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B S T R A C T

or systems of partial differential equations in three spatial dimensions, dynamical conservation laws holding on volumes, surfaces, and curves, as well as
opological conservation laws holding on surfaces and curves, are studied in a unified framework. Both global and local formulations of these different conservation
aws are discussed, including the forms of global constants of motion. The main results consist of providing an explicit characterization for when two conservation
aws are locally or globally equivalent, and for when a conservation law is locally or globally trivial, as well as deriving relationships among the different types of
onservation laws. In particular, the notion of a ‘‘trivial’’ conservation law is clarified for all of the types of conservation laws. Moreover, as further new results,
onditions under which a trivial local conservation law on a domain can yield a non-trivial global conservation law on the domain boundary are determined and
hown to be related to differential identities that hold for PDE systems containing both evolution equations and spatial constraint equations. Numerous physical
xamples from fluid flow, gas dynamics, electromagnetism, and magnetohydrodynamics are used as illustrations.
. Introduction

Conservation laws of dynamical type and topological type have
umerous importance uses in the study of partial differential equations
PDEs).

In local form, a dynamical conservation law is a continuity equation
hat holds for all solutions of a given PDE system on a spatial domain.
n three spatial dimensions, this domain is most often taken to be

spatial volume, and the continuity equation then states that the
ime derivative of a local density quantity (e.g. mass, energy, charge,
omentum, vorticity) is balanced by the divergence of a local spatial

lux vector. Domains given by surfaces and curves in three dimensions
an similarly lead to useful continuity equations for local flux quantities
nd local circulation quantities, respectively, as will be fully developed
nd explained in the present paper.

All local conservation laws are an intrinsic coordinate-free aspect
f the structure of a PDE system [1–3]. They yield potentials and
onlocally-related systems [2,4,5]. In the case of volume domains,
hey detect if a PDE system admits an invertible transformation into a
arget class of PDE systems (e.g. nonlinear to linear, or linear variable
oefficient to constant coefficient) [6,7], and they typically indicate
f a PDE system has integrability structure [8]. They also can be
sed to construct good discretizations for numerical solution methods
e.g. conserving energy) [9].

In global form, a dynamical conservation law gives a balance
quation in which the rate of change of an integral quantity over some
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given spatial domain is equal to a net flux measured by an integral
quantity over the domain boundary, holding for all solutions of a
given PDE system. Global conservation laws, especially for volume
domains, are often the fundamental equations that govern a physical
process. These conservation laws provide a basic starting point in
the formulation of mathematical models and equations in continuum
physical systems, such as gas dynamics, fluid mechanics, continuum
mechanics, electromagnetism, and magnetohydrodynamics. The global
form of conservation laws on surface domains and curve domains have
a similarly important role, but have been less well-studied in general
(apart from some special applications in classical field theory [10]).

All global dynamical conservation laws yield conserved integral
quantities when suitable boundary conditions are posed for a PDE sys-
tem. These integral quantities provide conserved norms and estimates
which are central to the analysis of solutions such as existence and
uniqueness, stability, and global behaviour. They also allow checking
the accuracy of numerical solutions and numerical integration methods.

Topological conservation laws, in contrast, describe an integral
quantity that remains conserved for all solutions of a given PDE sys-
tem when a spatial domain is deformed in any continuous way that
preserves its topology. These conservation laws typically arise in PDE
systems that contain differential constraints, like spatial divergence
or curl equations. In three spatial dimensions, there are two main
types of global topological conservation laws, given by surface integral
quantities and line integral quantities, which are time-independent
counterparts of dynamical conservation laws.
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The primary purpose of this paper is to study all of these different
types of three-dimensional conservation laws, as well as their inter-
relationships, in a unified framework for general PDE systems in R3.
As basic results, dynamical conservation laws on surface domains and
curve domains are formulated as continuity equations analogously to
dynamical conservation laws on volume domains. The formulation is
particularly appropriate for dynamical PDE systems consisting of evo-
lution equations, with or without spatial constraints, in the context of
continuum mechanics, and it is more general than the standard notion
of lower-degree conservation laws [1,2,11] in which time coordinate is
not distinguished from the space coordinates. Further basic results are
that, for each type of dynamical and topological conservation law in
three spatial dimensions, an explicit characterization will be provided
to show when two conservation laws are locally or globally equivalent,
and to show when a conservation law is locally or globally trivial. In
addition, various relationships between the different types of conserva-
tion laws will be examined. These results will clarify, in particular, the
notion of a ‘‘trivial’’ conservation law, especially for the less familiar
situation of conservation laws on surface domains and curve domains.
Specifically, it will be shown in what sense a ‘‘trivial’’ conservation law
is a mathematical identity containing no useful information about the
solutions of a given PDE system.

As interesting new consequences of these results, it will be shown
that under certain conditions a locally trivial dynamical conservation
law formulated in a spatial domain can give rise to a globally non-trivial
dynamical conservation law on the domain boundary. Such boundary
conservation laws represent constants of motion and correspond to
continuity equations in which the spatial flux is zero. Furthermore, a
direct connection will be established between these conservation laws
and differential identities that hold for PDE systems containing both
evolution equations and spatial constraint equations. This will explain
what has been the source of some confusion in the applied mathematics
and physics literature on whether such differential identities are merely
‘‘trivial’’ conservation laws.

Throughout, we will formulate conservation laws in the common
way in physics and applied mathematics by working on the space of
solutions of a given PDE system. We also will state and derive the main
results in a concrete form using vector calculus that is most useful for
physical applications.

This paper will not deal with the question of how to find conserva-
tion laws for a given PDE system. We remark that a direct constructive
method using multipliers can be applied to derive local dynamical
conservation laws of volume type for PDE systems [1–3,12–15]. This
general multiplier method can be extended for deriving all of the other
types of local conservation laws. A more abstract approach to the study
and computation of conservation laws, in the setting of cohomology in
the variational bi-complex, can be found in Refs. [16,17].

The rest of the present paper is organized as follows.
In Section 2, we give a brief summary of the PDE systems for fluid

flow, gas dynamics, electromagnetism, and magnetohydrodynamics,
which will be used to illustrate all of the subsequent main results.
This summary will establish our notation and show how these phys-
ical systems fit into a general concrete formulation of PDE systems
and conservation laws in three spatial dimensions. We also discuss
some mathematical preliminaries that underlie this framework and
that are essential for doing computations of all types of conservation
laws. In particular, the basic notion of a regular PDE system and its
coordinatization via a set of leading derivatives is discussed.

In Section 3, we discuss the definition, properties, and
inter-relationships for three-dimensional local and global conservation
laws of dynamical nature formulated on volume domains, surface
domains, and curve domains. The physical meaning of the resulting
conserved quantities are explained, and the conditions under which a
dynamical conservation law yields a constant of motion are discussed.
We similarly discuss time-independent versions of these conservation
2

laws, which represent three-dimensional topological conserved quanti-
ties. We also discuss constants of motion arising from dynamical and
topological conservation laws.

In Section 4, for all of these different types of conservation laws,
we explain the notions of triviality and equivalence, using both local
and global formulations. We also derive, for all three types of domains,
the conditions under which a locally trivial dynamical conservation law
in a domain yields a globally non-trivial dynamical conservation law
on the domain boundary. Additionally, for such boundary conservation
laws, we give their local formulation and show how they can arise from
topological conservation laws as well as from lower-degree dynamical
conservation laws with zero flux.

We will illustrate each different type of conservation law by a phys-
ical example taken from fluid flow, gas dynamics, electromagnetism,
and magnetohydrodynamics.

In Section 5, we look systematically at all of these physical ex-
amples and use them to showcase our main results. In particular, for
incompressible/irrotational fluid flow, electromagnetism, and magne-
tohydrodynamics, we give physical examples of non-trivial boundary
conservation laws that arise from locally trivial dynamical conservation
laws in volume domains and surface domains. As new applications, two
interesting examples will be given for fluid flow with non-vanishing
vorticity: circulation around closed static curves will be shown to be
conserved for Beltrami flows, and net flux of circulatory potential
temperature through closed static surfaces will be shown to be con-
served for flows with diabatic heating in a certain Beltrami state. All
of the examples also show that how such boundary conservation laws
can originate directly from differential identities that hold when a
PDE system contains both evolution equations and spatial constraint
equations.

In Section 6, we explain how non-triviality gets altered when po-
tentials are introduced for a PDE system through a local conservation
law. We use well-known examples of potentials in fluid flow, gas
dynamics, electromagnetism, and magnetohydrodynamics to illustrate
the discussion.

Finally, we make some concluding remarks in Section 7.
Some further aspects of our framework and results are given in

three appendices. In Appendix A, we state the interrelationships that
hold among the different types of conservation laws. In Appendix B, we
transcribe our main new results into the formalism of differential forms
and show how our formulation of dynamical conservation laws on
surface domains and curve domains is more general than the standard
notion of 2-form and 1-form conservation laws. In Appendix C, we give
a more rigorous mathematical formulation of conservation laws and
certain associated technical conditions in the setting of jet spaces.

2. Preliminaries and physical PDE systems

We will first summarize in a unified way the PDE systems for fluid
flow, gas dynamics, electromagnetism, and magnetohydrodynamics in
three spatial dimensions in vector calculus notation. (See Refs. [18–
20] for more details about the physical derivation of these systems.)
In particular, we distinguish between dynamical equations, constraint
equations, and constitutive equations. This summary will help to ex-
plain the subsequent general formulation of PDE systems which will we
introduce and use throughout our discussion and results on conserva-
tion laws. The general formulation essentially underlies computations
of all types of conservation laws.

We will let �⃗� denote the position vector in three dimensions, and 𝑡
will denote time. The standard divergence, curl, and gradient operators
will be denoted div = ∇⋅, curl = ∇×, and grad = ∇, respectively.
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2.1. Fluid and gas dynamics

The flow of fluids in a wide variety of physical situations is de-
scribed by the Navier–Stokes equations, which govern the fluid velocity
𝑢(𝑡, �⃗�), density 𝜌(𝑡, �⃗�), and pressure 𝑝(𝑡, �⃗�). In the absence of external
forces and for non-adiabatic processes, the Navier–Stokes equations
consist of a mass continuity equation

𝜌𝑡 + div(𝜌𝑢) = 0 (2.1)

and a momentum balance equation

𝜌(𝑢𝑡 + (𝑢 ⋅ ∇)𝑢) + grad 𝑝 = 𝜇 𝛥𝑢 + 𝜈grad(div 𝑢) (2.2)

where 𝜇, 𝜈 are the viscosity coefficients. Sometimes the latter equation
is written in a shorter form in terms of the variable �̄� = 𝑝+𝜈div 𝑢 called
the mechanical pressure.

The fluid flow is inviscid (ideal) when there is no viscosity, 𝜇 = 𝜈 = 0.
Then the momentum balance equation becomes

𝜌(𝑢𝑡 + (𝑢 ⋅ ∇)𝑢) + grad 𝑝 = 0 (2.3)

which together with the mass continuity equation (2.1) constitute the
Euler equations for ideal fluids as well as for gas dynamics.

In addition to the mass and momentum equations, in fluid flow an
equation of state involving either 𝑢, 𝜌, or 𝑝 must be specified to obtain a
closed system of equations and to model particular physical properties
of a fluid or gas. The most common equations of state are the following:

constant density 𝜌 = const; (2.4)

incompressible flow div 𝑢 = 0; (2.5)

barotropic flow 𝑝 = 𝑝(𝜌); (2.6)

locally adiabatic flow 𝑝 = 𝑝(𝜌, 𝑆), 𝑆𝑡 + 𝑢 ⋅ grad 𝑆 = 0; (2.7)

with 𝑆 being the local entropy of the fluid. For incompressible fluid
low, the mass equation (2.1) reduces to a transport equation

𝑡 + 𝑢 ⋅ grad 𝜌 = 0 (2.8)

for the density. Constant-density fluid flow is a special case of in-
compressible flow, since the mass equation (2.1) then reduces to the
incompressibility equation (2.5). A flow is homentropic when 𝑆 is
constant throughout the fluid.

In the cases of constant-density fluid flow and incompressible fluid
flow, the compatibility between the incompressibility equation (2.5)
and the momentum equation (2.2) or (2.3) yields a Laplace-type
equation for the pressure. In particular, when the fluid is ideal, the
pressure is determined by

div((1∕𝜌)grad 𝑝) = −(∇𝑢) ⋅ (∇𝑢)t (2.9)

(where ‘‘t’’ denotes the matrix transpose in Cartesian coordinates).
The dynamics of gases in the simplest physical situations is governed

y the mass continuity equation (2.1), the inviscid momentum equation
2.3), and the adiabatic (non-homentropic) process equation (2.7).
ommonly, the latter equation is inverted to give 𝑆 = 𝑆(𝑝, 𝜌) as a

function of pressure and density, so then the transport equation for 𝑆
becomes a corresponding transport equation for 𝑝:

𝑝𝑡 + 𝑢 ⋅ grad 𝑝 + 𝐹 (𝑝, 𝜌)div 𝑢 = 0 (2.10)

with

𝐹 (𝑝, 𝜌) =
𝜕𝑆∕𝜕(1∕𝜌)
𝜌𝜕𝑆∕𝜕𝑝

= 𝜌𝑐(𝑝, 𝜌)2 (2.11)

which determines the sound speed 𝑐(𝑝, 𝜌) in the gas. The sound speed
s a constitutive function, which has the role of an equation of state.

The two most common equations of state are the following:

deal 𝑐2 = 𝑓 (𝑝∕(𝑅𝜌)), 𝑅 = const; (2.12)

polytropic (ideal) 𝑐2 = 𝛾𝑝∕𝜌, 𝛾 = const. (2.13)
3

The ideal equation of state (2.12) (in which 𝑓 is an arbitrary positive
function of 𝑝∕(𝑅𝜌)) can be shown to be equivalent to the ideal gas law
∕𝜌 = 𝑅𝑇 through the thermodynamic relation

𝑒 = 𝑇 𝛿𝑆 − 𝑝𝛿(1∕𝜌) (2.14)

here 𝑇 is the temperature of the gas. In particular, 𝑒 = 𝑒(𝑇 ) holds
hen the gas is ideal, and 𝑒 = 𝑐𝑉 𝑇 with 𝑐𝑉 = const holds in the special

ase of a polytropic gas. This implies 𝑐 = 𝑐(𝑇 ) for an ideal gas, and
=
√

𝛾𝑅𝑇 when the gas is polytropic.

2.1.1. Vorticity
The vorticity of a gas/fluid is defined by

�⃗� = curl 𝑢, div �⃗� = 0. (2.15)

This allows the momentum equation to be expressed in the form

⃗𝑡 + �⃗� × 𝑢 = − 1
2grad(|𝑢|2) − (1∕𝜌)grad �̄� + (𝜇∕𝜌)𝛥𝑢 (2.16)

using the identity

(𝑢 ⋅ ∇)𝑢 = 1
2grad(|𝑢|2) − 𝑢 × �⃗�. (2.17)

The curl of the velocity equation (2.16) yields the vorticity transport
equation

�⃗�𝑡 + curl(�⃗� × 𝑢) = −grad(1∕𝜌) × (grad �̄� − 𝜇𝛥𝑢) + (𝜇∕𝜌)𝛥�⃗�. (2.18)

In the case when a fluid is ideal and has either constant density (2.4)
or barotropic pressure (2.6), the velocity and vorticity equations (2.16)
and (2.18) simplify to the form

⃗𝑡 + �⃗� × 𝑢 + grad( 12 |𝑢|
2 + 𝑒(𝜌) + 𝑝∕𝜌) = 0 (2.19)

and

�⃗�𝑡 + curl(�⃗� × 𝑢) = 0. (2.20)

Here 𝑒(𝜌) is the local internal energy density of the fluid/gas, which
is defined through the thermodynamic relation (2.14) in the case of
adiabatic processes, 𝛿𝑆 = 0. In particular, 𝑒(𝜌) = const holds in the
constant-density case, and 𝑒(𝜌) = ∫ (𝑝(𝜌)∕𝜌2)𝑑𝜌 holds in the barotropic
case.

A gas/fluid is irrotational when there is no vorticity, �⃗� = 0.
The motion of a gas/fluid is a Beltrami flow when the vorticity is

arallel to the velocity, �⃗� × 𝑢 = 0.

.2. Electromagnetism

The microscopic Maxwell’s equations governing the electric and
agnetic fields �⃗�(𝑡, �⃗�) and �⃗�(𝑡, �⃗�) are given by (in Gaussian units)

⃗𝑡 − 𝑐curl �⃗� = −4𝜋𝐽 , div �⃗� = 4𝜋𝜌, (2.21a)
⃗𝑡 + 𝑐curl �⃗� = 0, div �⃗� = 0, (2.21b)

here 𝜌(𝑡, �⃗�) is the electric charge density and 𝐽 (𝑡, �⃗�) is the electric
urrent density. Here 𝑐 denotes the speed of light in vacuum.

In this system (2.21), the charge density 𝜌(𝑡, �⃗�) is a specified scalar
unction, and the current density 𝐽 (𝑡, �⃗�) is a specified vector function,
hich are related by the continuity equation

𝑡 + div 𝐽 = 0. (2.22)

athematically, this expresses that the evolution equations for �⃗� and
⃗ are each compatible with the divergence equations for �⃗� and �⃗�.

Maxwell’s equations in vacuum arise when there is no charge 𝜌 = 0
nd no current 𝐽 = 0:

⃗𝑡 − 𝑐curl �⃗� = 0, div �⃗� = 0, (2.23a)
⃗𝑡 + 𝑐curl �⃗� = 0, div �⃗� = 0. (2.23b)
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2.3. Magnetohydrodynamics equations

The dynamics of plasmas and liquid metals in the simplest phys-
ical situations that include diffusivity are governed by the resistive
magnetohydrodynamics (MHD) equations:

𝜌𝑡 + div(𝜌𝑢) = 0, (2.24a)

𝜌(𝑢𝑡 + (𝑢 ⋅ grad)𝑢) = 𝐽 × �⃗� − grad 𝑝 + 𝜇 𝛥𝑢, (2.24b)

�⃗�𝑡 = curl (𝑢 × �⃗�) + 𝜂
𝜇0
𝛥�⃗�, (2.24c)

0𝐽 = curl �⃗�, (2.24d)

div �⃗� = 0 (2.24e)

for the density 𝜌(𝑡, �⃗�), velocity 𝑢(𝑡, �⃗�), hydrostatic pressure 𝑝(𝑡, �⃗�), electric
current 𝐽 (𝑡, �⃗�), and magnetic field �⃗�(𝑡, �⃗�), where the constants 𝜇0,
𝜇, 𝜂 are, respectively, the magnetic permeability of free space, the
plasma/liquid-metal viscosity coefficient, and the resistivity coefficient.
The electric field is given by Ohm’s law

�⃗� + 𝑢 × �⃗� = 𝜂𝐽 . (2.25)

It is useful to note that the magnetic field equation (2.24c) can be
written in the curl form

�⃗�𝑡 = curl (𝑢 × �⃗� − 𝜂
𝜇0

curl �⃗�), (2.26)

due to the identity curl (curl �⃗�) = grad(div �⃗�) − 𝛥�⃗�.
In addition to these equations, an equation of state involving either

𝑢, 𝜌, or 𝑝 must be specified to obtain a closed system of equations and to
model particular physical properties of a plasma/liquid metal. The two
most common equations of state considered in magnetohydrodynamics
are given by locally adiabatic flow (2.7) and incompressible flow (2.5).

A plasma/liquid is inviscid when there is no fluid viscosity, 𝜇 = 0,
and is ideal when there is no magnetic viscosity, 𝜂 = 0.

In incompressible liquid metals, the mass equation (2.24a) reduces
to a transport equation (2.8) for the density. Additionally, the compati-
bility between the incompressibility equation (2.5) and the momentum
equation (2.24b) yields a Laplace-type equation for the pressure. In
particular, when the liquid is inviscid, the pressure is determined by

div((1∕𝜌)grad 𝑝) = −(∇𝑢) ⋅ (∇𝑢)t + div((1∕𝜌)𝐽 × �⃗�) (2.27)

(where ‘‘t’’ denotes the matrix transpose in Cartesian coordinates).

2.4. Preliminaries

In three spatial dimensions, a general PDE system 𝑮[𝒗] = 0 can be
ritten as
𝑎(𝑡, �⃗�, 𝒗, 𝜕𝒗,… , 𝜕𝑁𝑎𝒗) = 0, 𝑎 = 1,… ,𝑀 (2.28)

consisting of 𝑀 ≥ 1 equations with independent variables 𝑡, �⃗� =
𝑥1, 𝑥2, 𝑥3), and dependent variables 𝒗 = 𝒗(𝑡, �⃗�) = (𝑣1(𝑡, �⃗�),… , 𝑣𝑚(𝑡, �⃗�)),
𝑚 ≥ 1, where 𝑁𝑎 ≥ 1 denotes the differential order of the 𝑎th equation.
In a given physical system, the PDEs (2.28) will comprise all of the
evolution equations and the spatial constraint equations, if any, on the
dependent variables, as well as any compatibility conditions among
these equations. Any equations of state and any constitutive relations
will be assumed to have been substituted into the PDEs. To illustrate
this formalism, the dependent variables 𝒗 and the equations 𝑮[𝒗] for
each of the physical systems in Sections 2.1 to 2.3 are shown in Table 1.

The solution space of a PDE system (2.28) is the set  consisting of
all functions 𝒗(𝑡, �⃗�) that satisfy each equation in the system. Generally,
we will consider PDE systems defined on all of R3. Our presentation
and results can be easily adjusted to hold on any physically reasonable
spatial domain 𝛺 ⊂ R3, including any physical boundary conditions
posed on solutions 𝒗(𝑡, �⃗�).

Before proceeding to discuss conservation laws, we will summarize
some notation and preliminaries that will be essential for the sequel.
 h

4

It is useful to work in the coordinate space (𝑡, �⃗�, 𝒗, 𝜕𝒗, 𝜕2𝒗,…), called
the jet space, which is associated with the independent and dependent
variables of the PDE system (2.28). Here and throughout,

𝜕𝒗 = (𝜕𝑡𝒗, 𝜕𝑥1𝒗, 𝜕𝑥2𝒗, 𝜕𝑥3𝒗)

enotes the set of all first-order partial derivatives of the dependent
ariables, and similarly, 𝜕𝑘𝒗, 𝑘 ≥ 2, denotes the set of all 𝑘th-order

partial derivatives of 𝒗. When (𝑥1, 𝑥2, 𝑥3) are Cartesian coordinates, note

𝜕𝑥1 , 𝜕𝑥2 , 𝜕𝑥3 ) = ∇ = grad

s the standard gradient derivative operator, and

𝜕2
𝑥1

𝜕𝑥1𝜕𝑥2 𝜕𝑥1𝜕𝑥3
𝜕𝑥2𝜕𝑥1 𝜕2

𝑥2
𝜕𝑥2𝜕𝑥3

𝜕𝑥3𝜕𝑥1 𝜕𝑥3𝜕𝑥2 𝜕2
𝑥3

⎞

⎟

⎟

⎟

⎠

= ∇⊗ ∇ = grad2

s the standard Hessian matrix derivative operator. The trace of this
atrix operator yields the Laplacian
2
𝑥1

+ 𝜕2
𝑥2

+ 𝜕2
𝑥3

= 𝛥 = div ⋅ grad.

here div = ∇⋅ is the standard divergence operator.
In jet space, smooth functions will be denoted

[𝒗] ≡ 𝑓 (𝑡, �⃗�, 𝒗, 𝜕𝒗, 𝜕2𝒗,… , 𝜕𝑛𝒗),

here 𝑛 ≥ 0 is the maximum order of derivatives of 𝒗 that appear in
he function. Such functions are called differential functions. (Note that a
pecific differential function need not depend on all partial derivatives
f 𝒗 of order less than or equal to 𝑛.) Derivatives of differential functions
re defined by total derivatives with respect to 𝑡, 𝑥1, 𝑥2, 𝑥3 acting by
he chain rule. These derivatives are denoted 𝐷 = (𝐷𝑡, �⃗�𝑥) and �⃗�𝑥 =
𝐷1, 𝐷2, 𝐷3). Higher total derivatives, 𝐷𝑘, 𝑘 ≥ 2, are defined in a
imilar way. The variational derivative 𝛿∕𝛿𝒗 = (𝛿∕𝛿𝒗1,… , 𝛿∕𝛿𝒗𝑚) (Euler
perator) with respect to the set of dependent variables 𝒗 is defined
n terms of these total derivatives in the standard way. Coordinate
xpressions for the variational derivative, total derivatives, as well as
or total derivative counterparts of the div, curl, grad operators, will be
isted at the end of this subsection.

In any PDE system (2.28), each PDE itself is given by the vanishing
f a differential function; in particular, 𝐺𝑎[𝒗] = 0 is the 𝑎th PDE. Other
mportant occurrences of differential functions will be the physical
ensities and fluxes that appear in conservation laws.

The solution space  of a given PDE system (2.28) is represented
n jet space by the infinite set of equations {𝑮 = 0, 𝐷𝑮 = 0, 𝐷2𝑮 =
,…} whenever the PDE system is locally solvable [1]. For finding
nd verifying conservation laws, it is important in practice to have a
oordinatization of this set in terms of jet-space coordinates. We will
ssume, firstly, that a set of leading derivatives of 𝒗 can be chosen so
hat each PDE in the system can be put into a solved form where none
f the leading derivatives and none of their differential consequences
ppear on the right hand sides of the solved-form system. Secondly,
e will assume that the differential consequences of each PDE in the

ystem can be expressed in an analogous solved form for the differential
onsequences of the leading derivatives. PDE systems that satisfy these
wo conditions are known as regular systems [3,21] and they encompass
he PDE systems commonly arising in physical applications, including
hose for fluid and gas dynamics, electromagnetism, magnetohydro-
ynamics (cf. Sections 2.1 to 2.3). For a regular PDE system, the set
f equations given by the solved-form PDEs and their solved-form
ifferential consequences provide an explicit coordinatization of the
olution space

= {𝑮 = 0, 𝐷𝑮 = 0, 𝐷2𝑮 = 0,…} ⊂ (𝑡, �⃗�, 𝒗, 𝜕𝒗, 𝜕2𝒗,…)

s a subspace in jet space.
Given a differential function 𝑓 [𝒗], its evaluation on the solution

pace  of a PDE system (2.28) will be denoted by 𝑓 | . This notation

as the concrete meaning that, in jet space, 𝑓 | is given by substituting
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Table 1
Examples of physical PDE systems.

Physical system Variables 𝒗 PDE expressions 𝑮[𝒗] Eqns. of state/Constitutive eqns.

Gas dynamics 𝜌, 𝑝, 𝑢

𝜌𝑡 + div(𝜌𝑢),

𝑝𝑡 + 𝑢 ⋅ grad 𝑝 + 𝜌𝑐2div 𝑢,

𝑢𝑡 + (𝑢 ⋅ ∇)𝑢 + (1∕𝜌)grad 𝑝

𝑐 = 𝑐(𝑝, 𝜌)

Compressible fluid flow 𝜌, 𝑢
𝜌𝑡 + div(𝜌𝑢),

𝑢𝑡 + (𝑢 ⋅ ∇)𝑢 + (1∕𝜌)grad 𝑝 + 𝜇𝛥𝑢
𝑝 = 𝑝(𝜌), 𝑝(𝜌, 𝑆)

Incompressible ideal fluid flow 𝜌, 𝑢, 𝑝

𝜌𝑡 + 𝑢 ⋅ grad 𝜌, div 𝑢,

𝑢𝑡 + (𝑢 ⋅ ∇)𝑢 + (1∕𝜌)grad 𝑝,

div((1∕𝜌)grad 𝑝) + (grad 𝑢) ⋅ (grad 𝑢)t

Electromagnetism �⃗�, �⃗�
�⃗�𝑡 − 𝑐curl �⃗� + 4𝜋𝐽 , div �⃗� − 4𝜋𝜌,

�⃗�𝑡 + 𝑐curl �⃗�, div �⃗�,

𝜌(𝑡, �⃗�), 𝐽 (𝑡, �⃗�),

𝜌𝑡 + div 𝐽 = 0

MHD 𝜌, 𝑢, �⃗�

𝜌𝑡 + div(𝜌𝑢),

𝜌(𝑢𝑡 + (𝑢 ⋅ grad)𝑢) − 𝐽 × �⃗�

+ grad 𝑝 − 𝜇 𝛥𝑢,

�⃗�𝑡 − curl (𝑢 × �⃗�) + 𝜂 𝛥�⃗�, div �⃗�

𝑝 = 𝑝(𝜌),

𝐽 = 1
𝜇0

curl �⃗�

Incompressible inviscid MHD 𝜌, 𝑢, 𝑝, �⃗�

𝜌𝑡 + div(𝜌𝑢), div 𝑢,

𝜌(𝑢𝑡 + (𝑢 ⋅ grad)𝑢) − 𝐽 × �⃗� + grad 𝑝,

�⃗�𝑡 − curl (𝑢 × �⃗�) + 𝜂 𝛥�⃗�, div �⃗�,

div((1∕𝜌)grad 𝑝) + (grad 𝑢) ⋅ (grad 𝑢)t

− div((1∕𝜌)𝐽 × �⃗�)

𝐽 = 1
𝜇0

curl �⃗�
s
a solved form of the PDE system (and its differential consequences) into
𝑓 .

