , ParentParameter , . . .
BrickSideLengths , BrickNumbers ) ;

sphere_ f i l l ing_ to ta l_ t ime = toc

%Save computations
save ( ’ Example1A_Method1_Results .mat ’ )

%% Now some p l o t s : reproduce F ig .

[ x_sph , y_sph , z_sph ] = sphere ;

%% Unit Cube P l o t
figure (11)
hold on
axis equal
percent = 0;
L i s t = 1:UnitBrickNSpheres ; % p a r t i c l e s you want to d i sp lay
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count / UnitBrickNSpheres ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing Unit Cube ’ ,num2str ( percent ) , ’% complete ’ ] )

end

end
xlim ( [0 , BrickSideLengths (1) ] ) ;
ylim ( [0 , BrickSideLengths (1) ] ) ;
zlim ( [0 , BrickSideLengths (1) ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view (60 , 45) ;
hold o f f ;

% Save f i gu r e − uncomment as needed
% save f i g ( ’ Example1A_Method1_UnitCube . f i g ’ ) ;
% p r in t ( ’ Example1A_Method1_UnitCube ’ , ’− dpdf ’ ) ;

%% Unit Cube Middle Third
figure (13)
hold on
axis equal
L i s t = find ( ( Pos i t ions (3 ,1 : UnitBrickNSpheres ) > (1/3)∗BrickSideLengths (1) ) & ( Pos i t ions (3 ,1 : UnitBrickNSpheres ) < (2/3)∗

BrickSideLengths (1) ) ) ; % Se l e c t i n g a l l spheres in middle th i rd o f cube
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count / size ( L i s t , 2 ) ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing middle third of Unit Cube ’ ,num2str ( percent ) , ’% complete ’ ] )

end
end
xlim ( [0 , BrickSideLengths (1) ] ) ;
ylim ( [0 , BrickSideLengths (1) ] ) ;
14
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zlim ( [0 , BrickSideLengths (1) ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view (60 , 45) ;
hold o f f ;

% Save f i gu r e − uncomment as needed
% save f i g ( ’ Example1A_Method1_UnitCube_Middle . f i g ’ ) ;
% p r in t ( ’ Example1A_Method1_UnitCube_Middle ’ , ’− dpdf ’ ) ;

%% P l o t t h e o r e t i c a l vs . ac tua l d i s t r i b u t i o n
FF= figure (14) ;
hold on
%p lo t histogram of obtained r ad i i
histogram ( Radii ,30 , ’ Normalization ’ , ’ pdf ’ ) ;

%p lo t Weibull PDF
Weibull_scale = 31.4/2; % s ca l e parameter lambda in Weibull d i s t r i b u t i o n ; in micrometers
Weibull_shape = 3.55; % shape parameter k in Weibull d i s t r i b u t i o n ; d imens ionless
Probab i l i tyD is t r ibut ion = makedist ( ’Weibull ’ , ’ a ’ , Weibull_scale , ’ b ’ , Weibull_shape ) ;
X = linspace (0 ,max( Radi i ) ∗1.1) ;
Y = pdf ( Probabi l i tyDis t r ibut ion ,X) ;
plot (X , Y , ’ LineWidth ’ , 3) ;
set (gca , ’ FontSize ’ , 14)
xlabel ( ’ P a r t i c l e radius ( $ \mu$m) ’ , ’ In terpreter ’ , ’ l a tex ’ )
ylabel ( ’ P robab i l i ty density ’ , ’ In terpreter ’ , ’ l a tex ’ )
legend ( ’ Actual ’ , ’Weibull ’ , ’ In terpreter ’ , ’ l a tex ’ , ’ locat ion ’ , ’ northeast ’ )
xlim ( [0 , max( Radi i ) ∗1 .1] ) ;
hold o f f

% Save f i gu r e − uncomment as needed
% save f i g ( ’ Example1A_Method1_UnitCube_DistributionCurves . f i g ’ ) ;
% p r in t ( ’ Example1A_Method1_UnitCube_DistributionCurves ’ , ’− dpdf ’ ) ;

