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a b s t r a c t 

Complex elastic media such as biological membranes, in particular, blood vessels, may be 

described as fiber-reinforced solids in the framework of nonlinear hyperelasticity. Finite 

axially symmetric anti-plane shear displacements in such solids are considered. A general 

nonlinear wave equation governing such motions is derived. It is shown that in the case of 

Mooney-Rivlin materials with standard quadratic fiber energy term, the displacements are 

governed by a linear cylindrical wave equation. 

Extensions of the model onto the case when fibers have a radial projection, as well as onto 

a viscoelastic case taking into account dissipative effects, are considered; wave equations 

governing shear displacements in those cases are derived and analyzed. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

The framework of nonlinear elasticity is commonly used to model finite deformations of elastic materials, with applica- 

tions ranging from industry and construction to biological tissues, membranes, and cell biology. Mathematical foundations 

of elastodynamics theory date back to Hooke, Navier and Cauchy; in its current form, in particular, in the language of ge-

ometry, much of the theory has been formulated in the second half of the 20th century (see, e.g., Refs. [1–6] and references

therein). Multiple extensions of elasticity theory allow to take into account anisotropic, viscous, elastoplastic, thermal, and 

other physical effects [7–15] . The problem of choice of an appropriate framework and constitutive relationships, as well as 

the algebraic complexity and the essentially nonlinear nature of the governing equations themselves, remain among the 

main challenges in solid mechanics-based modeling. 

In contrast with approximate models based on linear approximations (incremental analysis), a continuum model that 

strives to take into account all important physical laws governing a process of interest is usually given by a system of

nonlinear partial differential equations (PDE). The set of dependent variables commonly includes the Eulerian coordinates, or, 

equivalently, finite (non-small) displacements of material points, and other physical fields (e.g., [16,17] ). While a significant 

body of theoretical results is available in the field of nonlinear elastostatics, for time-dependent problems, nonlinear effects 

such as instability, non-existence or non-uniqueness of solutions, existence of multiple scales, shocks, finite-time blowup, 

etc., lead to significant complications in obtaining exact or approximate solutions and analysis of solution behaviour. The 
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study of wave propagation in nonlinear elastic media is an active research area [17–24] , with multiple applications to the

study of biological and other complex materials (e.g., [25–34] ), medical imaging (e.g., [35–37] ), geosciences, and other areas.

The current paper is concerned with the investigation of certain reductions of fully nonlinear models of anisotropic 

fiber-reinforced elastic and viscoelastic solids, leading to nonlinear wave equations. The framework of hyperelasticity and 

viscoelasticity and its generalizations has recently been actively used to model multiple types of media, including fabrics and 

biological materials [23,38–44] . Equations of nonlinear hyperelasticity are based on the existence of a potential (the stored 

energy function) which defines local stresses based on local displacements of material particles. The resulting equations for 

Eulerian coordinates of material particles essentially have the form of Newton’s second law, expressing the local balance of 

forces, and can be viewed as a system of coupled wave equations in 3+1 dimensions. The form of the stored energy function,

initial density and stress distribution, and external forces determine the mechanical properties of a given configuration. The 

choice of constitutive functions can be based on various considerations; constitutive modeling of complex media is an active 

research area by itself (see, e.g., [44–50] and references therein). The presence of elastic fibers, for example, in biological 

tissues and many man-made materials, alters the mechanical response of the elastic substance. In order to incorporate fiber 

stretch and interaction effects into the hyperelasticity framework, fiber-dependent terms are added to the stored energy 

function; multiple constitutive models have been developed for such terms. Some models are discussed, for example, in 

Refs. [23,24,51,52] . 

In many cases, mechanical behaviour of an elastic material can be modeled with high accuracy as incompressible, or 

volume-reserving. This assumption simplifies the transformation between Lagrangian and Eulerian coordinates, which in 

this case has a unit Jacobian, and often makes the final PDEs significantly simpler [48,52–55] . 

Due to the complexity of full three-dimensional equations and boundary problems required to model, for example, the 

elastic behavior of a human organ, it is usually not feasible to derive exact or approximate closed-form solutions or ob-

tain other useful properties of such models; numerical simulations remain the common avenue. To gain insights into the 

mechanical processes, reductions based on symmetries and/or other assumptions are a common way to proceed [56] . It 

is known that specific settings and reduction ansätze in nonlinear elastodynamics can yield scalar coupled or decoupled 

equations describing the propagation of certain perturbations (e.g., [23,57] ). In the framework of incremental analysis, such 

models are linear, whereas the finite elasticity theory leads to fully nonlinear models. Such single hyperbolic wave-type 

equations are of interest from both physical and mathematical points of view. For linear wave equations, with constant or 

variable coefficients, a large set of classical tools is available, such as Fourier and Green’s function methods, or the method of

characteristics [58] ; for nonlinear models, the situation is significantly more complex. Some of such models are integrable, 

being, for example, exactly linearizable through hodograph-type or nonlocal transformations [56] . However, this is not the 

case for the majority of nonlinear wave equations, where nonlinear effects can lead to loss of regularity or hyperbolicity, 

shock formation, etc. [22,23,30] . Dissipative, in particular, viscoelastic effects, which may regularize the model, should be 

taken into account in such cases [24,59,60] . Non-hyperbolic, for example, evolution equations, and more complex PDEs de- 

scribing the propagation of perturbations, have been shown to arise in various mechanical contexts, in particular, in the 

study of shear waves in incompressible solids [57] . 

In this work, we apply the framework of full three-dimensional anisotropic incompressible hyperelasticity and visco- 

hyperelasticity to study shear waves in cylindrical geometry. The study is motivated by both industrial and biomedical ap- 

plications [24] . It is well known that walls of blood vessels, in particular, arteries, are multi-layered structures, with each

layer having its own mechanical properties [51,61] . From the mechanical point of view, the two most significant arterial

layers are adventitia and media, each containing two sets of helically oriented collagen fibers [39,51] . In Ref. [24] , nonlinear

wave equations corresponding to finite shear displacements in a medium with one and two embedded fiber families were 

derived; in particular, a “flat cylinder” model approximating an arterial wall was used, based on Cartesian coordinates. The 

current work extends the results of Ref. [24] , taking into account the cylindrical geometry from the very beginning. 

The paper is organized as follows. The general physical model setup in cylindrical geometry and the necessary com- 

ponents of the framework of incompressible finite hyperelasticity, constitutive modeling, fiber-related anisotropy, and vis- 

coelastic effects are introduced in Section 2 . In Section 3 , the propagation of s-waves in the radial direction is considered for

cylindrical media with two embedded helically directed sets of identical fibers making the same pitch angle but opposite 

chiralities. This ansatz is inherently incompressible. We show that when the stored energy function is a sum of two arbi-

trary smooth components, responsible respectively for isotropic and fiber-related effects, the vertical displacements G (t, R ) 

of material points located at material radii R are governed by a single PDE in the divergence form: 

G tt = 

1 

R 

∂ 

∂R 

( R f (G R ) ) , (1.1) 

where f is a function of G R that depends on the form of the stored energy function, and the second unknown, the hy-

drostatic pressure p(t, R ) , is expressed in terms of G (t, R ) . [In (1.1) and below, where appropriate, partial derivatives are

denoted by subscripts: G R = ∂G / ∂R , G tt = ∂ 2 G / ∂t 2 , etc.] Moreover, in the important case when the stored energy function is

a combination of the incompressible Mooney-Rivlin isotropic part and a standard quadratic reinforcement anisotropic term, 

as well as in several other cases, the displacements G (t, R ) of material points are shown to satisfy a linear PDE 

G tt = α
(

G RR + 

1 

R 

G R 

)
, (1.2) 
2 
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where α = const is a fiber-independent material parameter. The wave Eq. (1.2) is a well-known equation describing, for 

example, axially symmetric modes of small oscillations of an elastic circular membrane [58] . It is therefore shown that

in such cases, radial shear waves do not “feel” the presence of fibers which are tangent to cylinders R = const . Physical

boundary value problems for the linear and the nonlinear wave equations are discussed; in particular, a boundary value 

problem for the PDE (1.2) with common boundary conditions corresponding to stationary, free, or forced boundaries of the 

cylindrical domain R 1 ≤ R ≤ R 2 can be solved explicitly by separation of variables. 