For an example, in gas dynamics (cf. Section 2.1), the PDE system
(2.1), (2.3), (2.10), (2.11) for the dependent variables (𝜌, 𝑝, 𝑢) is an
evolution system. The simplest choice of a set of leading derivatives
consists of the time derivatives {𝜕𝑡𝜌, 𝜕𝑡𝑝, 𝜕𝑡𝑢} for which this system has
the explicit solved form

𝜕𝑡𝜌 = −div(𝜌𝑢), 𝜕𝑡𝑝 = −𝑢 ⋅ grad 𝑝 − 𝜌 𝑐(𝑝, 𝜌)2div 𝑢,

𝜕𝑡𝑢 = −(𝑢 ⋅ ∇)𝑢 − (1∕𝜌)grad 𝑝.

This set of equations along with their differential consequences with
respect to 𝑡, �⃗� comprise the solution space  . Using this solved form for
the PDE system, we have that

𝑓 (𝑡, �⃗�, 𝜌, 𝑝, 𝑢, 𝜕𝑡𝜌, 𝜕𝑡𝑝, 𝜕𝑡𝑢, grad 𝜌, grad 𝑝, grad 𝑢,…)|
= 𝑓 (𝑡, �⃗�, 𝜌, 𝑢,−div(𝜌𝑢),−(𝑢 ⋅ ∇)𝑢 − (1∕𝜌)grad 𝑝,

− 𝑢 ⋅ grad 𝑝 − 𝜌 𝑐(𝑝, 𝜌)2div 𝑢,
grad 𝜌, grad 𝑝, grad 𝑢,…)

for any differential function 𝑓 . There are other possible choices of a
set of leading derivatives. For instance, in Cartesian coordinates �⃗� =
(𝑥, 𝑦, 𝑧), any one of the sets of first-order spatial coordinate derivatives
{𝜕𝑥𝜌, 𝜕𝑥𝑝, 𝜕𝑥𝑢}, {𝜕𝑦𝜌, 𝜕𝑦𝑝, 𝜕𝑦𝑢}, {𝜕𝑧𝜌, 𝜕𝑧𝑝, 𝜕𝑧𝑢} can be used.

As a more involved example, in constant-density ideal fluid flow
cf. Section 2.1), the pressure and velocity are the dependent vari-
bles (𝑝, 𝑢), while the density 𝜌 is a constant. The PDE system (2.3),
2.5), (2.9) governing these variables is not an evolution system, and
onsequently the time derivatives {𝜕𝑡𝑝, 𝜕𝑡𝑢} do not provide a set of
eading derivatives. A leading derivative for the pressure equation (2.9)
s given by any one of the second-order spatial coordinate derivatives
2
𝑥𝑝, 𝜕

2
𝑦𝑝, 𝜕

2
𝑧𝑝 in Cartesian coordinates �⃗� = (𝑥, 𝑦, 𝑧). Similarly, any one of

he first-order spatial coordinate derivatives 𝜕𝑥𝑢1, 𝜕𝑦𝑢2, 𝜕𝑧𝑢3 provides a
eading derivative for the divergence equation (2.5). For the velocity
quation (2.3), any one of the sets of leading derivatives shown in the
as dynamics example can be used, other than the leading derivative
hosen for the divergence equation. For instance, {𝜕𝑥𝑢1, 𝜕2𝑥𝑝, 𝜕𝑡𝑢} pro-
ides a set of leading derivatives, where the PDEs have the explicit
5

olved form
𝜕𝑥𝑢

1 = −𝜕𝑦𝑢2 − 𝜕𝑧𝑢3,

𝜕2𝑥𝑝 = −𝜕2𝑦𝑝 − 𝜕
2
𝑧𝑝 + 2

(

(𝜕𝑦𝑢2)2 + (𝜕𝑧𝑢𝑧)2 + (𝜕𝑦𝑢2)(𝜕𝑧𝑢3)

+ (𝜕𝑥𝑢2)(𝜕𝑦𝑢1) + (𝜕𝑦𝑢3)(𝜕𝑧𝑢𝑦) + (𝜕𝑧𝑢1)(𝜕𝑥𝑢3)
)

,

𝜕𝑡𝑢
1 = 𝑢1(𝜕𝑦𝑢2 + 𝜕𝑧𝑢3) − 𝑢2𝜕𝑦𝑢1 − 𝑢3𝜕𝑧𝑢1 − (1∕𝜌)grad 𝑝,

𝜕𝑡𝑢
2 = −𝑢1𝜕𝑥𝑢2 − 𝑢2𝜕𝑦𝑢2 − 𝑢3𝜕𝑧𝑢2 − (1∕𝜌)𝜕𝑦𝑝,

𝜕𝑡𝑢
3 = −𝑢1𝜕𝑥𝑢3 − 𝑢2𝜕𝑦𝑢3 − 𝑢3𝜕𝑧𝑢3 − (1∕𝜌)𝜕𝑧𝑝.

This set of equations along with their differential consequences with
respect to 𝑡, 𝑥, 𝑦, 𝑧 comprise the solution space  of the PDE system.

The notion of evaluating a differential function on the solution
space  of a given PDE system has an extension to comparing when
two differential functions agree on  . Specifically, suppose that two
differential functions 𝑓1[𝒗] and 𝑓2[𝒗] are not identically equal but
satisfy (𝑓1[𝒗] − 𝑓2[𝒗])| = 0 when they are evaluated on  . Then we
say that these functions are equivalent on solutions of the PDE system
(2.28) and we correspondingly write

𝑓1[𝒗]| = 𝑓2[𝒗]| .

Note that we must use the same choice of leading derivatives for
evaluating both functions.

An important consideration will be to characterize all differential
functions that vanish on the solution space  of a given PDE system.
The following result is known as Hadamard’s lemma [3,22].

Lemma 1. Let 𝑓 [𝒗] be a (smooth) differential function satisfying 𝑓 [𝒗]| =
0 for a PDE system (2.28). Then 𝑓 [𝒗] is identically equal to a linear combi-
nation of the PDEs in the system and their differential consequences, if the
PDE system is regular (namely, the system and its differential consequences
have a solved form with respect to a set of leading derivatives).

More details related to jet spaces, differential functions, the solution
space of a PDE system, local solvability, regularity, and Hadamard’s
lemma, are provided in Appendix C.

To conclude these preliminaries, we will now state coordinate ex-
pressions for various operators in jet space. We begin with total deriva-
tives with respect to 𝑡 and 𝑥𝑖:

𝐷𝑡 =
𝜕 + 𝑣𝛼𝑡

𝜕
𝛼 + 𝑣𝛼𝑡𝑡

𝜕
𝛼 + 𝑣𝛼𝑡𝑥𝑖

𝜕
𝛼 +⋯ (2.29)
𝜕𝑡 𝜕𝑣 𝜕𝑣𝑡 𝜕𝑣
𝑥𝑖
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𝐷𝑖 =
𝜕
𝜕𝑥𝑖

+ 𝑣𝛼𝑥𝑖
𝜕
𝜕𝑣𝛼

+ 𝑣𝛼𝑡𝑥𝑖
𝜕
𝜕𝑣𝛼𝑡

+ 𝑣𝛼𝑥𝑖𝑥𝑗
𝜕

𝜕𝑣𝛼
𝑥𝑗

+⋯ , 𝑖 = 1, 2, 3, (2.30)

where the convention of summing over repeated indices is assumed.
Next we write down the total derivative counterparts of div, curl, grad
operators when 𝑥𝑖, 𝑖 = 1, 2, 3, are Cartesian coordinates. The total
radient operator is given by

rad 𝑓 [𝒗] = �⃗�𝑥𝑓 [𝒗] = (𝐷1𝑓 [𝒗], 𝐷2𝑓 [𝒗], 𝐷3𝑓 [𝒗]) (2.31)

acting on scalar differential functions 𝑓 [𝒗]; the total divergence and
curl operators are given by

Div 𝑓 [𝒗] = �⃗�𝑥 ⋅ 𝑓 [𝒗] = 𝐷1𝑓
1[𝒗] +𝐷2𝑓

2[𝒗] +𝐷3𝑓
3[𝒗], (2.32a)

Curl 𝑓 [𝒗] = �⃗�𝑥 × 𝑓 [𝒗] = (𝐷2𝑓
3[𝒗] −𝐷3𝑓

2[𝒗], 𝐷3𝑓
1[𝒗]

−𝐷1𝑓
3[𝒗], 𝐷1𝑓

2[𝒗] −𝐷2𝑓
1[𝒗]) (2.32b)

acting on vector differential functions 𝑓 [𝒗] = (𝑓 1[𝒗], 𝑓 2[𝒗], 𝑓 3[𝒗]).
All of the vector calculus identities relating ‘‘div’’, ‘‘curl’’, and ‘‘grad’’

hold for their total derivative counterparts:

Div Curl = 0, Curl Grad = 0. (2.33)

Moreover, the analogue of Poincaré’s lemma in R3 holds.

Lemma 2. (i) A differential vector function is a total gradient 𝑓 [𝒗] =
Grad 𝐹 [𝒗] for some differential function 𝐹 [𝒗] if and only if Curl 𝑓 [𝒗] =
0 vanishes identically. (ii) A differential vector function is a total curl
𝑓 [𝒗] = Curl 𝐹 [𝒗] for some differential vector function 𝐹 [𝒗] if and only
if Div 𝑓 [𝒗] = 0 vanishes identically.

Finally, we write down the variational derivative:
𝛿
𝛿𝒗𝛼

= 𝜕
𝜕𝒗𝛼

−𝐷𝑡
𝜕
𝜕𝒗𝛼𝑡

−𝐷𝑖
𝜕
𝜕𝒗𝛼

𝑥𝑖

+𝐷2
𝑡
𝜕
𝜕𝒗𝛼𝑡𝑡

+𝐷𝑡𝐷𝑖
𝜕

𝜕𝒗𝛼
𝑡𝑥𝑖

+𝐷𝑖𝐷𝑗
𝜕

𝜕𝒗𝛼
𝑥𝑖𝑥𝑗

+⋯ , 𝛼 = 1,… , 𝑚. (2.34)

This operator is also known as the Euler operator, which will be
denoted E𝒗𝛼 . It has a purely spatial version given by

Ê𝒗𝛼 = 𝜕
𝜕𝒗𝛼

−𝐷𝑖
𝜕
𝜕𝒗𝛼

𝑥𝑖
+𝐷𝑖𝐷𝑗

𝜕
𝜕𝒗𝛼

𝑥𝑖𝑥𝑗
+⋯ , 𝛼 = 1,… , 𝑚. (2.35)

An important property is that the kernel of the Euler operator
onsists of differential functions that have the form of a total divergence
ith respect to 𝑡, �⃗�. Likewise, the kernel of the spatial Euler operator

onsists of differential functions given by a total spatial divergence.

emma 3. (i) E𝒗(𝑓 [𝒗]) = 0 vanishes identically if and only if 𝑓 [𝒗] =
𝑡𝛷𝑡[𝒗] + Div �⃗�[𝒗] holds for some scalar differential function 𝛷𝑡[𝒗] and
ector differential function �⃗�[𝒗] = (𝛷1[𝒗], 𝛷2[𝒗], 𝛷3[𝒗]). (ii) Ê𝒗(𝑓 [𝒗]) = 0
anishes identically if and only if 𝑓 [𝒗] = Div �⃗�[𝒗] holds for some vector
ifferential function �⃗�[𝒗] = (𝛷1[𝒗], 𝛷2[𝒗], 𝛷3[𝒗]).

. Global and local conservation laws

We will now discuss the definition and physical meaning of three-
imensional local and global conservation laws of dynamical type and
opological type formulated on volume domains, surface domains, and
urve domains. For each different type of conservation law, we will
ention a list of physical examples.

.1. Volumetric conservation laws

A global volumetric conservation law of a PDE system (2.28) in R3 is
n integral equation of the form

𝑑 𝑇 [𝒗] 𝑑𝑉 = − �⃗� [𝒗] ⋅ 𝑑𝑆 (3.1)

𝑑𝑡 ∫ ∮𝜕 p

6

holding for all solutions 𝒗(𝑡, �⃗�) of the system (2.28). Here  ⊆ R3 is a
closed volume having a piecewise-smooth boundary surface 𝜕 , with
�̂� being the outward unit normal normal vector and 𝑑𝑆 = �̂� 𝑑𝐴 being
he surface element. The scalar differential function 𝑇 [𝒗] is called the
conserved density, and the vector differential function �⃗� [𝒗] is called the
spatial flux for the conservation law (3.1). The density–flux pair

(𝑇 [𝒗], �⃗� [𝒗]) = Φ[𝒗] (3.2)

is called a conserved current.
For ease of presentation, hereafter all volumes  ⊂ R3 will be

considered to be connected, closed, and have a boundary surface 𝜕
that is piecewise-smooth. Such volumes  will be called regular.

The physical meaning of a global conservation law (3.1) is that the
rate of change of the volumetric quantity

𝐶[𝒗;] = ∫
𝑇 [𝒗] 𝑑𝑉 (3.3)

n a regular volume  ⊆ R3 is balanced by the net surface flux

 [𝒗; 𝜕] = ∮𝜕
�⃗� [𝒗] ⋅ 𝑑𝑆 (3.4)

scaping through the volume boundary surface 𝜕 , when 𝒗(𝑡, �⃗�) is any
olution of the given PDE system. In particular, this balance can be
nterpreted as an absence of sources or sinks for 𝑇 [𝒗] in the volume  .

A volumetric conservation law (3.1) that holds for all regular vol-
umes  in R3 can be formulated as a local continuity equation

𝐷𝑡𝑇 [𝒗] + Div �⃗� [𝒗] = 0 (3.5)

olding for the space  of all solutions 𝒗(𝑡, �⃗�) of the given PDE system.
his continuity equation (3.5) is called a local volumetric conservation
aw of the PDE system (2.28). It is derived from the global conservation
aw (3.1) by first applying the divergence theorem to the flux integral
3.4) to get ∮𝜕 �⃗� ⋅�̂� 𝑑𝐴 = ∫ Div �⃗� 𝑑𝑉 , and then combining this integral
nd the volumetric integral (3.3) to obtain ∫ (𝐷𝑡𝑇 + Div �⃗� ) 𝑑𝑉 = 0,
hich will hold for an arbitrary volume  ⊆ R3 if and only if 𝑇
nd �⃗� satisfy the local continuity equation (3.5). Mathematically, this
ocal conservation law (3.5) is the total time–space divergence of the
onserved current (3.2).

There are many physical examples of volumetric conservation laws
cf. Section 5.2.3):

• mass in fluid flow, gas dynamics, and MHD;
• momentum and angular momentum in fluid flow, gas dynamics,

electromagnetism, and MHD;
• Galilean momentum in fluid flow, gas dynamics, and MHD;
• boost momentum in electromagnetism;
• energy in gas dynamics, ideal fluid flow, electromagnetism, and

ideal inviscid MHD;
• electric charge–current in electromagnetism;
• entropy in fluid flow;
• helicity in ideal fluid flow;
• cross-helicity in ideal inviscid MHD.

.2. Surface-flux conservation laws

Another type of global conservation law for a PDE system (2.28) in
3 is a surface-flux equation

𝑑
𝑑𝑡 ∫

𝑇 [𝒗] ⋅ 𝑑𝑆 = −∮𝜕
�⃗� [𝒗] ⋅ 𝑑𝓁 (3.6)

here  is a connected orientable surface in R3 having a piecewise-
mooth boundary curve 𝜕, with the line element 𝑑𝓁 = 𝓁 𝑑𝑠 being given
n terms of the arc length 𝑑𝑠 and the unit tangent vector 𝓁 along this
urve, and with the surface element 𝑑𝑆 = �̂� 𝑑𝐴 being given by the area
lement 𝑑𝐴 and the unit normal vector �̂� of the surface, such that 𝓁×�̂� is
ointing outward. Here 𝑇 [𝒗] and �⃗� [𝒗] are vector differential functions,
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which we will respectively refer to as the conserved flux density and the
spatial circulation flux. The pair

(𝑇 [𝒗], �⃗� [𝒗]) = Φ[𝒗] (3.7)

will be called a conserved flux current.
A flux equation (3.6) holding for all solutions 𝒗(𝑡, �⃗�) of the PDE

system will be called a global surface-flux conservation law. Its physical
meaning is that the rate of change of the surface integral quantity

𝐶[𝒗;] = ∫
𝑇 [𝒗] ⋅ 𝑑𝑆 (3.8)

is balanced by the net flux circulation

 [𝒗; 𝜕] = ∮𝜕
�⃗� [𝒗] ⋅ 𝑑𝓁 (3.9)

which is trapped around the surface boundary, for any solution 𝒗(𝑡, �⃗�) of
the given PDE system. When  is a closed surface, having no boundary
𝜕 = ∅, the quantity (3.8) defines a time-independent surface flux.
Conservation in this case can be understood as a consequence of the
flux having nowhere to be trapped.

For ease of presentation, hereafter all surfaces  ⊂ R3 will be
considered to be connected, orientable, and piecewise-smooth. Such
surfaces  will be called regular. Consequently, regular surfaces  that
are non-closed will have a boundary 𝜕 that is piecewise smooth.

A global surface-flux conservation law (3.6) that holds for all regular
surfaces  ⊂ R3 has a formulation as a local vector continuity equation.
First, the surface boundary integral (3.9) can be converted into a
surface integral via Stokes’ theorem, ∮𝜕 �⃗� ⋅𝑑𝓁 = ∫ (Curl �⃗� ) ⋅𝑑𝑆. Then,
this integral can be combined with the surface flux integral (3.8) to get
∫ (𝐷𝑡𝑇 +Curl �⃗� )⋅𝑑𝑆 = 0. This relation will hold for an arbitrary regular
surface  ⊂ R3 if and only if 𝑇 [𝒗] and �⃗� [𝒗] satisfy the local continuity
equation

𝐷𝑡 𝑇 [𝒗] + Curl �⃗� [𝒗] = 0, (3.10)

holding for all solutions 𝒗(𝑡, �⃗�) of the given PDE system. We will refer to
this type of vector continuity equation as a local surface-flux conservation
law.

Physical examples of surface-flux conservation laws include (cf.
Section 5.2.2):

• vorticity transport in ideal fluid flow;
• magnetic induction (Faraday’s law) in electromagnetism and

MHD;
• generalized vorticity in electron MHD;
• electric displacement current in electromagnetism with a static or

vanishing charge distribution.

Surface-flux conservation laws also arise in the triviality analysis of
global volumetric conservation laws, as shown in Section 4.4.

3.3. Circulatory conservation laws

A third type of global conservation law for a PDE system (2.28) in
R3 is a line integral equation of the form
𝑑
𝑑𝑡 ∫

𝑇 [𝒗] ⋅ 𝑑𝓁 = −𝛹 [𝒗]||
|𝜕

(3.11)

in which  is a piecewise-smooth curve with endpoints 𝜕. Here 𝑇 [𝒗]
is a vector differential function, which we will call the conserved circu-
lation density, and 𝛹 [𝒗] is a scalar differential function, which we will
call the spatial endpoint flow. A line integral equation (3.11) holding for
all solutions 𝒗(𝑡, �⃗�) of the PDE system will be called a global circulatory
conservation law, and the pair (𝑇 [𝒗], 𝛹 [𝒗]) = Φ[𝒗] will be called a
onserved circulation current.

The physical meaning of this type of global conservation law (3.11)
s that the rate of change of the line integral quantity

[𝒗;] = 𝑇 [𝒗] ⋅ 𝑑𝓁 (3.12)
∫

7

is balanced by a net flow outward through the two ends of the curve

 [𝒗; 𝜕] = 𝛹 [𝒗]||
|𝜕

(3.13)

or any solution 𝒗(𝑡, �⃗�) of the given PDE system. When  is a closed
curve, with no boundary 𝜕 = ∅, then the line integral quantity (3.12)
defines a time-independent total circulation.

For ease of presentation, hereafter all curves  ⊂ R3 will be
onsidered to be connected and piecewise-smooth. Such curves  will
e called regular.

A global circulatory conservation law (3.11) that holds for all
egular curves  ⊂ R3 can be formulated as a local continuity equation

by applying the fundamental theorem of calculus for line integrals. This
yields

𝐷𝑡 𝑇 [𝒗] + Grad 𝛹 [𝒗] = 0, (3.14)

which we will refer to as a local circulatory conservation law, holding for
all solutions 𝒗(𝑡, �⃗�) of the given PDE system.

Some physical examples of circulatory conservation laws are (cf.
Section 5.2.1):

• circulation in ideal fluids with irrotational flow or Beltrami flow;
• density gradient in incompressible fluid flow;
• entropy gradient in non-homentropic fluid flow.

Circulatory conservation laws are also shown to arise in the triviality
analysis of global surface-flux conservation laws in Section 4.3.

3.4. Topological conservation laws

For each of the three types (volumetric, surface-flux, circulatory)
of dynamical conservation laws, there is a corresponding type of time-
independent conservation law.

3.4.1. Spatial divergence/topological flux conservation laws
The first type is given by a local volumetric conservation law (3.5)

in which the conserved density vanishes, 𝑇 [𝒗]| = 0, for all solutions
𝒗(𝑡, �⃗�) of a given PDE system (2.28). This yields

Div �⃗� [𝒗]||
|

= 0, (3.15)

which is a purely spatial conservation law holding on the solution space
 of the system. We will call Eq. (3.15) a local spatial divergence conser-
vation law. It is sometimes also called a divergence-type conservation
law. We will refer to the vector differential function �⃗� [𝒗] as the spatial
flux vector-density.

The global form of a spatial divergence conservation law (3.15)
arises by integration of Div �⃗� over any regular volume  ⊆ R3. After
Gauss’ theorem is applied to the resulting volume integral, this yields,
for all 𝑡, a vanishing surface integral

∮
�⃗� [𝒗] ⋅ 𝑑𝑆||

|
= 0 (3.16)

on the closed boundary surface(s)  = 𝜕 , where 𝑑𝑆 = �̂� 𝑑𝐴 is given
by the area element 𝑑𝐴 and the outward unit normal normal vector �̂�.
Mathematically, this surface integral remains unchanged if 𝑆 = 𝜕 is
deformed in any continuous way that preserves its topology.

The physical meaning of a surface integral (3.16) depends on the
topological nature of the chosen volume  . If the boundary of  is a
single connected surface 𝜕 = , then Eq. (3.16) shows that the total
flux of �⃗� [𝒗] through  is zero. This is due to the absence of sources or
sinks, which corresponds to the spatial divergence of �⃗� [𝒗] being zero.
Hence, the spatial divergence conservation law (3.15) shows that there
is no net flux

∮
�⃗� [𝒗] ⋅ 𝑑𝑆||

|
= 0 (3.17)

for every closed surface  that bounds a regular volume in R3. Alter-
natively, if the boundary 𝜕 consists of two disjoint surfaces  and
1
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2, then the spatial divergence conservation law (3.16) shows that the
total flux of �⃗� [𝒗] is the same through both surfaces. Hence, for any two
non-intersecting closed surfaces 1 and 2 that bound a regular volume
⊆ R3, flux conservation holds:

∮1
�⃗� [𝒗] ⋅ 𝑑𝑆||

|
= ∮2

�⃗� [𝒗] ⋅ 𝑑𝑆||
|

(3.18)

here the unit normal vectors of 1 and 2 are chosen so that one is
nward-directed and the other is outward-directed with respect to the
olume  . Each of these surface flux integrals will be equal to zero
ue to the spatial divergence conservation law (3.15), unless sources
r sinks are present outside of the volume  . In particular, if Eq. (3.15)
olds only inside  , then the two surface integrals can be non-zero.
oth of these surface integrals remain unchanged if 1 and 𝑆2 are
eformed in any continuous way that preserves their topology.

For the reasons just stated, global surface flux integrals of the form
3.17) and (3.18) are usually referred to as topological flux conservation
aws. They arise generally in time-independent PDE systems containing
patial divergence equations in R3. They also arise in dynamical PDE
ystems where divergence-type constraint equations hold throughout
he spatial domain R3.

Physical examples of topological flux conservation laws (cf. Sec-
ion 5.1.1) are given by:

• vorticity in fluid flow, gas dynamics, and MHD;
• streamline flux and pressure-gradient flux in incompressible fluid

flow and incompressible MHD;
• magnetic flux in electromagnetism and MHD;
• electric flux in vacuum electromagnetism.

.4.2. Spatial curl/topological circulation conservation laws
A different type of time-independent conservation law is given by

local surface-flux conservation law (3.10) in which the flux vector-
ensity vanishes, 𝑇 [𝒗]| = 0, for all solutions 𝒗(𝑡, �⃗�) of a given PDE
ystem (2.28) in R3. This yields

url �⃗� [𝒗]| = 0, (3.19)

hich we will call a local spatial curl conservation law. We will refer to
⃗ [𝒗] as the spatial circulation vector-density.

The global form of a curl conservation law (3.19) arises by inte-
ration of Curl �⃗� [𝒗] over any non-closed regular surface  ⊂ R3. This
ields ∫ Curl �⃗� [𝒗] ⋅ 𝑑𝑆||

|
= 0 which by Stokes’ theorem becomes a

anishing line integral around the closed boundary curve(s)  = 𝜕,

∫
�⃗� [𝒗] ⋅ 𝑑𝓁||

|
= 0 (3.20)

olding for all 𝑡. This line integral remains unchanged if 𝐶 = 𝜕 is
eformed in any continuous way.

The physical meaning of a vanishing line integral (3.20) depends
n the topological nature of the chosen surface  in R3. If a non-closed
egular surface is simply connected, then its boundary 𝜕 consists of
single closed curve , in which case Eq. (3.20) shows that the net

irculation of �⃗� [𝒗] around this curve vanishes. This can be understood
s the absence of vorticity of the circulation flux vector �⃗� [𝒗]. In partic-
lar, the spatial curl conservation law (3.20) shows that the circulation
lux vector �⃗� [𝒗] is irrotational, whereby there is no net circulation

∮
�⃗� [𝒗] ⋅ 𝑑𝓁 |

|

|
= 0 (3.21)

round every closed curve  in R3.
Alternatively, if a non-closed regular surface  is not simply con-

ected, then its boundary 𝜕 consists of two disjoint closed curves. In
his case, the spatial curl conservation law (3.20) shows that the total
irculation of �⃗� [𝒗] around both curves is the same. Consequently, for
ny two non-intersecting closed curves  and  that are the boundary
1 2

8

f a non-simply connected surface  ⊆ R3, conservation of circulation
holds:

∮1
�⃗� [𝒗] ⋅ 𝑑𝓁 |

|

|
= ∮2

�⃗� [𝒗] ⋅ 𝑑𝓁 |

|

|
(3.22)

where the unit tangent vectors of 1 and 2 are chosen to have the same
clockwise or counterclockwise orientation with respect to the surface .
Both circulation integrals remain unchanged if 1 and 𝐶2 are deformed
in any continuous way that preserves their topology. Due to the spatial
curl conservation law (3.20) holding throughout R3, each of these two
circulation integrals will be equal to zero. If, however, Eq. (3.20) holds
only in some connected volume  ⊂ R3 that does not contain either
curve, then the two circulation integrals can be non-zero.

