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A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermedi-
ate regime between bubble formation and breakage is presented. The model is based on
mechanics and thermodynamics of a single bubble coupled to the dynamics of a viscous
fluid as a whole, and takes into account multiple physical effects, including gravity, vis-
cosity, and surface tension. Dimensionless versions of the resulting nonlinear model are
obtained, and values of dimensionless parameters are estimated for typical magma flows
in horizontal subaerial lava fields and vertical volcanic conduits.

Exact solutions of the resulting system of nonlinear equations corresponding to equilib-
rium flows and traveling waves are analyzed in the one-dimensional setting. Generalized
Su-Gardner-type perturbation analysis is employed to study approximate solutions of the
model in the long-wave ansatz. Simplified nonlinear partial differential equations (PDE)
satisfied by the leading terms of the perturbation solutions are systematically derived. It is
shown that for specific classes of perturbations, approximate solutions of the bubbly fluid

model arise from solutions of the classical diffusion, Burgers, variable-coefficient Burgers,
and Korteweg-de Vries equations.

Crown Copyright © 2019 Published by Elsevier B.V. All rights reserved.

1. Introduction

The derivation of physically sound models describing the dynamics of multiphase flows in various settings is an im-
portant topic of active research. Multiphase flows arise in a vast variety of physical and engineering applications; they can
involve single or multiple fluid, solid and gas phases, phase interfaces, surfactant dynamics, porous media, hard and soft
particles, gas bubbles, droplets, anisotropy effects, and multiple other phenomena and aspects (see, e.g., Refs. [1-5] and
references therein). The description of such flows, including the formulation of constitutive relations, and the analysis and
solution of the resulting models, including numerical simulation, present significant challenges. Vast literature is devoted to
multiple aspects of multiphase dynamics; some examples of recent works dedicated to general analysis and specific appli-
cations are found in Refs. [6-11].

Multiphase flows are used in mathematical description of many geological processes related to volcanic activity, includ-
ing, for example, pyroclastic flows consisting of volcanic gas and solid tephra particles, or magma/lava flows containing gas
bubbles [6,7]. Due to their enormous viscosities and high temperatures, basaltic lava sheet flows provide an extreme exam-
ple of multiphase flows [12-15]. These sheet flows are characterized by an uninterrupted motion of lava, which produces
a smooth upper and lower crust that acts as a insulator. Most significant difficulties in modeling such flows arise in the
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conjoining of the microscopic and macroscopic scales present in the system. The microscopic scale corresponds to a single
bubble and usually involves analysis of two phases separated by an interface. The first to study this was Rayleigh [16], de-
scribing the collapse of a empty spherical cavity in a fluid. Later Plesset [17] generalized Rayleigh’s setup to include the gas
inside the sphere and viscosity of the surrounding fluid. Studying the dynamics of the bubbles surface, Plesset found that
the bubbles radius R = R(t) satisfied a single second-order ordinary differential equation (ODE), termed the Rayleigh-Plesset
equation (see Section 2 below). The macroscopic scale of the problem corresponds to the mixture flow, and commonly
modeled as a homogenous continuum governed by Euler or Navier-Stokes fluid dynamics equations. In this context, it is
important to mention the works of Foldy [18] and Wijngaarden [19] (see also Ref. [20]). In particular, Wijngaarden showed
that the propagation of linear one-dimensional waves in an isothermal bubbly fluid was governed described by a linear
4th-order partial differential equation (PDE). Solutions to this equation were later studied by Jordan and Feuillade [21,22],
who also noted that their numerical solution behaved qualitatively similarly to solutions of the Burgers equation. Moving
on from acoustic waves, Wijngaarden was also interested in other applications of bubbly fluids, where the nonlinear effects
would be larger. For example, bubbly liquids in the field of ultrasonics where gas micro-bubbles are used as contrast agents
to enhance the acoustic contrast between blood and surrounding tissues [23-25]. These problems have recently been for-
malised extended to include nonlinear waves [26,27,27]. Considering a small perturbation in the pressure, it was shown that
the Euler fluid equations in one dimension and the Rayleigh-Plesset equation reduce to a nonlinear Burgers-KdV equation
[19]. This is in agreement with the results of the work of Nakoryakov et al. [28], where long wavelength perturbations of
the same model were analyzed. A related recent work of Kudryashov and Sinelshchikov [7] which motivated the research
presented in this paper is devoted to macroscopic modeling and analysis of a bubbly fluid; it investigates the Rayleigh-
Plesset equation coupled with the Euler fluid dynamics equations and an additional inter-phase heat transfer equation. In
the long-wavelength limit, the leading term of the asymptotic series for the solution of the model was claimed to satisfy
an interesting third-order nonlinear PDE (in fact, a family of PDEs involving parameters), generalizing Burgers, Korteweg-de
Vries, and Burgers-Korteweg-de Vries equations. This PDE, later named the Kudryashov-Sinelshchikov equation, has attracted
significant attention on its own right as a new equation of mathematical physics. Kudryashov and Sinelshchikov further
extended their model in Ref. [29], where small effects of liquid compressibility and surface tension were considered, lead-
ing to third- and fourth- order partial differential equations. In parallel, Kanagawa [30] proposed a systematic derivation
of nonlinear equations in bubbly liquids, based on parameter scaling. Their starting point was similar to that of the work
of Kudryashov and Sinelshchikov, but Keller's equation was used to describe the oscillations of bubble; this led to models
involving Burgers-Korteweg-de Vries and nonlinear Schrédinger equations.