%% Two Cubes jo ined to make a 2x1 br i ck
figure (21)
hold on
axis equal

%1:Number w i l l be the spheres in the f i r s t uni t cube , N i s the t o t a l number
%of spheres , a l l cubes combined .
L i s t = 1:2∗UnitBrickNSpheres ;%
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count /(2∗UnitBrickNSpheres ) ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing 2 Cubes Joined ’ ,num2str ( percent ) , ’% complete ’ ] )

end
end
xlim ( [0 , 2∗BrickSideLengths (1) ] )
ylim ( [0 , BrickSideLengths (1) ] )
zlim ( [0 , BrickSideLengths (1) ] )
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;

%Overhead View
view (0 ,90) ;
hold o f f ;

% Save f i gu r e − uncomment as needed
% save f i g ( ’ Example1A_Method1_Overhead . f i g ’ ) ;
% p r in t ( ’ Example1A_Method1_TwoCubes_Overhead ’ , ’− dpdf ’ ) ;

%% Tota l Bui ld ( in t h i s example , i t i s 2x2 uni t cubes )
figure (23)
hold on
axis equal

L i s t = 1: FinalNSpheres ;
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )
15
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i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count / FinalNSpheres ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing to t a l build ’ ,num2str ( percent ) , ’% complete ’ ] )

end
end
xlim ( [0 , 2∗BrickSideLengths (1) ] )
ylim ( [0 , 2∗BrickSideLengths (1) ] )
zlim ( [0 , BrickSideLengths (1) ] )
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view (60 , 30) ;
hold o f f ;

% Save f i gu r e − uncomment as needed
% save f i g ( ’ Example1A_Method1_TotalBuild . f i g ’ ) ;
% p r in t ( ’ Example1A_Method1_TotalBuild ’ , ’− dpdf ’ ) ;

Appendix B. Data generation and plotting script for sphere packing Method 2, Example 2

• Main file: Example2_Method2_Generate_and_Plot.m
• Output:

– Fig. 5.
– Matlab data file Example2_Method2_Results.mat

• Required additional files (in the same folder):

– Method2GenerateSpheres.m: the main Method 2 sphere filling routine
– Auxiliary routine files for Method2GenerateSpheres.m:

∗ M2Position2Xmin.m
∗ M2Position2Ymin.m
∗ M2Position2Zmin.m
∗ M2Position3.m
∗ M2Search2D.m
∗ M2Search3D.m

%% Matlab s c r i p t f o r Example 2: Method 2 , using the Gamma d i s t r i b u t i o n
% Produces the sphere f i l l i n g o f the domain and p l o t s o f F igure 5
% Required f i l e s :
% ∗ Method2GenerateSpheres .m −− main sphere f i l l i n g rout ine
% ∗ Aux i l i a r y rout ine f i l e s f o r Method1GenerateSpheres .m :
% − M2Position2Xmin .m
% − M2Position2Ymin .m
% − M2Position2Zmin .m
% − M2Position3 .m
% − M2Search2D .m
% − M2Search3D .m

clear a l l ; close a l l ; clc ;

%% Sphere Packing parameters : Gamma d i s t r i b u t i o n

rng (0) ; %random seed zero : Matlab de fau l t

Gamma_scale = 7; % s ca l e parameter theta in the Gamma d i s t r i b u t i o n ; dimensional ( micrometers )
Gamma_shape = 2; % shape ( k ) k in Gamma d i s t r i b u t i o n ; d imens ionless

% f i r s t parameter a : shape ; 2nd parameter b : s ca l e
Probab i l i tyD is t r ibut ion = makedist ( ’Gamma ’ , ’ a ’ , Gamma_shape , ’b ’ , Gamma_scale ) ;
average_radius = mean( P robab i l i tyDis t r ibut ion ) %equal to Gamma_shape∗Gamma_scale