Accordingly, line integral equations of the form (3.21) and (3.22)
will be called global topological circulation conservation laws. Local spa-
tial curl conservation laws (3.19) arise generally in time-independent
PDE systems that contain curl equations, and in dynamical PDE sys-
tems where curl-type constraint equations hold throughout the spatial
domain R3.

Physical examples of topological circulation conservation laws (cf.
Section 5.1.2) are given by:

• circulation in irrotational fluid flow, irrotational gas dynamics,
and irrotational MHD;

• magnetic circulation in magnetostatics;
• electric field circulation in electrostatics and equilibrium MHD.

3.4.3. Spatial gradient conservation laws
Finally, there is a time-independent version of local circulatory con-

servation laws (3.14) in which the circulation vector-density vanishes,
𝑇 [𝒗]| = 0, for all solutions 𝒗(𝑡, �⃗�) of a given PDE system in R3. The
resulting spatial conservation law

Grad 𝛹 [𝒗]| = 0 (3.23)

implies that the flux 𝛹 [𝒗] has no dependence on �⃗� for all solutions 𝒗(𝑡, �⃗�)
of the PDE system. We will call this Eq. (3.23) a local spatial gradient
conservation law. Its corresponding global form (3.11) asserts that the
difference in the value of flux 𝛹 [𝒗] vanishes at any two points in the
spatial domain of the PDE system, which has exactly the same content
as its local form (3.23).

Consequently, this type of conservation law (3.23) has no direct
topological meaning.

A physical example of a spatial gradient conservation law is
Bernoulli’s principle (arising in ideal fluid flow when irrotational,
equilibrium flows are considered), as discussed in Section 5.1.3.

3.5. Constants of motion

For any PDE system (2.28) in R3, a time-dependent global conser-
vation law on a given domain 𝛺 ⊆ R3 will yield a constant of motion
𝑑
𝑑𝑡
𝐶[𝒗;𝛺] = 0 (3.24)

f and only if the net flux vanishes,  [𝒗; 𝜕𝛺] = 0, for all solutions 𝒗(𝑡, �⃗�)
f the system.

As already noted, any surface-flux conservation law on a closed
egular surface 𝛺 = , and any circulatory conservation law on a closed
egular curve 𝛺 = , automatically yields a constant of motion, since
[𝒗; 𝜕𝛺] ≡ 0 due to the domain having no boundary, 𝜕𝛺 = ∅.

Some physical examples of non-zero constants of motion are given
by: (cf. Sections 5.2.3 and 5.2.2):

• mass and entropy in gas dynamics and fluid flow confined to a
fixed volume;

• energy and helicity in ideal, incompressible or barotropic fluid
flow confined to a fixed volume;

• cross-helicity in ideal inviscid MHD confined to a fixed volume;
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• electric flux on closed surfaces in electromagnetism with a static
charge distribution.

Constants of motion will also arise from global topological conser-
vation laws on domains that are simply-connected. Specifically, such
conservation laws have the form

𝐶[𝒗;𝛺] = 0 (3.25)

with 𝜕𝛺 = ∅. Hence the time derivative of 𝐶[𝒗;𝛺] automatically van-
ishes, which thereby yields a constant of motion (3.24). These constants
of motion will be called topological. In particular, any topological flux
conservation law (3.17) on a closed connected surface  = 𝛺 represents
a zero-flux constant of motion (3.25), and any topological circulation
conservation law (3.21) on a closed connected curve  = 𝛺 represents
a zero-circulation constant of motion (3.25).

In general, topological constants of motion will appear whenever a
dynamical PDE system contains spatial constraint equations that are
compatible with all of the evolution equations in the system. The
PDEs in such systems satisfy differential identities that correspond to
locally trivial conservation laws related to topological conservation
laws. More specifically, a spatial constraint equation of divergence
type represents a spatial divergence conservation law (3.15) whose
time derivative yields a local conservation law in which spatial flux
is zero. Spatial constraint equations of curl or gradient type represent,
respectively, a spatial curl conservation law (3.19) or a spatial gradient
conservation law (3.23). Their time derivatives yield corresponding
local conservation laws in which, respectively, the spatial circulation
flux and spatial endpoint flow is zero.

Topological constants of motion also represent one type of non-
trivial boundary conservation laws, as discussed in the next section.
Physical examples of these constants of motion (cf. Section 5.2.4) are
given by:

• magnetic flux on closed surfaces in electromagnetism and MHD;
• electric flux on closed surfaces in vacuum electromagnetism;
• circulation on closed curves in irrotational ideal fluid flow.

4. Non-triviality and equivalence of local and global conservation
laws

For any PDE system (2.28) in R3, if a conservation law yields a
conserved integral that contains no local information about the solu-
tions of the PDE system, then the conservation law will be called locally
trivial. This occurs when (and only when), for an arbitrary solution
of the PDE system, the density in the conserved integral on a given
spatial domain either vanishes or has the form of an exact differential
given by a divergence, or a curl, or a gradient, in the respective cases
of a volume domain, or a surface domain, or a curve domain. If two
conservation laws differ by a locally trivial conservation law, they will
be regarded as being locally equivalent. The widely used definitions of
‘‘trivial conservation laws’’ and ‘‘equivalent conservation laws’’ in the
literature [1,2] coincide with this local notion of triviality.

Nevertheless, a locally trivial conservation law of a PDE system can
sometimes contain useful global information about the PDE system and
its solutions. In general, a local conservation law will called globally
trivial if it yields a conserved integral that contains no information
(either local or global) about the solutions of the PDE system. This will
always occur in the case when the conserved integral has a vanishing
density for all solutions of the system, since then the conserved integral
clearly contains no information at all about the PDE system and its
solutions. Thus, this type of locally trivial conservation law is globally
trivial.

In the case when the density in the conserved integral of a locally
trivial conservation law instead has the form of an exact differential,
the conserved integral reduces to a conserved boundary integral whose
triviality is determined by the topological nature of the boundary
9

domain, and by whether the given conservation law is dynamical or
topological.

If a given spatial domain is closed, then its boundary is empty and
hence any boundary integral is identically zero. In this situation, any
conserved boundary integral arising from a locally trivial conservation
law will be globally trivial, since its vanishing is entirely due to the
topology of the domain. Consequently, as all topological conservation
laws are formulated on closed spatial domains, any topological conser-
vation law that is locally trivial is thereby globally trivial. Likewise,
any dynamical conservation law that is locally trivial will be globally
trivial on a closed spatial domain.

In contrast, if a given spatial domain is non-closed, then any bound-
ary integral arising from a dynamical conservation law that is lo-
cally trivial will not vanish identically. In this case, if the conserved
boundary integral is time-dependent for an arbitrary solution of the
PDE system, then the dynamical conservation law essentially becomes
a mathematical identity which has no useful information about the
solutions of the PDE system. This type of locally trivial dynamical
conservation law is therefore globally trivial. If instead the conserved
boundary integral is time-independent and non-vanishing for an ar-
bitrary solution of the PDE system, then this integral is a non-trivial
constant of motion which corresponds to a globally non-trivial dynam-
ical conservation law on a lower-dimensional (boundary) domain. In
particular, the local form of such boundary conservation laws consists
of a purely temporal conservation law in which the spatial flux is zero.

Note that the vanishing of a conserved integral does not itself nec-
essarily imply that a conservation law is globally trivial. In particular,
such a conserved integral can be measuring a physical net flux or
circulation that vanishes due to an absence of sources and sinks of flux
or circulation.

In general, the conservation laws of primary interest for a given
PDE system are the globally non-trivial ones. Note that a non-trivial
dynamical conservation law on a given spatial domain can be changed
by the addition of a topological conservation law on the domain
boundary, since this affects only the spatial flux and not the conserved
integral. Apart from this possibility, two non-trivial global conservation
laws, whether dynamical or topological, will have the same physical
content for a PDE system if and only if they yield, up to a constant
multiple, the same conserved integral for all solutions of the system.

We will now give a complete discussion of non-triviality for all
of the different types of conservation laws in three dimensions. In
particular, we will formulate necessary and sufficient local conditions
under which a conservation law is locally non-trivial, and under which
two conservation laws are locally equivalent. We will also formulate
necessary and sufficient conditions under which a conservation law is
globally non-trivial. These formulations provide a substantial improve-
ment of the widely used notion of ‘‘trivial conservation laws’’ [1,2] in
the literature. We will call a conservation law non-trivial if and only
if it is both locally and globally non-trivial. Likewise, we will call a
constant of motion non-trivial if and only if it arises from a non-trivial
conservation law.

We will show in detail how, under certain conditions, a locally
trivial conservation law on a spatial domain can yield a constant of
motion given by a non-trivial global conservation law on the boundary
of the domain. In particular, non-trivial surface-flux constants of motion
arise from locally trivial volumetric conservation laws, while non-trivial
circulatory constants of motion arise from locally trivial surface-flux
conservation laws. Moreover, we will also show how these kinds of
constants of motion appear when a dynamical PDE system contains
compatible spatial constraint equations. Specifically, the compatibility
between the constraint equations and the evolution equations in such
a PDE system takes the form of differential identities which correspond
to locally trivial conservation laws.

These main results clarify some confusing statements in the litera-
ture, especially for PDE systems that possess differential identities. We

will mention physical examples to illustrate each result.
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4.1. Non-triviality of topological conservation laws

The notions of global and local triviality and equivalence for the two
main kinds of topological conservation laws presented in Section 3.4
will be formulated first. These topological conservation laws will turn
out to enter into the subsequent formulation of necessary and sufficient
local conditions for dynamical conservation laws to be locally trivial.

4.1.1. Spatial divergence/topological flux conservation laws
To begin, we consider global topological flux conservation laws

(3.16) on a surface  = 𝜕 that bounds a regular volume  within
he spatial domain of a given PDE system (2.28) in R3.

efinition 1. A topological flux conservation law (3.16) of a PDE
ystem (2.28) is called locally trivial if the flux vector-density �⃗� [𝒗] has
he form of a curl

⃗ [𝒗]| = Curl �⃗�[𝒗]| (4.1)

n terms of a vector differential function �⃗�[𝒗], holding on the solution
pace  of the given system.

By Lemma 1, this curl condition (4.1) is equivalent to requiring that
⃗ is identically given by

⃗ [𝒗] = Curl �⃗�[𝒗] + 𝛤triv[𝒗] (4.2)

for arbitrary (sufficiently smooth) functions 𝒗(𝑡, �⃗�), where 𝛤triv is any
vector differential function vanishing on the solution space  of the
system:

𝛤triv[𝒗]| = 0. (4.3)

Note that the flux vector-density (4.2) identically satisfies

Div �⃗� = Div 𝛤triv. (4.4)

Thus, the resulting local conservation law (Div �⃗� [𝒗])| = (Div 𝛤triv[𝒗])|
= 0 contains neither local nor global information about the PDE system
and its solutions. In particular, a local conservation law of this form is
merely an identity, and the corresponding conserved flux integral is
identically zero by Stokes’ theorem,

∮
Curl �⃗�[𝒗] ⋅ 𝑑𝑆 |

|

|
≡ 0 (4.5)

due to the surface  = 𝜕 being closed, 𝜕 = 𝜕2 = ∅. Moreover, this
is the only way that a topological flux conservation law can hold as an
identity.

Therefore, we have the following result.

Proposition 1. A topological flux conservation law (3.16) is globally
trivial for an arbitrary regular surface  ⊂ R3 if and only if it is locally
trivial (4.1).

As a consequence, a necessary and sufficient local condition for
two topological flux conservation laws (3.15) to yield the same global
surface-flux integral (3.16) for any given regular  ⊂ R3 is that they
can differ only by a locally trivial topological flux conservation law
(4.2). This provides a precise notion of local and global equivalence
for topological flux conservation laws.

Proposition 2. Two topological flux conservation laws (3.16) are equiva-
lent if and only if they differ by a locally trivial topological flux conservation
law (4.1).

A sufficient condition for triviality can be formulated by using the
properties of the total divergence operator (cf. Lemma 2).

Proposition 3. A topological flux conservation law (3.16) of a PDE
system (2.28) in R3 is trivial if its flux density is identically divergence-free

⃗
iv 𝛹 [𝒗] = 0 off of the solution space of the PDE system. C

10
As will be shown in Section 5.1.1, physical examples of non-trivial
topological flux conservation laws are given by streamline flux and
pressure-gradient flux in incompressible fluid flow and incompress-
ible MHD; magnetic flux in electromagnetism and MHD; electric flux
in vacuum electromagnetism. One example of a trivial topological
flux conservation law is connected with vorticity in fluid flow, gas
dynamics, and MHD.

4.1.2. Spatial curl/topological circulation conservation laws
We next consider topological circulation conservation laws (3.20)

on a closed curve  = 𝜕 that bounds a non-closed regular surface
 within the spatial domain of a given PDE system (2.28) in R3.

he discussion of triviality is very similar to that for topological flux
onservation laws.

efinition 2. A topological circulation conservation law (3.20) of
PDE system (2.28) is called locally trivial if the circulation vector-

ensity �⃗� [𝒗] has the form of a gradient

⃗ [𝒗]| = Grad 𝛩[𝒗]| (4.6)

n terms of a scalar differential function 𝛩[𝒗], holding on the solution
pace  of the given system.

Lemma 1 shows that this gradient condition (4.6) holds if and only
f �⃗� is identically given by

⃗ [𝒗] = Grad 𝛩[𝒗] + 𝛤triv[𝒗] (4.7)

or arbitrary (sufficiently smooth) functions 𝒗(𝑡, �⃗�), where 𝛤triv is any
ector differential function having the property (4.3). A circulation
ector-density of this form (4.7) identically satisfies

url �⃗� ≡ Curl 𝛤triv, (4.8)

hereby the resulting local conservation law (Curl �⃗� [𝒗])| =
Curl 𝛤triv[𝒗])| = 0 contains neither local nor global information about
he PDE system and its solutions. Any such local conservation law holds
s an identity, and the corresponding conserved circulation integral is
dentically zero due to the fundamental theorem of calculus for line
ntegrals,

∮
Grad 𝛩[𝒗]| ⋅ 𝑑𝓁 ≡ 0. (4.9)

here the curve  = 𝜕 is closed, 𝜕 = 𝜕2 = ∅. Moreover, this is the
nly way that a topological circulation conservation law can hold as an
dentity.

Therefore, we have the following result.

roposition 4. A topological circulation conservation law (3.20) is
lobally trivial for an arbitrary regular curve  ⊂ R3 if and only if it is
ocally trivial (4.6).

Consequently, a necessary and sufficient local condition for two
opological circulation conservation laws (3.19) to yield the same
lobal circulation-flux integral (3.20) for any given non-closed regular
urface  is that they can differ only by a locally trivial topological
irculation conservation law (4.6). This provides a precise notion of
ocal and global equivalence for topological circulation conservation
aws.

roposition 5. Two topological circulation conservation laws (3.20) are
quivalent if and only if they differ by a locally trivial topological circulation
onservation law (4.6).

A sufficient condition for triviality can be formulated by using the
roperties of the total curl operator (cf Lemma 2).

roposition 6. A topological circulation conservation law (3.20) of a PDE
ystem (2.28) in R3 is trivial if its circulation density is identically curl-free

⃗
url 𝛹 [𝒗] = 0 off of the solution space of the PDE system.



S.C. Anco and A.F. Cheviakov International Journal of Non-Linear Mechanics 126 (2020) 103569

w
o
𝐷
G

P
t
r
t
t
W
t
c
𝛩

S
h
P
o
m
i
𝑇

w
𝛹
∫
t
l
0
g
g
−
(
t
c
p
c
b

T
o

(
i
e
C
h
i
a
d

C
a
i
b

c
m

As will be discussed in Section 5.1.2, physical examples of non-
trivial topological circulation conservation laws arise from circula-
tion in irrotational fluid flow, irrotational gas dynamics, and irrota-
tional MHD; magnetic circulation in magnetostatics; and electric field
circulation in electrostatics and equilibrium MHD.

4.2. Non-triviality and equivalence of time-dependent circulatory conserva-
tion laws

We will now formulate the notions of local and global trivial-
ity and equivalence for dynamical conservation laws, beginning with
time-dependent circulatory conservation laws.

Definition 3. A time-dependent circulatory conservation law (3.14) of
a PDE system (2.28) in R3 is called locally trivial if, on the solution space
 of the system, the conserved circulation density 𝑇 and the spatial
endpoint flow 𝛹 have the respective forms

𝑇 [𝒗]| = Grad 𝛩[𝒗]| , (4.10a)

𝛹 [𝒗]| = −𝐷𝑡 𝛩[𝒗]| , (4.10b)

in terms of a scalar differential function 𝛩[𝒗]. Any two time-dependent
circulatory conservation laws (3.14) that differ only by a locally trivial
circulatory conservation law are locally equivalent.

By applying Lemma 1, we see that any conserved circulation current
(𝑇 , 𝛹 ) of the form (4.10) can be expressed off of the solution space 
of the PDE system by the equivalent formulation

𝑇 [𝒗] = Grad 𝛩[𝒗] + 𝛤triv[𝒗], 𝛹 [𝒗] = −𝐷𝑡 𝛩[𝒗] + 𝛯triv[𝒗] (4.11)

holding identically for all (sufficiently smooth) functions 𝒗(𝑡, �⃗�), where
𝛯triv and 𝛤triv are (scalar and vector) differential functions vanishing
on the solution space  of the system: 𝛯triv[𝒗]| = 0 and 𝛤triv[𝒗]| = 0.

The key aspect of local triviality is that the circulation current (4.11)
identically satisfies 𝐷𝑡 𝑇 [𝒗] + Grad 𝛹 [𝒗] ≡ 𝐷𝑡 𝛤triv[𝒗] + Grad 𝛯triv[𝒗]
which automatically vanishes when 𝒗(𝑡, �⃗�) is any solution of the given
PDE system (2.28). Correspondingly, for any regular curve  ⊂ R3

within the spatial domain of a given PDE system (2.28), the resulting
time-dependent global circulation conservation law (3.11) becomes the
line integral identity

𝑑
𝑑𝑡 ∫

Grad 𝛩[𝒗] ⋅ 𝑑𝓁 = ∫
Grad (𝐷𝑡 𝛩[𝒗]) ⋅ 𝑑𝓁 = (𝐷𝑡 𝛩[𝒗])

|

|

|𝜕

= 𝑑
𝑑𝑡

(

𝛩[𝒗]||
|𝜕

)

(4.12)

apart from trivial terms that vanish on the solution space  of the PDE
system. This identity contains no local information about the given PDE
system or its solutions.

For discussing global triviality, we will call a circulatory conserved
current (4.11) type I trivial if 𝛩[𝒗]| is constant, and otherwise type II
trivial if 𝛩[𝒗]| is non-constant. In particular:

type I trivial 𝑇 [𝒗]| = 0, 𝛹 [𝒗]| = 0; (4.13)

type II trivial 𝑇 [𝒗]| = Grad 𝛩[𝒗]| ≠ 0, 𝛹 [𝒗]| = −𝐷𝑡 𝛩[𝒗]| ≠ 0.
(4.14)

Clearly, a type I trivial circulatory conservation law contains no global
information about solutions of the given PDE system, and hence this
type of locally trivially conservation law is globally trivial. A type
II trivial circulatory conservation law will likewise contain no global
information about the given PDE system when the curve  is closed,
since then the circulation integral ∫ Grad 𝛩[𝒗] ⋅ 𝑑𝓁 vanishes (by the
fundamental theorem of line integrals) due to the curve having no
boundary, 𝜕 = ∅. In contrast, when the curve  is non-closed, a type
II trivial circulatory conservation law can contain some useful global

|
information if the net flux term  [𝒗; 𝜕] = (𝐷𝑡 𝛩[𝒗])|
|𝜕

in the integral

11
identity (4.12) vanishes when 𝒗(𝑡, �⃗�) is an arbitrary solution of the PDE
system, since this yields
𝑑
𝑑𝑡

(

𝛩[𝒗]||
|𝜕

)

= 0 (4.15)

ith 𝛩[𝒗]| being non-constant. To see the content of this equation, we
bserve that it holds for an arbitrary non-closed curve  if and only if
𝑡Grad 𝛩[𝒗]| = 0, which is a purely temporal conservation law with
rad 𝛩[𝒗]| = 𝑇 [𝒗]| ≠ 0 being the conserved density.

roposition 7. (i) A locally trivial time-dependent circulatory conserva-
ion law (4.10) of any PDE system (2.28) in R3 is globally trivial for a
egular curve  ⊂ R3 if and only if either the curve surface is closed, or
he curve is non-closed and the net circulation potential 𝛩[𝒗]|𝜕 is either
ime dependent or zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of the system. (ii)
hen a locally trivial surface-flux conservation law (4.18) is globally non-
rivial for a non-closed regular surface  ⊂ R3, it yields a global pointwise
onservation law of the form (4.15) on the endpoints of the curve, with
[𝒗]| being spatially non-constant.

We will now establish a converse for the first part of Proposition 7.
uppose a time-dependent global circulatory conservation law (3.11)
olding for a regular curve  ⊂ R3 in the spatial domain of a given
DE system (2.28) contains no global information about the solutions
f the PDE system. Firstly, the circulation integral 𝐶[𝒗;] = ∫ 𝑇 [𝒗] ⋅𝑑𝓁
ust reduce to endpoint terms by the fundamental theorem of line

ntegrals, which requires that the circulation density is a gradient,
⃗ [𝒗]| = Grad 𝛩[𝒗]| . This condition will be sufficient when the curve

is closed, since the net flux  [𝒗; 𝜕] will then vanish identically,
ithout any condition being necessary on the spatial endpoint flow
[𝒗]| . When the curve is non-closed, we must additionally have
𝐶 𝐷𝑡Grad 𝛩[𝒗] ⋅ 𝑑𝓁| = − ∫𝐶 Grad 𝛹 [𝒗] ⋅ 𝑑𝓁| , as this is necessary for
he global conservation law (3.11) to hold. The equality of these two
ine integrals for an arbitrary curve  requires Grad(𝐷𝑡𝛩[𝒗]+𝛹 [𝒗])| =
, which implies (𝐷𝑡𝛩[𝒗] + 𝛹 [𝒗])| is the density for a local spatial
radient conservation law. For this conservation law to contain no
lobal information, it must be trivial, whereby we must have 𝛹 [𝒗]| =
𝐷𝑡𝛩[𝒗]| . Hence the conserved circulatory current is locally trivial

4.11), and consequently the global conservation law (3.11) reduces
o the form (4.12). Finally, for the net flux  [𝒗; 𝜕] = (𝐷𝑡 𝛩[𝒗])

|

|

|𝜕
to

ontain no global information about solutions 𝒗(𝑡, �⃗�), the net circulation
otential 𝛩[𝒗]|𝜕 must either be time dependent whereby the global
onservation law holds as an identity, or be spatially constant whereby
oth 𝐶[𝒗;] = 0 and  [𝒗; 𝜕] = 0 are trivial.

Thus, we have the following result.

heorem 4. A time-dependent global circulatory conservation law (3.11)
f a PDE system (2.28) is globally trivial for an arbitrary regular curve
⊂ R3 if and only if the conserved circulation density 𝑇 [𝒗] is locally trivial

4.10a) and, when the curve is non-closed, the spatial endpoint flow 𝛹 [𝒗]
s locally trivial (4.10b) such that the net circulation potential 𝛩[𝒗]|𝜕 is
ither time dependent or zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of the system.
onsequently, in a globally non-trivial circulatory conservation law (3.11)
olding on a regular curve  ⊂ R3, the total circulation 𝐶[𝒗;] either
s given by a line integral that essentially depends on 𝒗(𝑡, �⃗�) at all points
long , or reduces to a pointwise constant of motion (4.15) that essentially
epends on 𝒗(𝑡, �⃗�) only at the end points 𝜕 of .

This leads to a corresponding notion of global equivalence.

orollary 5. Two time-dependent global circulatory conservation laws of
PDE system (2.28) are equivalent in the sense of containing the same

nformation about the solutions of the given system if and only if they differ
y a globally trivial circulatory conservation law.

The same notions of equivalence and (non-) triviality extend to
irculatory constants of motion. Specifically, a circulatory constant of
otion
𝑑 𝑇 [𝒗] ⋅ 𝑑𝓁 = 0 (4.16)

𝑑𝑡 ∫
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is trivial if and only if the conserved density 𝑇 [𝒗] is locally trivial
(4.10a) and, when the curve  is non-closed, the spatial flow vanishes,
[𝒗]| = 0.

Finally, using the differential identities (2.33), we can formulation
curl condition for a conserved circulation current (𝑇 [𝒗], 𝛹 [𝒗]) to be

trivial.
If (𝑇 [𝒗], 𝛹 [𝒗]) has the locally trivial form (4.11), then Curl 𝑇 [𝒗] =

url 𝛤triv[𝒗] satisfies

url 𝑇 [𝒗]| = 0. (4.17)

his represents a necessary condition. Now consider the converse. If
url 𝑇 [𝒗] vanishes on  , then 𝑇 [𝒗] represents a conserved density

or a local spatial curl conservation law (3.19). Supposing that the
iven PDE system admits no non-trivial conservation laws of that type,
hen Proposition 4 shows that 𝑇 [𝒗] will be locally trivial, and hence
⃗ [𝒗]| = Grad 𝛩[𝒗]| holds from Definition 3. This implies 𝐷𝑡𝑇 [𝒗]| =
rad 𝐷𝑡𝛩[𝒗]| = −Grad 𝛹 [𝒗]| whereby Grad(𝛹 [𝒗] +𝐷𝑡𝛩[𝒗])| = 0 is a

local spatial gradient conservation law (3.23). If the only conservation
laws of this type admitted by the given PDE system are trivial, then we
have (𝛹 [𝒗] +𝐷𝑡𝛩[𝒗])| = 0, and thus 𝛹 [𝒗]| has the locally trivial form
(4.10).

This formulation of local triviality establishes the following result.

Proposition 8. A necessary condition for a time-dependent local circu-
latory conservation law (3.14) of a PDE system (2.28) in R3 to be locally
trivial is that its conserved density 𝑇 [𝒗] is curl-free (4.17) for an arbitrary
olution 𝒗(𝑡, �⃗�) of the PDE system. This curl-free condition is sufficient if
he PDE system has no non-trivial topological circulation conservation laws
3.20) and no non-trivial spatial gradient conservation laws (3.23).

The physical meaning of the curl-free condition (4.17) in the spatial
omain of the given PDE system is simply that the conserved circula-
ion density 𝑇 [𝒗] is irrotational, or equivalently that it has vanishing
orticity.

Combining Proposition 8 and Theorem 4, we obtain a simple suffi-
ient condition for non-triviality of circulatory conservation laws.

orollary 6. If the conserved density 𝑇 [𝒗] of a time-dependent (local
r global) circulatory conservation law satisfies Curl 𝑇 [𝒗]| ≠ 0, then the
onservation law is locally and globally non-trivial.

We will see in the next subsection how non-trivial time-dependent
lobal circulatory conservation laws can arise from locally trivial
urface-flux conservation laws.

As will be shown in Section 5.2.1, a physical example of a non-
rivial circulatory conservation law is circulation in irrotational ideal
luid flow; two physical examples of trivial circulatory conservation
aws arise from the density gradient in incompressible fluid flow, and
he entropy gradient in non-homentropic fluid flow.

.3. Non-triviality and equivalence of time-dependent surface-flux conser-
ation laws

The notions of triviality and equivalence of time-dependent surface-
lux conservation laws are similar to those for time-dependent circu-
ation conservation laws. One main difference, however, is that any
opological circulation conservation law (3.20) can be added to a
ime-dependent surface-flux conservation law, without affecting the
urface-flux conserved density. Another difference is that some gauge
reedom arises in the form of a trivial surface-flux conserved current.

efinition 4. A time-dependent surface-flux conservation law (3.10)
f a PDE system (2.28) in R3 is called locally trivial if, on the solution
pace  of the system, the conserved surface-flux density 𝑇 and the
patial circulation flux �⃗� have the respective forms

⃗ [𝒗]| = Curl �⃗�[𝒗]| , (4.18a)
⃗ ⃗
[𝒗]| = −𝐷𝑡 𝛩[𝒗]| + Grad 𝛬[𝒗]| , (4.18b)

12
n terms of a scalar differential function 𝛬[𝒗] and a vector differential
unction �⃗�[𝒗]. Any two time-dependent surface-flux conservation laws
3.10) that differ only by a locally trivial surface-flux conservation law
re locally equivalent.