The goal of the current contribution is the formulation of a more general model of a viscous bubbly flow, taking into
account a wider set of physical effects compared to Refs. [7,29,30]. In particular, the new model satisfies the important
physical requirement of Galilean invariance; it is based on Navier-Stokes equations in order to fully treat viscosity effects; it
includes gravity, bubble surface tension, and a physically sound heat flux relationship. Typical applications for the presented
model can range from subaerial lava flow fields to industrial oils carrying bubbles. We then undertake some analysis of
the model, deriving its dimensionless versions, estimating typical parameter values, and seeking its exact and approximate
solutions.

The paper is organized as follows. Section 2 is dedicated to the derivation of the bubbly fluid model, which includes the
consideration of mechanics and thermodynamics of a single gas bubble and the bubbly fluid as a whole. Two dimensionless
versions of the governing equations are derived. First, a general non-dimensionalization is presented, aiming at the maximal
reduction of the number of constants in the model, contains only three dimensionless physical parameters, as compared to
seven in the dimensional equations. A “physical” non-dimensionalization is also presented, which uses characteristic values
of bubbly fluid parameters instead; it contains the well-known dimensionless quantities such as Reynolds and Euler num-
bers, the ratio of characteristic spatial dimensions, etc. Equilibrium and traveling wave solutions of the bubbly fluid model
in one spatial dimension are also considered in this section.

Section 3 is devoted to the analysis of asymptotic expansions of solutions of the bubbly fluid model in one spatial di-
mension about a constant equilibrium state, using the Su-Gardner-type generalized power series approach, and a Gardner-
Morikawa rescaled coordinates in a moving frame of reference, designed to capture long-wavelength, slow-time perturba-
tions. For specific classes of the scale transformation parameters of the asymptotic solutions, we show that the leading non-
constant terms of the perturbation series may satisfy the linear diffusion equation, or the nonlinear Burgers or Korteweg-de
Vries equations.

In Section 4, we generalize the asymptotic analysis of Section 3 to cases of flows with a nonzero gravity term. We show
that it is also possible to reduce the problem of finding the lowest-order perturbation terms to a solution of a single PDE.
Interestingly, for gravity-driven flows, this PDE is a variable coefficient Burgers-type equation, and the frame of reference
must be traveling with a variable speed, prescribed by the parameters of the process.

In Section 5, the bubble flow model is further extended by considering an extra term in the Rayleigh-Plesset equation
corresponding to the bubble surface tension. It is shown that leading-order terms of the asymptotic perturbations of equi-
libria for such flows in one spatial dimension can also be described by a single PDE, such as linear diffusion, Burgers, or
Korteweg-de Vries equation.

The important fact that for a set of rather complex nonlinear models (the bubble-liquid mixture flow model with and
without gravity and surface tension), the leading perturbation series solution terms arise from a solution of a classical
(diffusion, Burgers, or Korteweg-de Vries) equation, allows one to use known exact closed-form solutions of these PDEs to
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Fig. 1. An isolated spherical bubble.
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Z
Mixture: p(x, 1), P(x, 1), u(x, 1)
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Fig. 2. The bubbly fluid.

produce physically meaningful approximate closed-form solutions of the full nonlinear model. This idea is illustrated with a
computational example of an approximate traveling kink-type solution in Section 3.2.
The paper is concluded with an overview of the results and their discussion in Section 6.

2. The physical model of a one-dimensional bubbly fluid flow

We develop a model of dynamics of a viscous liquid with gas bubbles, describing one-dimensional vertical and horizontal
flows, and taking into account the heat transfer between the gas and liquid phases (Fig. 1). In the derivation, relevant results
from Refs. [7,31] are employed.

2.1. The derivation of the PDE model

We use subscripts “1” and “2” to refer to the fluid and gas phases respectively (see Fig. 2). The variables and param-
eters with no subscript refer to the corresponding quantities for the mixture of the liquid and gas bubbles. In particular,
the densities of the fluid and gas phases are given by p; and p,, the temperatures by T; and T, the gas pressure is de-
noted P,, whereas the pressure of the fluid and the mixture are identified: P; = P. Other parameters are denoted accord-
ingly. The all the physical parameters of the mixture in the final model are functions of the time ¢ and the spatial variable
=2 eR3.

The model presented below describes viscous bubbly fluids in an intermediate regime between bubble formation and
breakage, i.e., when bubbles are small and well-separated. In particular, the following physical assumptions are used below:
the density and viscosity of the fluid phase are constant; bubbles do not form or disappear; bubbles and fluid do not
exchange mass; the effect of bubble surface tension is negligible (the latter requirement is removed in Section 5 below).
The exchange of mass between the bubbles and the fluid is small, for example, in certain regimes of magma flows within
the volcanic conduit and subaerial flow fields.

2.1.1. Mechanics of a single gas bubble

In order to describe the dynamics of parameters of well-separated bubbles within the mixture, consider a single isolated
spherical bubble of radius R = R(t). Consequently, r> R(t) corresponds to the liquid phase, and r < R(t) to the gaseous phase,
where r is the spherical radial variable (Fig. 2).
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The equations of motion for the incompressible fluid outside the bubble given by the Navier-Stokes equations:

8111 1 M
—— + (@ - V)il + — grad P = — Atl, 2.1
5 (T - V) o g 1= Al (2.1)
divir; = 0. (2.2)
Which can be reduced to the Rayleigh-Plesset equation (see [32,33] for details)
2
d?R 3 (dR 4, dR

relating the bubble radius R(t), the gas pressure P,(t) within the bubble, and the pressure mixture P(t) away from the bubble.