It turns out that when the fibers in the medium are not exactly helical, specifically, when they have a nonzero projection

on the radial direction, then in the same hyperelasticity framework, for the same constitutive model that leads to (1.2) ,

shear waves are described by nonlinear equations. In Section 4 , we consider such a modified-fiber model, with radial fiber

projections measured by an angle parameter δ � = 0 . We show that in this case, the displacements are governed by a family

of nonlinear wave equations 

G tt = 

1 

R 

∂ 

∂R 

[
R 

(
N 1 G R + N 2 G 

2 
R + N 3 G 

3 
R + N 4 

)]
, (1.3) 

where N 1 , . . . , N 4 are constant parameters depending on fiber angles, and mechanical properties. The PDEs (1.3) belong to the 

class (1.1) . In particular, for small δ, the coefficients N 1 = α + O(δ2 ) , and N i = O(δn i ) , n i ≥ 1 , i = 2 , 3 , 4 , consistent with the

PDE (1.2) in the limit δ → 0 . The nonlinear wave Eq. (1.3) with polynomial nonlinearities have not, to our knowledge, been

studied in detail in the literature; in particular, they are not known to be linearizable by a local or nonlocal transformation.

Equivalence transformations and point symmetries of an even more general family of wave equations 

u tt = f (x, u x ) u xx + g(x, u x ) 

for the unknown u = u (x, t) , with two arbitrary functions f, g, have been systematically classified in Ref. [62] (see also refer-

ences therein), but cases relevant to elasticity problems that arise in the current study have not been specifically considered. 

Non-dissipative mechanical systems commonly admit a classical Lagrangian; it is shown that the symmetry-reduced wave 

equations (1.1) also arise from a variational principle ( Section 4 ). Sample numerical solutions of the PDE (1.3) corresponding

to unidirectional waves are presented and shown to develop “corners” as a consequence of the nonlinearity (cf. [24] ). 

Finally, in Section 5 , the anti-plane shear helical fiber wave model of Section 3 is amended with viscoelastic effects

incorporated into the strain energy density through pseudo-invariants that involve time derivatives of the Cauchy-Green 

stress. It is shown that instead of the linear wave equation (1.2) , for this model, the displacement G (t, R ) of the shear wave

is described by a third-order scalar PDE 

G tt = 

1 

R 

∂ 

∂R 

(
RG R 

[
α + μ1 G R G tR 

(
1 + 2 G 

2 
R 

)])
, (1.4) 

with a viscosity-related coefficient μ1 . Numerical simulations show that the viscosity term provides a regularization-type 

effect. 

The paper is concluded with a discussion in Section 6 . 

2. The incompressible finite hyperelasticity framework 

The fully nonlinear hyperelasticity framework considers finite (as opposed to infinitesimally small) displacements of solid 

elastic bodies. We briefly review the notation and the main elements of mathematical models in incompressible hyperelas- 

ticity. Boldface notation is used for vector and tensor quantities. Partial derivatives will often be denoted by subscripts: 

∂ f/ ∂ t ≡ f t , etc. We also assume summation in repeated indices where appropriate. 

Consider a solid body that at the current time t occupies a spatial domain � ⊂ R 

3 . The actual positions of material points

in the body (the Eulerian coordinates) are given by 

x = φ( X , t) = X + u , (2.1) 

where X are material coordinates (or Lagrangian coordinates, the labels of the material points), and u = u ( X , t ) denotes the 

displacement of a material point labelled by X . The material coordinates are often taken to be initial conditions: φ( X , 0 ) = X .

The material coordinates run through the spatial region �0 ⊂ R 

3 , called the reference, the material, or the Lagrangian con- 

figuration, whereas the actual domain is given by � = φ(�0 ) ( Fig. 1 ). In the fully nonlinear framework, since the displace-

ments u are not assumed to be small, the equations of motion are commonly written in terms of actual particle positions

x . 

The velocity of a material point X is given by 

v ( X , t) = 

d x 

dt 
= 

d u 

dt 
. 

The mapping (2.1) is assumed to be invertible, sufficiently smooth, and physical. In particular, the deformation gradient 

provided by the Jacobian matrix 

F ( X , t) = grad ( X ) φ, F i j = 

∂x i 

j 
= F i j (2.2) 
∂X 

3 
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Fig. 1. The material (Lagrangian) and the actual (Eulerian) domains, Lagrangian and Eulerian coordinates, the displacement, and the fiber direction vectors 

(see Section 2.2 ). 

 

 

 

 

 

 

 

 

is invertible, and satisfies the orientation-preserving condition 

J = det F > 0 . 

(For Cartesian coordinates and the flat space metric g i j = δi j , the indices of all tensors can be freely raised or lowered.) The

related symmetric left and right Cauchy-Green strain tensors B and C given by 

B = F F T , C = F T F (2.3) 

play an important role in solid mechanics. If the density of the elastic substance in the reference configuration is denoted

by ρ0 = ρ0 ( X ) , the actual time-dependent density in Eulerian coordinates takes the form 

ρ( X , t) = ρ0 /J. 

For incompressible materials, one has 

J = 1 , ρ( X , t) = ρ0 ( X ) . 

For the applications considered in this work, we will take the material density ρ0 = const , however, general formulas within

Section 2 hold for an arbitrary ρ0 ( X ) . 

2.1. Equations of motion of a hyperelastic material 

According to the Cauchy theorem, in the Eulerian configuration, the force acting on a unit surface area with a unit

normal n within the elastic solid, t = σn , is expressed in terms of the symmetric Cauchy stress tensor σ . Similarly, the force

acting on a surface element with the unit normal N in the Lagrangian configuration is given by T = P N , where P is the

non-symmetric first Piola-Kirchhoff tensor, related to the Cauchy stress tensor through 

P = J σF −T 
, (2.4) 

here F −T denotes the transpose of the inverse of the deformation gradient. The related second Piola-Kirchhoff tensor is given 

by S = F −1 P . 

For hyperelastic materials, the forms of Piola-Kirchhoff stress tensors P , S follow from a postulated form of a “stored 

energy” function W 

h [63] , which is the strain energy per unit mass. [The volumetric strain energy density in the material 

frame of reference is given by ρ0 W 

h .] For isotropic hyperelastic media, W 

h = W 

h ( X , F ) . For anisotropic materials involving

fibers, W 

h = W 

h ( X , F , A 1 , . . . , A k ) , where the unit vectors A j , j = 1 , . . . , k define the direction fields of k independent, pos-

sibly interacting fiber families in the reference configuration. For an anisotropic materials, it is common to state the strain 

energy density as a sum of an isotropic and an anisotropic contribution (e.g., [61] ): 

W 

h = W 

h 
iso + W 

h 
aniso . (2.5) 

Such a potential energy function is assumed to fully describe the material behavior. The choice of a specific form of W 

h 

for the given material and physical situation is the main problem of constitutive modeling (e.g., [3,23,24,49] and references 

therein). 

For incompressible models, the form of the stored energy W 

h yields the Piola-Kirchhoff stress tensors through the for- 

mulas 

P = −p F −T + ρ0 
∂W 

h 

∂ F 
= F S , (2.6) 

S = −p C 

−1 + 2 ρ0 
∂W 

h 

, (2.7) 

∂ C 

4 
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measured in the units of pressure; here p = p( X , t) is the hydrostatic pressure. Since C is symmetric, the formula (2.7) is

understood in the sense 

∂W 

h 

∂ C 

≡ 1 

2 

(
∂W 

h 

∂ C 

+ 

∂W 

h 

∂ C 

T 

)
. (2.8) 

Consequently, if the strain energy density is expressed purely as a function of the components of C , then the expression

 

h = W 

h ( C ) is symmetrized by the substitution 

C i j → 

1 

2 

(C i j + C ji ) . 

The dynamics of an incompressible hyperelastic solid is described by an initial-boundary value problem for a set of 

equations of motion. The latter are given by the momentum conservation and the incompressibility condition: 

ρ0 x tt = div ( X ) P + Q , (2.9a) 

1 − J = 0 . (2.9b) 

The vector PDE (2.9a) is a variant of Newton’s second law, expressing the conservation of momentum in the reference

configuration. In (2.9), Q = Q ( X , t) is the total external body force per unit volume, and the divergence of P with respect to

the material coordinates is given by 

( div ( X ) P ) i = 

∂P i j 

∂X 

j 
. 

In addition, the motions are required to satisfy the condition 

F P 

T = P F T . (2.10) 

which expresses the conservation of angular momentum, and is equivalent to the Cauchy stress tensor symmetry require- 

ment σ = σT . For isotropic materials, as well as in some other cases, this symmetry condition is identically satisfied (e.g.,

[48] ). 