Note that the form (4.18) of a locally trivial conserved surface-flux
urrent (𝑇 , �⃗� ) is not unique, since it is preserved by

⃗[𝒗]| → (�⃗�[𝒗] + Grad 𝛯[𝒗])| , 𝛬[𝒗]| → (𝛬[𝒗] +𝐷𝑡𝛯[𝒗])| (4.19)

here 𝛯[𝒗] is an arbitrary scalar differential function.
Moving off of the solution space  of the given PDE system, we can

pply Lemma 1 to see that any locally trivial conserved surface-flux
urrent (4.18) has the equivalent formulation

⃗ [𝒗] = Curl �⃗�[𝒗] + 𝛤triv[𝒗], �⃗� [𝒗] = −𝐷𝑡 �⃗�[𝒗] + Grad 𝛬[𝒗] + �⃗�triv[𝒗]

(4.20)

olding identically for all (sufficiently smooth) functions 𝒗(𝑡, �⃗�), where
t⃗r iv and �⃗�triv are any (vector) differential functions vanishing on the
olution space  of the system.

Local triviality expresses the property that the surface-flux current
4.20) identically satisfies 𝐷𝑡 𝑇 [𝒗]+Curl �⃗� [𝒗] ≡ 𝐷𝑡 𝛤triv[𝒗]+Curl �⃗�triv[𝒗]
hich automatically vanishes when 𝒗(𝑡, �⃗�) is any solution of the given
DE system (2.28). Correspondingly, for any regular surface  ⊂ R3

ithin the spatial domain of a given PDE system (2.28), the resulting
ime-dependent global surface-flux conservation law (3.6) reduces by
tokes’ theorem to an integral identity

𝑑
𝑑𝑡 ∫

Curl �⃗�[𝒗] ⋅ 𝑑𝑆 = 𝑑
𝑑𝑡 ∮𝜕

�⃗�[𝒗] ⋅ 𝑑𝓁

= ∫
Curl (𝐷𝑡 �⃗�[𝒗]) ⋅ 𝑑𝑆 = ∮𝜕

𝐷𝑡 �⃗�[𝒗] ⋅ 𝑑𝓁
(4.21)

part from trivial terms that vanish on the solution space  of the PDE
ystem. This is an identity which contains no local information about
he given PDE system or its solutions.

We will refer to a locally trivial time-dependent surface-flux con-
erved current (4.20) as being either type I trivial if both �⃗�[𝒗]| and
[𝒗]| are zero, or type IIa trivial if 𝛬[𝒗]| is non-zero while �⃗�[𝒗]| is
ero, or type IIb trivial if �⃗�[𝒗]| is non-zero, modulo the gauge freedom
4.19) in each case. In particular:

type I trivial 𝑇 [𝒗]| = 0, �⃗� [𝒗]| = 0; (4.22)

type IIa trivial 𝑇 [𝒗]| = 0, �⃗� [𝒗]| = Grad 𝛬[𝒗]| ≠ 0; (4.23)

ype IIb trivial 𝑇 [𝒗]| = Curl �⃗�[𝒗]| ≠ 0,
�⃗� [𝒗]| = −𝐷𝑡 �⃗�[𝒗]| + Grad 𝛬[𝒗]| ≠ 0.

(4.24)

his distinction is useful for discussing global triviality.
Clearly, a type I trivial surface-flux conservation law contains nei-

her global nor local information about solutions of the given PDE
ystem. Hence, this type of locally trivially conservation law is globally
rivial.

A type IIa trivial surface-flux conservation law also contains no in-
ormation about the given PDE system, since the integral identity (4.21)
nly involves �⃗�[𝒗] modulo an arbitrary gradient Grad 𝛯[𝒗], whereby
ach integral in the identity vanishes identically. Likewise a type IIb
rivial surface-flux conservation law also contains no information about
he given PDE system when the surface  is closed, since then the
urface integral ∫ Curl �⃗�[𝒗] ⋅ 𝑑𝑆 vanishes (by Stokes’ theorem) due
o 𝜕 being empty.

When the surface  is non-closed, a type IIb trivial surface-flux
onservation law can contain some useful global information if the net
lux integral  [𝒗; 𝜕] = ∮𝜕 𝐷𝑡 �⃗�[𝒗] ⋅ 𝑑𝓁 in the identity (4.21) vanishes
hen 𝒗(𝑡, �⃗�) is an arbitrary solution of the PDE system. In this situation,

he identity reduces to a global circulatory conservation law (3.11)

𝑑 �⃗�[𝒗] ⋅ 𝑑𝓁 |

| = 0 (4.25)

𝑑𝑡 ∮𝜕 |
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on the boundary curve(s)  = 𝜕 of the non-closed surface , with
no spatial (endpoint) flow because 𝜕 = 𝜕2 = ∅ is empty. Since
here we have �⃗�[𝒗]| ≠ Grad 𝛯[𝒗]| by type IIb triviality, we conclude
from Theorem 4 that the circulatory conservation law (4.25) is globally
non-trivial.

This discussion establishes the following interesting result showing
how a locally trivial surface-flux conservation law (4.24) can yield a
globally non-trivial circulation conservation law (4.25) on the bound-
ary of a non-closed surface.

Proposition 9. (i) A locally trivial time-dependent surface-flux conser-
vation law (4.18) of a PDE system (2.28) in R3 is globally trivial for a
regular surface  ⊂ R3 if and only if either the surface is closed, or the
surface is non-closed and the circulation integral ∮𝜕 �⃗�[𝒗] ⋅𝑑𝓁 is either time
dependent or identically zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of the given
PDE system. (ii) When a locally trivial surface-flux conservation law (4.18)
is globally non-trivial for an arbitrary non-closed regular surface  ⊂ R3, it
corresponds to a purely temporal curl-type conservation law

𝐷𝑡Curl �⃗�[𝒗]| = 0 (4.26)

that yields a non-trivial circulatory constant of motion (4.16) on the
boundary curve(s)  = 𝜕.

The second part of this result has a converse. Every curl-type tem-
poral conservation law (4.26) yields a circulatory constant of motion
on any curve  = 𝜕 given by the boundary of a non-closed regular
surface  within the spatial domain of the PDE system. Through Stokes’
theorem, the circulatory constant of motion can be expressed as a
surface-flux conservation law

0 = 𝑑
𝑑𝑡 ∮𝜕

�⃗�[𝒗] ⋅ 𝑑𝓁 |

|

|
= ∫𝜕

𝐷𝑡�⃗�[𝒗] ⋅ 𝑑𝓁
|

|

|
= 𝑑
𝑑𝑡 ∫

Curl �⃗�[𝒗] ⋅ 𝑑𝑆 |

|

|

(4.27)

hose conserved current 𝑇 [𝒗]| = Curl �⃗�[𝒗]| ≠ 0 is locally trivial of
ype IIb (4.24).

Curl-type temporal conservation laws (4.26) can be obtained from
ocal circulatory conservation laws and local spatial curl conserva-
ion laws. Specifically, the curl of any locally non-trivial circulatory
onservation law (3.14), written as (𝐷𝑡 �⃗�[𝒗] + Grad 𝛬[𝒗])| = 0,
ields a temporal conservation law (4.26), and the time derivative of
ny locally non-trivial spatial curl conservation law (3.19), written as
Curl �⃗�[𝒗])| = 0, also yields a temporal conservation law (4.26).

We will now establish a converse for the first part of Proposition 9,
n a similar way to the proof of Theorem 4.

Suppose a time-dependent global surface-flux conservation law
3.6) holding for a regular surface  ⊂ R3 in the spatial domain

of a given PDE system (2.28) contains no global information about
the solutions of the PDE system. Firstly, the surface-flux integral
𝐶[𝒗;] = ∫ 𝑇 [𝒗] ⋅ 𝑑𝑆 must reduce to a boundary line integral by
tokes’ theorem, which requires the surface-flux density to be a curl,
⃗ [𝒗]| = Curl �⃗�[𝒗]| . This condition will be sufficient when the surface

is closed, since the net flux  [𝒗; 𝜕] will then vanish identically,
without any condition being necessary on the spatial circulation flux
�⃗� [𝒗]| . When the surface has a boundary, we must additionally have
∮𝜕 𝐷𝑡�⃗�[𝒗] ⋅ 𝑑𝓁 | = − ∮𝜕 �⃗� [𝒗] ⋅ 𝑑𝓁 | so that the global conserva-
tion law (3.6) holds. The equality of these two line integrals for an
arbitrary boundary 𝜕 requires Curl(𝐷𝑡�⃗�[𝒗] + �⃗� [𝒗])| = 0, which
implies (𝐷𝑡�⃗�[𝒗] + �⃗� [𝒗])| is the density for a local spatial curl con-
servation law (3.19). This conservation law must be locally trivial, as
otherwise it will contain global information. Therefore, we must have
(�⃗� [𝒗] + 𝐷𝑡�⃗�[𝒗])| = Grad 𝛬[𝒗]| for some differential scalar function
𝛬[𝒗]. Hence the conserved surface-flux current is locally trivial (4.20),
and consequently the global conservation law (3.6) reduces to the
form (4.21). Finally, for the net flux  [𝒗; 𝜕] = ∮𝜕 𝐷𝑡 �⃗�[𝒗] ⋅ 𝑑𝓁 to
contain no global information about solutions 𝒗(𝑡, �⃗�), the circulation
integral ∮ �⃗�[𝒗] ⋅ 𝑑𝓁 must either be time dependent so that the global
𝜕 w
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conservation law holds as an identity, or be identically zero so that
both 𝐶[𝒗;] = 0 and  [𝒗; 𝜕] = 0 are trivial.

Hence, we obtain the following main result, extending the first part
of Proposition 9.

Theorem 7. A time-dependent global surface-flux conservation law (3.6)
of a PDE system (2.28) is globally trivial for an arbitrary regular surface
𝑆 ⊂ R3 if and only if its conserved density 𝑇 [𝒗] is locally trivial (4.18a) and,
when the surface is non-closed, the spatial circulation flux �⃗� [𝒗] is locally
trivial (4.18b) such that the associated circulation integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝓁 is
either time dependent or identically zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of
he system. Consequently, in a globally non-trivial surface-flux conservation
aw (3.6) holding on a regular surface  ⊂ R3, the total surface-flux 𝐶[𝒗;]
ither is given by a surface integral that essentially depends on 𝒗(𝑡, �⃗�) at all
oints on , or reduces to a circulatory constant of motion that essentially
epends on 𝒗(𝑡, �⃗�) only at the boundary 𝜕 of .

This result leads to a notion of global equivalence for surface-flux
onservation laws.

orollary 8. Two global time-dependent surface-flux conservation laws
f a PDE system (2.28) are equivalent in the sense of containing the same
nformation about the solutions of the given system if and only if they differ
y a globally trivial surface-flux conservation law.

The same notions of equivalence and (non-) triviality extend to
urface-flux constants of motion. Specifically, a surface-flux constant
f motion
𝑑
𝑑𝑡 ∫

𝑇 [𝒗] ⋅ 𝑑𝑆 = 0 (4.28)

s said to be trivial if the conserved density 𝑇 [𝒗] is locally trivial (4.18a)
nd, when the surface  is non-closed, the spatial circulation flux
anishes, �⃗� [𝒗]| = 0.

The conditions in Theorem 7 and Proposition 9 for triviality can
e formulated in terms of a divergence condition, similarly to the curl
ondition for triviality of conserved circulation currents. If a conserved
urface-flux current (𝑇 [𝒗], �⃗� [𝒗]) is locally trivial (4.20), then Div 𝑇 [𝒗] =
iv 𝛤triv[𝒗] holds by the differential identities (2.33). Hence 𝑇 [𝒗]

atisfies

iv 𝑇 [𝒗]| = 0. (4.29)

his represents a necessary condition. Conversely, if Div 𝑇 [𝒗] vanishes
n the solution space  , then 𝑇 [𝒗] represents a conserved density for
local spatial divergence conservation law (3.15). Supposing that the

iven PDE system admits no non-trivial conservation laws of that type,
hen Proposition 1 shows that 𝑇 [𝒗] will be locally trivial, 𝑇 [𝒗]| =
url �⃗�[𝒗]| . This implies 𝐷𝑡𝑇 [𝒗]| = Curl 𝐷𝑡�⃗�[𝒗]| = −Curl �⃗� [𝒗]|
hereby Curl(�⃗� [𝒗] + 𝐷𝑡�⃗�[𝒗])| = 0 is a local spatial curl conservation

aw (3.19). If the given PDE system admits only trivial conservation
aws of that type, then from Definition 2 we have (�⃗� [𝒗] +𝐷𝑡𝛩[𝒗])| is
gradient, which implies �⃗� [𝒗]| has the locally trivial form (4.20).

This argument establishes the following result.

roposition 10. A necessary condition for a time-dependent surface-flux
onservation law (3.10) of a PDE system (2.28) in R3 to be locally trivial
4.18) is that its conserved density 𝑇 [𝒗] is divergence-free (4.29) for an
rbitrary solution 𝒗(𝑡, �⃗�) of the PDE system. This divergence-free condition is
ufficient if the PDE system has no non-trivial topological flux conservation
aws (3.16) and no non-trivial topological circulation conservation laws
3.20).

The physical meaning of the divergence-free condition Div 𝑇 [𝒗]| =
is that there are no sources and sinks for 𝑇 [𝒗] in the spatial domain

f the given PDE system.
We will now derive a similar formulation of the conditions in

heorem 7 for global triviality. The formulation differs depending on

hether surfaces with or without boundaries are considered.
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In the case of an arbitrary regular surface  without a boundary,
global triviality is equivalent to local triviality. In contrast, the case
of an arbitrary regular surface  with a boundary requires a further
argument as follows.

Suppose the circulation integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝓁
|

|

|
vanishes identically

for an arbitrary non-closed regular surface . Then, from the fundamen-
tal theorem for line integrals, �⃗�[𝒗]| = Grad 𝛯[𝒗]| holds for a scalar
differential function 𝛯[𝒗], and thus we have Curl �⃗�[𝒗]| = 0 by the
second of the differential identities (2.33). Conversely, Curl �⃗�[𝒗]| = 0
implies that �⃗�[𝒗]| = Grad 𝛯[𝒗]| holds, if the given PDE system has no
non-trivial local spatial curl conservation laws. Hence, under this condi-
tion, the vanishing of ∮𝜕 �⃗�[𝒗]⋅𝑑𝓁| due to the fundamental theorem for
line integrals will hold when and only when 0 = Curl �⃗�[𝒗]| = 𝑇 [𝒗]| .

Suppose instead the circulation integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝓁
|

|

|
is time de-

endent for an arbitrary non-closed regular surface . This is equivalent
o the surface integral ∫ Curl �⃗�[𝒗] ⋅ 𝑑𝑆| being time dependent. Since

is arbitrary, an equivalent condition is that Curl �⃗�[𝒗]| itself must be
ime dependent. Consequently, time dependence of ∮𝜕 �⃗�[𝒗] ⋅𝑑𝓁

|

|

|
will

old when and only when Curl �⃗�[𝒗]| = 𝑇 [𝒗]| is time dependent.
The preceding argument establishes the following result.

heorem 9. A necessary condition for a time-dependent local surface-flux
onservation law (3.10) of a PDE system (2.28) to yield a globally trivial
urface-flux conservation law (3.6) for an arbitrary regular (closed or non-
losed) surface  ⊂ R3 is that the conserved surface-flux density 𝑇 [𝒗]| is
ivergence free (4.29). This divergence-free condition is sufficient in the case
f closed surfaces  if the PDE system has no non-trivial topological flux
onservation laws (3.16). In the case of non-closed surfaces , a sufficient
ondition is that 𝑇 [𝒗]| either is both divergence-free and time dependent,
r is zero, and also that the PDE system has no non-trivial topological flux
onservation laws (3.16).

This result gives a simple sufficient condition for global
on-triviality.

orollary 10. If the conserved density 𝑇 [𝒗] of a time-dependent (local
r global) surface-flux conservation law satisfies Div 𝑇 [𝒗]| ≠ 0, then the
onservation law is locally and globally non-trivial.

In the next subsection, we will see how non-trivial time-dependent
lobal surface-flux conservation laws can arise from locally trivial
olumetric conservation laws.

As shown in Section 5.2.2, physical examples of non-trivial surface-
lux conservation laws are given by magnetic induction (Faraday’s
aw) in electromagnetism and ideal MHD, electric field flux in vacuum
lectromagnetism, and generalized vorticity in electron MHD. A phys-
cal example of a trivial surface-flux conservation law arises from the
orticity transport equation in ideal fluid flow.

Physical examples of locally trivially surface-flux conservation laws
onnected with curl-type temporal conservation laws that yield globally
on-trivial circulatory constants of motion arise in fluid dynamics and
as dynamics for irrotational flows and Beltrami flows, which are
iscussed in Section 5.2.4.

.4. Non-triviality and equivalence of volumetric conservation laws

Last, we discuss triviality and equivalence of time-dependent volu-
etric conservation laws. These notions will be very similar to those for

ime-dependent surface-flux conservation laws. Note that any topologi-
al flux conservation law (3.16) can be added to a time-dependent vol-
metric conservation law, without affecting the volumetric conserved
ensity.

efinition 5. A time-dependent volumetric conservation law (3.5) of
3
PDE system (2.28) in R is called locally trivial if, on the solution space n
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of the system, the conserved density 𝑇 and the spatial flux �⃗� have
he respective forms

[𝒗]| = Div �⃗�[𝒗]| , (4.30a)
⃗ [𝒗]| = −𝐷𝑡 �⃗�[𝒗]| + Curl 𝛬[𝒗]| , (4.30b)

n terms of a pair of vector differential functions 𝛬[𝒗] and �⃗�[𝒗]. Any two
ime-dependent volumetric conservation laws (3.5) that differ only by
locally trivial volumetric conservation law are locally equivalent.

Note that the form (4.30) of a locally trivial conserved volumetric
urrent (𝑇 , �⃗� ) is not unique, since it is preserved by

⃗[𝒗]| → (�⃗�[𝒗] + Curl �⃗�[𝒗])| , 𝛬[𝒗]| → (𝛬[𝒗] +𝐷𝑡�⃗�[𝒗])| (4.31)

here �⃗�[𝒗] is an arbitrary vector differential function.
When we move off of the solution space  of the given PDE system,

emma 1 shows that any locally trivial conserved volumetric current
4.30) has the equivalent formulation

[𝒗] = Div �⃗�[𝒗]+𝛤triv[𝒗], �⃗� [𝒗] = −𝐷𝑡 �⃗�[𝒗]−Curl 𝛬[𝒗]+�⃗�triv[𝒗], (4.32)

olding identically for all (sufficiently smooth) functions 𝒗(𝑡, �⃗�), where
triv and �⃗�triv are (scalar and vector) differential functions vanishing
n the solution space  of the system.

Local triviality expresses the property that the volumetric current
4.32) identically satisfies 𝐷𝑡 𝑇 [𝒗] +Div �⃗� [𝒗] ≡ 𝐷𝑡 𝛤triv[𝒗] +Div �⃗�triv[𝒗]
hich automatically vanishes when 𝒗(𝑡, �⃗�) is any solution of the given
DE system (2.28). Correspondingly, for any regular volume  ⊂ R3

ithin the spatial domain of a given PDE system (2.28), the resulting
ime-dependent global volumetric conservation law (3.1) reduces by
auss’ theorem to an integral identity

𝑑
𝑑𝑡 ∫

Div �⃗�[𝒗]𝑑𝑉 = 𝑑
𝑑𝑡 ∮𝜕

�⃗�[𝒗] ⋅ 𝑑𝑆

= ∫
Div (𝐷𝑡 �⃗�[𝒗])𝑑𝑉 = ∮𝜕

𝐷𝑡 �⃗�[𝒗] ⋅ 𝑑𝑆
(4.33)

part from trivial terms that vanish on the solution space  of the PDE
ystem. This identity contains no local information about the given PDE
ystem or its solutions.

To discuss global triviality, we will refer to a locally trivial time-
ependent volumetric conservation law (4.32) as being either type I
rivial if both �⃗�[𝒗]| and 𝛬[𝒗]| are zero, or type IIa trivial if 𝛬[𝒗]| is
on-zero while �⃗�[𝒗]| is zero, or type IIb trivial if �⃗�[𝒗]| is non-zero,
odulo the gauge freedom (4.31) in each case. In particular:

type I trivial 𝑇 [𝒗]| = 0, �⃗� [𝒗]| = 0; (4.34)

type IIa trivial 𝑇 [𝒗]| = 0, �⃗� [𝒗]| = Curl 𝛬[𝒗]| ; (4.35)

ype IIb trivial 𝑇 [𝒗]| = Div �⃗�[𝒗]| ≠ 0,
�⃗� [𝒗]| = −𝐷𝑡 �⃗�[𝒗]| + Curl 𝛬[𝒗]| ≠ 0.

(4.36)

his is a direct analogue of the three types of local triviality for
ime-dependent surface-flux conservation laws.

Similarly to the situation for time-dependent surface-flux conser-
ation laws, volumetric conservation laws that are type I trivial or
ype IIa trivial contain neither global nor local information about the
iven PDE system. Type IIb trivial volumetric conservation laws, in
ontrast, can contain some useful global information whenever the net
lux integral  [𝒗; 𝜕] = ∮𝜕 𝐷𝑡 �⃗�[𝒗] ⋅ 𝑑𝑆 in the identity (4.33) vanishes
or an arbitrary solution 𝒗(𝑡, �⃗�) of the PDE system. The identity thereby
ecomes a global surface-flux conservation law (3.6) holding on the
oundary surface  = 𝜕 of the volume  :

𝑑
𝑑𝑡 ∮𝜕

�⃗�[𝒗] ⋅ 𝑑𝑆 = 0 (4.37)

ith no net spatial flux because the surface 𝜕 is closed, 𝜕2 = ∅.
ince type IIb triviality implies �⃗�[𝒗] ≠ Curl �⃗�[𝒗], we conclude from
heorem 7 that the surface-flux conservation law (4.37) is globally
on-trivial.
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We have now established the following interesting result which
shows how a locally trivial volumetric conservation law (4.36) can
yield a globally non-trivial surface-flux conservation law (4.37) on the
boundary of a volume.

Proposition 11. (i) A locally trivial time-dependent volumetric conserva-
tion law (4.30) of a PDE system (2.28) in R3 is globally trivial for a regular
volume  ⊂ R3 if and only if the flux integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆 is either time
dependent or identically zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of the system.
(ii) When a locally trivial volumetric conservation law (4.30) is globally
non-trivial for a regular volume  ⊂ R3, it corresponds to a divergence-type
temporal conservation law

𝐷𝑡Div �⃗�[𝒗]| = 0 (4.38)

that yields a non-trivial surface-flux constant of motion (4.28) on the
boundary surface(s)  = 𝜕 .

There is a converse for the second part of this result. Every
divergence-type temporal conservation law (4.38) yields a surface-flux
constant of motion on any surface  = 𝜕 given by the boundary of
a regular volume  within the spatial domain of the PDE system. The
surface-flux constant of motion can be expressed, by Gauss’ theorem,
as a volumetric conservation law

0 = 𝑑
𝑑𝑡 ∮𝜕

�⃗�[𝒗] ⋅ 𝑑𝑆 |

|

|
= 𝑑
𝑑𝑡 ∫

Div �⃗�[𝒗] 𝑑𝑉 |

|

|
(4.39)

whose conserved current 𝑇 [𝒗]| = Div �⃗�[𝒗]| ≠ 0 is locally trivial of
ype IIb (4.36).

Similarly to the situation for curl-type temporal conservation laws,
e can obtain divergence-type temporal conservation laws (4.38) from

ocal surface-flux conservation laws and local spatial divergence con-
ervation laws. In particular, the divergence of any locally non-trivial
urface-flux conservation law (3.10), written as (𝐷𝑡 �⃗�[𝒗]+Curl 𝛬[𝒗])| =
, yields a temporal conservation law (4.38), and the time derivative
f any locally non-trivial spatial divergence conservation law (3.15),
ritten as (Div �⃗�[𝒗])| = 0, also yields a temporal conservation law

4.38).
A converse for the first part of Proposition 11 will now be estab-

ished, similarly to Theorem 7 for surface-flux conservation laws.
Suppose a time-dependent global volumetric conservation law (3.1)

olding for a regular volume  ⊂ R3 in the spatial domain of a given
DE system (2.28) contains no global information about the solutions
f the PDE system. Firstly, we must have that 𝑇 [𝒗]| = Div �⃗�[𝒗]| is a
ivergence, so the volumetric integral 𝐶[𝒗;] = ∫ 𝑇 [𝒗] 𝑑𝑉 reduces to a
oundary surface integral by Gauss’s theorem. Secondly, for the global
onservation law (3.1) to hold, we must additionally have ∮𝜕 𝐷𝑡�⃗�[𝒗] ⋅
𝑆 | = − ∮𝜕 �⃗� [𝒗] ⋅ 𝑑𝓁 | . The equality of these two surface integrals
or an arbitrary boundary 𝜕 requires Div(𝐷𝑡�⃗�[𝒗] + �⃗� [𝒗])| = 0, which

implies (𝐷𝑡�⃗�[𝒗] + �⃗� [𝒗])| is the density for a local spatial divergence
onservation law (3.15). Thirdly, for this conservation law to be locally
rivial, we must have (𝐷𝑡�⃗�[𝒗] + �⃗� [𝒗])| = (Curl 𝛬[𝒗])| for some vector

differential function 𝛬[𝒗]. This shows that the conserved volumetric
urrent is locally trivial (4.30), whereby the global conservation law
3.1) reduces to the form (4.33). Finally, for the net flux  [𝒗; 𝜕] =
∮𝜕 𝐷𝑡 �⃗�[𝒗] ⋅𝑑𝑆 to contain no global information about solutions 𝒗(𝑡, �⃗�),
the flux integral ∮𝜕 �⃗�[𝒗] ⋅𝑑𝑆 must either be time dependent so that the
lobal conservation law holds as an identity, or be identically zero so
hat both 𝐶[𝒗;] = 0 and  [𝒗; 𝜕] = 0 are trivial.

Hence, we obtain the following main result, which extends the first
art of Proposition 11.

heorem 11. A time-dependent global volumetric conservation law (3.1)
f a PDE system (2.28) is globally trivial for an arbitrary regular volume
⊂ R3 if and only if its conserved density 𝑇 [𝒗] is locally trivial (4.30a)

and the associated flux integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆| is either time dependent or

identically zero, for an arbitrary solution 𝒗(𝑡, �⃗�) of the system. Consequently, 0
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in a globally non-trivial volumetric conservation law (3.1) holding for a
egular volume  ⊂ R3, the volumetric quantity 𝐶[𝒗;] either is given
y a volume integral that essentially depends on 𝒗(𝑡, �⃗�) at all points in  ,
r reduces to a surface-flux constant of motion that essentially depends on
(𝑡, �⃗�) only at the boundary 𝜕 of  .

This result leads to a notion of global equivalence for volumetric
onservation laws.

orollary 12. Two global time-dependent volumetric conservation laws
f a PDE system (2.28) are equivalent in the sense of containing the same
nformation about the solutions of the given system if and only if they differ
y a globally trivial volumetric conservation law.

The preceding notions of equivalence and (non-) triviality extend to
olumetric constants of motion. Specifically, a volumetric constant of
otion
𝑑
𝑑𝑡 ∫

𝑇 [𝒗] 𝑑𝑉 = 0 (4.40)

is said to be trivial if its conserved density 𝑇 [𝒗] is locally trivial (4.30a)
(with the spatial flux vanishing, �⃗� [𝒗]| = 0).