FaceGoal = 1 .0 ;
BodyGoal = 0 .9 ;

%Unit b r i ck : here uni t cube
std_length = 30∗average_radius ;
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BrickSideLengths = [1 ;1 ;1] ∗ std_length ;

%numbers o f cubes in x , y , z d i r e c t i on s
BrickNumbers = [2 ;2 ;1 ] ;

SphereContactParameter = 0 .1 ;
ParentParameter = 0 .5 ;

%% Run the sphere generat ion Method 2 algorithm and save r e s u l t s

t i c

[ FinalNSpheres , UnitBrickNSpheres , Posit ions , Radii , Contacts , ListXmin , ListYmin , ListZmin , ListXmax , ListYmax , ListZmax ] =
. . .

Method2GenerateSpheres ( . . .
P robab i l i tyDis t r ibut ion , . . .
FaceGoal , BodyGoal , . . .
SphereContactParameter , ParentParameter , . . .
BrickSideLengths , BrickNumbers ) ;

sphere_ f i l l ing_ to ta l_ t ime = toc

save ( ’ Example2_Method2_Gamma_Results .mat ’ )

%% Method 2 , p l o t des i red vs . ac tua l d i s t r i b u t i o n : F ig . 5 c

FF= figure (14) ;
hold on;

%p lo t histogram of obtained r ad i i
histogram ( Radii ,30 , ’ Normalization ’ , ’ pdf ’ ) ;

%p lo t Weibull PDF
X = linspace (0 ,max( Radi i ) ) ;
Y = pdf ( Probabi l i tyDis t r ibut ion ,X) ;
plot (X , Y , ’ LineWidth ’ , 3) ;
set (gca , ’ FontSize ’ , 14)
xlabel ( ’ P a r t i c l e radius ’ , ’ In terpreter ’ , ’ l a tex ’ )
ylabel ( ’ P robab i l i ty density ’ , ’ In terpreter ’ , ’ l a tex ’ )
legend ( ’ Actual ’ , ’Gamma ’ , ’ In terpreter ’ , ’ l a tex ’ , ’ locat ion ’ , ’ northeast ’ )
hold o f f

% save f i g ( ’ Example2_Method2_Gamma_DistributionCurves . f i g ’ ) ;
% p r in t ( ’ Example2_Method2_Gamma_DistributionCurves ’ , ’− dpdf ’ ) ;

%% Example 2 , Method 2 , Unit Br i ck P l o t − open ( F ig . 5a )
max_radius=max( Radi i ) ;
minimal_sphere_x=−max_radius ;
maximal_sphere_x=max( Pos i t ions ( 1 , : ) ) +max_radius ;
minimal_sphere_y=−max_radius ;
maximal_sphere_y=max( Pos i t ions ( 2 , : ) ) +max_radius ;
minimal_sphere_z=−max_radius ;
maximal_sphere_z=max( Pos i t ions ( 3 , : ) ) +max_radius ;

figure (11)
hold on
axis equal
[ x_sph , y_sph , z_sph ] = sphere ;
percent = 0;
L i s t = 1:UnitBrickNSpheres ; % p a r t i c l e s to d i sp lay
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count / UnitBrickNSpheres ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing Open Unit Brick ’ ,num2str ( percent ) , ’% complete ’ ] )

end

end
xlim ( [0 , BrickSideLengths (1) ] ) ;
ylim ( [0 , BrickSideLengths (2) ] ) ;
zlim ( [0 , BrickSideLengths (3) ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view (30 , 30) ;
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hold o f f ;

% save as needed
% save f i g ( ’ Example2_Method2_Gamma_UnitBrickOpen . f i g ’ ) ;
% p r in t ( ’ Example2_Method2_Gamma_UnitBrickOpen ’ , ’− dpdf ’ ) ;