The equations of motion (2.9) are formulated in the Lagrangian framework, with independent variables ( X , t) , but they

can also be written in the laboratory (Eulerian) frame of reference, with independent variables ( x , t) and dependent vari-

ables v ( x , t) . The Eulerian form of the governing equations is commonly used in fluid dynamics. 

The incompressible model (2.9) is relevant in the physical space R 

n , n = 2 , 3 , as well as in compatible symmetry-reduced

settings, but in the Cartesian one-dimensional case n = 1 , the incompressibility requirement J = 1 is overly restrictive, al-

lowing only for translation-type motions x = X + a (t) . 

When the external forces vanish or are potential forces, the general three-dimensional equations of motion (2.9) of a 

hyperelastic solid admit a variational formulation. In particular, the PDEs are obtained from the variation of the action 

functional 

S = 

∫ ∞ 

0 

∫ 
R n 

L d n x dt, (2.11) 

where the Lagrangian density is given by 

L = ρ0 (W − K) + p(1 − J) . (2.12) 

For the case of no external forces Q = 0 , the potential energy is the hyperelastic strain energy per unit mass W = W 

h ( X , F )
(2.5) , and 

K = 

1 

2 

n ∑ 

i =1 

(x i t ) 
2 

is the kinetic energy per unit mass. The Euler operator with respect to u is defined as 

E u = 

∂ 

∂u 

− D i 

∂ 

∂u i 

+ · · · + (−1) l D i 1 . . . D i l 

∂ 

∂u i 1 ... i l 

+ · · · , 

where u is any scalar dependent variable, u i denotes its derivative by i -th independent variable, and D i is the corresponding

total derivative operator. Then the extremals of (2.11) satisfy the Euler-Lagrange equations E u L = 0 for u = p, x 1 , x 2 , x 3 .

These equations are indeed the PDEs (2.9) as they stand: 

δL 
δp 

≡ E p L = 1 − J = 0 , 

δL 
δx k 

≡ E x 1 L = ρ0 x 
k 
tt − ∂P k j 

∂X j 
= 0 , k = 1 , 2 , 3 . 

The variational formulation of a nonlinear model is a useful property; in particular, it yields a direct relation between local

variational symmetries and conservation laws of a model through the first Noether’s theorem (e.g., [64] ), and may be related
5 
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with integrability. Based on the existence of a variational formulation for a general model, there, however, is no straight- 

forward statement about the existence of a variational formulation for a reduced model; moreover, the variational property 

is rather “unstable” with respect to various transformations [56,65] . It is, however, possible to show that the reduced wave

model and its extensions considered in this paper ( Sections 3 and 4 below) also admit a variational formulation. 

2.2. Constitutive models in isotropic and anisotropic hyperelasticity 

A constitutive relation for an isotropic homogeneous hyperelastic material is commonly posed as an expression of the 

strain energy density W 

h = U(I 1 , I 2 , I 3 ) in terms of the principal invariants of the Cauchy-Green strain tensors B and C (2.3) :

I 1 = Tr C , I 2 = 

1 

2 

[( Tr C ) 2 − Tr ( C 

2 )] , I 3 = det C = J 2 . (2.13) 

For incompressible materials, J = 1 , hence generally, one has W 

h 
iso 

= U(I 1 , I 2 ) . Since in the natural state x = X , both invariants

I 1 = I 2 = 3 , and the general isotropic constitutive relation is commonly written as 

W 

h 
iso = U(I 1 , I 2 ) . (2.14) 

In addition to any differentiability requirements on the function U, for non-prestressed configurations, it also must satisfy 

the physical condition of the natural state: if x = X , in other words, all displacements are zero, then 

∂U 

∂ I 1 
+ 2 

∂U 

∂ I 2 
= 0 (2.15) 

(see, e.g., [48] .) If pre-stressed configurations are allowed, the condition (2.15) may not hold. 

Multiple constitutive models (2.14) have been suggested for specific applications, involving, for example, polynomial and 

exponential-type forms of the isotropic stored energy function U; for a review, see, e.g., [23,26,48,66] . A wide class of rubber-

like materials is described by the Mooney-Rivlin constitutive relation 

U(I 1 , I 2 ) = a (I 1 − 3) + b(I 2 − 3) , (2.16) 

with material parameters a, b = const > 0 . It corresponds to the lowest-order terms of a series expansion of a general ana-

lytic function U(I 1 , I 2 ) . A simpler case b = 0 is the neo-Hookean model. 

Anisotropic hyperelastic materials with fibers are modeled using a stored energy contribution W 

h 
aniso 

, commonly assumed 

to depend on pseudo-invariants involving fiber directions, and the corresponding fiber strength and interaction parameters. 

Each fiber family is given by a vector field A j = A j ( X ) , | A j | = 1 , at every point of the material configuration. [For the pur-

poses of formula presentation, the direction fields { A j } k j=1 
are assumed to be column vectors.] In the Eulerian frame of

reference, the time-dependent fiber orientation fields for each family of fibers are determined by 

λ j a j = F A j , j = 1 , . . . , k, (2.17) 

where a j = F A j / | F A j | are unit fiber direction vectors in the Eulerian configuration (see Fig. 1 ), and λ j = | F A j | are the stretch

factors. 

For a single fiber family, k = 1 , the two pseudo-invariants are given by 

I 4 = A 

T 
1 C A 1 , I 5 = A 

T 
1 C 

2 A 1 . (2.18) 

where I 4 ≡ λ2 
1 

is the squared fiber stretch factor, and I 5 relates to the effect of the fiber on the shear response in the

material [23,55,67,68] . (In particular, if w = C A is a push-forward of the material vector A by the right Cauchy-Green tensor 

then I 5 = w 

T w = | w | 2 .) A stored energy function that takes into account these effects takes the general form 

W 

h 
aniso = V (I 4 , I 5 ) . 

For the case of a material with two fiber families given by direction vectors A 1 and A 2 , the anisotropic stored energy

part generally depends on five pseudo-invariants [5] : 

W 

h 
aniso = V (I 4 , I 5 , I 6 , I 7 , I 8 ) . (2.19) 

Here I 6 and I 7 given by 

I 6 = A 

T 
2 C A 2 , I 7 = A 

T 
2 C 

2 A 2 , (2.20) 

have are the same meaning as (2.18) for the second fiber family, and an additional pseudo-invariant 

I 8 = ( A 

T 
1 A 2 ) A 

T 
1 C A 2 (2.21) 

describes coupling between the fiber families. It has been used, for example, in modeling of cornea [68] . 
6 
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2.3. Hyper-viscoelastic constitutive models 

In many materials, viscoelastic, as opposed to hyperelastic, behaviour is exhibited. Various approaches exist for the math- 

ematical description of viscoelasticity, including rational and irreversible thermodynamics, finite viscoelasticity, and hyper- 

viscoelasticity. For a more detailed review, see, e.g., Refs. [24,66] , and references therein. 

In the current contribution, we use the hyper-viscoelasticity framework [5] , which employs a hyperelastic stored energy 

part W 

h (2.5) to describe elastic effects, and a “dissipative potential” W 

v associated to the viscous phenomena. The second 

Piola-Kirchhoff tensor formula (2.7) is modified to include the viscoelastic stress 

S v = 2 ρ0 
∂W 

v 

∂ ̇  C 

. (2.22) 

Using (2.7) , one has the total stress tensor expression 

S = S h + S v = −p C 

−1 + 2 ρ0 

(
∂W 

h 

∂ C 

+ 

∂W 

v 

∂ ̇  C 

)
, (2.23) 

where (2.8) is taken into account. The equations of motion of the solid are still given by (2.9), with P = F S . 

The forms of both the hyperelastic stored energy W 

h and the dissipative potential W 

v vary by the application; for ex-

ample, the viscoelastic model of a fiber-reinforced material with a single fiber family studied by Pioletti and Rakotomanana 

[25] uses the following energy density expressions: 

W 

h = 

μ

2 

(I 1 − 3) + 

k 1 
2 k 2 

(
e k 2 (I 4 −1) 2 − 1 

)
, (2.24) 

W 

v = 

η1 

4 

J 2 (I 1 − 3) + η2 J 9 
k 1 

2 k 2 

(
e k 2 (I 4 −1) 2 − 1 

)
, η1 , η2 = const , (2.25) 

where μ, k 1 , η, γ are the appropriate dimensional constant parameters, k 2 is a dimensionless constant, and 

J 2 = Tr ( ̇ C 

2 ) , J 9 = A 

T ˙ C 

2 A (2.26) 

are the corresponding viscoelastic pseudo-invariants. Other pseudo-invariants J 1 , . . . , J 13 have been constructed and used in 

the case of a single fiber family [26] ; their set is naturally extended for multiple fiber bundles. 