Unlike the situation for surface-flux and circulatory conservation
aws, the triviality conditions in Theorem 11 and Proposition 11 have
o general formulation involving a local condition on the conserved
ensity 𝑇 [𝒗], because total divergences are not vector differential func-
ions to which the differential identities (2.33) can be applied. Never-
heless, when the form of 𝑇 [𝒗] off of the solution space has a lower
ifferential order than that of the given PDE system, a local condition
or triviality can be formulated using the spatial Euler operator (cf.
emma 3).

roposition 12. Suppose the conserved density 𝑇 [𝒗] in a time-dependent
ocal volumetric conservation law (3.5) of a PDE system (2.28) in R3 has a
lower differential order off of the solution space than the differential order of
all PDEs in the given system. Then a necessary condition for the conservation
law to be locally trivial (4.30) is that 𝑇 [𝒗] identically satisfies

̂ 𝒗(𝑇 [𝒗]) ≡ 0 (4.41)

here Ê𝒗 is the spatial Euler operator (2.35). This condition (4.41) is
ufficient if the PDE system has no non-trivial topological flux conservation
aws (3.16).

The proof of this result goes as follows. When the differential
unction 𝑇 [𝒗] has a lower differential order than the differential order
f every PDE in the given system, the definition of local triviality (4.32)
f 𝑇 [𝒗] off of the solution space takes the form 𝑇 [𝒗] = Div �⃗�[𝒗],
ith 𝛤triv[𝒗] ≡ 0. Then, because total spatial divergences comprise the
ernel of the spatial Euler operator (cf Lemma 3), we conclude that
he condition (4.41) is necessary and sufficient for 𝑇 [𝒗] to be locally
rivial. We thereby have 𝐷𝑡𝑇 [𝒗]| = Div 𝐷𝑡�⃗�[𝒗]| = −Div �⃗� [𝒗]| ,
hich implies Div(�⃗� [𝒗] + 𝐷𝑡�⃗�[𝒗])| = 0 is a local spatial divergence

onservation law (3.15). If the given PDE system admits only trivial
onservation laws of that type, then from Definition 1 we have (�⃗� [𝒗] +
𝑡�⃗�[𝒗])| is a curl, and consequently �⃗� [𝒗] is locally trivial (4.32). This

ompletes the proof.
We can derive a similar formulation of the conditions in Theorem 11

or global triviality by the following argument.
Suppose the flux integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆

|

|

|
vanishes identically for an

rbitrary regular volume  . Then, Stokes’ theorem shows that �⃗�[𝒗]| =
url �⃗�[𝒗]| holds for a vector differential function �⃗�[𝒗], whereby we
ave Div �⃗�[𝒗]| = 0 by the first of the differential identities (2.33).
onversely, Div �⃗�[𝒗]| = 0 implies that �⃗�[𝒗]| = Curl �⃗�[𝒗]| holds,

f the given PDE system has no non-trivial local spatial divergence
onservation laws. Consequently, under this condition, the vanishing of
𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆| due to Stokes’ theorem will hold when and only when

⃗
= Div 𝛩[𝒗]| = 𝑇 [𝒗]| .
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Suppose instead the flux integral ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆
|

|

|
is time dependent

for an arbitrary regular volume  . This is equivalent to the volume
integral ∫ Div �⃗�[𝒗]𝑑𝑉 | being time dependent. Since  is arbitrary, an
equivalent condition is that Div �⃗�[𝒗]| itself must be time dependent.
Consequently, time dependence of ∮𝜕 �⃗�[𝒗] ⋅ 𝑑𝑆

|

|

|
will hold when and

only when Div �⃗�[𝒗]| = 𝑇 [𝒗]| is time dependent.
Thus we have established the following result.

Theorem 13. Suppose the conserved density 𝑇 [𝒗] in a time-dependent
local volumetric conservation law (3.5) of a PDE system (2.28) in R3 has a
lower differential order off of the solution space than the differential order
of all PDEs in the given system. Then a necessary condition for a time-
dependent local volumetric conservation law (3.5) of a PDE system (2.28)
to yield a globally trivial volumetric conservation law (3.1) for an arbitrary
regular volume  ⊂ R3 is that the conserved volumetric density 𝑇 [𝒗]|
identically vanishes under the spatial Euler operator (4.41). A sufficient
condition is that the conserved density 𝑇 [𝒗] satisfies the necessary condition
(4.41) and is time dependent, or vanishes identically, and also that the PDE
system has no non-trivial topological flux conservation laws (3.16).

This provides a simple sufficient condition for global non-triviality.

Corollary 14. If the conserved density 𝑇 [𝒗] of a time-dependent (local
or global) volumetric conservation law has a lower differential order off of
the solution space than the differential order of all PDEs in the given and
satisfies the variational condition Ê𝒗(𝑇 [𝒗]) ≠ 0, then the conservation law
is locally and globally non-trivial.

Numerous physical examples of volumetric conservation laws are
locally and globally non-trivial:

• mass in fluid flow, gas dynamics, and MHD;
• momentum and angular momentum in fluid flow, gas dynamics,

electromagnetism, and MHD;
• Galilean momentum in fluid flow, gas dynamics, and MHD;
• boost momentum in electromagnetism;
• energy in gas dynamics, ideal fluid flow, electromagnetism, and

ideal inviscid MHD;
• entropy in fluid flow;
• helicity in ideal fluid flow;
• cross-helicity in ideal inviscid MHD.

Two examples of a locally and globally trivial conservation law are
electric charge–current conservation in vacuum electromagnetism and
Ertel’s theorem in ideal fluid flow. shown in Section 5.2.3.

Physical examples of locally trivially volumetric conservation laws
connected with divergence-type temporal conservation laws that yield
globally non-trivial surface-flux constants of motion arise in electro-
magnetism, MHD, incompressible fluid flow, and compressible fluid
flow with diabatic heating, which are discussed in Section 5.2.4.

5. Physical examples of topological and dynamical conservation
laws

We will now present examples of conservation laws of physical
significance, and their interrelationships, that arise in the physically
important PDE systems for fluid flow, gas dynamics, electromagnetism,
and magnetohydrodynamics. For a survey of all known conservation
laws for these systems, the reader is referred to Refs. [23–36] for fluid
flow and gas dynamics; Refs. [37–40] for electromagnetism; and Refs.
[41–51] for magnetohydrodynamics.

We emphasize that the conservation law examples here will not be
exhaustive; they have been chosen to illustrate all of the different types
of local and global conservation laws that arise in three dimensions.
In particular, all of the physical examples of these conservation laws
mentioned in Sections 3 and 4 will be discussed.
16
5.1. Topological conservation laws

First, examples of topological flux conservation laws and topological
circulation conservation laws will be presented in both their local and
global forms.

5.1.1. Spatial divergence/topological flux conservation laws
There are several physical examples of topological flux conservation

laws (3.16) that are (locally and globally) non-trivial.
One main example is magnetic flux in electromagnetism and MHD.

In local form, the conserved flux density is �⃗� = �⃗� which physically
describes the absence of magnetic charges, div �⃗� = 0. Because the
differential order of �⃗� = �⃗� is zero, it clearly cannot be expressed as a
curl of a differential function in terms of the dynamical variables (�⃗�, �⃗�)
in electromagnetism, or (𝜌, 𝑢, �⃗�) in MHD. Hence, div �⃗� = 0 is a locally
non-trivial spatial divergence conservation law, by Definition 1.

The global form of this local conservation law consists of a topolog-
ical flux conservation law holding on any connected volume within the
physical domain of the electromagnetic or MHD system. If a volume has
a single boundary surface  = 𝜕 , then the topological flux is given by
a vanishing magnetic flux integral

∮
�⃗� ⋅ 𝑑𝑆 = 0. (5.1)

Alternatively, if the boundary of the volume is given by two disjoint
surfaces 1 and 2, then the topological flux has the form

∮1
�⃗� ⋅ 𝑑𝑆 = ∮2

�⃗� ⋅ 𝑑𝑆 (5.2)

which may be non-zero. The physical meaning of these topological flux
integrals is that the total flux of magnetic field lines measured through
a closed surface is invariant under continuous deformations of the
surface, and that this flux vanishes for surfaces that bound connected
domains, even when the magnetic field is time-dependent. These global
conservation laws (5.1) and (5.2) are non-trivial from Proposition 1.

A similar physical example is the electric flux in a connected vol-
ume  within the physical domain of an electromagnetic system that
contains no electric charges: div �⃗� = 0 in  . This is a locally non-
trivial spatial divergence conservation law which yields a topological
flux conservation law

∮
�⃗� ⋅ 𝑑𝑆 = 0 (5.3)

whose conserved flux density is �⃗� = �⃗�.
Another physical example of a local spatial divergence conservation

law (3.15) is given by the incompressibility equation (2.5) in fluid flow
and in MHD. The conserved density �⃗� = 𝑢 is the velocity, which clearly
cannot be expressed as a curl of a differential function in terms of the
dynamical variables (𝑢, 𝜌, 𝑝) in fluid flow, or (𝜌, 𝑢, �⃗�) in MHD. Hence,
this conservation law is locally non-trivial, by Definition 1.

The global form of the incompressibility conservation law consists
of a topological flux conservation law holding on any static connected
volume within the physical domain of the fluid or MHD system. For a
volume  with a single boundary surface  = 𝜕 , the topological flux
is given by

∮𝜕
𝑢 ⋅ 𝑑𝑆 = 0. (5.4)

Physically, this integral expresses that there are no sources or sinks
of streamline flux. For a volume whose boundary of consists of two
disjoint closed surfaces 1 and 2, the topological flux expresses

∮1
𝑢 ⋅ 𝑑𝑆 = ∮2

𝑢 ⋅ 𝑑𝑆 (5.5)

showing that the total streamline flux is invariant under continuous
deformations of a static closed surface within the fluid or MHD sys-
tem. This has the physical meaning that the fluid/plasma volume is
preserved. Both of these global conservation laws (5.4) and (5.5) are
non-trivial from Proposition 1.
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Another example of a local spatial divergence conservation law
arises in incompressible fluid flow and incompressible MHD, where
the pressure satisfies the respective Laplace-type equations (2.9) and
(2.27). These equations arise from the compatibility between the veloc-
ity equation and the incompressibility equation, and consequently they
have a spatial divergence form (3.15) in which �⃗� = (1∕𝜌)grad 𝑝+(𝑢⋅∇)𝑢
for fluid flow, and �⃗� = (1∕𝜌)grad 𝑝 + (𝑢 ⋅ ∇)𝑢 − (1∕𝜌)�⃗� × ( 1

𝜇0
curl �⃗�) for

MHD. In both cases, �⃗� = −𝑢𝑡 and Div �⃗� = −div 𝑢𝑡 = −𝐷𝑡div 𝑢 = 0 holds
for solutions of the fluid system and the MHD system. Consequently,
these spatial divergence conservation laws are locally non-trivial.

In global form, the resulting topological flux conservation laws for
any static closed surface  are given by

∫𝑆

(

(1∕𝜌)grad 𝑝 + (𝑢 ⋅ ∇)𝑢
)

⋅ 𝑑𝑆 = − 𝑑
𝑑𝑡 ∫𝑆

𝑢 ⋅ 𝑑𝑆 = 0 (5.6)

in incompressible fluid flow, and

∫𝑆

(

(1∕𝜌)grad 𝑝+ (𝑢 ⋅∇)𝑢− (1∕𝜌)�⃗� × ( 1
𝜇0

curl �⃗�)
)

⋅ 𝑑𝑆 = − 𝑑
𝑑𝑡 ∫𝑆

𝑢 ⋅ 𝑑𝑆 = 0

(5.7)

in incompressible MHD. Thus, these global conservation laws are con-
sequences of the streamline flux conservation law (5.4). A similar result
holds for disjoint static closed surfaces 1 and 2 that bound any static
onnected volume within the physical domain of the fluid or MHD
ystem.

An example of a (locally and globally) trivial spatial divergence
onservation law is the vorticity relation div �⃗� = 0 in fluid flow and
as dynamics, where �⃗� = curl 𝑢 is a curl. The global form of this
onservation law for any static closed surface  = 𝜕 within the fluid

or gas is an identity

∮
(∇ × 𝑢) ⋅ 𝑑𝑆 ≡ 0 (5.8)

by Stokes’ theorem, since 𝜕 = ∅.

.1.2. Spatial curl/topological circulation conservation laws
A main physical example of a (locally and globally) non-trivial

opological circulation conservation law (3.20) arises in irrotational
as dynamics and fluid flow. These physical systems have vanishing
orticity �⃗� = curl 𝑢 = 0 everywhere in the gas or fluid, and thus �⃗� = 𝑢 is

a conserved circulation density for a local spatial curl conservation law
(3.19). Because the differential order of 𝑢 is zero, it clearly cannot be
expressed as a gradient a differential function in terms of the dynamical
variables (𝑢, 𝜌, 𝑝) in gas dynamics, or (𝑢, 𝜌) in fluid flow. Consequently,
the spatial curl conservation law curl 𝑢 = 0 is locally non-trivial by
Definition 2.

The global form of this conservation law is a topological circulation
integral (3.20) holding on any static connected non-closed surface 
within the physical domain of the gas or fluid system. If the boundary of
the surface consists of a single closed curve  = 𝜕, then the circulation
integral is given by

∮
𝑢 ⋅ 𝑑𝓁 = 0. (5.9)

Likewise, if instead the boundary 𝜕 of the surface is given by two
disjoint closed curves 1 and 2, then the two corresponding circulation
integrals are equal,

∮1
𝑢 ⋅ 𝑑𝓁 = ∮2

𝑢 ⋅ 𝑑𝓁. (5.10)

The physical meaning of these topological conservation laws is that
the net circulation of streamlines measured around a static closed
curve is invariant under continuous deformations of the curve, and that
this circulation vanishes for all static closed curves within the spatial
domain of the physical system. Both conservation laws (5.9) and (5.10)
are non-trivial from Proposition 4.
 v

17
Another physical example is magnetic circulation in a magneto-
statics system: curl �⃗� = 0 and div �⃗� = 0. Here �⃗� = �⃗� is the
onserved circulation density for the local spatial curl conservation law
url �⃗� = 0. Clearly, since �⃗� is the dynamic variable, it cannot be
xpressed as a gradient a differential function in terms of itself. Hence
his conservation law is locally non-trivial by Definition 2.

For any closed connected curve  within the physical domain the
agnetostatics system, the resulting global conservation law is given

y

∮
�⃗� ⋅ 𝑑𝓁 = 0. (5.11)

his is a topological circulation integral, expressing that the net mag-
etic circulation vanishes. Similarly, for any two disjoint closed curves
1 and 2, the two corresponding circulation integrals are equal,

∮1
�⃗� ⋅ 𝑑𝓁 = ∮2

�⃗� ⋅ 𝑑𝓁. (5.12)

hese global conservation laws (5.11) and (5.12) are non-trivial from
roposition 4.

A counterpart of the previous example is the electric field circula-
ion in an electrostatics system: curl �⃗� = 0 and div �⃗� = 4𝜋𝜌, where
⃗ = �⃗� is the conserved density for the local spatial curl conservation
law curl �⃗� = 0. This conservation law is locally non-trivial and yields
opological circulation conservation laws analogous to the magnetic
irculation integrals (5.11) and (5.12).

There is a similar example arising in equilibrium ideal MHD, where
he velocity and magnetic field satisfy the curl equation curl(𝑢× �⃗�) = 0

due to 𝑢𝑡 = 0 and �⃗�𝑡 = 0. This curl equation is a spatial curl conservation
law that is locally non-trivial because �⃗� = 𝑢 × �⃗� has differential order
ero. The global form of this conservation law is given by the non-trivial
opological circulation integral

∮
(𝑢 × �⃗�) ⋅ 𝑑𝓁 = 0 (5.13)

or any static closed connected curve  within the physical domain of
he MHD system. Physically, this global conservation law expresses that
o net circulation is produced by the electric field �⃗� = −𝑢 × �⃗� around
tatic closed curves.

In the important special case [52] when the MHD equilibrium is
ield-aligned, 𝑢 × �⃗� = 0, the previous conservation law becomes trivial.

.1.3. Spatial gradient conservation laws
Irrotational equilibria of ideal fluids provide the main physical

xample of a local spatial gradient conservation law (3.20), where 𝑢𝑡 =
, 𝜌𝑡 = 0, and �⃗� = 0. The fluid velocity equation (2.19) for this time-
ndependent physical system reduces to grad( 12 |𝑢|

2+𝑒(𝜌)+𝑝∕𝜌) = 0 when
he fluid is either constant-density (2.4) or barotropic (2.6). Hence
= 1

2 |𝑢|
2 + 𝑒(𝜌) + 𝑝∕𝜌 is the conserved density. The resulting local

onservation law is known as Bernoulli’s principle [53].

.2. Dynamical conservation laws

Examples of dynamical conservation laws of volumetric, surface-
lux, circulatory type in both their local and global forms will be
resented next. Since the results in Appendix A show that circulatory
onservation laws give rise to surface-flux and volumetric conserva-
ion laws, and also that surface-flux conservation laws give rise to
olumetric conservation laws, we arrange the examples in this order:
irculatory; surface-flux; volumetric.

.2.1. Circulatory conservation laws
The main physical example of a circulatory conservation law that is

ocally and globally non-trivial is circulation in irrotational ideal fluid
low.

In local form the fluid circulation conservation law is given by the
elocity equation (2.19) when the fluid flow has no vorticity, �⃗� = 0,
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and is either constant-density (2.4) or barotropic (2.6). This yields a
local circulatory conservation law (3.14) where the conserved density
is 𝑇 = 𝑢, and the spatial flow is 𝛹 = 1

2 |𝑢|
2 + 𝑒(𝜌)+ 𝑝∕𝜌, with 𝑒(𝜌) = const

in the constant-density case, and 𝑒(𝜌) = ∫ (𝑝(𝜌)∕𝜌2)𝑑𝜌 in the barotropic
case. Because the differential order of 𝑇 = 𝑢 is zero, it clearly cannot
be expressed as a gradient of a differential function in terms of the
dynamical variables (𝑢, 𝑝) in the constant-density case, or (𝑢, 𝜌) in the
barotropic case. Hence this conservation law is locally non-trivial from
Definition 3.

For an arbitrary fixed (static) curve  within the fluid, the net
circulation ∫ 𝑢 ⋅ 𝑑𝓁 satisfies the global circulatory conservation law
(3.11):
𝑑
𝑑𝑡 ∫

𝑢 ⋅ 𝑑𝓁 = −
( 1
2 |𝑢|

2 + 𝑒(𝜌) + 𝑝∕𝜌
)

|

|

|𝜕
. (5.14)

Here the net spatial flow physically measures the amount of circulation
escaping through the endpoints 𝜕 of the curve. For closed curves,
𝜕 = ∅, this global conservation law becomes
𝑑
𝑑𝑡 ∮

𝑢 ⋅ 𝑑𝓁 = 0, (5.15)

showing that the total circulation for any fixed closed curve within the
fluid is a constant of motion. This is a static counterpart of Kelvin’s
circulation theorem for moving closed curves transported in a fluid
and it holds as a consequence of the topological circulation conser-
vation law (5.9). (We will discuss this further in Section 5.2.4.) The
global conservation laws (5.14) and (5.15) are globally non-trivial from
Theorem 4.

Two examples of locally trivial circulatory conservation laws arise
from the density gradient and entropy gradient in fluid flow.

First, for incompressible fluids, the gradient of the density transport
equation (2.8) yields (grad 𝜌)𝑡 + grad(𝑢 ⋅ grad 𝜌) = 0. This has the form
of a local circulatory conservation law (3.14), where the conserved
density is a gradient 𝑇 = grad 𝜌, and the spatial flow is 𝛹 = 𝑢 ⋅grad 𝜌 =
−𝜌𝑡. Hence the conserved current (𝑇 , 𝛹 ) = (grad 𝜌, 𝑢 ⋅ grad 𝜌) =
(grad 𝜌,−𝜌𝑡) is locally trivial (4.10). The global form of this circulatory
conservation law is given by
𝑑
𝑑𝑡 ∫

grad 𝜌 ⋅ 𝑑𝓁 = ∫
grad 𝜌𝑡 ⋅ 𝑑𝓁 = 𝜌𝑡

|

|

|𝜕
= −

(

𝑢 ⋅ grad 𝜌
)

|

|

|𝜕
(5.16)

which holds as an integral identity. Its global triviality is a consequence
of Proposition 7, since 𝜌 is time dependent for an arbitrary solution of
the irrotational fluid system.

Second, for locally adiabatic fluids, the gradient of the entropy
transport equation (2.7) yields (grad 𝑆)𝑡+grad(𝑢⋅grad 𝑆) = 0, which has
the form of a local circulatory conservation law (3.14), with 𝑇 = grad 𝑆
and 𝛹 = 𝑢⋅grad 𝑆 = −𝑆𝑡. This conservation law has the same properties
as the locally and globally trivial one just discussed for the density
gradient.

5.2.2. Surface-flux conservation laws
One primary physical example of a surface-flux conservation law

that is locally and globally non-trivial is magnetic induction (Faraday’s
law) in electromagnetism and ideal MHD.

The magnetic induction equation (2.26) in MHD yields a local
surface-flux conservation law (3.10) where the conserved density is
𝑇 = �⃗�, and the spatial circulation flux is �⃗� = 𝑢× �⃗� − 𝜂

𝜇0
curl �⃗�. Because

he differential order of 𝑇 = �⃗� is zero, it cannot be expressed as a curl
f a differential function in terms of the dynamical variables (𝜌, 𝑢, �⃗�),
nd thus this conservation law is locally non-trivial from Definition 4.

For an arbitrary fixed non-closed surface , the net magnetic flux
 �⃗� ⋅ 𝑑𝑆 satisfies the global surface-flux conservation law (3.6) which
s given by
𝑑
𝑑𝑡 ∫

�⃗� ⋅ 𝑑𝑆 = −∫𝜕
(�⃗� × 𝑢 + 𝜂

𝜇0
curl �⃗�) ⋅ 𝑑𝓁. (5.17)

Its physical meaning in the case 𝜂 = 0 of ideal MHD is that the rate of
hange of magnetic flux enclosed by a fixed surface in a plasma/liquid
18
metal is balanced exactly by the transport of the magnetic field through
the surface by the flow. In general, for closed surfaces, 𝜕 = ∅, this
lobal conservation law (5.17) becomes

𝑑
𝑑𝑡 ∮

�⃗� ⋅ 𝑑𝑆 = 0, (5.18)

hich holds as a consequence of the topological magnetic flux conser-
ation law (5.1). (We will discuss this further in Section 5.2.4.) These
lobal conservation laws (5.18) and (5.17) are globally non-trivial from
roposition 9.

The same local and global conservation laws for magnetic flux arise
n electromagnetism, where the magnetic induction equation has the
orm (2.21b). In global form, this is a statement of Faraday’s law

𝑑
𝑑𝑡 ∫

�⃗� ⋅ 𝑑𝑆 = −𝑐 ∫𝜕
�⃗� ⋅ 𝑑𝓁, (5.19)

hich gives the amount of electromotive force circulating around the
oundary of a fixed surface when the net magnetic flux is varying in
ime.

An analogous surface-flux conservation law is given by the electric
ield equation (2.23a) in vacuum electromagnetism. The conserved
ensity is 𝑇 = �⃗�, and the spatial circulation flux is �⃗� = −𝑐�⃗�.
or an arbitrary fixed non-closed surface , the global form of this
onversation law states that a time-varying electric flux through the
urface generates a magnetic circulation along the boundary of the
urface,
𝑑
𝑑𝑡 ∫

�⃗� ⋅ 𝑑𝑆 = 𝑐 ∫𝜕
�⃗� ⋅ 𝑑𝓁 (5.20)

where �⃗�𝑡 is the electric displacement current). When closed surfaces,
 = ∅, are considered, the resulting global conservation law

𝑑
𝑑𝑡 ∮

�⃗� ⋅ 𝑑𝑆 = 0 (5.21)

olds as a consequence of the topological electric flux conservation law
5.3). These conservation laws are locally and globally non-trivial by
he same argument explained for the magnetic induction conservation
aws.

A more general situation where a non-trivial surface-flux conserva-
ion law occurs is for the microscopic electric field given by Maxwell’s
quation (2.21a) when the electric charge distribution in a volume 
s static but non-zero, namely 𝜌𝑡 = 0, grad 𝜌 ≢ 0. In this situation, the
lectric current will be source-free, div 𝐽 = 0, which implies that it can

be expressed in a curl form 𝐽 = curl �⃗� if the volume  is topologically
trivial. As a consequence, Maxwell’s equation (2.21a) takes the form
of a local surface-flux conservation law �⃗�𝑡 = curl (𝑐�⃗� − 4𝜋�⃗�), where
the conserved density is 𝑇 = �⃗� and the spatial circulation flux is
�⃗� = −𝑐�⃗�+4𝜋�⃗�. The global form of this conversation law for the closed
boundary surface  = 𝜕 shows that the net electric flux is a constant of
motion (5.21). Unlike the vacuum case (when 𝜌 ≡ 0), here this constant
of motion can be non-zero as it measures the total charge contained in
 :

∫
�⃗� ⋅ 𝑑𝑆 = 4𝜋 ∫

𝜌 𝑑𝑉 .

Another example of a non-trivial surface-flux conservation law oc-
curs in incompressible electron MHD [54] when the generalized vor-
ticity of the flow of electrons is considered [55]. In this model, the
electron velocity 𝑢 is generated by the magnetic field �⃗� via

⃗ = − 𝑐
𝑛 𝑒 curl �⃗�

where 𝑛 is the constant electron density. The generalized vorticity
which is given by

�⃗�𝑒 = curl 𝑢 − 𝑒
𝑐𝑚𝑒

�⃗�, div �⃗�𝑒 = 0 (5.22)

atisfies the dynamical equation

�⃗� = curl(𝑢 × �⃗� ). (5.23)
𝑒𝑡 𝑒



S.C. Anco and A.F. Cheviakov International Journal of Non-Linear Mechanics 126 (2020) 103569

w
o
t

l
c
a

D
a
i

𝑝

5

v
l
i
w
b
t
m

t
c
t
a

a
f
p
l
S
v
t

v
𝑢
b
l
n
a
l
c
v
𝐵
w

f
m
i

u
v

l
t

l
M

t

t
h
h
P
∫
n
c
n
e

a
p
a
v
s

𝜕

T
l

𝑇

w

𝛹

This equation constitutes a surface-flux conversation law. Its global
form states that the vorticity flux through an arbitrary fixed non-closed
surface  generates a vorticity circulation along the boundary of the
surface,
𝑑
𝑑𝑡 ∫

�⃗�𝑒 ⋅ 𝑑𝑆 = ∫𝜕
(𝑢 × �⃗�𝑒) ⋅ 𝑑𝓁. (5.24)

For closed surfaces, 𝜕 = ∅, the net vorticity circulation is a constant
of motion,
𝑑
𝑑𝑡 ∮

�⃗�𝑒 ⋅ 𝑑𝑆 = 0.

An example of a trivial surface-flux conservation law is given by
the vorticity transport equation (2.20) in an ideal fluid that has either
constant density or a barotropic pressure. Here the conserved density
is a curl, 𝑇 = �⃗� = curl 𝑢, while the spatial circulation flux is given
by �⃗� = �⃗� × 𝑢 = −𝑢𝑡 − grad( 12 |𝑢|

2 + 𝑒(𝜌) + 𝑝∕𝜌) due to the velocity
equation (2.19). The conserved current (𝑇 , �⃗� ) is locally trivial (4.18),
from Definition 4. In global form, for an arbitrary fixed (static) surface
 within the fluid, this surface-flux conservation law is given by
𝑑
𝑑𝑡 ∫

�⃗� ⋅ 𝑑𝑆 = 𝑑
𝑑𝑡 ∫𝜕

𝑢 ⋅ 𝑑𝓁 = ∫𝜕
𝑢𝑡 ⋅ 𝑑𝓁 = −∮𝜕

(�⃗� × 𝑢) ⋅ 𝑑𝓁 (5.25)

hich holds as an integral identity. Its global triviality is a consequence
f Proposition 9, since 𝑢 is time dependent for an arbitrary solution of
he fluid system.

A related physical example of a trivial surface-flux conservation
aw arises in irrotational constant-density ideal fluid flow with a non-
onstant (locally adiabatic) entropy density, where the fluid velocity
nd the entropy density obey the equations

𝑢𝑡 + grad( 12 |𝑢|
2 + 𝑝∕𝜌) = 0, 𝑆𝑡 + 𝑢 ⋅ grad 𝑆 = 0.