%% Example 2 , Method 2 , Unit Br i ck P l o t − c losed ( F ig . 5b )
figure (12)
hold on
axis equal
[ x_sph , y_sph , z_sph ] = sphere ;
percent = 0;
L i s t = 1:UnitBrickNSpheres ; % p a r t i c l e s to d i sp lay
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )

i f mod( count ,1000)==0
percent = 100∗(count / UnitBrickNSpheres ) ; %Keeping t rack o f progress
disp ( [ ’ P lo t t ing Closed Unit Brick ’ ,num2str ( percent ) , ’% complete ’ ] )

end

end

max_sphere_radius=1.05∗max( Radi i ) ;
xlim([−max_sphere_radius , BrickSideLengths (1) + max_sphere_radius ] ) ;
ylim([−max_sphere_radius , BrickSideLengths (2) + max_sphere_radius ] ) ;
zlim([−max_sphere_radius , BrickSideLengths (3) + max_sphere_radius ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view (30 , 30) ;
hold o f f ;

% save as needed
% save f i g ( ’ Example2_Method2_Gamma_UnitBrickClosed . f i g ’ ) ;
% p r in t ( ’ Example2_Method2_Gamma_UnitBrickClosed ’ , ’− dpdf ’ ) ;

%% Example 2 , Method 2 , To ta l domain − top and bottom face s ( F ig . 5d )

figure (31)
hold on
axis equal
L i s t = ListZmin ’ ;
L i s t2 = ListZmax ’ ;
l i gh t % crea te a l i g h t
l i gh t ing gouraud % pre f e r r ed method f o r l i g h t i n g curved su r f a ce s
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )
end
xlim ( [ minimal_sphere_x , maximal_sphere_x ] ) ;
ylim ( [ minimal_sphere_y , maximal_sphere_y ] ) ;
zlim ( [ minimal_sphere_z , maximal_sphere_z ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;

for count = 1: size ( L ist2 , 2 )
i = L i s t2 ( count ) ;
surf ( Radi i ( i )∗x_sph + Pos i t ions (1 , i ) , Radi i ( i )∗y_sph + Pos i t ions (2 , i ) , Radi i ( i )∗z_sph + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ ,

’ FaceLighting ’ , ’ gouraud ’ )
end
xlim ( [ minimal_sphere_x , maximal_sphere_x ] ) ;
ylim ( [ minimal_sphere_y , maximal_sphere_y ] ) ;
zlim ( [ minimal_sphere_z , maximal_sphere_z ] ) ;
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view ( [30 , 30]) ;
hold o f f ;

% save as needed
% save f i g ( ’ Example2_Method2_Gamma_UnitCube_SidesZ . f i g ’ ) ;
% p r in t ( ’ Example2_Method2_Gamma_UnitCube_SidesZ ’ , ’− dpdf ’ ) ;
18
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A
ppendix C. Data generation and plotting script, Example 3

• Main file: Example3A_Cube_Hemisph_Generate_and_Plot.m
• Input and output: see Section 4, Example 3A for details.
• Required additional files (in the same folder):

– Example3GenerateSpheres.m: the main sphere filling routine
– Auxiliary routine files for Example3GenerateSpheres.m:

∗ EG3Position2Ymin.m
∗ EG3Position2Ymax.m
∗ EG3Position2Zmin.m
∗ EG3Position2Zmax.m
∗ EG3Position3.m

%% Matlab s c r i p t f o r Example 3: a br i ck ( here cube ) with p a r t i a l l y sphe r i c a l noundary

clear a l l ; close a l l ; clc ;

% −− use Weibull d i s t r i b u t i o n implemented in Matlab
% with parameters from Steuben , I l i opou l o s , Michopoulos (2016)

rng (0) ; %random seed zero : Matlab de fau l t

Weibull_scale = 31.4/2; % s ca l e parameter lambda fo r the radius in Weibull d i s t r i b u t i o n ; in micrometers . The s ca l e parameter
f o r ∗diameter∗ i s 31 . 4 .