In Ref. [24] , for two fiber families given by material directions A 1 , A 2 , the viscoelastic strain energy form 

W 

v = 

μ1 

4 

J 2 ( I 1 − 3 ) + 

μ2 

2 

J 9 , 1 ( I 4 − 1 ) 2 + 

μ3 

2 

J 9 , 2 ( I 6 − 1 ) 2 , (2.27) 

was used, with material viscosity parameters μi , i = 1 , 2 , 3 . Here J 9 , 1 and J 9 , 2 denote the pseudo-invariant J 9 (2.26) computed

respectively for A 1 and A 2 . The viscoelastic potential (2.27) corresponds to the leading Taylor terms of (2.25) , adapted to

include two fiber families. 

A general class of viscoelastic strain energy expressions for two fiber families, depending on the same above pseudo- 

invariants, is given by 

W 

v = W (I 1 , I 2 , I 4 , I 5 , I 6 , I 7 , I 8 , J 9 , 1 , J 9 , 2 ) . (2.28)

3. Radial shear waves in a cylindrical hyperelastic solid with two helical fiber families 

As a first application, we consider a model of an arterial wall layer, which is described as a cylindrical incompressible

solid along Z = X 3 , reinforced with two families of fibers that make up helical lines around every material cylinder X 2 1 + X 2 2 =
R 2 . The corresponding cylindrical material coordinates will be denoted (R, 
, Z) , where 
 is the polar angle. The unit fiber

direction vectors are given by 

A 1 ( X ) = − cos β sin 
 e 1 + cos β cos 
 e 2 + sin β e 3 , 

A 2 ( X ) = − cos β sin 
 e 1 + cos β cos 
 e 2 − sin β e 3 , 
(3.1) 

where e i are material Cartesian basis vectors, and β ( 0 < β < π/ 2 ) is the helical pitch angle ( Fig. 2 ). In particular, β = 0

corresponds to coinciding horizontal, and β = π/ 2 to coinciding vertical fiber arrangements along the direction of Z = X 3 .

For example, in a rabbit carotid artery media layer, it was found that β 
 29 ◦, and in the adventitia layer of the same artery,

β 
 62 ◦ [51] . 

Suppose that the elastic solid occupies a cylindrical shell with inner and outer material radii R 1 and R 2 respectively: 

R 1 ≤ R ≤ R 2 , 0 ≤ 
 < 2 π, Z ∈ R . (3.2) 

In order to study any specific type of fully nonlinear waves propagating in such media, a deformation class (2.1) must be

specified, consistent with the incompressibility assumption (2.9b) . For radially spreading shear waves with vertical displace- 

ments, the deformation class is given by ( 

r 
φ
z 

) 

= 

( 

R 



Z + G (t, R ) 

) 

, (3.3) 
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Fig. 2. (a) A cylindrical two-fiber anisotropic hyperelastic solid with a helical fiber arrangement in the Lagrangian frame. (b,c) Side and top view of fibers 

on two sample cylindrical surfaces. 

 

 

where the displacement G (t, R ) is not assumed to be small. The deformation gradient is computed as 

F = 

D ( x 1 , x 2 , x 3 ) 

D ( X 1 , X 2 , X 3 ) 
= 

(
D ( x 1 , x 2 , x 3 ) 

D ( r, φ, z ) 

)(
D ( r, φ, z ) 

D ( R, 
, Z ) 

)(
D ( R, 
, Z ) 

D ( X 1 , X 2 , X 3 ) 

)

= 

( 

1 0 0 

0 1 0 

cos 
∂G (t,R ) 
∂R 

sin 
∂G (t,R ) 
∂R 

1 

) 

; (3.4) 

it identically satisfies the incompressibility condition J = det F = 1 . 

3.1. Nonlinear and linear radial wave models 

Consider a general class of constitutive models of incompressible hyperelastic solids with two fiber families, with 

isotropic and anisotropic parts of the hyperelastic stored energy given by (2.14) and (2.19) : 

W 

h = U(I 1 , I 2 ) + V (I 4 , I 5 , I 6 , I 7 , I 8 ) . (3.5)

The dynamic equations for the displacement G (t, R ) and pressure p(t, R ) are derived componentwise from (2.6), (2.9a) . The

following statement is proven in Appendix A . 
8 
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Theorem 1. Axially symmetric finite anti-plane shear displacements G (t, R ) of fully nonlinear incompressible hyperelastic solid 

reinforced with two interacting families of fibers (3.1) , with the stored energy function (3.5) , satisfy the wave equation (1.1) 

G tt = 

1 

R 

∂ 

∂R 

( R f (G R ) ) , 

where 

f (G R ) = 2 G R (U 1 + U 2 + 2 V 5 sin 

2 β) , (3.6) 

and U i , V j are the corresponding partial derivatives of the stored energy function (3.5) . 

In particular, the incompressibility requirement (2.9b) is identically satisfied. The Z−component of the momentum 

Eq. (2.9a) leads to the equation of motion (1.1) . XY −plane components of (2.9a) yield the R −derivative of the hydrostatic

pressure p(t, R ) (A.3) , with an additional requirement that V in (3.5) satisfies the compatibility condition (A.2) . The ODE

(A.3) defines the pressure p(t, R ) for every solution of the wave Eq. (1.1) , up to an arbitrary additive function of time. 

For the deformations of the form (3.3) , the invariants I j , j = 1 , .., 8 , are given by (A.1) . It follows that for any form of

the stored energy function (3.5) where f (G R ) (3.6) is a linear function of G R when computed on (A.1) , the wave amplitude

G (t, R ) satisfies a linear PDE . The pressure Eq. (A.3) , however, remains generally nonlinear. 

We note that the equation of motion (1.1) is invariant under the addition of an arbitrary function 

˜ V (I 4 , V 6 , I 8 ) to the

anisotropic energy term V in (3.5) . 

It is straightforward to show that the wave Eq. (1.1) arises from a variational principle. The action functional and the

Lagrangian density for the PDE (1.1) are given by 

S = 

∫ ∫ ∞ 

0 

L dR dt, L = R 

(
G 

2 
t 

2 

− F (G R ) 

)
, 

where F is an antiderivative of f . Indeed, the action of the Euler operator with respect to G on the Lagrangian yields 

E G L = R 

(
G tt − 1 

R 

∂ 

∂R 

(R f (G R )) 

)
= 0 , 

which is essentially the PDE (1.1) . 

3.2. Radial waves in Mooney-Rivlin solids with quadratic reinforcement 

An important specific class of constitutive models of the hyperelastic stored energy is given by a combination of the 

Mooney-Rivlin and the standard (quadratic) reinforcement terms [24,38] : 

W 

h = a ( I 1 − 3 ) + b ( I 2 − 3 ) + q 1 ( I 4 − 1 ) 2 + q 2 ( I 6 − 1 ) 2 + K 3 I 
2 
8 + K 4 I 8 , (3.7) 

involving the Mooney-Rivlin-type isotropic part with constant parameters a, b, and an anisotropic part. Here q 1 , 2 are two 

fiber strength parameters of the corresponding two fiber families (3.1) , and K 3 , 4 are fiber interaction constants. The class of

models (3.7) is a subset of (3.5) ; it can be viewed as a Taylor approximation of a broad class of two-fiber-family hyperelastic

constitutive models where the strain energy density W 

h depends on the invariants I 1 , I 2 , I 4 , I 6 , and I 8 . 

The equations of motion for the displacement G (t, R ) are derived componentwise from (2.6), (2.9a) , and constitute a

special case of (1.1), (3.6) with U 1 = a, U 2 = b, V 5 = 0 . The following statement holds. 

Theorem 2. For the model of a fully non-linear incompressible hyperelastic solid reinforced with two interacting fiber families 

(3.1) , defined by the stored energy function of the form (3.7) , finite shear displacements in the cylinder axis direction (3.3) prop-

agating in the radial direction are described by solutions G (t, R ) of a linear wave Eq. (1.2) 

G tt = α
(

G RR + 

1 

R 

G R 

)
, α = 2(a + b) = const . 