By taking the cross-product of the velocity equation with grad 𝑆,
and adding the cross-product of the velocity with the gradient of the
entropy transport equation, we obtain a local surface-flux conservation
law (3.10) having the conserved density

𝑇 = 𝑢 × grad 𝑆 = −curl(𝑆𝑢)

and the spatial circulation flux

�⃗� = ( 12 |𝑢|
2 + 𝑝∕𝜌)grad 𝑆 − (𝑢 ⋅ grad 𝑆)𝑢 = (𝑆𝑢)𝑡 − grad(( 12 |𝑢|

2 + 𝑝∕𝜌)𝑆).

This yields a conserved current (𝑇 , �⃗� ) that is locally trivial (4.18), from
efinition 4. The global form of this surface-flux conservation law on
n arbitrary fixed (static) surface  within the fluid is given by the
dentity
𝑑
𝑑𝑡 ∫

(𝑢 × grad 𝑆) ⋅ 𝑑𝑆 = − 𝑑
𝑑𝑡 ∫

curl(𝑆𝑢) ⋅ 𝑑𝑆

= −∮𝜕
(𝑆𝑢)𝑡 ⋅ 𝑑𝓁 = −∮𝜕

(

( 12 |𝑢|
2 + 𝑝∕𝜌)grad 𝑆 − (𝑢 ⋅ grad 𝑆)𝑢

)

⋅ 𝑑𝓁.

This conservation law is globally trivial, since when 𝑢 × grad 𝑆 =
𝑇 ≠ 0, we have that 𝑢 and grad 𝑆 are not collinear, whereby ( 12 |𝑢|

2 +
∕𝜌)grad 𝑆 − (𝑢 ⋅ grad 𝑆)𝑢 = �⃗� ≠ 0.

.2.3. Volumetric conservation laws
We begin by presenting the main physical examples of non-trivial

olumetric conservation laws: mass, entropy, momentum, energy, he-
icity and cross-helicity. In Table 2, these conservation laws are written
n local form (3.5) for the volumetric density 𝑇 and spatial flux �⃗� ,
hich allows the similarities among the various conservation laws to
e seen. (The abbreviations FD, GD, EM, MHD to refer to the respec-
ive physical systems for fluid flow, gas dynamics, electromagnetism,
agnetohydrodynamics.)

Each of these conservation laws is both locally and globally non-
rivial. The non-triviality of mass, entropy, momentum, energy, and
ross-helicity is a consequence of Corollary 14. For helicity, its non-
riviality can be shown by a generalization of the proof of this Corollary
dapted to the specific form of the conserved density.
19
The physical meaning of the global form of the momentum and
ngular momentum conservation laws, as well as the conservation laws
or mass, entropy, and energy, is very well-known. Helicity has the
hysical meaning that the volumetric quantity ∫ 𝑢 ⋅ �⃗� 𝑑𝑉 measures the
inkage of vortex lines in any fixed (static) volume  within the fluid.
imilarly for cross-helicity, the volumetric quantity ∫ 𝑢⋅�⃗� 𝑑𝑉 in a fixed
olume  physically measures the collinearity between the velocity and
he magnetic field within the plasma/liquid.

For a gas or fluid confined to a fixed volume  , the flow velocity
ector at the boundary will be tangential to boundary surface 𝜕 ,
⃗|𝜕 ⋅ �̂� = 0. As a consequence, the flux of mass will vanish at the
oundary. Likewise, the flux of entropy will vanish when the flow is
ocally adiabatic, and the flux of energy will vanish when the flow has
o viscosity. In these situations, the total mass, entropy, and energy
re constants of motion. Similarly, for an ideal, inviscid plasma or
iquid metal confined to a fixed volume  , if the magnetic field is also
onfined to  then both the energy flux and cross-helicity flux will
anish at the boundary 𝜕 (as seen from Table 2), due to 𝑢|𝜕 ⋅�̂� = 0 and
⃗
|𝜕 ⋅ �̂� = 0. Consequently, the total energy and the total cross-helicity
ill be constants of motion.

In contrast, the helicity for an ideal (incompressible or barotropic)
luid confined to a fixed volume  is not in general a constant of
otion. The boundary condition for the vorticity vector �⃗� in the flow

s that �⃗�|𝜕 ∥ �̂�, and thus the total helicity satisfies 𝑑
𝑑𝑡 ∫ 𝑢 ⋅ �⃗� 𝑑𝑉 =

− ∮𝜕 (𝑝∕𝜌+ 𝑒− |𝑢|2)�⃗� ⋅ �̂� 𝑑𝐴 which is generally non-vanishing. In partic-
lar, the rate of change in total helicity in the volume  is balanced by
orticity within the boundary surface 𝜕 , �⃗�|𝜕 ⋅ �̂� ≠ 0.

Other well-known examples of non-trivial volumetric conservation
aws are angular momentum, Galilean momentum, and boost momen-
um.

One physical example of a locally trivial volumetric conservation
aw is the charge–current continuity equation (2.22) in the non-vacuum
axwell’s equations. The conserved density is given by 𝑇 = 𝜌 =

1
4𝜋 div �⃗� which is a spatial divergence, while the spatial flux is given by
�⃗� = 4𝜋𝐽 = − 1

4𝜋 �⃗�𝑡+
𝑐
4𝜋 curl �⃗�. Hence, the total charge in a fixed volume

 can expressed as a surface-flux integral ∫ 𝜌𝑑𝑉 = 1
4𝜋 ∫𝜕 �⃗� ⋅𝑑𝑆 whose

ime derivative is given by

𝑑
𝑑𝑡 ∫

𝜌𝑑𝑉 = 𝑑
𝑑𝑡

( 1
4𝜋 ∫𝜕

�⃗� ⋅ 𝑑𝑆
)

= 1
4𝜋 ∫𝜕

�⃗�𝑡 ⋅ 𝑑𝑆 = −∫𝜕
𝐽 ⋅ 𝑑𝑆

hrough Gauss’ theorem. This represents a global conservation law. It
olds as an identity for the surface-flux integral 1

4𝜋 ∫𝜕 �⃗� ⋅ 𝑑𝑆, and
ence is globally trivial in this form, which can also be deduced from
roposition 11. Nevertheless, the integral equalities 1

4𝜋 ∫𝜕 �⃗� ⋅ 𝑑𝑆 =

 𝜌 𝑑𝑉 and 1
4𝜋 ∫𝜕 �⃗�𝑡 ⋅𝑑𝑆 = − ∫𝜕 𝐽 ⋅𝑑𝑆 = − ∫ div 𝐽 𝑑𝑉 themselves are

on-trivial in a both a mathematical and physical sense. In the vacuum
ase, where 𝜌 = 0 and 𝐽 = 0, the global conservation law is globally
on-trivial but it holds as a consequence of the non-trivial topological
lectric flux conservation law (5.3).

Another example of a locally trivial volumetric conservation law
rises in ideal fluid flow that has either constant density or a barotropic
ressure, with the entropy density being non-constant (locally adi-
batic). By combining the entropy transport equation (2.7) and the
orticity transport equation (2.20), we obtain a local volumetric con-
ervation law

𝑡(�⃗� ⋅ grad 𝑆) + div
(

(�⃗� ⋅ grad 𝑆)𝑢
)

= 0. (5.26)

his result is known as Ertel’s theorem [35,56,57]. In this conservation
aw, the conserved density is equal to a spatial divergence

= �⃗� ⋅ grad 𝑆 = div(𝑢 × grad 𝑆),

hile the spatial flux can be expressed as

⃗ = (�⃗� ⋅ grad 𝑆)𝑢 = −(𝑢 × grad 𝑆) − Curl
(

(𝑆𝑢) + 𝑆�⃗� × 𝑢
)

.
𝑡 𝑡
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Table 2
Non-trivial volumetric conservation laws.

Name Density 𝑇 Flux �⃗� Physical system

Mass 𝜌 𝜌𝑢 FD, GD, MHD

entropy 𝑆 𝑆𝑢 Locally adiabatic FD

Momentum (𝜉 = 𝐢, 𝐣,𝐤) 𝜌𝜉 ⋅ 𝑢 𝜌(𝜉 ⋅ 𝑢)𝑢 + �̄�𝜉 − 𝜇(𝜉 ⋅ ∇)𝑢 FD, GD

𝜌𝜉 ⋅ 𝑢
𝜌(𝜉 ⋅ 𝑢)𝑢 − 1

𝜇0
(𝜉 ⋅ �⃗�)�⃗�

+
(

�̄� + 1
2𝜇0

|�⃗�|2
)

𝜉 − 𝜇(𝜉 ⋅ ∇)𝑢
MHD

1
𝑐
𝜉 ⋅ (�⃗� × �⃗�)

(𝜉 ⋅ �⃗�)�⃗� + (𝜉 ⋅ �⃗�)�⃗�

− 1
2
(|�⃗�|2 + |�⃗�|2)𝜉

Vacuum EM

Energy 𝜌( 1
2
|𝑢|2 + 𝑒) ( 1

2
𝜌|𝑢|2 + 𝜌𝑒 + 𝑝)𝑢 Ideal FD, ideal GD

1
2
𝜌|𝑢|2 + 1

𝛾
𝑝

+ 1
2𝜇0

|�⃗�|2

( 1
2
𝜌|𝑢|2 + (1 + 1

𝛾
)𝑝
)

𝑢

− 1
𝜇0
(𝑢 × �⃗�) × �⃗�

Ideal inviscid MHD

1
2
(|�⃗�|2 + |�⃗�|2) 𝑐�⃗� × �⃗� Vacuum EM

Helicity 𝑢 ⋅ �⃗� (𝑝∕𝜌 + 𝑒)�⃗� + (�⃗� × 𝑢) × 𝑢 Ideal barotropic FD
ideal incompressible FD

Cross-helicity 𝑢 ⋅ �⃗�

( 1
2
|𝑢|2 + (1 + 1

𝛾
)𝑝∕𝜌

)

�⃗�

− (�⃗� × 𝑢) × 𝑢
Ideal inviscid MHD
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Thus the conserved current (𝑇 , �⃗� ) is locally trivial, by Definition 5. The
lobal form of the conservation law (5.26) in any fixed (static) volume
within the fluid is given by

𝑑
𝑑𝑡 ∫

�⃗� ⋅ grad 𝑆 𝑑𝑉 = 𝑑
𝑑𝑡 ∫

div(𝑢 × grad 𝑆)𝑑𝑉

= ∮𝜕
(𝑢 × grad 𝑆)𝑡 ⋅ 𝑑𝑆 = −∮𝜕

(�⃗� ⋅ grad 𝑆)𝑢 ⋅ 𝑑𝑆
(5.27)

which holds as an integral identity. This conservation law is globally
trivial, since when �⃗� ⋅ grad 𝑆 = 𝑇 ≠ 0, we have (�⃗� ⋅ grad 𝑆)𝑢 = �⃗� ≠ 0
rovided 𝑢 ≠ 0.

An analogous trivial volumetric conservation law will hold for any
calar function 𝑓 [𝜌, 𝑆, 𝑝, 𝑢] that satisfies the transport equation 𝐷𝑡𝑓 +𝑢 ⋅
rad 𝑓 = 0.

A related trivial conservation law is the generalization of Ertel’s
heorem for potential vorticity [58,59] in diabatic heated ideal fluids
nd gases that are either barotropic or incompressible. The potential
orticity is given by �⃗� ⋅ grad 𝜃 in terms of the potential temperature
= 𝑇 (𝑝0∕𝑝)𝜅 , where 𝑇 is the local temperature, 𝑝0 is any chosen

onstant reference pressure, and 𝜅 is the Poisson constant. Potential
orticity satisfies the conservation law

𝑡(�⃗� ⋅ grad 𝜃) + div
(

(�⃗� ⋅ grad 𝜃)𝑢 − (𝑄∕𝜌)�⃗�
)

= 0 (5.28)

where 𝑄 is the diabatic heating rate given by

𝜃𝑡 + 𝑢 ⋅ grad 𝜃 = 𝑄

The conserved density and the spatial flux can be expressed in the form
of a locally trivial conserved current similarly to the expressions in
Ertel’s theorem with 𝑆 replaced by 𝜃. The global form of the conser-
ation law (5.28) in any fixed (static) volume within the fluid/gas is a
athematical identity.

.2.4. Globally non-trivial boundary conservation laws
Non-trivial boundary conservation laws in global form are given by

urface-flux constants of motion (4.28) on a closed boundary surface
= 𝜕 of a volume, and circulatory constants of motion (4.16) on a

losed boundary curve  = 𝜕 of a surface. The local form of these
onservation laws consists of divergence-type temporal conservation
aws (4.38) and curl-type temporal conservation laws (4.26), respec-
ively. Physical examples arise in PDE systems that possess evolution
quations and spatial constraint equations: electromagnetism, MHD,
ncompressible fluid flow, irrotational fluid flow, and compressible
luid flow in a Beltrami state with non-vanishing vorticity. In particular,
he latter example is new and will provide two interesting applications
f the results in Section 4.
 t

20
In electromagnetism and MHD, the magnetic field is divergence
ree, div �⃗� = 0. Since this equation is compatible with the evolution
quations in these PDE systems, we have 𝐷𝑡(div �⃗�) = 0, which is a
ivergence-type temporal conservation law for the conserved density
= div �⃗�. This local conservation law is trivial because div �⃗� = 0 holds

or all solutions of both systems. More specifically, it has the form of a
ocally trivial volumetric conservation law with vanishing spatial flux,
⃗ = 0. Its global form for any volume  within the physical domain of
ach system is given by the magnetic flux conservation law (5.18) for
he closed boundary surface  = 𝜕 . In particular, this is a non-trivial
lobal surface-flux conservation law, which arises from a locally trivial
olumetric conservation law.

Similarly, in incompressible fluid flow and incompressible MHD,
ince the velocity is divergence free, div 𝑢 = 0, we obtain the
ivergence-type temporal conservation law 𝐷𝑡(div 𝑢) = 0 which has
he form of a locally trivial volumetric conservation law 𝑇 = div 𝑢 with
anishing spatial flux, �⃗� = 0. It has the global form (5.6) and (5.7)
hich states the vanishing of the net streamline flux through the closed
oundary surface  = 𝜕 of any static volume  within the physical
omain of these respective systems is conserved.

Another similar example is irrotational fluid flow or gas dynamics,
here curl 𝑢 = 0. The time derivative of this equation gives 𝐷𝑡(curl 𝑢) =
, which is compatible with the evolution equation for 𝑢 in these
ystems. This equation is a curl-type temporal conservation law. It has
he form of a locally trivial surface-flux conservation law, in which
⃗ = curl 𝑢 is the conserved density and �⃗� = 0 is the spatial circulation
lux. The global form of this conservation law states that the vanishing
f the net circulation (5.15) around any static closed curve within the
hysical domain of the irrotational systems is conserved.

A more interesting example of a curl-type temporal conservation
aw arises in ideal barotropic fluid flow with non-vanishing vorticity
hen Beltrami flows are considered. Since a Beltrami flow is charac-

erized by the relation �⃗�×𝑢 = 0, the vorticity transport equation (2.20)
hen becomes �⃗�𝑡 = 0. This has the form of a locally trivial surface-flux
onservation law, and the resulting global conservation law states that
he net circulation (5.15) around any static closed curve within the
hysical domain of the Beltrami flow is conserved. Importantly, here
he fluid can be irrotational, in which case the conserved circulation
an be non-zero. In particular, this physical situation provides an
xample of a non-trivial global circulatory conservation law arising
rom a locally trivial surface-flux conservation law.

A different interesting example from fluid flow with non-vanishing
orticity comes from the conservation law for potential vorticity (5.28)
n diabatic heated fluids. If the flow is in a Beltrami state such that

he relation (𝑄∕𝜌)�⃗� = (�⃗� ⋅ grad 𝜃)𝑢 holds, then the potential vorticity
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satisfies 𝜕𝑡(�⃗� ⋅ grad 𝜃) = 0. This constitutes a locally trivial volumetric
conservation law because the conserved density 𝑇 = �⃗�⋅grad 𝜃 = div(𝜃�⃗�)
is a divergence. The resulting global conservation law in any fixed
(static) volume  within the fluid is given by

𝑑
𝑑𝑡 ∫

�⃗� ⋅grad 𝜃 𝑑𝑉 = 𝑑
𝑑𝑡 ∮𝜕

𝜃 �⃗� ⋅𝑑𝑆 = 𝑑
𝑑𝑡 ∮𝜕

(𝑢×grad 𝜃) ⋅𝑑𝑆 = 0 (5.29)

hich states the net flux of potential vorticity through the boundary
urface 𝜕 is a constant of motion. It can also be interpreted as
onservation of circulatory potential temperature 𝑢 × grad 𝜃. This
oundary conservation law is globally non-trivial whenever the fluid
s irrotational.

. Potentials and non-triviality

All non-trivial conservation laws admitted by a given physical PDE
ystem 𝑮[𝒗] = 0 contain local and global information about the
olutions 𝒗(𝑡, �⃗�) of the system. It is often useful to convert a non-trivial
onservation law into an identity by the introduction of a set of poten-
ials. The information contained in the conservation law then becomes
ransferred to the set of equations that relate the set of potentials to the
ynamical variables in the conservation law. Part of the information
ay also reside in the topological properties of the spatial domain in
hich the potential is defined.

From a mathematical viewpoint, the introduction of potentials in-
olves moving from the original jet space (𝑡, �⃗�, 𝒗, 𝜕𝒗, 𝜕2𝒗,…) to a new jet
pace in which some of the dynamical variables (and their derivatives)
et replaced by the set of potentials (and their derivatives). In terms of
he variables in the new jet space, the conservation law in local form
olds as an identity which no longer contains any local information
bout solutions of the PDE system. Thus, the conservation law becomes
ocally trivial.

To illustrate this relationship between potentials and triviality of
onservation laws, we will give a few important physical examples from
luid flow, gas dynamics, electromagnetism, and MHD.

.1. Potentials in irrotational fluid flow and gas dynamics

One important physical example of a potential arises in irrotational
luid flow and gas dynamics, where the vorticity �⃗� = curl 𝑢 = 0 vanishes
verywhere in the spatial domain 𝛺 ⊆ R3 of the fluid or gas. This
quation represents a locally non-trivial spatial curl conservation law
3.19), as discussed in Section 5.1.2. A corresponding potential is given
y

𝑢 = grad 𝜑 (6.1)

where 𝜑 is called the velocity potential. When the spatial domain 𝛺 has
trivial topology (such that all closed loops in 𝛺 are contractible), the
velocity potential will be a smooth function in 𝛺. Then the vorticity
equation holds as an identity

curl 𝑢 = curl grad 𝜑 ≡ 0 (6.2)

everywhere in 𝛺.
While this conservation law curl 𝑢 = 0 is non-trivial with respect to

the jet space of dynamical variables (𝑢, 𝜌, 𝑝) in the fluid or gas system,
its formulation as an identity (6.2) means that it is locally trivial with
respect to the new jet space of variables (𝜑, 𝜌, 𝑝).

For any static closed curve  = 𝜕 bounding a connected surface
 ∈ 𝛺, the global form of the conservation law curl 𝑢 = 0 is given
by the vanishing circulation integral (5.9), which has the physical
meaning that the fluid or gas is irrotational. Once the velocity potential
is introduced, the resulting global conservation law becomes a line
integral identity

𝑢 ⋅ 𝑑𝓁 = grad 𝜑 ⋅ 𝑑𝓁 ≡ 0 (6.3)
∮ ∮

21
(holding due to the fundamental theorem of calculus for line integrals)
since the curve has no boundary, 𝜕 = ∅. This form of the conservation
law contains no information about the physical system, while the
physical information about the fluid or gas being irrotational resides
instead in Eq. (6.1) relating the velocity potential 𝜑 to 𝑢.

6.2. Potentials in incompressible fluid flow

Another important physical example of a potential arises in in-
compressible fluid flow as well as in incompressible MHD, where the
velocity is divergence free, div 𝑢 = 0, everywhere in the spatial domain
𝛺 ⊆ R3 of the fluid or MHD system. This incompressibility equation
represents a locally non-trivial spatial divergence conservation law
(3.15), as discussed in Section 5.1.1. Its has the physical content that
the fluid volume or liquid metal volume in the flow is not expanding or
contracting. Mathematically, it states that there are no sources or sinks
of velocity streamlines.

In two spatial dimensions, the velocity 𝑢 can be expressed in terms
of a single scalar potential, known as the stream function, whose
gradient is orthogonal to 𝑢. A generalization to three spatial dimensions
involves introducing a pair of scalar potentials (𝛼, 𝛽) given by

⃗ = grad 𝛼 × grad 𝛽. (6.4)

Since 𝑢 is orthogonal to the gradient of each potential, these po-
tentials (𝛼, 𝛽) are analogous to stream functions and are known as
Clebsch variables [53,60]. In particular, 𝑢 lies in the intersection of the
corresponding potential surfaces 𝛼 = const and 𝛽 = const.

When the spatial domain 𝛺 has trivial topology (such that all closed
surfaces in 𝛺 are contractible), both potentials will be smooth functions
in 𝛺. Then the incompressibility equation holds as an identity

div 𝑢 = div(grad 𝛼 × grad 𝛽) = (curl grad 𝛼) × grad 𝛽

− grad 𝛼 × (curl grad 𝛽) ≡ 0 (6.5)

everywhere in 𝛺. In this situation, the potentials (𝛼, 𝛽) exist for any
divergence-free 𝑢. Specifically, by Poincaré’s lemma, 𝑢 = curl �⃗�
holds for some smooth vector field �⃗� . The Clebsch representation
theorem [60] states that �⃗� = grad ℎ + 𝑓grad 𝑔 holds for some smooth
functions 𝑓, 𝑔, ℎ, whence curl �⃗� = curl(𝑓grad 𝑔) = grad 𝑓 × grad 𝑔 = 𝑢.

With respect to the jet space of dynamical variables (𝑢, 𝜌, 𝑝) in
fluid flow, or (𝑢, 𝜌, �⃗�) in MHD, the conservation law div 𝑢 = 0 is
non-trivial, but it becomes locally trivial with respect to the new jet
space of variables (𝛼, 𝛽, 𝜌, 𝑝). The physical and mathematical content
of this conservation law then resides in Eq. (6.4) relating the Clebsch
potentials (𝛼, 𝛽) to 𝑢.

For any static closed surface  = 𝜕 bounding a connected volume
 ∈ 𝛺, the global form of the conservation law div 𝑢 = 0 is given by
the vanishing streamline-flux integral (5.4). Once the velocity potential
is introduced, the resulting global conservation law becomes a surface
integral identity

∮
𝑢 ⋅ 𝑑𝑆 = ∮

(grad 𝛼 × grad 𝛽) ⋅ 𝑑𝑆 = ∮
curl(𝛼grad 𝛽) ⋅ 𝑑𝑆 ≡ 0 (6.6)

holding due to Stokes’ theorem) since the surface has no boundary,
 = ∅. Hence this form of the conservation law is globally trivial.

6.3. Potentials in electromagnetism

One more important physical example comes from Maxwell’s equa-
tions (2.21) for electromagnetism, where the magnetic field �⃗� is di-
vergence free and its time derivative is given by the curl of the electric
field. The divergence equation div �⃗� = 0 represents a locally non-trivial
patial divergence conservation law, while the evolution equation �⃗�𝑡 =
𝑐curl �⃗� represents a locally non-trivial surface-flux conservation law,
hich are discussed in Sections 5.1.1 and 5.2.2 respectively. Note that

hese two equations for �⃗� are compatible: the time derivative of div �⃗�
s equal to the divergence of �⃗� + 𝑐curl �⃗� (namely, these equations are
𝑡
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related by a differential identity). In global form, the resulting conser-
vation laws (5.1) and (5.19) for any closed surface  = 𝜕 bounding
a volume  within the physical domain 𝛺 ⊆ R3 of the electromagnetic
system state that the net magnetic flux through  is zero and that this
flux is time-independent, due to the absence of magnetic charges. Both
of these conservation laws are globally non-trivial with respect to the
jet space of dynamical variables (�⃗�, �⃗�).

First, a potential for the divergence equation div �⃗� = 0 is given by

�⃗� = curl 𝐴 (6.7)

where 𝐴(𝑡, �⃗�) is called the (magnetic) vector potential. When the spatial
domain 𝛺 has trivial topology (such that all closed surfaces in 𝛺 are
contractible), the vector potential will be a smooth vector function in
𝛺. The divergence equation then holds as an identity

div �⃗� = div curl 𝐴 ≡ 0 (6.8)

everywhere in 𝛺. Consequently, this conservation law becomes locally
trivial with respect to the jet space of the variables (�⃗�, 𝐴). The corre-
sponding global conservation law (5.1) then holds as surface integral
identity

∮
�⃗� ⋅ 𝑑𝑆 = ∮

(curl 𝐴) ⋅ 𝑑𝑆 ≡ 0 (6.9)

by Stokes’ theorem since the surface is closed, 𝜕 = ∅. The phys-
ical information that there are no magnetic charges resides instead
in Eq. (6.7) relating the magnetic field �⃗� to the vector potential 𝐴.

When the evolution equation �⃗�𝑡 = −𝑐curl �⃗� is expressed in terms of
the vector potential, it becomes a curl equation

curl(𝐴𝑡 + 𝑐�⃗�) = 0 (6.10)

which represents a locally non-trivial spatial curl conservation law. The
global form of this conservation law relates the net electric circulation
(electromotive force) around any closed curve  to the rate of change
of circulation of the vector potential:

∮
�⃗� ⋅ 𝑑𝓁 = −1

𝑐
𝑑
𝑑𝑡 ∮

𝐴 ⋅ 𝑑𝓁. (6.11)

Next, a potential for the curl equation (6.10) is given by

⃗ = grad 𝜙 − 1
𝑐𝐴𝑡 (6.12)

where 𝜙(𝑡, �⃗�) is called the (electric) scalar potential. When the spatial
domain 𝛺 has trivial topology (such that all closed loops in 𝛺 are
contractible), the scalar potential will be a smooth function in 𝛺. The
curl equation then holds as an identity

curl(𝐴𝑡 + 𝑐�⃗�) = curl grad 𝜙 ≡ 0 (6.13)

everywhere in 𝛺. As a consequence, this conservation law becomes
locally trivial with respect to the jet space of the potentials (𝜙,𝐴).
ikewise, the corresponding global conservation law (6.11) becomes a
ine integral identity


�⃗� ⋅ 𝑑𝓁 + 1

𝑐
𝑑
𝑑𝑡 ∮

𝐴 ⋅ 𝑑𝓁 = ∮
grad 𝜙 ⋅ 𝑑𝓁 ≡ 0 (6.14)

since 𝜕 = ∅.
One difference between this electromagnetic example and the previ-

ous examples in fluid flow is that the pair of electromagnetic potentials
(𝜙,𝐴) have gauge freedom given by

𝜙 → 𝜙 + 1
𝑐 𝜒 𝑡, 𝐴 → 𝐴 + grad 𝜒 (6.15)

in terms of an arbitrary scalar function 𝜒(𝑡, �⃗�). The physical variables
(�⃗�, �⃗�), along with all of the preceding conservation laws, are invariant
under this gauge freedom.
22
7. Conclusion

We have explored the properties and relationships of the differ-
ent types of dynamical and topological conservation laws for PDE
systems in three spatial dimensions. These types are distinguished by
the dimensionality of the domain on which the global form of the
conservation law is formulated: volumes, surfaces, and curves, in the
case of dynamical conservation laws; surfaces and curves, in the case
of topological conservation laws.

We have introduced both global and local formulations of all of
these different conservation laws within a unified framework, and we
have also explained the conditions under which these conservation laws
yield constants of motion.

Our main results consist of providing an explicit and systematic
characterization for when two conservation laws are locally or globally
equivalent, and for when a conservation law is locally or globally
trivial, as well as deriving relationships among the different types of
conservation laws. These results significantly clarify and improve the
notion of a ‘‘trivial’’ conservation law.

We have used these results to show how if a trivial local conserva-
tion law on a domain has zero flux then under certain conditions it can
yield a non-trivial global conservation law on the domain boundary.
These boundary conservation laws are found to be related to constants
of motion that arise from differential identities holding in a PDE
system when it contains both evolution equations and spatial constraint
equations. This demonstrates that such differential identities are not
merely ‘‘trivial’’ conservation laws, which has been the source of some
confusion in the applied mathematics and physics literature.