2.1.2. Thermodynamics of a gas bubble
An additional connection between the gas pressure and bubble radius follows from thermodynamical relationships, in
particular, the energy balance equation, which in three dimensions has the form

at

where e; =G T, is the thermal energy density (per unit mass) of the gas phase, C,, = const is the specific heat of the gas
phase at the constant volume, and q is the energy flux vector. The two additional equations one needs to take into account
is the gas momentum balance given by

p2<aez +ib, - grad ez) = —divq— P diviy, (2.4)

,02(ddli2 + (ity - V)LTZ) = —grad P, (2.5)
where the gas viscosity was neglected, and the continuity equation

dc% +div (p,il3) =0, (2.6)
The above system is closed with the ideal gas equation

P = (y - DGro: 1, 2.7)

with y = const denoting the adiabatic exponent, and T, the gas temperature.
In spherical coordinates, under the assumption of spherical symmetry (i, = u,(r, t)€é;, and the dependence of all other
gas parameters on (1, t) only), the Egs. (2.4), (2.5), and (2.6) become respectively

oT oT. . . PO
C"zpz(E)tz + u28r2> =—divg— r—gﬁ(rzuz), (2.8a)
8”2 8u2 _ 3P2
p2< ac T2y ) =" (2.80)
8,02 10
73[’ + r—zﬁ(rzpzuz) =0. (28(:)

We solve (2.7) for p, and substitute the result into the remaining equations. Similarly, we solve (2.8b) for du,/dt and
substitute the result into the remaining equations. Finally, the consequences of PDEs (2.8a) and (2.8c) both contain dT,/dt.
Excluding it, we arrive at the PDE

Under an additional physical assumption of fast pressure re-balancing inside the bubble, dP,/0r = 0, the Eq. (2.9) may be
completely integrated in r from O to R(t). The boundary conditions to be used are given by

_dR(b)
Ry dt

— (y — Ddivq. (2.9)

=0, Uy
r=0

15}

Moreover, due to the spherical symmetry, ¢ = q(r, t)é;, and through the use of the divergence theorem, one has

R(t)
/ r2diy gdr = - / divgdv = q(t. R(t)RE(D).
0 4 Jp

where B denotes the spherical bubble domain of radius R(t). With these ingredients, the integrated version of (2.9) yields
and ODE

dr,  3yRdR _ 3(y-1)

dt R dt R

q(t,R), (2.10)
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In order to use the ODE (2.10), a physical constitutive assumption regarding the form of q(t, R) is required. For example,
in [7], the constant value of Nusselt number was assumed. It is not clear, nor has an explanation been offered, why that
condition might physically hold. A natural choice we make here would be a generalized Newton’s law of cooling, stating that
the outside-directed total heat flux through the boundary of the spherical bubble a domain is proportional to a power of
the difference of temperatures immediately inside and outside the bubble:

q(R.t) = (LR, t) — Ty (R, £))" (211)

r=R()
Here k>0 is some constant power, and h is the heat transfer coefficient, also assumed constant. In this work, we take
the simplest case of k = 1, corresponding to the classical Newton’s law of cooling. The heat balance equation for a bubble
becomes
dr,  3yRdR _ 3(y-1)
dt R dt — R
Suppose that initially, both the gas in the bubble and the surrounding fluid had he same temperature Ty. For fluids with
large specific heats, it is natural to assume T; (R, t) = Ty = const. We also assume T, = T, (t) (the temperature on the bubble
surface is close to the average temperature throughout the bubble). The equation of state for the ideal gas in the bubble as
a whole reads

P (t)Va(t) = nR* T (1),

where R* is the ideal gas constant, n is the constant amount of substance in the bubble, and V;(t) = 4/37R3(t) is the bubble
volume. Writing this formula at t = 0 and at an arbitrary time t, and dividing, we obtain

P (6)To R3(t)

h (LR, t) — 1 (R, 1)). (2.12)

L(t) = , 213
2( ) PO R03 ( )
where the initial conditions are given by
Bl _ =P D|_,=T R|_ =R (2.14)

The final result is an ODE relating the pressure P,(t), the radius R(t), and the temperature T,(t) of the gas bubble. It is
given by

dP2 3]/P2 dR l’lT() P2 R3 _

Remark 2.1. If the gas within a bubble is assumed to undergo an adiabatic process, satisfying PVY = const, one would have,
for the whole bubble,

P,R?” = const = PRY” . (2.16)

It is straightforward to verify that under (2.16), the left-hand side of the heat transfer Eq. (2.10) vanishes; it follows that the
ODE (2.15) is a direct generalization of the adiabatic law onto the case of nonzero energy flux through the bubble boundary.

2.1.3. Mass balance of the gas-fluid mixture

The next local equation of the model is derived from the assumption that the total mass of the mixture is conserved,
and that the ratio between the masses of the liquid and the gas is constant, i.e., bubbles do not form or disappear. Consider
a mixture containing N gas bubbles per kilogram (N = const). Let V denote the volume of the gas bubbles per kilogram of
the mixture:

V= gnNR3. (217)

The masses of the fluid and the gas in the bubbles, contained in one kilogram of the mixture, are given by dimensionless
quantities

Smy=X=p,V, 8m;=1-8my. (2.18)

These may be called the “relative mass contents” of the two phases in the mixture. The total mass of the mixture is
given by m = pV [kg], where V is the volume occupied by the mixture, and p is the average density of the mixture.
The total volumes occupied by the fluid phase and the gas bubbles are respectively given by

Vo=mV =pVV, Vi=V-V;=V—pVV. (2.19)
The mass of the mixture can be further written as

m=pV = pVi + 02Vs. (2.20)
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Using (2.19), one obtains the following relation [7]:

(1= 2V +p1V)p — p1 =0. (2.21)
One consequently has
(1 _X+ gnNR3p1>p — =0, (2.22)

an algebraic formula connecting the total mixture density p, the density of gas in the bubbles p,, and the bubble radius R.
In (2.22), N, X = const; moreover, the fluid density p; is also assumed constant for the purposes of the current model.