Importantly, the PDE (1.2) depends neither on the fiber parameters q 1 , q 2 , K 3 , K 4 , nor on the fiber pitch angle β, but

only on the Mooney-Rivlin constants a, b. 

For the strain energy density (3.7) , the R − and 
−projections of the momentum equations are compatible, and yield the

same pressure equation 

p R = −ρ0 

R 

(2 bG 

2 
R + M) , (3.8) 

which is a special case of (A.3) , with 

M = cos 2 β(1 + cos 2 β) 
(
2 K 3 cos 2 2 β + K 4 

)
= const . (3.9) 

The wave Eq. (1.2) coincides with the linear wave model of small axially symmetric vertical oscillations of an elastic mem-

brane, but is obtained here without any assumption on the smallness of the displacement G or any other parameters. Inter-

estingly, the condition (3.8) defining the pressure also does not involve the fiber stretch constants q 1 , q 2 , but does depend

on the fiber interaction constants K 3 , K 4 , and the fiber pitch angle β, or specifically, the angle 2 β between the fiber family

directions. 
9 
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Fig. 3. A two-layer cylindrical solid with two families of helical fibers in each layer. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Initial-boundary value problems 

3.3.1. Dirichlet and Neumann problems in an annulus 

A well-posed initial-boundary value problem (IBVP) for the radial s-wave Eq. (1.1) consists of two boundary and two 

initial conditions, and is naturally stated in a cylindrical annulus R ∈ [ R 1 , R 2 ] , 0 < R 1 < R 2 . For example, a Dirichlet problem

corresponding to the inner arterial wall being periodically driven according to g(t) in the vertical direction (e.g., by a blood

flow pulsation), and the right boundary being fixed, involves boundary conditions 

G (R 1 , t) = g(t ) , G (R 2 , t ) = 0 (3.10) 

stated for t > 0 . Perhaps a more realistic yet elementary model of the action of blood flow on the inner wall of the blood

vessel can be described by Neumann boundary conditions corresponding to a periodic vertical traction forcing at the inner 

wall R = R 1 , and a free outer boundary R = R 2 : 

G R (R 1 , t) = g(t ) , G R (R 2 , t ) = 0 , (3.11) 

with a traction force prescribed by g(t) , t > 0 . A set of boundary conditions (3.10) or (3.11) is supplemented with initial

conditions 

G (R, 0) = G 0 (R ) , G t (R, 0) = G 1 (R ) , R 1 ≤ R ≤ R 2 . (3.12)

When the PDE (1.1) is linear, for example, in the case (1.2) , the Dirichlet IBVP (1.2), (3.10), (3.12) and the Neumann IBVP (1.2),

(3.11), (3.12) are solved by separation of variables; examples of explicit solutions for zero initial conditions G 0 (R ) = G 1 (R ) = 0

are given in Appendix B . 

3.3.2. The boundary value problem for a two-layer medium 

In the modeling of arteries, it is important to take into account their multi-layered structure, in particular, the most me-

chanically significant layers are the adventitia (outer layer) and the media (inner layer) [39,51] . Both of these layers contain

helical collagen fibers, with different pitch angles. 

Consider a two-layer cylindrical solid, with the inner layer occupying the annulus R 1 ≤ R ≤ R 2 , and the outer layer R 2 ≤
R ≤ R 3 ( Fig. 3 ), modeled as a hyperelastic medium with a general stored energy function (3.5) . An IBVP for the PDE (1.1) with

general initial conditions and general linear (Robin) boundary conditions is given by 

G tt = 

1 
R 

∂ 
∂R ( R f (G R ) ) , f (G R ) = 

{
f 1 (G R ) , R 1 < R < R 2 , 

f 2 (G R ) , R 2 < R < R 3 ;
G (R, 0) = G 0 (R ) , G t (R, 0) = G 1 (R ) , R 1 < R < R 3 ;
q 1 G (R 1 , t) + q 2 G R (R 1 , t) = g 1 (t) , 

q 3 G (R 2 , t) + q 4 G R (R 3 , t) = g 2 (t) , 

(3.13) 

where f 1 and f 2 are respective response functions for the inner and the outer layer. In particular, the fiber pitch angles β1 ,

β for the two layers may be different; for example, they were measured to equal approximately 29 ◦ and 62 ◦ respectively
2 
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for the media and adventitia layers of the carotid artery of a rabbit [51] . In (3.13) , the functions G 0 (R ) and G 1 (R ) determine

the initial conditions; the constants and q i , i = 1 , . . . , 4 and the functions g 1 (t) and g 2 (t) determine the type and forcing

terms of the boundary conditions. 

In the case of a Mooney-Rivlin/quadratic reinforcement stored energy (3.7) , the PDE (1.2) is linear, the fiber effects will

not affect the shear material displacements, and the coefficient α = α(R ) in (1.2) is piecewise-constant, equal to α1 = 2(a 1 +
b 1 ) for R 1 < R < R 2 , and α2 = 2(a 2 + b 2 ) for R 2 < R < R 3 , with a 1 , b 1 and a 2 , b 2 denoting Mooney-Rivlin parameters for the

inner and the outer layer. 

The two-layer model must also include physical contact conditions at R = R 2 , which for the linear wave model (1.2) take

the form 

G (R 2 − 0 , t) = G (R 2 + 0 , t) , 

ρ01 α1 G R (R 2 − 0 , t) = ρ02 α2 G R (R 2 + 0 , t) . 
(3.14) 

Here the first equation ensures the continuity of the displacement, and the second one expresses the continuity requirement 

of the shear ( Z−directed) component of the traction force T = P N acting on a unit area of the cylinder boundary (i.e., the

third law of Newton). Here ρ01 = ρ0 (R 2 − 0) and ρ02 = ρ0 (R 2 + 0) respectively denote the densities of the inner and outer

layers on the material interface R = R 2 . 

4. A modified fiber model 

As seen in Section 3.2 , for an incompressible medium with fiber families tangent to nested cylinders, subject to the

Mooney-Rivlin constitutive relation with the quadratic fiber reinforcement terms (3.7) , as well as for some more general 

constitutive relations (see Section 3.1 ), fibers have no effect on the propagation of radial shear waves of the form (3.3) . In

particular, material displacements for such waves are described by the linear wave Eq. (1.2) . We now extend the model of

Section 3 , allowing both fiber families to have nonzero projections on the radial direction. For each fiber family, a nonzero

angle η corresponds to a nonzero radial fiber projection (see Fig. 4 a). 

Without loss of generality, it is convenient to write the radial projection parameters η1 , 2 for the two fiber families as 

η1 = η + δ, η2 = η − δ. (4.1) 

The unit fiber direction vectors for the two fiber families are consequently given by (cf. (3.1) ) 

A 1 = − cos β sin (
 + η + δ) e 1 + cos β cos (
 + η + δ) e 2 + sin β e 3 , 

A 2 = − cos β sin (
 + η − δ) e 1 + cos β cos (
 + η − δ) e 2 − sin β e 3 , 
(4.2) 

where e i are material Cartesian basis vectors, 
 is the cylindrical polar angle, and β is the fiber helical pitch angle ( Fig. 2 a). 

Using these generalized fiber family orientations, we repeat the steps of Section 3 to derive the equations of motion

for the fully nonlinear waves moving in the radial direction, with displacements determined by the deformation class (3.3) .

The underlying constitutive model is the same as that of Section 3 , with the Mooney-Rivlin/quadratic reinforcement stored 

energy function (3.7) . 

As before, for the current setup, the incompressibility condition (2.9b) is identically satisfied. The three momentum 

Eq. (2.9a) reduce to three PDEs involving the unknown vertical displacements G (t, R ) and the hydrostatic pressure p(t, R ) .

The equations of motion involve nine arbitrary material parameters 

a, b, q 1 , q 2 , K 3 , K 4 , β, η, δ, (4.3) 

specifically, the Mooney-Rivlin isotropic elasticity parameters a, b, the anisotropic fiber strength/interaction parameters 

q 1 , q 2 , K 3 , K 4 , and the fiber orientation angles β, η, δ. 

While, as before, the Z−projection of the momentum Eq. (2.9a) yields the wave equation on the vertical displacements 

G (t, R ) , the PDEs obtained for the X− and Y −projections of the momentum equations contain the pressure equation and a

compatibility condition on the displacements G (t, R ) , which was not present in an earlier model of Section 3 , and is due to

a nonzero fiber radial projection. The compatibility condition, however, vanishes when η1 = −η2 = δ (as in Fig. 4 ) and fiber

strengths are equal q 1 = q 2 . For such materials, the following statement holds. 