Additionally, we have explained how non-triviality of a conserva-
tion law gets altered when potentials are introduced.

Throughout, physical examples from fluid flow, gas dynamics, elec-
tromagnetism, and magnetohydrodynamics have been used to illustrate
the results. Because the examples are formulated within a unified
framework, they shed light on the similarities and connections among
various conservation laws in all of these physical systems.

In subsequent papers, we plan first to extend all of these results to
conservation laws that are formulated on moving spatial domains. For
PDE systems describing the flow of a physical continuum, such as a gas,
a fluid, or a plasma, the most important kind of conservation laws and
constants of motion are ones that hold on moving domains transported
by the flow. Of particular interest are material conservation laws that
have vanishing fluxes. These conservation laws will be shown to be
closely connected to ‘‘frozen-in’’ quantities which are very useful for
understanding the physical and analytical properties of solutions.

We further plan to study the different types of conservation laws on
static and moving domains for PDE systems in two spatial dimensions.
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Appendix A. Relationships among the different types of local con-
servation laws

Local volumetric, surface-flux, and circulatory conservation laws
(3.5), (3.10), (3.14) are related to each other in several ways. These re-
lationships can be expressed succinctly in terms of a time-independent
vector function 𝜉(𝑥) in R3. Hereafter we will use subscripts  , , to
istinguish the three respective types of conserved densities and spatial
luxes.

Firstly, we take the dot product of 𝜉(𝑥) with any local circulatory
conservation law (3.14). The time-derivative term yields 𝜉 ⋅ 𝐷𝑡𝑇 =
𝐷𝑡(𝑇 ⋅ 𝜉), while the spatial gradient term yields 𝜉 ⋅ (Grad 𝛹 ) =

iv(𝛹𝜉) + 𝛹div 𝜉. Therefore, if we take 𝜉(𝑥) to be divergence-free,
then we obtain a set of local volumetric conservation laws (3.5) given
by

𝑇 = 𝑇 ⋅ 𝜉, �⃗� = 𝛹𝜉, div 𝜉 = 0. (A.1)

In a similar way, the dot product of 𝜉 with any local surface-flux
conservation law (3.10) yields the terms 𝐷𝑡(𝑇 ⋅𝜉) and Div(�⃗� ×𝜉)− �⃗� ⋅
curl 𝜉. By taking 𝜉(𝑥) to be curl-free, we obtain a set of local volumetric
conservation laws (3.5) given by

𝑇 = 𝑇 ⋅ 𝜉, �⃗� = �⃗� × 𝜉, curl 𝜉 = 0. (A.2)

Secondly, we take the cross product of 𝜉(𝑥) with any local circula-
tory conservation law (3.14). The time-derivative term yields 𝜉×𝐷𝑡𝑇 =
−𝐷𝑡(𝑇 × 𝜉), while the spatial gradient term yields 𝜉 × (Grad 𝛹 ) =

Curl(𝛹𝜉) − 𝛹curl 𝜉. Therefore we obtain a set of local surface-flux
onservation laws (3.10) given by

⃗ = 𝑇 × 𝜉, �⃗� = 𝛹𝜉, curl 𝜉 = 0. (A.3)

The cross product of 𝜉 with any local surface-flux conservation law
3.10) does not yield any type of local conservation law. In particular,
f 𝜉 is taken to be a constant vector for simplicity, the spatial curl term

gives 𝜉 × (Curl �⃗� ) = Grad(𝜉 ⋅ �⃗� ) + Curl(𝜉 × �⃗� ) − 𝜉Div �⃗� which is a
linear combination of all three types of spatial terms appearing in local
conservation laws.

The three relationships (A.1), (A.2), (A.3) have direct counterparts
for local spatial divergence, curl, and gradient conservation laws (3.15),
(3.19), (3.23). Specifically, we have

�⃗� = 𝛹𝜉, div 𝜉 = 0, (A.4)

�⃗� = �⃗� × 𝜉, curl 𝜉 = 0, (A.5)

�⃗� = 𝛹𝜉, curl 𝜉 = 0, (A.6)

where subscripts  and  denote (the domains of) spatial divergence
and spatial curl conservation laws; and an empty subscript denotes a
spatial gradient conservation law.

A special case of all of these relationships is when 𝜉 is a constant
vector. In particular, we can work in Cartesian coordinates �⃗� = (𝑥, 𝑦, 𝑧)
and take 𝜉 to be each of three corresponding unit vectors 𝐢, 𝐣,𝐤. Then
the three components of local surface-flux and circulatory conservation
laws produce three corresponding local volumetric conservation laws,
and likewise the three components of local spatial curl and gradient
conservation laws produce three corresponding local spatial divergence
conservation laws.

The general form of the relationships (A.1)–(A.3) and (A.4)–(A.6)
provides a mapping from a local conservation law into a set of local
conservation laws parameterized by a vector function 𝜉(𝑥). To under-
stand the properties of these sets of local conservation laws, we will
use the result (Poincaré’s lemma) that, in R3, curl 𝜉 = 0 is equivalent
to 𝜉 = grad 𝜁 for some scalar function 𝜁 (𝑥), and similarly div 𝜉 = 0 is
equivalent to 𝜉 = curl 𝜁 for some vector function 𝜁 (𝑥).

Therefore, we can write the sets of dynamical conserved currents
(A.7), (A.8), (A.9) in the respective forms

𝑇 = Div(𝜁 × 𝑇 ) + 𝜁 ⋅ (Curl 𝑇 ), �⃗� | = −𝐷𝑡(𝜁 × 𝑇 ) + Curl(𝛹𝜁 ),

(A.7) d

23
𝑇 = Div(𝜁𝑇 ) − 𝜁Div 𝑇 , �⃗� | = −𝐷𝑡(𝜁𝑇 ) − Curl(𝜁�⃗� ), (A.8)

 = −Curl(𝜁𝑇 ) + 𝜁Curl 𝑇 , �⃗� | = 𝐷𝑡(𝜁𝑇 ) + Grad(𝜁𝛹 ), (A.9)

hich will be useful for studying the corresponding sets of global
onservation laws.

For an arbitrary regular volume  ∈ R3, the two sets of volumet-
ic conserved currents (A.7) and (A.8) respectively yield the global
onservation laws
𝑑
𝑑𝑡 ∫

𝜁 ⋅ (Curl 𝑇 ) 𝑑𝑉
|

|

|
= 0 (A.10)

nd
𝑑
𝑑𝑡 ∫

𝜁Div 𝑇 𝑑𝑉
|

|

|
= 0 (A.11)

after the divergence terms have been converted into flux terms by
Gauss’ theorem. In these conservation laws, the net flux integrals on 𝜕
are zero by Stokes’ theorem since this boundary surface 𝜕 is closed.
Thus, these two sets of global volumetric conservation laws comprise
constants of motion.

Similarly, for an arbitrary regular surface  ∈ R3, the set of
surface-flux conserved currents (A.9) yields

𝑑
𝑑𝑡 ∫

𝜁 (Curl 𝑇 ) ⋅ 𝑑𝑆
|

|

|
= 0 (A.12)

fter the curl term has been converted into a circulation flux term by
tokes’ theorem. Here the net circulation line integral on 𝜕 is zero
y the fundamental theorem of line integrals since the boundary curve
 is closed. This set of global surface-flux conservation laws thus
omprises constants of motion.

In an analogous way, the sets of time-independent conserved densi-
ies (A.4), (A.5), (A.6) can be expressed in the respective forms

⃗ = 𝜁 × Grad 𝛹 + Curl(𝛹𝜁 ), (A.13)
⃗ = 𝜁Curl �⃗� − Curl(𝜁�⃗� ), (A.14)
⃗ = −𝜁Grad 𝛹 + Grad(𝜁𝛹 ). (A.15)

ut since we have Grad 𝛹 | = 0 and Curl �⃗� | = 0, the spatial
ivergence densities (A.13) and (A.14) reduce to curl expressions, while
he spatial curl density (A.13) reduces to a gradient expression. As

consequence, for an arbitrary closed regular surface  ∈ R3, the
lobal form of the spatial divergence conservation laws arising from
he mapping formulas (A.13) and (A.14) is just an identity:

∫
Curl(𝛹 ||

|
𝜁 ) ⋅ 𝑑𝑆 ≡ 0, ∫

Curl(𝜁�⃗�
|

|

|
) ⋅ 𝑑𝑆 ≡ 0 (A.16)

y Stokes’ theorem. Likewise, for an arbitrary closed regular curve
∈ R3, the global form of the spatial curl conservation laws arising

rom the mapping formula (A.15) is an identity

∫
Grad(𝜁𝛹 ||

|
) ⋅ 𝑑𝓁 ≡ 0. (A.17)

.1. Triviality relationships

The various relationships (A.7), (A.8), (A.9) among local volumet-
ic, surface-flux, and circulatory conservation laws can be shown to
reserve local triviality. Specifically, we have the following results.

heorem 15. For any PDE system (2.28) in R3: (i) If the conserved
ensity in a local circulatory conservation law (3.14) is curl-free (4.17),
hen all of local surface-flux conservation laws and all of the local volumet-
ic conservation laws in the respective sets produced by the mappings (A.7)
nd (A.9) are locally trivial. Conversely, if the conserved density in a local
irculatory conservation law (3.14) is not curl-free, then at least one local
urface-flux conservation law in the set produced by the mapping (A.9) is
ocally non-trivial, and at least one volumetric conservation law in the set
roduced by the mapping (A.7) is locally non-trivial. (ii) If the conserved

ensity in a local surface-flux conservation law (3.10) is divergence-free
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(4.29), then all of the local volumetric conservation laws in the set produced
by the mapping (A.8) are locally trivial. Conversely, if the conserved density
in a local surface-flux conservation law (3.10) is not divergence-free, then
at least one local volumetric conservation law in the set produced by the
mapping (A.8) is locally non-trivial.

The proof of parts (i) and (ii) are analogous, so we will give
only the proof of part (i). For the first mapping (A.9) in part (i), we
use the observation that the surface-flux conserved current (A.9) has
the locally-trivial form (4.18) apart from the term 𝜁Curl 𝑇 | in the
onserved density. This term vanishes on the solution space of the
iven PDE system if Curl 𝑇 | = 0 holds, whereby the conserved
urrent is locally trivial. Conversely, if the conserved current is locally
rivial, then the term 𝜁Curl 𝑇 | must be a total curl, whereby each
f its Cartesian components (with respect to 𝐢, 𝐣,𝐤) must be a total
ivergence. This will hold for all functions 𝜁 (𝑥) iff 𝜁Curl 𝑇 | belongs
o the kernel of the spatial Euler operator (cf Lemma 3), which yields
= Ê𝜁 (𝜁Curl 𝑇 | ) = Curl 𝑇 | . For the second mapping (A.7) in part

i), the proof uses the same steps and will be omitted. This completes
he proof of Theorem 15.

In the analogous relationships (A.13), (A.14), (A.15) that hold
mong local spatial divergence, curl, and gradient conservation laws,
e see that all of the time-independent conservation laws produced by

hese mappings are both locally and globally trivial.

ppendix B. Formulation of locally and globally (non) trivial con-
ervation laws by differential forms

All of the types of local conservation laws, on spatial domains
onsisting of volumes, surfaces, and curves in three spatial dimensions,
ave an alternative formulation using differential forms. The general
athematical setting for this formulation is given by the variational

i-complex, as explained in Ref [1].
Here we will first show how to express local volumetric, surface-

lux, and circulatory conservation laws (3.5), (3.10), (3.14) by using
ifferential forms. Only a few basic aspects of the variational bi-
omplex will be needed. In particular, volumetric conservation laws are
hown to coincide with 3-form conservation laws, whereas surface-flux
nd circulatory conservation laws are respectively shown to be a strict
eneralization of 2-form and 1-form conservation laws.

Then we will state in terms of differential forms the definition and
roperties of local triviality and global triviality for local volumetric,
urface-flux, and circulatory conservation laws, which are given in
ropositions 11, 9, 7, respectively. In this language we will explain the
onditions under which a locally trivial conservation law on a spatial
omain can yield a constant of motion given by a non-trivial global
onservation law on the boundary of the domain. We will also show
ow this extends to 3-form, 2-form, and 1-form conservation laws.

This will provide a transcription of our main results from vector
alculus into differential forms.

Finally, the example of Maxwell’s equations from Section 5.2.4 will
e re-worked using differential forms to illustrative how non-trivial
oundary conservation laws arise directly for dynamical PDE systems
hat contain differential identities enforcing the compatibility between
patial constraint equations and evolution equations in the system.

.1. Differential forms and local conservation laws

For dynamical PDE systems in three-dimensional space, the inde-
endent variables 𝑡 and �⃗� = (𝑥1, 𝑥2, 𝑥3) can be viewed as coordinates
or a four-dimensional space–time manifold R × R3. A corresponding
ndex notation will be useful. In particular, let 𝑥𝜇 = (𝑡, 𝑥1, 𝑥2, 𝑥3) denote
he space–time coordinates, where 𝜇 = 0, 1, 2, 3, with 𝑥0 = 𝑡. Simi-
arly, let 𝐷𝜇 = (𝐷𝑡, 𝐷1, 𝐷2, 𝐷3) denote the space–time total derivative,
iven in terms of the total derivatives (2.29)–(2.30) with respect to
and (𝑥1, 𝑥2, 𝑥3). Hereafter, summation is assumed for any repeated

pace–time index.
24
The differential forms 𝐝𝑥𝜇 constitute a basis of 1-forms on the four-
imensional space–time manifold, where 𝐝 is the standard exterior
erivative, satisfying 𝐝2 = 0. The corresponding total exterior derivative
ill be denoted 𝐃, which likewise satisfies 𝐃2 = 0.

A basis of 2-forms is given by 𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 , which spans a
(4
2

)

= 6
imensional space; a basis of 3-forms is given by 𝐝𝑥𝜇 ∧𝐝𝑥𝜈 ∧𝐝𝑥𝜎 , which
pans a

(4
3

)

= 4 dimensional space; and a basis of 4-forms is given by
𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 ∧ 𝐝𝑥𝜏 , which spans a

(4
4

)

= 1 dimensional space. Here ∧
s the standard wedge product of differential forms.

The coordinate 4-form

= 𝐝𝑥1 ∧ 𝐝𝑥2 ∧ 𝐝𝑥3 ∧ 𝐝𝑡 (B.1)

has components 𝜖𝜇𝜈𝜎𝜏 given by the Levi-Civita symbol, with 𝜖1230 = 1.
imilarly, the spatial coordinate 3-form

= 𝐝𝑥1 ∧ 𝐝𝑥2 ∧ 𝐝𝑥3 (B.2)

as components 𝜀𝜇𝜈𝜎 = 𝜖𝜇𝜈𝜎0, with 𝜀123 = 1. Some useful relations are:

𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 ∧ 𝐝𝑥𝜏 = 𝜖𝜇𝜈𝜎𝜏𝝐, 𝜖𝜇𝜈𝜎𝜏𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 ∧ 𝐝𝑥𝜏 = 4!𝝐,
(B.3)

𝜇𝜈𝜎𝛼𝜖𝜇𝜈𝜎𝛽 = 3! 𝛿𝛼𝛽 , 𝜖𝜇𝜈𝜎𝛼𝜖𝜇𝜈𝜏𝛽 = (2!)2 𝛿𝜎[𝜏𝛿
𝛼
𝛽],

𝜇𝜈𝜎𝛼𝜖𝜇𝛾𝜏𝛽 = 3! 𝛿𝜈[𝛾𝛿
𝜎
𝜏 𝛿

𝛼
𝛽], 𝜖𝜇𝜈𝜎𝛼𝜖𝜅𝛾𝜏𝛽 = 4! 𝛿𝜇[𝜅𝛿

𝜈
𝛾 𝛿
𝜎
𝜏 𝛿

𝛼
𝛽],

(B.4)

here indices are raised by using the Kronecker symbol 𝛿𝛼𝛽 , and where
quare brackets denote antisymmetrization of indices. Subscript indices
efer to differential forms, while superscript indices refer to vectors and
ontravariant tensors. Contraction of a pair of space–time indices repre-
ents the interior product between space–time tensors and differential
orms.

This 4-form 𝝐 together with the interior product ⌋ play a central
ole in converting local conservation laws into expressions in terms of
ifferential forms.

To begin, we consider local volumetric conservation laws (3.5): the
onserved density 𝑇 [𝒗] and the spatial flux �⃗� [𝒗] can be viewed as time
nd space components of a space–time vector
𝜇 = (𝑇 , 𝛹 1, 𝛹 2, 𝛹 3) = Φvol (B.5)

amely the conserved current (3.2). A conservation law (3.5) then takes
he form of a space–time divergence

𝜇𝛷
𝜇
| = 0 (B.6)

here  denotes the solution space of the given PDE system. The
onserved current corresponds to a 3-form

⌋Φvol =
1
3! 𝜖𝜇𝜈𝜎𝜏𝛷

𝜏𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 (B.7)

Its exterior derivative is given by the 4-form

𝐃(𝝐⌋Φvol) =
1
4! 𝜖𝜇𝜈𝜎𝜏𝐷𝛼𝛷

𝛼𝐝𝑥𝜏 ∧ 𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 (B.8)

using the chain rule 𝐃𝛷𝜏 = 𝐷𝛼𝛷𝜏𝐝𝑥𝛼 and the relation (B.3), along with
the first identity (B.4). Hence, a local volumetric conservation law has
the equivalent formulation

𝐃(𝝐⌋Φvol)| = 0 (B.9)

which states 𝝐⌋Φvol is a closed 3-form for all solutions of the PDE
system.

Hence, a local volumetric conservation law (3.5) in three spatial
dimensions is the same as a 3-form conservation law in the space–time
manifold R × R3.

Continuing, we consider local surface-flux conservation laws (3.10):
the conserved flux density 𝑇 [𝒗] and the spatial circulation flux �⃗� [𝒗] can
be viewed as components of a space–time skew tensor

𝛷𝜇𝜈 =

⎛

⎜

⎜

⎜

⎜

0 𝑇 1 𝑇 2 𝑇 3

−𝑇 1 0 −𝛹 3 𝛹 2

−𝑇 2 𝛹 3 0 −𝛹 1

3 2 1

⎞

⎟

⎟

⎟

⎟

= Φsurf (B.10)
⎝

−𝑇 −𝛹 𝛹 0
⎠
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namely the conserved flux current (3.7) expressed in a matrix form.
The conserved flux current corresponds to a 2-form

𝝐⌋Φsurf =
1
2! 𝜖𝜇𝜈𝜎𝜏𝛷

𝜎𝜏𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 (B.11)

whose exterior derivative is given by the 3-form

𝐃(𝝐⌋Φsurf) =
1
3! 𝜖𝜇𝜈𝜎𝜏𝐷𝛼𝛷

𝛼𝜏𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 ∧ 𝐝𝑥𝜎 (B.12)

This follows from the chain rule 𝐃𝛷𝜎𝜏 = 𝐷𝛼𝛷𝜎𝜏𝐝𝑥𝛼 and the relation
(B.3), combined with the second identity (B.4).

A conservation law (3.10) thereby takes the form of a set of three
space–time divergences

𝐷𝜇𝛷
𝜇𝑖
| = 0, 𝑖 = 1, 2, 3 (B.13)

This has the equivalent formulation that the space–time part of the
3-form 𝐃(𝝐⌋Φsurf) vanishes on the solution space of the given PDE
system: 𝜖𝑖𝑗0𝜏𝐷𝛼𝛷𝛼𝜏

|𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 ∧ 𝐝𝑡 = 𝜀𝑖𝑗𝑘𝐷𝛼𝛷𝛼𝑘
|𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 ∧ 𝐝𝑡 = 0,

with 𝑖, 𝑗 = 1, 2, 3. The restriction to considering only this space–time
part has the geometrical and physical meaning that the conservation
law is associated to a spatial surface  in R3 for all 𝑡. In particular,
R× is a submanifold, analogous to a three-dimensional cylinder, in the
space–time manifold R×R3, and hence the projection of (𝐃(𝝐⌋Φsurf))|
into this submanifold yields 𝐷𝛼𝛷𝛼𝑘

| �̂�𝑘 𝑑𝐴𝑑𝑡, where �̂� 𝑑𝐴 is the surface
element corresponding to the area 2-form 𝜺⌋�̂� of  in R3. Thus, if
(

(𝐃(𝝐⌋Φsurf))|
)

R× = 0 (B.14)

holds for all surfaces , then this provides an equivalent formulation
of a local surface-flux conservation law (3.10). Note that the 2-form
1
2! 𝝐⌋Φsurf = Φ̃surf is the space–time dual of the skew tensor (B.10), with
components

�̃�𝛼𝛽 = 1
2! 𝜖𝛼𝛽𝜇𝜈𝛷

𝜇𝜈 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝛹 1 𝛹 2 𝛹 3

−𝛹 1 0 𝑇 3 −𝑇 2

−𝛹 2 −𝑇 3 0 𝑇 1

−𝛹 3 𝑇 2 −𝑇 1 0

⎞

⎟

⎟

⎟

⎟

⎠

(B.15)

The surface-flux continuity equation (B.14) for this 2-form Φ̃surf
is strictly weaker than requiring that Φ̃surf is a closed 2-form for all
solutions of the PDE system. If we impose the equation (𝐃Φ̃surf)| =
0, whereby the 2-form is closed in the whole space–time manifold,
then we obtain the local surface-flux conservation law (B.13) plus
an additional local spatial divergence conservation law 𝐷𝜇𝛷𝜇0

| =
Div 𝑇 | = 0 holding for the conserved flux density 𝑇 . This pair of local
conservation laws constitute a 2-form conservation law in four space–
time dimensions [2,5], specifically 𝐷𝜇𝛷𝜇𝜈

| = 1
2! 𝜖

𝜇𝜎𝜏𝜈𝐷𝜇�̃�𝜎𝜏 | = 0.
In comparison, a local surface-flux conservation law (B.13) has the
differential consequence

𝐷𝑖𝐷𝜇𝛷
𝜇𝑖
| = 𝐷𝑡𝐷𝑖𝛷

0𝑖
| = 𝐷𝑡Div 𝑇 | = 0 (B.16)

which is a local temporal conservation law. This additional conserva-
tion law is equivalent to (𝐃

(

𝐃Φ̃surf
)

R× )| = 0.
Hence, a local surface-flux conservation law (3.10) in three spatial

dimensions is a strict generalization of a 2-form conservation law in
R × R3.

Last we consider local circulatory conservation laws (3.14): the
conserved circulation density 𝑇 [𝒗] and the spatial endpoint flow 𝛹 [𝒗]
can be viewed directly as components of a 1-form

Φ̃curv = �̃�𝛼𝐝𝑥𝛼 (B.17)

given by

�̃�𝛼 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛹
−𝑇 1

−𝑇 2

−𝑇 3

⎞

⎟

⎟

⎟

⎟

⎠

(B.18)

namely the conserved circulation current expressed as a dual vector. Its
exterior derivative is a 2-form

𝐃Φ̃ = 1 𝜖 𝐷 𝛷𝛼𝜎𝜏𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 (B.19)
curv 2! 𝜇𝜈𝜎𝜏 𝛼 𝝐

25
where 𝛷𝜇𝜈𝜎 = 𝜖𝜇𝜈𝜎𝛼�̃�𝛼 are components of a totally-antisymmetric
tensor of rank 3, Φcurv, which is the space–time dual of Φ̃curv, with

𝛷𝜇𝜈0 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 0 𝑇 3 −𝑇 2

0 −𝑇 3 0 𝑇 1

0 −𝑇 2 −𝑇 1 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛷𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘𝛹 (B.20)

This 2-form is obtained from the chain rule 𝐃𝛷𝜈𝜎𝜏 = 𝐷𝛼𝛷𝜈𝜎𝜏𝐝𝑥𝛼 and
the relation (B.3), plus the third identity (B.4).

A conservation law (3.14) takes the form of a set of three space–time
divergences

𝐷𝜇𝛷
𝜇𝑖𝑗

| = 0, 𝑖, 𝑗 = 1, 2, 3 (𝑖 ≠ 𝑗) (B.21)

An equivalent formulation is that the space–time part of the 2-form
𝐃Φ̃curv vanishes on the solution space of the given PDE system: 𝜖𝑖0𝜎𝜏
𝐷𝛼𝛷𝛼𝜎𝜏

|𝐝𝑥𝑖∧𝐝𝑡 = 𝜀𝑖𝑗𝑘𝐷𝛼𝛷𝛼𝑗𝑘
|𝐝𝑥𝑖∧𝐝𝑡, with 𝑖, 𝑗, 𝑘 = 1, 2, 3. Similarly to

the formulation of surface-flux conservation laws, here the restriction to
considering the space–time part of the 2-form has the geometrical and
physical meaning that the conservation law is associated to a spatial
curve  in R3 for all 𝑡. In particular, the projection of (𝐃Φ̃curv)| into the
two-dimensional submanifold R×  in the space–time manifold R×R3

ields 𝐷𝛼𝛷𝛼𝑖𝑗
| �̂�𝑖𝑗 𝑑𝓁 𝑑𝑡, where �̂� is the normal bi-vector of  (namely,

he exterior product of any orthogonal pair of normal vectors), and
here 𝑑𝓁 is the arc length of , corresponding to the arc length 1-form
⌋�̂� of  in R3. Thus, if

(𝐃Φ̃curv)|
)

R× = 0 (B.22)

olds for all curves , then this provides an equivalent formulation of
local circulatory conservation law (3.14).

The circulation continuity equation (B.22) for the 1-form Φ̃curv is
trictly weaker than requiring that Φ̃curv is a closed 1-form for all
olutions of the PDE system. If we impose the equation (𝐃Φ̃curv)| =

whereby the 1-form is closed in the whole space–time manifold,
hen we obtain the local circulatory conservation law (B.21) plus an
dditional local spatial curl conservation law 𝐷𝜇𝛷𝜇𝑖0

| = −Curl 𝑇 | =
holding for the conserved circulation density 𝑇 . This pair of local

onservation laws constitute a 1-form conservation law in four space–
ime dimensions [2,5], specifically 𝐷𝜇𝛷𝜇𝜈𝜎

| = 𝜖𝜈𝜎𝜇𝜏𝐷𝜇�̃�𝜏 | = 0.
n comparison, a local circulatory conservation law (B.21) has the
ifferential consequence

𝑖𝐷𝜇𝛷
𝜇𝑖𝑗

| = 𝐷𝑡𝐷𝑖𝛷
0𝑖𝑗

| = −𝐷𝑡Curl 𝑇 | = 0 (B.23)

hich is a local temporal conservation law. This additional conserva-
ion law is equivalent to (𝐃

(

𝐃Φ̃curv
)

R× )| = 0.
Hence, a local circulatory conservation law (3.14) in three spatial

imensions is a strict generalization of a 1-form conservation law in
× R3.

.2. Locally trivial conservation laws and exact differential forms

If a volumetric conservation law (B.5)–(B.6) is locally trivial (4.30),
hen it can be expressed in the space–time curl form
𝜇
| = 𝐷𝜈𝛩

𝜈𝜇
| (B.24)

ith

𝜈𝜇 =

⎛

⎜

⎜

⎜

⎜

⎝

0 −𝛩1 −𝛩2 −𝛩3

𝛩1 0 −𝛬3 𝛬2

𝛩2 𝛬3 0 −𝛬1

𝛩3 −𝛬2 𝛬1 0

⎞

⎟

⎟

⎟

⎟

⎠

= Θvol (B.25)

here �⃗� = (𝛩1[𝒗], 𝛩2[𝒗], 𝛩3[𝒗]) and 𝛬 = (𝛬1[𝒗], 𝛬2[𝒗], 𝛬3[𝒗]) are
rbitrary vector functions. Equivalently, the space–time conserved cur-
ent (B.5) whose components are given by 𝛷𝜇 is locally trivial iff the
orresponding 3-form (B.7) is given by

1 𝝐⌋Θ ))| (B.26)
⌋Φvol| = (𝐃( 2 vol 
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This states that 𝝐⌋Φvol = Φ̃(3) is an exact 3-form for all solutions 𝒗(𝑡, 𝑥)
of the PDE system, where 1

2 𝝐⌋Θvol = Θ̃(2) is the 2-form given by the
space–time dual of the skew tensor Θvol. In particular, local triviality
amounts to the identity (𝐃Φ̃(3))| = (𝐃2Θ̃(2))| = 0, due to the basic
property 𝐃2 = 0 of the total exterior derivative. We note that local
triviality of volumetric conservation laws coincides with the standard
notion of triviality for 3-form conservation laws [11] in four space–time
dimensions.