2.1.4. Dynamics of the bubbly fluid

In order to describe the dynamics of the bubbly fluid as a whole, we step away from the previous description at the
bubble scale, and use the one-dimensional Navier-Stokes equations. These consist of the continuity and the momentum
equation, given by

%—f +div(pl) =0, (2.23)
o . | o
p(at + (- V)u) +grad P = AU — pgk, (2.24)

where p = p(X,t) is the density of the mixture, u = u(x, t) is the velocity of the mixture in the x-direction, P = P(X, t) is the
pressure of the mixture, g is the downward acceleration due to gravity, and k is the unit vector in the z-direction (Fig. 2).

2.1.5. The three-dimensional PDE model

So far, our model consists of two sets of equations. The first set of local equations is composed of ODEs: the Rayleigh-
Plesset Eq. (2.3), the bubble thermodynamics Eq. (2.15), and the algebraic mass balance Eq. (2.22) for the unknown local
quantities

R(t), P(t). Py(t). p2 (b). (2.25)

The second set of equations is given by the PDEs (2.23), (2.24) describing the dynamics of the density, velocity and pressure
p(X.t), (X, t) and P(X,t) of the mixture as a whole.

The two sets of equations can be put into a common framework if the local quantities (2.25) are assumed to change, for
all bubbles, throughout the mixture flow domain, as functions of X, t. In order to preserve the Galilean invariance, which
is essential in continuum mechanics, the time derivative d/dt of any microscopic variable ¢ = ¢(x,t) (2.25) are naturally
replaced by the total (material) derivative

D = %—‘f + - grad ¢, (2.26)
describing the rate of change of the respective quantity in the material frame of reference that moves with the flow.

Finally, the one-dimensional Galilei-invariant PDE model of a viscous bubbly fluid flow satisfying the above-described
assumptions is given by

dp

5 +div(ptl) =0, (2.27a)
ow o - 7
P FTa + (@- V)| +grad P = n AT — pgk, (2.27b)
3 41 DR
— P _ 2 el 2 t
P=P—p (RDtR+ 3 (PR + 37 ) (2.27¢)
3)/P2 3(]/ — l)hT() P2 R3 _
DiP, + R D¢R + R PfoRTf -1)=0. (2.27d)
4 3
(1 - X+ §NNR ,01>p —p1=0. (2.27e)

The system (2.27) involves seven equations and seven (scalar) unknown physical fields described by the dependent vari-
ables p, i, P, P, and R, which are functions of the independent variables X and t. In (2.27),

w. pi. y. h. N X g (2.28)

are constant material (constitutive) parameters that are determined by physical properties of the bubble-fluid mixture.
A well-posed problem describing a specific model using the Eq. (2.30) would involve application-specific boundary condi-
tions on a finite, infinite, or periodic physical domain V c R3, and a set of initial conditions, given by, for example,

U|[=0=U0(>7), /0}[=0=,00(??), P‘t=O=Pz{[=0=P0(>7), R|[=0=Ro(??)- (2.29)
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2.1.6. One-dimensional reductions

For models with symmetry, in the cases of flow parameters changing mostly in a single direction, it is natural to consider
one-dimensional reductions of the full three-dimensional model (2.27). In this case, without loss of generality, the physical
fields p, u, P,, P, and R are functions of the independent variables x and t only, and the PDE model becomes

ap 0

ad 0 5 0%u

&(pu)—f—ﬁ(pu ""P)_ILW +gp =0, (2.30b)

3 4 DR
— P _ 2 el 2 t
p—Pp, p(an+2wm)+3m R), (2.300)
3)/P2 3()/ — l)hTo P2 R3 _
iy + L2 DR+ 2 o) =0 (2.30d)
4 3
@—x+§nNRm)p—m:o, (2.30e)

a model consisting of five equations and five unknown fields p(x, t), u(x, t), P(x, t), P(x, t), and R(x, t). For horizontal flows,
one chooses g = 0, and for vertical flows with an upward-directed x axis, g > 0. The one-dimensional total derivative operator
is given by

0 tu 0
at ax’
Remark 2.2. Since the system (2.30) involves time only through the material time derivative D, all equations are Galilei-
invariant. In particular, if

px,t), ulx,t), P(x,t), P,(x,t), R(x,t)

D = (2.31)

solve the PDE system (2.30), then the quantities
pf(x.t) = p(x—ct.t),
uf(x,t) =u(x—ct, t) +c,
Pi(x,t) = P(x —ct,t), (2.32)
PzT(x, t) =P (x—ct,t),
Rf(x,t) =R(x —ct,t)

provide a family of additional solutions holding for an arbitrary constant c. The solutions (2.32) describe the values of the
physical fields observed in an inertial frame of reference moving in the negative x-direction at a constant the speed c. [The
same holds for the three-dimensional model (2.27), with the constant c replaced by a vector .|

2.2. Dimensionless equations

Classes of physical models involving constitutive parameters and/or functions may often be simplified using equivalence
transformations; in particular, constitutive parameters may be removed, and/or constitutive functions may be reduced to
certain simpler forms (see, e.g., [10] and references therein). In many cases, such simplifying transformations can be found
by inspection; this is the case for the viscous bubble flow model above. We show how a class of scaling transformations (a
general non-dimensionalization) leading to a dimensionless version of the model is used to substantially reduce the number
of parameters. Alternatively, when scaling parameters are not “chosen” but rather are prescribed by typical physical values,
a “physical” non-dimensionalization is obtained, involving well-known physical dimensionless parameters, as shown below.

We now derive two different non-dimensional versions of the multi-phase flow model at hand. For brevity, the results
are given for the one-dimensional system (2.30); the results carry over to the full three-dimensional model (2.27) in an
obvious way.