Theorem 3. Radial shear waves in an incompressible hyperelastic medium governed by Mooney-Rivlin/quadratic reinforcement 

constitutive relation (3.7) , where the two fiber families (4.2) have symmetric radial projection angles η1 = −η2 = δ and equal

fiber strengths q 1 = q 2 , are described by vertical displacements G (t, R ) satisfying a nonlinear wave equation 

G tt = N 1 

(
G RR + 

1 

R 

G R 

)
+ N 2 G R 

(
2 G RR + 

1 

R 

G R 

)
+ N 3 G 

2 
R 

(
3 G RR + 

1 

R 

G R 

)
+ 

N 4 

R 

, (4.4) 

where the constant coefficients N i are material parameters given by 

N 1 = α − 2 cos 2 β sin 

2 δ
[
2 K 3 

(
2 cos 2 β(1 + cos 2 δ) − 3 

)
(2 cos 2 β cos 2 δ − 1) 2 

+ K 4 

(
2 cos 2 β cos 2 δ − 1 

)
− 8 q sin 

2 β
]
, 
11 
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Fig. 4. (a) Projection on the horizontal plane of a fiber from the family A 1 in the modified fiber model. (b,c) Side and top view of two fiber families on 

two sample cylindrical surfaces for the modified fiber model with η1 = π/ 6 , η2 = −π/ 6 . 

 

 

 

 

N 2 = −12 sin β cos 3 β sin 

3 δ
(
K 3 

(
2 cos 2 β cos 2 δ − 1 

)
2 + 2 q 

)
, 

N 3 = 4 cos 4 β sin 

4 δ
(
K 3 

(
2 cos 2 β cos 2 δ − 1 

)
2 + 2 q 

)
, 

N 4 = 2 sin β cos β sin δ
(
2 cos 2 β cos 2 δ − 1 

)(
2 K 3 

(
2 cos 2 β cos 2 δ − 1 

)
2 + K 4 

)
, (4.5) 

and α = 2(a + b) . 

The wave Eq. (4.4) with parameters (4.5) is derived by direct computation, through the substitution of the deformation 

(3.3) into the PDEs (2.6), (2.9a) , having used the fiber orientations (4.2) in the stored energy function (3.7) . 

The wave Eq. (4.4) describes radial waves in a medium where one helical fiber family is turned “inwards”, and the other

“outwards”, by the same angle δ (see Fig. 4 b,c). The nonlinear PDE (4.4) is thus an extension of the linear PDE (1.2) in

Theorem 2 onto the case of fibers with nonzero projection on the wave propagation direction. It is consistent with the

model of Section 3 , reducing to the linear PDE (1.2) when δ = 0 . When δ is a small parameter, | δ|  1 , it is straightforward

to compute the leading terms for the coefficients N i (4.5) : 

N 1 = α − 2 cos 2 β
(
2 K 3 cos 2 2 β(4 cos 2 β − 3) + K 4 cos 2 β − 8 q sin 

2 β
)
δ2 + O(δ4 ) , 

N 2 = −12 sin β cos 3 β
(
K 3 cos 2 2 β + 2 q 

)
δ3 + O(δ5 ) , 

N 3 = 4 cos 4 β
(
K 3 cos 2 2 β + 2 q 

)
δ4 + O(δ6 ) , 

N 4 = 2 sin β cos β cos 2 β
(
2 K 3 cos 2 2 β + K 4 

)
δ + O(δ3 ) . (4.6) 
12 
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Fig. 5. Numerical solutions of the PDE (4.7) for zero initial conditions and boundary conditions (3.11), (4.8) in the linear case c = 0 (black dashed curve) 

and nonlinear cases c = 0 . 5 (blue dot-dash curve) and c = 1 (solid red curve) at the dimensionless time values t = 0 . 5 , 1, and 1.5, left to right. (Color 

online.) 

 

 

 

 

 

 

 

 

This yields the term ordering for perturbation theory analysis of the PDEs (4.4) as δ → 0 . 

The nonlinear PDEs (4.4) can be rewritten in a divergence form (1.3) , and thus belong to the family of Eq. (1.1) with 

f (G R ) = N 1 G R + N 2 G 

2 
R + N 3 G 

3 
R + N 4 . 

Yet the Eq. (4.4) , (1.3) were obtained under different physical assumptions, specifically, a different arrangement of elastic 

fiber families. 

4.1. The horizontal fiber model and a numerical example 

A particularly simple case of the nonlinear wave Eq. (4.4) or (1.3) can be obtained by taking the pitch angle β = 0 .

This case corresponds to an “almost-circular” arrangement of the two fiber families, and one has N 2 = N 4 = 0 . The wave

Eq. (4.4) then assumes a simpler form, differing from the linear wave Eq. (1.2) by a single nonlinear term. Let R c be some

characteristic radius (e.g., the outer radius R 2 of the annular domain). Then in terms of the dimensionless (starred) variables 

G = R c G 

∗ R = R c R 

∗, t = 

R c √ 

N 1 

t ∗, 

the PDE (4.4) becomes, after dropping the asterisks, 

G tt = G RR + 

G R 

R 

+ cG 

2 
R 

(
3 G RR + 

G R 

R 

)
= 

1 

R 

∂ 

∂R 

[
RG R 

(
1 + cG 

2 
R 

)]
. (4.7) 

In (4.7) , c = N 3 / N 1 is the parameter controlling the nonlinearity; its leading-order expansion as δ → 0 is given by 

c = 

4 

α
( K 3 + 2 q ) δ4 + O(δ6 ) , 

typically small for small | δ| , and inversely proportional to the Mooney-Rivlin parameter α. 

In order to compare the original and the modified helical fiber models, we numerically simulate the dimensionless PDE 

(4.7) for various values of c. The simulation is conducted in the dimensionless space-time domain R 1 ≤ R ≤ R 2 , R 1 = 1 ,

R 2 = 3 , for zero initial conditions, and Neumann boundary conditions (3.11) with a localized nonnegative dimensionless 

boundary forcing 

g(t) = G (R 1 , t) = 

{
16 t 2 (t − 1) 2 , 0 ≤ t ≤ 1 , 

0 , t > 1 , 
(4.8) 

with the unit C-norm, applied to the inner cylindrical wall. Such a setup provides a primitive model of, for example, the

shear stress on the arterial wall caused by blood flow within a single heartbeat. The plots of the corresponding solutions

of the PDE (4.7) in the linear case c = 0 and nonlinear cases c = 0 . 5 , 1 are shown in Fig. 5 . In particular, it is observed that

in the nonlinear cases, for t > 0 , the solutions develop a corner-type singularity (a jump in the derivative G R ) when G = 0 .

[The numerical solutions here and below are computed using COMSOL Multiphysics finite element solver.] 
13 
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5. A viscoelastic model 

Another nonlinear extension of the radial shear wave propagation model in a medium with helical fibers described in 

Section 3 may be obtained by taking into account viscoelastic effects ( Section 2.3 ). As a simple example, following Ref. [24] ,

we let the viscoelastic strain energy component take the form 

W 

v = 

μ1 

4 

J 2 ( I 1 − 3 ) + 

μ2 

2 

J 9 , 1 ( I 4 − 1 ) 2 + 

μ3 

2 

J 9 , 2 ( I 6 − 1 ) 2 , (5.1) 

with viscosity parameters μi , i = 1 , 2 , 3 . The viscoelastic potential (5.1) corresponds, for example, to the leading Taylor terms

of the viscoelastic potential of Pioletti and Rakotomanana [25] (see our formula (2.25) in Section 2.3 ), adapted to include

two fiber families. 

We consider the same shear wave-type deformation class (3.3) as in Section 3 , with two identical helical fiber families

( μ2 = μ3 ) with orientations given by (3.1) , and the same hyperelastic energy component W h (3.7) . We again are interested

in the situation of the constant material density ( ρ0 = const ) and no external forces ( Q = 0 ). Computing the modified vis-

coelastic form (2.23) of the second Piola-Kirchhoff tensor formula, we obtain the first Piola-Kirchhoff stress tensor P = F S . 