Weibull_shape = 3.55; % shape parameter k in Weibull d i s t r i b u t i o n ; d imens ionless

Probab i l i tyD is t r ibut ion = makedist ( ’Weibull ’ , ’ a ’ , Weibull_scale , ’ b ’ , Weibull_shape ) ;

average_radius = mean( P robab i l i tyDis t r ibut ion ) ;

FaceGoal = 0 .4 ;
BodyGoal = 0 .4 ;

% Unit b r i ck : here a uni t cube
std_length = 30∗average_radius ;
BrickSideLengths = [1 ;1 ;1] ∗ std_length ;

% Radi i o f hemispheres de f in ing the romain , loca ted on x_min and x_max face s
% Recommended : ( x−l ength of the domain ) /2 or smal ler
HemisphereRadii = [ 0 . 5 ; 0 .5 ] ∗ std_length ;

SphereContactParameter = 0 .1 ;

t i c ;

[NSpheres , Posit ions , Radii , Contacts ] = . . .
Example3GenerateSpheres ( . . .

P robab i l i tyDis t r ibut ion , . . .
BrickSideLengths , . . .
HemisphereRadii , . . .
FaceGoal , BodyGoal , . . .
SphereContactParameter . . .

) ;

sphere_ f i l l ing_ to ta l_ t ime = toc

%% Save a l l data
save ( ’ Example3A_Cube_Hemisph_data .mat ’ )

%% P lo t the given Weibull d i s r i bu t i on vs . the ac tua l d i s t r i b u t i o n
figure (1)
hold on
X = linspace (0 ,max( Radi i ) ) ;
Y = wblpdf (X , Weibull_scale , Weibull_shape ) ;
histogram ( Radii ,30 , ’ Normalization ’ , ’ pdf ’ )
plot (X , Y , ’ LineWidth ’ , 3) ;
set (gca , ’ FontSize ’ , 16)
xlabel ( ’ Diameter of pa r t i c l e $ \mu m$ ’ , ’ In terpreter ’ , ’ l a tex ’ )
ylabel ( ’ Frequency of Diameter ’ , ’ In terpreter ’ , ’ l a tex ’ )
legend ( ’ Actual Dis t r ibut ion ’ , ’ Desired Dirs t ibut ion ’ )
set ( gcf , ’ color ’ , ’w’ ) ;
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% save f i gu r e : uncomment i f needed
% pr in t ( ’ Rad i i_Di s t r ibut ion_Spher i ca lBoundary ’ , ’− dpdf ’ ) ;
% s ave f i g ( ’ Rad i i _D i s t r ibut ion_Spher i ca lBoundary . f i g ’ ) ;

%% P a r t i c l e Placement P l o t
figure (2)
hold on
axis equal
[x , y , z ] = sphere ;
L i s t = 1:NSpheres ;
l i gh t
l i gh t ing gouraud
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x + Pos i t ions (1 , i ) , Radi i ( i )∗y + Pos i t ions (2 , i ) , Radi i ( i )∗z + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ , ’

FaceLighting ’ , ’ gouraud ’ )
end
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
set ( gcf , ’ color ’ , ’w’ ) ;
view ( [45 , 45])

% save f i gu r e : uncomment i f needed
% pr in t ( ’ Part ic leP lacement_Spher ica lBoundary ’ , ’− dpdf ’ ) ;
% s ave f i g ( ’ Par t i c leP lacement_Spher ica lBoundary . f i g ’ ) ;

%% F i r s t parents p lo t
x_max = BrickSideLengths (1) ; y_max = BrickSideLengths (2) ; z_max = BrickSideLengths (3) ;
x_min = 0; y_min = 0; z_min = 0;
x_max_input = BrickSideLengths (1) ; y_max_input = BrickSideLengths (2) ; z_max_input = BrickSideLengths (3) ;

figure (3)
hold on
axis equal
[x , y , z ] = sphere ;
L i s t = 1:8; %These are the f i r s t parents