2.2.1. A general non-dimensionalization
First, we wish to find a dimensionless version of the Eq. (2.30) with a goal to remove as many constitutive parameters
present in the system as possible. Consider a class of transformations
x=AX  t=Af, P=AP,  p=A,p,

u=Ad, R=AR T=AT, (2.33)
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where the constants Ay, A, Ap, Ap, Ay, Ar, At retain the physical dimension of the respective variables, providing their “char-
acteristic” values based on dimensional considerations only, and the new variables X, t, etc. are dimensionless.
Upon the substitution of (2.33) into the PDE system (2.30), one requires

A
Ax = AtAy, A =Aﬁ, AP—,01< r) ; Ay =p1,
p A
A 4 173 AA
2 4p (= _ Ar P
Ay = A, Ar (37TN,01> , Ar A,
Then the choice
4 -1 P1 w?
A=n=(57Np) . A= Ta A=
© 4’
Ay=pi. A=t A =2
p =P " A T=3 hpr

leads to the elimination of several constant parameters (2.28) of the model. Spec1ﬁcally, the dimensionless version of the
PDE system (2 30), in terms of the unknowns p, i, R P, P2 depending on X and t, is given by

8,0 e
D Dy o~ M
55— (Rozks 3 o 4 42K
P=P <RDtR+2(D;R) 5% ) (2.34c)
PR3
DP2+3)/P2 +3( —1) 2 -1)=0, (2.34d)
R RR
A-X+R)p-1=0, (2.34e)

and involves only three dimensionless parameters: the gas mass fraction X, the adiabatic exponent y, and the scaled gravity
acceleration

_ _8Mm
K= TNE (2.35)

For gravity-independent/horizontal flows, k = g=0.

Remark 2.3. For some materials, the scaled gravity acceleration term (2.35) in the PDE (2.34b) is rather small: x « 1. In
particular, this is the case the basilic magmas.

The dimensionless version (2.34) of the gas-fluid mixture flow model (2.30) is useful for the general analysis of solution
behaviour and the computation of exact and numerical solutions when no further approximations are required.

2.2.2. A physical non-dimensionalization

In Section 2.2.1, the dimensional values A; of the physical fields were computed from the requirement of elimination of
as many constitutive parameters as possible. The non-dimensionalizing rescaling can also be used for a different purpose,
namely, to provide relative physical scales of the terms in the equations, when the typical values of physical variables are
known. We now follow the second route, re-scaling the model Eq. (2.30) according to the formulas

L
X = Lx*, t = —t*, PZAPP*, Pz ZAPP*,
Vo (2.36)
p = p1p%, u = vou*, R = A/R*, T =ArT*,
where Ay is the characteristic pressure, p; is the density of the liquid, L is the characteristic length, v, is the characteristic

speed of the mixture, Ry is the initial radius of the bubble, and Ar is the characteristic temperature. In terms of dimension-
less starred variables, one has

ad ad
— +ur(x t* .
5 TV g
The dimensionless version of the PDE system (2.30) arising from the transformation (2.36), in terms of the dimensionless
fields p*, u*, R*, P*, P; depending on x* and t*, is given by

dp* gty —
o o P =0

Dy =

(2.37a)
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d d 5 1 0%u*
u* u* EuP; — — * =0, 2.37b
o (P + o (p"u™) + Eu Ry -‘“8(x*)2+%p ( )
o 5 82 * V2 P* 3 )2 4 Dt*R*
Pr=F- E(R DR+ 5 (PR ) " 30WEu R (2.37¢)
DeR* w Ty (P (R
s % S0 _ Yoo 2 _ —
Dy-Py +3yP; R +3(y -1 LS R (Pg (R3> 1) 0, (2.37d)
(1-X+BR*p*—1=0. (2.37e)
The system (2.37) involves several dimensionless constants: the Reynolds number
L
g = 170
w
measuring the ratio of inertial forces to viscous forces, the Euler number
A
Eu= —" 5
P1Vo
measuring the ratio of pressure forces to inertial forces, the bubble size to characteristic length ratio
A
§="-,
L

the typical gas content in the mixture (gas mass per kilogram of mixture)
4
B= §nNAr3 01,

the thermal constant

_ Arh
Vop1’
and the gravity-related dimensionless constant
L
-
Yo

which vanishes for horizontal flows.

Remark 2.4. For basaltic magmas, typical values for these constants at the magma chambers are as follows [34]:

N~3x10* kg™", Ar~0.5x 1073 m,
01~ 2800 kg/m?3, Ap ~ 108 Pa,
h ~ 1400 J/(m - s - K), Ar ~ 1600 K,
Vo~ 1 my/s, L~ 400 m,
m~ 100 Pa-s.

For these parameter values, some terms in (2.37) become much smaller than other ones. In particular the radius terms in
(2.37c) become six orders of magnitude smaller than the pressure terms.
We also list the typical values of the physical constants for magma flows in lava tubes [13]:

N~6kg', Ar ~0.01 m,
01~ 2800 kg/m?3, Ap ~ 10° Pa,
h ~ 1400 J/(m - s - K), Ar ~ 1200 K,
Vo~ 1 my/s, L~0.1m,

n~ 100 Pa-s.

As an industrial-related application of the multiphase model of interest, one can consider machine oil with bubbles;
some typical values of the physical constants are

N ~ 3000 kg !, Ar ~0.001 m,
01~ 900 kg/m?3, Ap ~ 10° Pa,
h ~ 1400 J/(m-s - K), Ar ~ 515 K,
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Table 1
Typical dimensionless parameters for different applications.
Case Eu Re ) B w
Magma Chamber 36000 11000 1x10® 0.04 800
Lava Flow Field 36 3 0.1 0.07 600
Machine Oil 1m 300 0.01 0.01 800
Vo~ 1 my/s, L~0.1m,

n~03Pa-s.
The dimensionless parameters corresponding to the above cases are summarized in Table 1. It is evident that in the
corresponding dimensionless Eq. (2.37), coefficients at different terms may have vastly varying magnitudes.