The equations of motion (2.9a) in the XY − plane consequently lead to the pressure equation 

p R = −ρ0 

R 

(
2 G 

2 
R b + M − 2 μ1 G 

2 
R [ G R ( G tR + RG tRR ) + 3 RG tR G RR ] 

)
, (5.2) 

where M as the same constant as in (3.9) . The Z-component of the equations of motion yields a nonlinear PDE 

G tt = α
(

G R 

R 

+ G RR 

)
+ μ1 G R 

[ 
G R 

(
G tR 

R 

+ G tRR 

)(
1 + 2 G 

2 
R 

)
+ 2 G tR G RR 

(
1 + 4 G 

2 
R 

)] 
. (5.3) 

One can show that the PDE (5.3) can be written in an equivalent, more compact divergence form (1.4) . The following result

has been established. 

Theorem 4. For the model of a fully nonlinear incompressible hyper-viscoelastic solid reinforced with two interacting helical fiber 

families (3.1) , defined by the hyperelastic stored energy function (3.7) and the viscoelastic potential (5.1) , finite shear displacements

in the direction of the cylinder axis (3.3) , propagating in the radial direction, are described by solutions G (t, R ) of a nonlinear PDE

(1.4) . The latter PDE involves neither of the material fiber parameters q 1 , q 2 , K 3 , K 4 , μ2 nor the fiber helical pitch angle β, but

depends only on the Mooney-Rivlin constants a, b and the principal isotropic viscosity coefficient μ1 . 

Similarly to the linear case, the hydrostatic pressure p(t, R ) is determined by its R -derivative (5.2) in terms of the dis-

placement G (t, R ) ; it depends on the fiber interaction parameters K 3 and K 4 through (3.9) . 

The model of fully nonlinear displacements described by the PDEs (5.2) and (5.3) generalizes the linear hyperelastic 

model (1.2), (3.8) . It admits a scaling equivalence transformation, allowing for a change of variables 

G = 

G 

∗
√ 

α
, R = 

R 

∗
√ 

α
, t = 

t ∗

α
, 
Fig. 6. Numerical solutions of the dimensionless viscoelastic PDE model (5.4) with zero initial conditions and Neumann boundary conditions (3.11), (4.8) in 

the linear case μ = 0 (black dashed curve) and nonlinear cases μ = 0 . 5 (purple dot-dash curve) and μ = 2 (solid green curve) at the dimensionless time 

values t = 0 . 5 , 1, and 1.5, left to right. (Color online.) 
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Fig. 7. Numerical solutions of the combined PDE (5.5) with zero initial conditions and Neumann boundary conditions (3.11), (4.8) : comparison of the 

inviscid case c = 1 , μ = 0 (red dashed curve) and the viscous case c = 1 , μ = 2 (blue solid curve) for the time values t = 0 . 5 , 1, and 1.5, left to right. (Color 

online.) 

 

 

 

 

 

 

 

 

 

 

that maps the PDE (5.3) (or (1.4) ) into a simpler form with α∗ = 1 . Setting μ∗
1 = μ1 = μ and dropping the asterisks, we

obtain an equivalent dimensionless PDE 

G tt = 

1 

R 

∂ 

∂R 

(
RG R 

[
1 + μG R G tR 

(
1 + 2 G 

2 
R 

)])
. (5.4) 

involving a single parameter. 

The nonlinear viscoelastic term in (5.4) containing mixed space-time derivatives are responsible for diffusion-type effects. 

As an example illustrating these effects, we consider an initial-boundary value problem consisting of the dimensionless PDE 

(5.4) , zero initial conditions, and Neumann boundary conditons (3.11) with the time-localized forcing (4.8) on the inner 

cylindrical boundary. Sample plots of the solutions of the PDE (5.4) in the linear case μ1 = 0 and nonlinear cases μ = 0 . 5 , 2

are given in Fig. 6 . 

It is of further interest to compare the effects of both nonlinear terms related to modified fibers (dimensionless PDE 

(4.7) ) and viscosity (dimensionless PDE (5.4) ). Forming a joint dimensionless equation 

G tt = 

1 

R 

∂ 

∂R 

(
RG R 

[
1 + cG 

2 
R + μG R G tR 

(
1 + 2 G 

2 
R 

)])
(5.5) 

and solving the same Neumann problem with boundary conditions (3.11), (4.8) for c = 1 and μ = 2 , we compare it to the

case μ = 0 (no viscosity, also shown by the solid red curve in Fig. 5 ). The result indicates that viscosity effects lead to

diffusion-type damping in the solutions, and prevent the formation of the singularity at G = 0 ( Fig. 7 ). 

6. Discussion 

In the current paper, the family of scalar nonlinear wave Eq. (1.1) , (3.6) was derived, describing finite displacements

G (t, R ) in fully nonlinear radial shear waves propagating in a hyperelastic incompressible solid reinforced by two families

of helical fibers, for a general form of a stored energy function (3.5) . It was shown that for a broad class of constitutive

relations (3.5) , in particular, Mooney-Rivlin solids with standard (quadratic) reinforcement (3.7) , such waves are described 

by a linear PDE (1.2) . Initial-boundary value problems for such models can be solved explicitly using generalized Fourier 

series ( Appendix B ). 

In a more general case when the helical fiber families can have a radial projection, a modified-fiber wave model (1.3) was

obtained, containing additional nonlinear terms ( Section 4 ). Another nonlinear extension in Section 5 was obtained by taking

into account viscoelastic effects, resulting in the PDEs of the form (1.4) involving third-order space-time derivatives acting 

as diffusive terms. 

A forced-boundary Neumann problem for dimensionless forms of the linear cylindrical wave Eq. (1.2) and its two non- 

linear extensions (1.3) and (1.4) was solved numerically for several sample cases. Simulations indicate singularity formation 

in modified-fiber wave model (1.3) , and regularizing diffusion-type effect of the viscoelastic terms in the PDEs (1.4) . 

It is of interest to further analyze mathematical properties and solution behaviour of the new nonlinear variable- 

coefficient wave Eqs. (1.1) , (1.3) , and (1.4) , in particular, their conservation laws, solution existence and stability conditions,

possibility of construction of closed-form exact solutions, optimal numerical methods, etc. In particular, while the Cartesian 
15 
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constant-coefficient linear wave equation u tt = c 2 u xx admits general, exact d’Alembert (bidirectional traveling wave) solu- 

tions, cylindrical wave equations considered in the current work do not admit such solutions even in the linear case. Trav-

eling wave-type exact solutions are known to arise in many other contexts for a variety of more complex models, including

solitons and solitary waves for integrable and non-integrable shallow water equations, and exact solutions for two-layer lin- 

ear and nonlinear media with slow or instant transition [69,70] . Such exact and approximate closed-form solutions may be

systematically sought for nonlinear wave models derived in the current contribution using, for example, the Lie symmetry 

framework and its extensions [56] . 

Another important question that requires further study is the applicability of the models (1.1), (1.3), (1.4) to the de-

scription of actual fiber-reinforced materials, in particular, biological membranes. Indeed, while the above PDEs have rather 

simple and short forms, taking into account more realistic constitutive relations (2.5) , pre-stressed configurations, variable 

density, compressibility, and other factors, would lead to significantly more mathematically complex wave models. 
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Appendix A. Nonlinear wave equations for a general constitutive relation 

In this section, we generalize the results of Section 3 by deriving the wave equations governing the shear deforma-

tions (3.3) of an incompressible anisotropic fiber-reinforced hyperelastic solid involving two helical fiber families (3.1) , 

and described by a general constitutive relation W 

h = W 

h 
iso 

+ W 

h 
aniso 

(2.5) involving arbitrary sufficiently smooth functions 

 

h 
iso 

= U(I 1 , I 2 ) (2.14) and W 

h 
aniso 

= V (I 4 , I 5 , I 6 , I 7 , I 8 ) (2.19) . 

For the deformation class (3.3) , the incompressibility condition J = det F = 1 is identically satisfied (see (3.4) ), and the

specific forms of invariants I j , j = 1 , .., 8 , are given by 

C : I 1 = I 2 = 3 + G 

2 
R , I 3 = J 2 = 1 , I 4 = I 6 = 1 , 

I 5 = I 7 = 1 + G 

2 
R sin 

2 β, I 8 = cos 2 2 β. 