Local triviality for surface-flux conservation laws and circulatory
conservation laws is similar to local triviality for volumetric con-
servation laws. We will first look at the standard notion of trivial-
ity for 2-form and 1-form conservation laws [11] in four space–time
dimensions.

A 1-form conservation law (𝐃Φ̃(1))| = 0 is called trivial iff Φ̃(1)| =
(𝐃�̃�(0))| is an exact 1-form, where �̃�(0) = 𝛩[𝒗] is an arbitrary scalar
function. Note this notion is strictly local. Likewise, a 2-form conserva-
tion law (𝐃Φ̃(2))| = 0 is called trivial iff Φ̃(2)| = (𝐃Θ̃(1))| is an exact
2-form, where Θ̃(1) = �̃�𝛼[𝒗]𝐝𝑥𝛼 is an arbitrary 1-form function. This
notion again is strictly local. For later comparison with local triviality
of surface-flux conservation laws, it is helpful to use a space–time dual
formulation by writing Φ̃(2) =

1
2! 𝝐⌋Φsurf, where Φsurf is a skew tensor,

nd Θ̃(1) =
1
3! 𝝐⌋Θsurf, where Θsurf is a totally-antisymmetric tensor of

rank 3. Triviality of a 2-form conservation law then states 𝝐⌋Φsurf| =
𝐃( 13 𝝐⌋Θsurf))| , namely 𝝐⌋Φsurf is an exact 2-form for all solutions
𝒗(𝑡, 𝑥) of the PDE system. In components, the dual formulation of a 2-
form conservation law is given by 𝐷𝜇𝛷𝜇𝜈

| = 0 with 𝛷𝜇𝜈 = 1
2! 𝜖

𝜇𝜈𝜎𝜏�̃�𝜎𝜏 ,
and triviality is expressed as

𝛷𝜇𝜈
| = 𝐷𝜎𝛩

𝜎𝜇𝜈
| (B.27)

ith 𝛩𝜎𝜇𝜈 = 𝜖𝜎𝜇𝜈𝜏 �̃�𝜏 .
Now we turn to locally triviality (4.18) for surface-flux conservation

aws. In space–time form, if a surface-flux conservation law (B.10) and
B.13) is locally trivial, then we have 𝛷0𝑖

| = 𝐷𝑗𝛩0𝑖𝑗
| and 𝛷𝑗𝑖

| =
𝑡𝛩0𝑗𝑖

| +𝐷𝑘𝛩𝑘𝑗𝑖| , with

0𝑖𝑗 =
⎛

⎜

⎜

⎝

0 𝛩3 −𝛩2

−𝛩3 0 𝛩1

−𝛩2 −𝛩1 0

⎞

⎟

⎟

⎠

, 𝛩𝑘𝑗𝑖 = −𝜀𝑘𝑗𝑖𝛬, (B.28)

here 𝛬[𝒗] is an arbitrary scalar function and �⃗� = (𝛩1[𝒗], 𝛩2[𝒗], 𝛩3[𝒗])
s an arbitrary vector function. By cyclically defining 𝛩𝑖𝑗0 = 𝛩𝑗0𝑖 = 𝛩0𝑖𝑗 ,
e obtain components 𝛩𝜇𝜈𝜎 of a totally-antisymmetric tensor of rank
, Θsurf, in space–time. Locally triviality then can be expressed in the
quivalent form
𝜇𝑖
| = 𝐷𝜎𝛩

𝜎𝜇𝑖
| , 𝑖 = 1, 2, 3 (B.29)

hich represents a set of three space–time curls. Note that 𝛷𝜇𝑖 contains
ll of the non-zero components 𝛷𝜇𝜈 , by antisymmetry 𝛷0𝑖 = −𝛷𝑖0 and
𝛷𝑗𝑖 = −𝛷𝑖𝑗 with 𝑗 ≠ 𝑖; similarly 𝛩𝜎𝜇𝑖 contains all of the non-zero
components 𝛩𝜇𝜈𝜎 , by antisymmetry 𝛩0𝑗𝑖 = −𝛩0𝑖𝑗 combined with cyclic
symmetry 𝛩𝑖𝑗0 = 𝛩𝑗0𝑖 = 𝛩0𝑖𝑗 . Hence, local triviality (B.29) implies that
𝛷𝜇𝜈 has the form (B.27).

Therefore, a surface-flux conservation law (B.10) and (B.13) is
locally trivial (4.18) iff the corresponding 2-form (B.11) is exact,

𝝐⌋Φsurf| = (𝐃( 13 𝝐⌋Θsurf))| (B.30)

for all solutions 𝒗(𝑡, 𝑥) of the PDE system, where 1
3 𝝐⌋Θsurf = Θ̃surf is

the 1-form given by the space–time dual of the totally-antisymmetric
tensor Θsurf. In particular, the components of Θ̃surf are given by

�̃�𝛼 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛬
−𝛩1

−𝛩2

−𝛩3

⎞

⎟

⎟

⎟

⎟

⎠

(B.31)

Thus, local triviality is the same for surface-flux conservation laws
as for 2-form conservation laws.
26
Last, we consider locally triviality (4.10) for circulatory conserva-
tion laws. In space–time form, if a circulatory conservation law (B.20)
and (B.21) is locally trivial, then we have 𝛷0𝑖𝑗

| = 𝜀𝑖𝑗𝑘𝐷𝑘𝛩| and
𝛷𝑘𝑗𝑖

| = −𝜀𝑘𝑗𝑖𝐷𝑡𝛩| , where 𝛩[𝒗] is an arbitrary scalar function. Hence
𝜇𝑖𝑗

| = 𝜖𝜎𝜇𝑖𝑗𝐷𝜎𝛩| , 𝑖, 𝑗 = 1, 2, 3 (𝑖 ≠ 𝑗) (B.32)

epresents a set of three space–time curls. Note that 𝛷𝜇𝑖𝑗 contains all of
he non-zero components 𝛷𝜇𝜈𝜎 , due to cyclic symmetry 𝛷0𝑖𝑗 = 𝛷𝑗0𝑖 =
𝑖𝑗0. Locally triviality then can be expressed in the equivalent form
𝜇𝜈𝜎

| = 𝜖𝜏𝜇𝜈𝜎𝐷𝜏𝛩| (B.33)

Therefore, a circulatory conservation law (B.20) and (B.21) is lo-
ally trivial (4.10) iff the corresponding 1-form (B.17) is exact,

̃ curv| = (𝐃�̃�curv)| (B.34)

or all solutions 𝒗(𝑡, 𝑥) of the PDE system, where �̃�curv = 𝛩.
Thus, local triviality is the same for circulatory conservation laws

s for 1-form conservation laws.

.3. Global (non-)triviality of conservation laws

As shown by Propositions 7, 9, 11, if a locally trivial dynamical
onservation law on a spatial domain has vanishing flux, then it re-
uces to a temporal conservation law on the domain boundary. This
emporal conservation law can, under certain conditions, yield a non-
rivial global conservation law representing a constant of motion on the
omain boundary.

This main result extends to 3-form, 2-form, and 1-form conservation
aws, since they share the same notion of local triviality as dynamical
onservation laws of volumetric, surface-flux, and circulatory type, re-
pectively. Thus, there is distinction between local and global triviality
or differential-form conservation laws in the context of space–time
anifolds. This result, which we will now explain in detail, has not

een widely recognized in the literature [11].
We start by considering 3-form conservation laws in R × R3:

𝐃Φ̃(3))| = 0, with

̃ (3) = �̃�𝜇𝜈𝜎𝐝𝑥𝜇 ∧𝐝𝑥𝜈 ∧𝐝𝑥𝜎 = 𝑇 𝜀𝑖𝑗𝑘𝐝𝑥𝑖 ∧𝐝𝑥𝑗 ∧𝐝𝑥𝑘 −3𝛹𝑘𝜀𝑘𝑖𝑗𝐝𝑥𝑖 ∧𝐝𝑥𝑗 ∧𝐝𝑡

(B.35)

On a spatial volume  in R3, the global form of this conservation law
is given by
𝑑
𝑑𝑡 ∫

Φ̃(3)
|

|

|
= 3! 𝑑

𝑑𝑡 ∫
𝑇 𝜺||

|

= ∫𝜕
Φ̃(3)⌋�⃗�

|

|

|
= −3!∫𝜕

𝛹𝑘�̂�𝑘𝜺⌋�̂�
|

|

|

(B.36)

here �̂� is the outward normal vector of the boundary surface 𝜕 of  ,
and where �⃗� is the temporal vector that is dual to the 1-form 𝐝𝑡 (namely,
𝐝𝑡⌋�⃗� = 1 and 𝐝𝑥𝑖⌋�⃗� = 0, 𝑖 = 1, 2, 3). This integral equation (B.36) is the
same as a global volumetric conservation law (3.1).

Suppose that a 3-form conservation law is locally trivial, Φ̃(3)| =
(𝐃Θ̃(2))| , such that the spatial flux 2-form vanishes, Φ̃(3)⌋�⃗� | =
𝐃Θ̃(2))⌋�⃗� | = 0, with

̃ (2) = �̃�𝜇𝜈𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 = 3(𝛩𝑘𝜀𝑖𝑗𝑘𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 − 2𝛬𝑘𝐝𝑥𝑘 ∧ 𝐝𝑡) (B.37)

here (𝛩1[𝒗], 𝛩2[𝒗], 𝛩3[𝒗]) and (𝛬1[𝒗], 𝛬2[𝒗], 𝛬3[𝒗]) are arbitrary vec-
or functions. Then, in the integral equation (B.36), the flux integral
anishes while the volume integral reduces to a surface integral

∫
Φ̃(3)

|

|

|
= 3!∫

𝑇 𝜺||
|

= ∫𝜕
Θ̃(2)

|

|

|
= 3!∫𝜕

𝛩𝑘�̂�𝑘𝜺⌋�̂�
|

|

|

(B.38)

y Gauss’ theorem. Hence the integral equation (B.36) becomes
𝑑

Θ̃(2)
|

| = 3! 𝑑 𝛩𝑘�̂�𝑘𝜺⌋�̂�
|

| = 0 (B.39)

𝑑𝑡 ∫𝜕 | 𝑑𝑡 ∫𝜕 |
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which is a temporal 2-form conservation law on the boundary surface
𝜕 of the volume. This global boundary conservation law will be non-
trivial whenever the spatial part of Θ̃(2) is locally non-trivial, namely
(

Θ̃(2)|
)

𝜕 is not an exact spatial 2-form, or equivalently, �⃗�| =
𝛩1, 𝛩2, 𝛩3)| is not equal to a curl.

Next we consider 2-form conservation laws in R×R3: (𝐃Φ̃(2))| = 0,
ith

̃ (2) = �̃�𝜇𝜈𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 = 𝑇 𝑘𝜀𝑘𝑖𝑗𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 + 2𝛹𝑖𝐝𝑥𝑖 ∧ 𝐝𝑡 (B.40)

n a spatial surface  with a boundary curve 𝜕 in R3, the global form
f this conservation law is given by

𝑑
𝑑𝑡 ∫

Φ̃(2)
|

|

|
= 2! 𝑑

𝑑𝑡 ∫
𝑇 𝑘�̂�𝑘𝜺⌋�̂�

|

|

|

= −∫𝜕
Φ̃(2)⌋�⃗�

|

|

|
= −2!∫𝜕

𝛹𝑘𝓁𝑘𝜺⌋�̂�
|

|

|

(B.41)

where �̂� is the normal vector of the surface  and 𝓁 is the unit tangent
vector of the boundary curve 𝜕 such that 𝓁 × �̂� is pointing outward,
and where �̂� is the normal bi-vector dual to the 2-form 𝜺⌋𝓁, while �⃗� is
the temporal vector dual to the 1-form 𝐝𝑡. This integral equation (B.41)
looks the same as a global surface-flux conservation law (3.6), but here
𝑇 = (𝑇 1, 𝑇 2, 𝑇 3) is divergence-free Div 𝑇 | = 0 due to the spatial part
of the 2-form conservation law,

(

𝐃Φ̃(2)
)

R3 = 1
3𝐷𝑙𝑇 𝑙𝜀𝑖𝑗𝑘𝐝𝑥𝑖 ∧𝐝𝑥𝑗 ∧𝐝𝑥𝑘 =

2!Div 𝑇 𝜺.
Suppose that a 2-form conservation law is locally trivial, Φ̃(2)| =

𝐃Θ̃(1))| , such that the spatial circulation 1-form vanishes, Φ̃(2)⌋�⃗� | =
𝐃Θ̃(1))⌋�⃗� | = 0, with

̃ (1) = �̃�𝜇𝐝𝑥𝜇 = 2(𝛩𝑘𝐝𝑥𝑘 + 𝛬𝐝𝑡) (B.42)

here (𝛩1[𝒗], 𝛩2[𝒗], 𝛩3[𝒗]) is an arbitrary vector function, and 𝛬[𝒗] is
n arbitrary scalar function. Then, in the integral equation (B.41), the
irculation integral vanishes while the surface integral reduces to a line
ntegral

∫
Φ̃(2)

|

|

|
= 2!∫

𝑇 𝑖�̂�𝑖𝜺⌋�̂�
|

|

|

= ∫𝜕
Θ̃(1)

|

|

|
= 2!∫𝜕

𝛩𝑘𝓁𝑘𝜺⌋�̂�
|

|

|

(B.43)

y Stokes’ theorem. Hence the integral equation (B.41) becomes

𝑑
𝑑𝑡 ∫𝜕

Θ̃(1)
|

|

|
= 2! 𝑑

𝑑𝑡 ∫𝜕
𝛩𝑘𝓁𝑘𝜺⌋�̂�

|

|

|
= 0 (B.44)

which is a temporal 1-form conservation law on the boundary curve
𝜕 of the surface. This global boundary conservation law will be non-
trivial whenever the spatial part of Θ̃(1) is locally non-trivial, namely
(

Θ̃(1)|
)

𝜕 is not an exact spatial 1-form, or equivalently, �⃗�| =
(𝛩1, 𝛩2, 𝛩3)| is not equal to a gradient.

Finally, we consider 1-form conservation laws in R×R3: (𝐃Φ̃(1))| =
0, with

Φ̃(1) = �̃�𝜇𝐝𝑥𝜇 = 𝑇𝑘𝐝𝑥𝑘 − 𝛹𝐝𝑡 (B.45)

On a spatial curve  with endpoints 𝜕 in R3, the global form of this
onservation law is given by

𝑑
𝑑𝑡 ∫

Φ̃(1)
|

|

|
= 𝑑
𝑑𝑡 ∫

𝑇 𝑘𝓁𝑘𝜺⌋�̂�
|

|

|

=
(

Φ̃(1)⌋�⃗�
|

|

|𝜕

)

|

|

|
= −

(

𝛹 ||
|𝜕

)

|

|

|

(B.46)

here 𝓁 is the unit tangent vector of the curve  and �̂� is the normal
i-vector dual to the 2-form 𝜺⌋𝓁, while �⃗� is the temporal vector dual to
he 1-form 𝐝𝑡. This integral equation (B.46) looks the same as a global
irculatory conservation law (3.11), but here 𝑇 = (𝑇1, 𝑇2, 𝑇3) is curl-free
url 𝑇 | = 0 due to the spatial part of the 1-form conservation law,
𝐃Φ̃(1)

)

R2 = 𝐷𝑗𝑇𝑘 ∧ 𝐝𝑥𝑗 ∧ 𝐝𝑥𝑘 = 𝜺⌋Curl 𝑇 , where R2 is an arbitrary
lane in R3.

Suppose that a 1-form conservation law is locally trivial, Φ̃(1)| =
𝐃�̃�)| , such that the spatial circulation 1-form vanishes, Φ̃ ⌋�⃗� | =
 (1)  ∫

27
𝐃�̃�)⌋�⃗� | = 0, where �̃�[𝒗] is an arbitrary scalar function. Then, in
he integral equation (B.46), the boundary terms vanish while the line
ntegral reduces to endpoint terms


Φ̃(1)

|

|

|
= ∫

𝑇 𝑖𝓁𝑖𝜺⌋�̂�
|

|

|
=
(

�̃�||
|𝜕

)

|

|

|
(B.47)

y the line integral theorem. Hence the integral equation (B.46) be-
omes
𝑑
𝑑𝑡

(

�̃�||
|𝜕

)

|

|

|
= 0 (B.48)

hich is a temporal 0-form conservation law at the boundary end-
oints 𝜕 of the curve. This global boundary conservation law will be
on-trivial whenever the function �̃�| is not equal to a constant.

.4. Example of Maxwell’s equations

Maxwell’s equations (in vacuum) have a well-known formulation
n which the electromagnetic field is represented by the 2-forms 𝑭 =
𝜇𝜈𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 and ∗ 𝑭 = ∗ 𝐹 𝜇𝜈𝐝𝑥𝜇 ∧ 𝐝𝑥𝜈 with components

𝐹𝜇𝜈 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝐸1 𝐸2 𝐸3

−𝐸1 0 𝐵3 −𝐵2

−𝐸2 −𝐵3 0 𝐵1

−𝐸3 −𝐵2 −𝐵1 0

⎞

⎟

⎟

⎟

⎟

⎠

,

∗ 𝐹 𝜇𝜈 =

⎛

⎜

⎜

⎜

⎜

⎝

0 −𝐵1 −𝐵2 −𝐵3

𝐵1 0 −𝐸3 𝐸2

𝐵2 𝐸3 0 −𝐸1

𝐵3 𝐸2 𝐸1 0

⎞

⎟

⎟

⎟

⎟

⎠

(B.49)

Here ∗ denotes the Hodge dual, which satisfies ∗2= −1. (More specif-
ically, ∗ 𝐹 𝜇𝜈 = 1

2 𝜖𝜇𝜈
𝛼𝛽𝐹𝛼𝛽 , where 𝜖𝜇𝜈𝛼𝛽 = 𝜖𝜇𝜈𝜎𝜏𝜂𝛼𝜎𝜂𝛽𝜏 is given in terms

f the Minkowski metric 𝜂𝛼𝛽 = diag(−1, 1, 1, 1).) In this representation,
he electric and magnetic field equations (2.23) are given by

𝑭 = 0, 𝐝∗ 𝑭 = 0 (B.50)

hese equations constitute 2-form local conservation laws. On any
patial closed surface , their global form is given by

𝑑
𝑑𝑡 ∫

𝑭 |

|

|
= 0, 𝑑

𝑑𝑡 ∫
∗ 𝑭 |

|

|
= 0 (B.51)

ithout a boundary circulation integral because  is boundaryless.
oth of these conservation laws are non-trivial. They have the physical
eaning that there is no net non-zero electric and magnetic flux

hrough closed surfaces, since

∫
𝑭 = ∫

1
2!𝐵

𝑘𝜖𝑖𝑗𝑘𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 = ∫
𝐵𝑘�̂�𝑘𝑑𝐴,

∫
∗ 𝑭 = −∫

1
2!𝐸

𝑘𝜖𝑖𝑗𝑘𝐝𝑥𝑖 ∧ 𝐝𝑥𝑗 = −∫
𝐸𝑘�̂�𝑘𝑑𝐴,

(B.52)

where �̂� is the outward normal vector of  in R3.
Using the property 𝐝2 = 0, we can obtain two 3-form local conser-

vation laws

Φ(3) = 𝐝𝑭 , 𝐝Φ(3)| = 0 (B.53a)

Φ(3) = 𝐝∗ 𝑭 , 𝐝Φ(3)| = 0 (B.53b)

Clearly, both conservation laws are locally trivial, and they describe
differential identities holding on the electric and magnetic field equa-
tions.

The global form of the first conservation law (B.53a) on a spatial
volume  consists of
𝑑
𝑑𝑡 ∫

𝐝𝑭 |

|

|
= ∫𝜕

(𝐝𝑭 )⌋�⃗� ||
|

= 0 (B.54)

here, by Stokes’ theorem for differential forms,

𝐝𝑭 = 𝑭 , (𝐝𝑭 )⌋�⃗� = (𝜕𝑡𝑭 + 𝐝(𝑭 ⌋�⃗�)), 𝐝(𝑭 ⌋�⃗�) = 0 (B.55)

 ∫𝜕 ∫𝜕 ∫𝜕 ∫𝜕
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because the boundary surface 𝜕 is closed. As a consequence, the 3-
form conservation law (B.53a) yields a temporal boundary conservation
law coinciding with the first of the two global 2-form conservation laws
(B.52). Similarly, the second global 2-form conservation law coincides
with the global form of the second conservation law (B.53b).

Thus, the two differential identities (B.53) representing locally triv-
ial 3-form conservation laws give rise to non-trivial global 2-form
conservation laws describing constants of motion on spatial boundary
surfaces.

Appendix C. Jet space formalism

The jet space associated to a set of independent variables 𝑧𝑖, 𝑖 =
,… , 𝑛, and dependent variables 𝑤𝛼 , 𝛼 = 1,… , 𝑚, is the coordinate
pace 𝐽 = (𝑧𝑖, 𝑤𝛼 , 𝑤𝛼

𝑧𝑖
, 𝑤𝛼

𝑧𝑖𝑧𝑗
,…).

A differential function 𝑓 [𝑤], on a domain in 𝐽 , is a smooth function
f finitely many variables in 𝐽 . Total derivatives of 𝑓 [𝑤] with respect
o 𝑧𝑖 are given by the derivative operator 𝐷𝑖 = 𝜕∕𝜕𝑧𝑖 + 𝑤𝛼

𝑧𝑖
𝜕∕𝜕𝑤𝛼 +

𝛼
𝑧𝑖𝑧𝑗

𝜕∕𝜕𝑤𝛼
𝑧𝑗
+⋯. 𝐷 = (𝐷1,… , 𝐷𝑛) will denote the set of total derivatives

ith respect to all independent variables 𝑧 = (𝑧1,… , 𝑧𝑛).
For a PDE system 𝐺[𝑤] = 0, the solution space  is the set of all

unctions 𝑤(𝑧) that satisfy all of the PDEs in the system, 𝐺𝑎[𝑤(𝑧)] = 0,
= 1,… ,𝑀 . This space  can be identified with a subspace 𝐽 in 𝐽

s follows. If 𝑤(𝑧) is any solution of the PDE system, then for each
= 𝑧0 the values 𝑤𝛼(𝑧0) = 𝑤𝛼0 , 𝜕𝑧𝑖𝑤𝛼(𝑧0) = 𝑤𝛼

0𝑧𝑖
, 𝜕𝑧𝑖𝜕𝑧𝑗𝑤𝛼(𝑧0) =

𝛼
0𝑧𝑖𝑧𝑗

, and so on, yield a point in 𝐽 given by the coordinate values
𝑧𝑖0, 𝑤

𝛼
0 , 𝑤

𝛼
0𝑧𝑖
, 𝑤𝛼

0𝑧𝑖𝑧𝑗
,…). The set of these points for all 𝑧 = 𝑧0 in the

omain common to all solutions 𝑤(𝑧) defines a subspace 𝐽 ⊂ 𝐽 . This
ubspace can be defined equivalently as the set of points in 𝐽 defined

by the equations 𝐺𝑎[𝑤] = 0, 𝐷𝐺𝑎[𝑤] = 0, 𝐷2𝐺𝑎[𝑤] = 0, … , 𝑎 = 1,… , 𝑁 ,
provided that this prolonged PDE system is locally solvable. The equiv-
alence consists of showing that for each point (𝑧𝑖0, 𝑤

𝛼
0 , 𝑤

𝛼
0𝑧𝑖
, 𝑤𝛼

0𝑧𝑖𝑧𝑗
,…)

in 𝐸 ⊂ 𝐽 there exists a solution 𝑤(𝑧) of 𝐺𝑎[𝑤(𝑧)] = 0 having the
values 𝑤𝛼(𝑧0) = 𝑤𝛼0 , 𝜕𝑧𝑖𝑤𝛼(𝑧0) = 𝑤𝛼

0𝑧𝑖
, 𝜕𝑧𝑖𝜕𝑧𝑗𝑤𝛼(𝑧0) = 𝑤𝛼

0𝑧𝑖𝑧𝑗
, … at

𝑧 = 𝑧0. Local solvability is precisely the existence of such solutions
𝑤(𝑧) in a neighbourhood of 𝑧 = 𝑧0 for any given values 𝑤𝛼0 = 𝑤𝛼(𝑧0),
𝑤𝛼

0𝑧𝑖
= 𝜕𝑧𝑖𝑤𝛼(𝑧0), 𝑤𝛼0𝑧𝑖𝑧𝑗 = 𝜕𝑧𝑖𝜕𝑧𝑗𝑤𝛼(𝑧0), … to an arbitrary finite order.

For locally solvable PDE systems, 𝑓 | has two equivalent meanings.
First, 𝑓 | = 𝑓 [𝑤(𝑧)] for an arbitrary function 𝑤(𝑧) in  . Second, 𝑓 | =
𝑓 [𝑤]|𝐽 for an arbitrary point in 𝐽 .

There is another way to view this equivalence. The evaluation of
𝑤(𝑧) and its derivatives 𝜕𝑘𝑤(𝑧) at a point 𝑧 = 𝑧0 provides an embedding
of  into 𝐽 . Given any function 𝑓 defined on all of 𝑗, the embedding
map can be used to pull back 𝑓 from 𝐽 to  , which defines 𝑓 | .

It is important to have a characterization of differential functions
𝑓 [𝑤] that vanish on  . This requires some preliminaries about the
algebraic form of the equations 𝐺𝑎[𝑤] = 0, 𝐷𝐺𝑎[𝑤] = 0, 𝐷2𝐺𝑎[𝑤] = 0,
… , 𝑎 = 1,… ,𝑀 in a prolonged PDE system. A partial derivative
variable in 𝐽 is a leading derivative of a given prolonged PDE system,
with respect to some chosen ordering of partial derivatives, if no
differential consequences of it appear in the system. The prolonged
system is called regular if the following conditions hold [3]. First, each
equation in the system can be expressed in a solved form in terms
of a set of leading derivatives such that the right-hand side of each
equation does not contain any of these derivatives. Second, the system
is closed in the sense that it has no integrability conditions and all of
its differential consequences produce PDEs that have a solved form in
terms of differential consequences of the set of leading derivatives. Note
that if a PDE system is not closed then it can always be enlarged to
obtain a closed system by appending any integrability conditions that
involve the introduction of more leading derivatives. Also note that a
regular PDE system may possess differential identities.

The following result, known as Hadamard’s lemma, holds: For any
regular PDE system 𝐺[𝑤] = 0, if a differential function 𝑓 [𝑤] van-
ishes on the solution space 𝐽 ⊂ 𝐽 , then 𝑓 [𝑤] = 𝐶 (0)

𝑎[𝑤]𝐺𝑎[𝑤] +
𝐶 (1)𝑖 [𝑤]𝐷 𝐺𝑎[𝑤] + 𝐶 (2)𝑖𝑗 [𝑤]𝐷 𝐷 𝐺𝑎[𝑤] +⋯ (which terminates at some
𝑎 𝑖 𝑎 𝑖 𝑗

28
finite order) holds identically in 𝐽 , where the coefficients 𝐶 (0)
𝑎[𝑤],

𝐶 (1)𝑖
𝑎[𝑤], 𝐶 (2)𝑖𝑗

𝑎 [𝑤], … are differential functions that are non-singular
on  . (see Refs. [3,22] for a proof).

If a regular PDE system possesses one or more differential identi-
ties, then the coefficient functions 𝐶 (0)

𝑎[𝑤], 𝐶 (1)𝑖
𝑎[𝑤], 𝐶 (2)𝑖𝑗

𝑎 [𝑤], … in
Hadamard’s lemma will be non-unique, since an arbitrary multiple of a
differential identity can be added to the right-hand side. A sufficient
condition under which these coefficient functions will be unique is
if the set of leading derivatives in a regular PDE system consists
of pure derivative of all dependent variables with respect to some
single independent variable. Such PDE systems are a generalization of
Cauchy–Kovalevskaya systems and are usually called normal [1,61].
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