2.3. Equilibrium and traveling wave solutions

We now seek equilibrium solutions
P =pe(X), U=Ue(X), R=Re(x), P=PF(x). P =Pe(x) (2.38)

of the dimensionless bubbly fluid Eq. (2.34), with tildes omitted for brevity. The substitution of (2.38) into (2.34) and a brief
computation lead to the following result.

Proposition 2.1. The model (2.34) admits equilibrium solutions (2.38) of the following form:

K
Pe(X) = m,
du,
Pe(x) =Py + "d(x) — Kette (x) +/c/pe(X) dx,
X (2.39)
Pre(x) = Po(Ke(X — 1) + e (%)) 7,
3,y Ue(X) B
R2(x) = @ +X -1,
where ue(x) is an arbitrary solution of the above equations and the following ODE:
. d?Re(x) . due(x) dR.(x)
Pe(x) = Poe () — Ue(¥) (Re ()75 + S ER(0) =
2 (2.40)
V(R 4 dRe)
2 dx 3R.(x) dx ’

We separately consider the important case u, = 0, the following equilibrium solution arises.

Proposition 2.2. The model (2.34) admits equilibrium solutions of the form (2.38) for the equilibrium quantities given by
1
Pe(X)

Ue(x) =0, Pe(x) =F +/</pe(x)dx, Pre(®) = Pe(x), R2(x) = +X -1, (241)

where pe(x) is an arbitrary equilibrium density distribution.

Remark 2.5. From (2.41) one observes that for vertical flows (x > 0) described by the model, as the bubbles rise, the bubble
radius does not increase. This is a consequence of the model assumption of no mass exchange between the two phases.

2.4. Traveling wave solutions

Since the PDE system (2.34) is invariant with respect to space and time translations, it admits traveling wave solutions
of the form

fx,t) = f(&), & =x—ct, ¢ = const, (2.42)

where f(x, t) stands for each of the physical fields p, u, P, P,, R. The substitution of the traveling wave ansatz (2.42) converts
the PDEs in (2.34) into ODEs with the independent variable &; the ODE system may subsequently be solved to find the
traveling wave solutions. However, since the model (2.34) is Galilei-invariant, the ODEs of the traveling wave ansatz will es-
sentially coincide with the equilibrium solutions modified by a Galilei transformation (2.32) (see Remark 2.2). The following
result holds.
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Proposition 2.3. For any equilibrium configuration pe(x), ue(X), Pe(x), Pye(x), Re(x) solving (2.39), (2.40) or (2.41), the model
(2.34) admits a family of time-dependent exact solutions given by

Pe(x —ct), Ue(x—ct)+c, Po(x—ct), Poe(x —ct), Re(x —ct) (2.43)
for an arbitrary ¢ = const.

Proposition 2.3 yields explicit traveling wave solutions for any given equilibrium solution.
3. Perturbation analysis

As it is common for nonlinear models, it is not feasible to derive an exact closed-form general solution of the full bubbly
fluid PDE model (2.34). We now seek its approximate solutions using an extended version of the Su-Gardner procedure [35].
This procedure applies to Galilean-invariant models which contain the continuity and momentum balance equations (g = 0),
as well as possibly other algebraic or differential equations, involving the corresponding number of additional dependent
variables f:

dp 0

5 35w =0, (3.1a)
8(u)+a(u2+P)—0 (3.1b)
P="P(f, p.u, f. ox: Ux, fr, . ), (3.1c)
F(f. p.u, fx, px, tux, ft,..) =0, (3.1d)

In our case (i.e., the model (2.34) with tildes omitted), f includes both of the gas state variables R and P,, the Eq. (3.1c) is
given by (2.34c), and F has two components given by (2.34d) and (2.34e). The Su-Gardner approach [35] maintains that for
a Galilei-invariant system with a “weak” nonlinearity, one can take the long-wavelength approximation

£ = €%(x — apt), T =%t (3.2)
and expand the state variables asymptotically about the constant equilibrium state:

p=po+epV+e2p@ 4.,
f=fot+efOre2f® 4 (3.3)
u=0+eu® 4 e2u® 4. .

Here € « 1 is an arbitrary small parameter controlling the magnitude of the perturbation, ag = const is the wave speed,
o = const > 0 is a power parameter, and 7 is the “slow time” variable.

After the substitution of the ansatz (3.3) into the governing equations, every power of € up to a specified precision is
required to vanish independently.

3.1. An asymptotic expansion with generalized power series

Consider again the dimensionless bubbly fluid model (2.34), with tildes again omitted everywhere for brevity, in the case
of horizontal flows and other flows where the gravity is negligible: (x = 0). Suppose that the state variables p(x, t), u(x, t),
P(x, t), Py(x, t)), R(x, t) can be represented as a generalized power series in terms of some small parameter €:

£ = Po + eqp(l) + €q+kp(2> + €q+2kp(3) +...,

U=0+elu® 4 edthky@ 4 ea+2ky®

R =Ry + €9RM 4 ¢9+kRD) 4 ¢a+2kRG) 4 (3.4)
P =P+ €IPM 4 atkp@) 4 a+2kp3) 1

P=P+ Equ(l) + 6qukpZ(Z) + €q+2kp2(3) +... .

To account for the slow variation of the wave-form, we introduce Gardner-Morikawa coordinate transformation [36] of the
independent variables:

£=€(x—apt), T=e""Pt. (3.5)

In the above formulas, ag is an arbitrary speed at which the reference frame is moving, «, 8, q and k are constant
positive power parameters, and 7 is the “slow” time. In (3.4), it is assumed that pg, Ry, and Py are components of a constant
equilibrium solution, and the perturbation series coefficients are functions of (&, 7).