(A.1) 

The equations of motion for the displacement G (t, R ) are derived componentwise from (2.6), (2.9a) (see also Fig. 2 ). As in

Section 3 , the R − and 
−projections of the equation of motion (2.9a) determine the pressure; they are compatible when 

∂V 

∂ I 5 

∣∣
C = 

∂V 

∂ I 7 

∣∣
C . (A.2) 

i.e., the indicated partial derivatives match when the substitution C has been made. The pressure equation then becomes 

p R = 4 ρG R G RR (U 1 , 1 + 3 U 1 , 2 + 2 U 2 , 2 ) − 2 ρ

R 

G 

2 
R U 2 − 2 ρ

R 

cos 2 β(V 4 + 4 V 5 + V 6 + V 8 cos 2 β) (A.3)

(cf. (3.8) ). Here and below we denote 

V 4 = 

∂V 

∂ I 4 

∣∣
C , U 1 , 2 = 

∂U 

∂ I 1 ∂ I 2 

∣∣
C , 

etc., i.e., partial derivatives of general constitutive functions by their respective arguments, computed on relations (A.1) . 

Importantly, the substitution C is made after computing the indicated partial derivatives. 

The Z−projection of (2.9a) leads to the equation of motion 

G tt = 

1 

R 

∂ 

∂R 

(
2 R (U 1 + U 2 + 2 V 5 sin 

2 β) G R 

)
, (A.4) 

governing the nonlinear dynamics of the anti-plane shear displacement G (t, R ) (cf. (1.2) ). The PDE (A.4) is briefly written as

(1.2) in the Introduction. 
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Appendix B. Exact solutions of the linear wave problems with two families of helical fibers 

B1. The Dirichlet problem 

The non-homogeneous Dirichlet initial-boundary value problem (1.2), (3.10) describes shear radial waves in an elastic 

cylinder reinforced with two families of fibers ( Section 3 ). 

The solution proceeds by the separation of variables in the PDE (1.2) : G (t, R ) = T (t) Q(R ) . Considering a homogeneous

version of the problem first, one gets 

T ′′ 
αT 

= 

R 

2 Q 

′′ + RQ 

′ 
R 

2 Q 

= −λ, λ = const ∈ R . 

Consequently, the spatial part of the solution Q = Q(R ) satisfies the BVP 

−(RQ 

′ ) ′ = λRQ, R 1 ≤ R ≤ R 2 ;
Q(R 1 ) = Q(R 2 ) = 0 . 

(B.1) 

Here the ODE is related to the zeroth-degree Bessel equation, and the problem (B.1) is a regular Sturm-Liouville eigenvalue

problem for the eigenpairs { λn , Q n (R ) } ∞ 

n =1 
. It follows that there is a countable infinite set of eigenpairs, with eigenfunctions

given by 

Q n (R ) = 

−Y 0 ( 
√ 

λn R 2 ) 

J 0 ( 
√ 

λn R 2 ) 
J 0 ( 

√ 

λn R ) + Y 0 ( 
√ 

λn R ) , n = 1 , 2 , 3 , . . . , (B.2)

in terms of Bessel functions of order zero. In the appropriate function space, the functions (B.2) form an orthogonal with

respect to the inner product 

( f, g) = 

∫ R 2 

R 1 

f (R ) g(R ) R dR. (B.3) 

The eigenvalues λ = λn are members of the increasing positive sequence of roots of the equation 

J 0 ( 
√ 

λR 1 ) Y 0 ( 
√ 

λR 2 ) − Y 0 ( 
√ 

λR 1 ) J 0 ( 
√ 

λR 2 ) = 0 , (B.4)

in particular, λn = O(n 2 ) → ∞ as n → ∞ . 

Next, the homogeneous Dirichlet IBVP (1.2), (3.10) is converted to one with zero boundary conditions, but a non- 

homogeneous PDE. This is achieved with a change of variables 

G (t, R ) = U(t, R ) + V (t, R ) , V (t , R ) = 

R − R 2 

R 1 − R 2 

g(t ) . 

The new unknown U(t, R ) then satisfies the problem 

U tt = α
(

1 
R 

U R + U RR 

)
+ F (t, R ) , R 1 ≤ R ≤ R 2 , t > 0 ;

U(R, 0) = −V (R, 0) , U t (R, 0) = −V t (R, 0) , R 1 ≤ R ≤ R 2 ;

U(R 1 , t) = U(R 2 , t) = 0 , t > 0 . 

(B.5) 

Here F (t, R ) := (α/R ) V R − V tt is a known function in terms of R 1 , R 2 , R, and g(t) . The problem (B.5) is solved by expanding

the forcing term F (t, R ) and the unknown U(t, R ) in the eigenfunction basis (B.2) , finding ODEs satisfied by time-dependent

coefficients, and solving them, which is a standard procedure (see, e.g., Ref. [58] ). 

We now give an explicit expression for the series solution G (t, R ) of the Dirichlet problem (1.2), (3.10) in the specific case

of a periodically driven inner cylinder wall, 

g(t) = G 0 sin �t , � = const > 0 . 

The unique explicit solution for the shear displacements is given by the Fourier series 

G (t, R ) = 

(
R − R 2 

R 1 − R 2 

)
G 0 sin �t + 

∞ ∑ 

n =1 

( 

˜ a n sin ( 
√ 

αλn t) + 

˜ f n 

( 

� sin ( 
√ 

αλn t) −
√ 

αλn sin �t 

�2 − αλn 

) ) 

Q n (R ) , (B.6) 

where Q n (R ) is given by (B.2) , eigenvalues λn satisfy (B.4) , and the Fourier coefficients are 

˜ a n = − �G 0 

R 1 − R 2 

∫ R 2 

R 1 

(
R 

2 − RR 2 

)
Q n dR 

/ 

∫ R 2 

R 1 

Q 

2 
n R dR , 

˜ f n = 

G 0 

R 1 − R 2 

∫ R 2 

R 1 

(
�2 R (R − R 2 ) + α

)
Q n dR 

/ 

∫ R 2 

R 1 

Q 

2 
n R dR . 

We note that as expected, the resonance occurs when the forcing frequency coincides with one of the eigenfrequencies: 

�2 = αλn . 
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B2. The Neumann Boundary Value Problem 

In a similar fashion, one can construct an explicit series solution to a non-homogeneous Neumann initial-boundary value 

problem (1.2), (3.11) . The separation of variables in the PDE (1.2) , using G (t, R ) = T (t) Q(R ) , proceeds in the same fashion as

for the Dirichlet problem. In the Neumann case, the spatial part of the solution Q = Q(R ) satisfies the Sturm-Liouville BVP

−(RQ 

′ ) ′ = −λR 

2 Q, R 1 ≤ R ≤ R 2 ;
Q 

′ (R 1 ) = Q 

′ (R 2 ) = 0 , 
(B.7) 

which yields the eigenpairs { μn , ˜ Q n (R ) } ∞ 

n =1 . The eigenfunctions are given by 

˜ Q n (R ) = −Y 1 ( 
√ 

μn R 2 ) J 1 ( 
√ 

μn R ) 

J 1 ( 
√ 

μn R 2 ) 
+ Y 1 ( 

√ 

μn R ) (B.8) 

in terms of Bessel functions of order one, and are orthogonal with respect to the same inner product (B.3) . The eigenvalues

μn are also different from their Dirichlet homologues; they are the members of the increasing positive sequence of roots of 

the equation 

J 1 ( 
√ 

μR 1 ) Y 1 ( 
√ 

μR 2 ) − Y 1 ( 
√ 

μR 1 ) J 1 ( 
√ 

μR 2 ) = 0 . 

The rest of the solution procedure carries over from the Dirichlet case above, using expansions in the basis (B.8) . We again

give an explicit expression for the series solution G (t, R ) of the Neumann problem (1.2), (3.11) in the specific case of a

periodically forced inner cylindrical wall: 

g(t) = G 0 sin (�t) , � = const > 0 . 

The solution takes the form 

G (t, R ) = 

R 

2 − R 2 R 

2(R 1 − R 2 ) 
G 0 sin �t + 

∞ ∑ 

n =1 

(
˜ a n sin ( 

√ 

αμn t) + 

˜ f n 

(
� sin ( 

√ 

αμn t) − √ 

αμn sin �t 

�2 − αμn 

))
˜ Q n ( R ) , (B.9) 

where the Fourier coefficients are given by 

˜ a n = 

(
�G 0 

2(R 1 − R 2 ) 

)∫ R 2 

R 1 

(
R 

3 − 2 R 

2 R 2 

)
˜ Q n dR 

/ 

∫ R 2 

R 1 

˜ Q 

2 
n R dR , 

˜ f n = 

G 0 

2(R 1 − R 2 ) 

∫ R 2 

R 1 

(
�2 R 

3 − 2�2 R 2 R 

2 + 4 αR − 2 αR 2 

)
˜ Q n dR 

/ 

∫ R 2 

R 1 

˜ Q 

2 
n R dR . 
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