surf ( HemisphereRadii (1)∗x , HemisphereRadii (1)∗y + y_max_input /2 , HemisphereRadii (1)∗z + z_max_input /2 , ’ FaceAlpha ’ , 0 . 8 ) ; % F i r s t
Sphe r i ca l Boundary

surf ( HemisphereRadii (2)∗x + x_max_input , HemisphereRadii (2)∗y + y_max_input /2 , HemisphereRadii (2)∗z + z_max_input /2 , ’ FaceAlpha
’ , 0 . 8 ) ; %Second Sphe r i ca l Boundary

l i gh t
l i gh t ing gouraud
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x + Pos i t ions (1 , i ) , Radi i ( i )∗y + Pos i t ions (2 , i ) , Radi i ( i )∗z + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ , ’ Facecolor ’ ,

’ r ’ )
end
xlim ([0 x_max ] )
ylim ([0 y_max ] )
zlim ([0 z_max ] )
plot3 ( [ x_min , x_max ] , [ y_min , y_min ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_max , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_min ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_min ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_max , y_max ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_max , y_max ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_min , y_min ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_max , y_max ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_max ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_max ] , [ z_max , z_max ] , ’ k ’ )
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view ( [30 , 30])

% save f i gu r e : uncomment i f needed
% pr in t ( ’ F i r s tParents_Spher i ca lBoundary ’ , ’− dpdf ’ ) ;
% s ave f i g ( ’ F i r s tParent s_Spher i ca lBoundary . f i g ’ ) ;

%% P l o t the sphere f i l l i n g and the domain boundaries
figure (4)
hold on
axis equal
[x , y , z ] = sphere ;
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R

L i s t = 1:NSpheres ;
l i gh t
l i gh t ing gouraud
for count = 1: size ( L i s t , 2 )

i = L i s t ( count ) ;
surf ( Radi i ( i )∗x + Pos i t ions (1 , i ) , Radi i ( i )∗y + Pos i t ions (2 , i ) , Radi i ( i )∗z + Pos i t ions (3 , i ) , ’ EdgeColor ’ , ’ none ’ )

end
surf ( HemisphereRadii (1)∗x , HemisphereRadii (1)∗y + y_max_input /2 , HemisphereRadii (1)∗z + z_max_input /2 , ’ FaceAlpha ’ , 0 . 5 , ’

Facecolor ’ , ’ r ’ ) ; % F i r s t Sphe r i ca l Boundary
surf ( HemisphereRadii (2)∗x + x_max_input , HemisphereRadii (2)∗y + y_max_input /2 , HemisphereRadii (2)∗z + z_max_input /2 , ’ FaceAlpha

’ , 0 . 5 , ’ Facecolor ’ , ’ r ’ ) ; %Second Sphe r i ca l Boundary
xlim ([0 x_max ] )
ylim ([0 y_max ] )
zlim ([0 z_max ] )
plot3 ( [ x_min , x_max ] , [ y_min , y_min ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_max , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_max ] , [ z_min , z_min ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_min ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_min ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_max , y_max ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_max , y_max ] , [ z_min , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_min , y_min ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_max ] , [ y_max , y_max ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_min , x_min ] , [ y_min , y_max ] , [ z_max , z_max ] , ’ k ’ )
plot3 ( [ x_max , x_max ] , [ y_min , y_max ] , [ z_max , z_max ] , ’ k ’ )
xlabel ( ’ $x , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
ylabel ( ’ $y , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
zlabel ( ’ $z , { \rm \mu m}$ ’ , ’ In terpreter ’ , ’ l a tex ’ ) ;
view ( [30 , 30])

% save f i gu r e : uncomment i f needed
% pr in t ( ’ Par t i c lesAndSpher ica lBoundar ies_Spher ica lBoundary ’ , ’− dpdf ’ ) ;
% s ave f i g ( ’ Par t i c l e sAndSpher i ca lBoundar ies_Spher i ca lBoundary . f i g ’ ) ;

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.softx.2022.101051.
It includes Matlab routines and scripts that correspond to the presented computational examples.
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