Remark 3.1. We note that truncated series (3.4) represent approximate solutions of the full model (2.34) to the desired
order of €. The approximation based on (3.4) and (3.5) leads to new solutions to (2.34) rather than an approximation of
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equilibrium solutions (2.41) translated through a Galilean transformation. Indeed, in the case of the equilibrium solution
(2.39), ue = ue(x). For the equilibrium solution (2.41), ue = 0; after a Galilei transformation, one has u(x, t) = c # 0. At the
same time, in the Su-Gardener approximation (3.4), u(x, t) ~ 0+ €%u (x, t), with u(V(x, t)=£0.

The perturbation expansions (3.4) about the equilibrium solution (2.41) are required to annihilate the lowest-order terms
of each of the Eq. (2.34). We note that €**9 is a common factor in the continuity and momentum conservation equations,
and €9 factors out from the three remaining DEs. Setting to zero the lowest-order terms, we obtain the following relation-
ships:

ad ap 0
1 _ =0 1)
—u® =22 = HM 3.6a
Y (362)
P = pD, (3.6b)
P = _3hpo, (3.6¢)
Ro
R —-X+1)2
1) _ _( 0 (1)
R = 3R, o, (3.6d)
ad ad
— p _ — M
BEP Polo 5E u. (3.6e)
The above equations involve a constraint on dg; it can be shown that
ao = Ry>P)*(RE — X +1). (3.7)

This choice of ay satisfies (3.6) for an arbitrary set of positive constants «, 8, q and k.

We now consider several particular cases in which the bubbly fluid model (2.34) is asymptotically equivalent to a single
nontrivial PDE, in the sense that O(€9) terms of the density expansion p(1)(, 1) in (3.4) will be governed by a PDE, and
O(€9) terms of other fields are found from (3.6). [We note that it was possible to identify three such cases; in principle,
more cases can exist for other relations between Gardner-Morikawa exponents «, 8, ¢, and k.]

For each such case, one immediately obtains an approximate solution of the bubble fluid model (2.30) (through its di-
mensionless version (2.34)), given by the lowest two terms of the expansion (3.4).

3.2. The Burgers equation case

First, consider the case o = B = q = k. For this case, the second-lowest-order terms of the DEs (2.34) yield the following
relations between second-order and first-order perturbations (3.4):

0 ap 0 a 0 2 0

@ _% 0% o_ %% o, 2 0% m 38

9" = py0g” Po(afp i1 ) 382

4ay d

P@ —p@ %glgm’ (3.8b)
3P apP? 9 6P 2

2 _ _270p@) 070 9 p) o P50 (p(1)

P = ROR + 8€R +R5 (RM)7, (3.8¢c)
C(R-X+1)? )+(2R3+X—1)(R(3)—X+1)3

RO = 0" 2T 0 p™M)?. (3.8d)
3Ro 9R3 (p)

Solving the above system amended with (2.34b) for p(1), we find that the first-order density perturbation p(1)(x, t) satis-
fies the well-known Burgers equation:

apM  3%2pm 130

ot~ "Tagr TP e (39)
where the constants A, and B are given by
_ [P?Ro* + BRo’To + (Ro*Ro + § To) (1 - X)](Ro® — X + 1)
6Ro>To '
P2 (R — X + 1)
B=_— (Ro ) (3.10)

R09/2
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We have obtained the following result.

Proposition 3.1. In the case of Gardner-Morikawa exponents o = 8 = q = k, the lowest-order e-dependent terms of the Eq.
(2.34) are satisfied by the first two terms of the expansions (3.4), where p(!) is an arbitrary solution of the Burgers Eq. (3.9), and
the remaining state variable perturbations u(), P(1), Pz(”, RN, u@), p2), Pz(z) and R?) are determined by the relationships (3.6)
and (3.8).

Remark 3.2. In a similar manner, one can analyze relationships between higher-order perturbations p(?), u(?), p2), Pz(z) and

R3), etc. In particular, one can show that for the current choice of Gardner-Morikawa exponents, p(?) satisfies a modified

diffusion equation

dp@ c 32p@ dp@
ot 2 &z 9E

where C;, G, = const, and the coefficients F;, F,, F; depend on the previous-order perturbation p(!).

G +F +Ep® +F,

Example. As an illustration, we take « = 8 =q=k =1, and employ a famous exact explicit kink-type traveling wave
solution of the Burgers equation

G
Bc’
C1, Gy, c = const, to construct approximate solutions of the bubbly flow Eq. (2.34). Indeed, the formula (3.11) together with
the first-order perturbations u(1), P, Pz(l) and R given by (3.6) yield the first two terms of the solution expansion (3.4) of
the PDE model (2.34). [It is straightforward to verify that these approximate solutions satisfy the Eq. (2.34) up to an O(e?2)
error.]

As a specific example, we compute two lowest-order terms of the terms of the approximate solution expansion (3.4) for
the parameter values

€=001, c=1, G =300, G=-20, p.=1, RBh=1 Ty=1. (3.12)

pM(E. 1) = % tanh(G,7 + ¢ - Cy) + (3.11)

For these values, one obtains, in particular,
ap >~ 2.2361, A~4.1969, B~ -11.1803, Ry~ 0.5848.

The graphs of thus approximated physical fields p(x, t), u(x, t), R(x, t) are given in Fig. 3. [We remind that throughout
this section, including Fig. 3, the dimensionless fields and variables are considered, given by (2.33). All tildes are omitted.
For instance, by p(x, t) we mean g (X, ), etc.]

In order to verify the quality of the approximation provided by the above-described truncated series approximate solu-
tion, we use a numerical solution of the full bubbly fluid model (2.34) (see Appendix A), with the same initial condition,
and compare the two at the dimensionless time t = 80. A close agreement is observed.

3.3. The diffusion equation case

Another interesting case is given by the choice o = 8 = q/2 = k. Setting to zero the second-lowest-order terms in the
PDEs yields

9 @ _ G 9 139

S =2 85’)(2) - M. (3.13a)
P — p@) 4 %%R(U, (3.13b)
PR — _%Rm n %%Rm’ (3.13¢)
R® _ _W Poy. (3.13d)

Using (2.34b), we find that the lowest-order density perturbation p(!) is governed by the linear diffusion equation

ip(l) :Aizp(l) (3.14)
at 02 ’

where the constant coefficient A is given by

[(P3Ro + 3To) (1 = X) + P3RE + BR3TH|(RE — X + 1)

315
6R3Ty (3.15)
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Fig. 3. A dimensionless approximate solution components p(x, t), u(x, t), R(x, t) of the model Eq. (2.34) given by the sum of O(1) and O(¢) terms of the
expansion (3.4), for the parameters (3.12) (tildes omitted), compared to a numerical solution of the full bubbly fluid model (2.34). The dashed line denotes
the tanh-shaped initial condition. The thick black (solid) line denotes the approximate solution curves at the dimensionless time t = 80. The thick blue
(dashed) line denotes the numerical solution curves at t = 80. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

We have obtained the following result.

Proposition 3.2. In the case of Gardner-Morikawa exponents « = 8 = k = q/2, the lowest-order e-dependent terms of the Eq.
(2.34) are satisfied by the first two terms of the parameter expansions (3.4), where p(!) is an arbitrary solution of the linear
diffusion Eq. (3.14), and the remaining state variable perturbations u(), P(), PZ(”, RNy p2), PZ(Z) and R are determined by
the relationships (3.6) and (3.13).

3.4. The Korteweg-de Vries equation case

Another exponent relationship leading to a nontrivial single PDE governing the leading-order perturbations is given by
oa=k=pB/2=q/2 (cf. [7]). In this case, setting to zero the lowest-order terms € yields the relations

%um _ %%pa), (3.16a)
P@) — p@) 4 ;‘%%Rm, (3.16b)
PR — _%Ra) n %%Rm, (3.16¢)
R _ _(R?)%ROH)Z o (3.16d)
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Repeating the steps from the other cases, we arrive at a constraint
((X —1)P3Ro — P2RS — BR3To + 4To(X — 1))R,* 92
JdE2

3 2
(RB—X+1) R9/2T

oM =0.

The above equation is satisfied by p(!) = A& + B, which fails to be small, or by a specific choice of T:
3P2Ro(RE—X +1)

To=— 3.17
° 13R3—4X + 4 (317)
Now examining the second-lowest order of €, one has
ad ap 0 a ad 1 0
et @ _2% 1 % jm_ M 318a
oY " pe0E” 2’ 85" po 07" (5:152)
4ay 0
(3) — p3 707 (2) (1)
P =P, 3R, 8§R — Roa} éz , (3.18b)
RE-X+1)2 (2R3+X—1)(R3 X+1)3 2
@ __ R p® M
R® = 3R ok (pM)". (3.18¢)
Simplifying the above equations, we determine that p(!) satisfies the Korteweg-de Vries (KdV) equation
dpm 33p0 1 pD
where A, B, and C are constant parameters given by
A=R'"R3(y - 1),
15 1203 2 (p3 2 16 (13 2
B = &Ro (R3-X+1)(RR3(RI-X+1)"(y = 1) — (R -X+1) ). (3.20)

C=PR'? (R —X+1)’(y - 1).
The following result holds.

Proposition 3.3. For the case of Gardner-Morikawa exponents o = k = 8/2 = q/2, the lowest-order e-dependent terms of the
Eq. (2.34) are satisfied by the first two terms of the parameter expansions (3. 4) where o) is an arbitrary solution of the KdV
Eq. (3.19), and the remaining state variable perturbations u(V, P(1), P(l) R ), P2, Pz(z) and R?) are determined by the
relationships (3.6) and (3.16).

Remark 3.3. Since physically, Py, Rg>0 and 0 <X <1, from (3.17) it follows that in this case, the initial temperature must
be negative, Ty < 0. Therefore the current case does not correspond to physical solutions for applications considered in this
work.

4. Gravity-dependent flows

We now take gravity effects in the main mixture flow model (2.30) into account: g+0. In the dimensionless Eq. (2.34),
let k ~ €**+# which may represent a gentle slope, or model a vertical flow of a bubbly fluid with a small x (see Remark 2.3).
We generalize the Gardner-Morikawa scale transformation to include a variable reference speed a(t):

E=e"(x—a(np), T=e"t (41)

The leading-order conditions arising from the substitution of the perturbation expansions (3.4) into the DEs (2.34) in this
case become

0 da d

9 M _ 9

8%‘” (8t +a) 8&’0 , (4.2a)
P — Pz(l)’ (4.2b)

3P 3kart

p _ _ 20 p0) R, 4.2¢
2 Ro ((R3 =X+ 1)Ro) (4.2¢)
R _ _ (RE—X+ UZp(l) (4.2d)

3Ro
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gp(l) - Po(g T+a>agu(]) (4.2e)

holding for an arbitrary set of positive constants «, 8, q and k. The relations (4.2) equations contain a constraint on a(7); it
is satisfied by

PoRS — 2PR3X — R3CZ + 2R3 + PoX? — 2P)X + Py

a(t) =
K(RE—X+1)t (43)
Kpg(Rg—X+1)2T+C '
- 15
4R}
where C; is an arbitrary constant. By taking C; = ag (3.7), the expression for a(t) simplifies to
1 _
a(t) = ZKR53 (R3—X +1)T +R,>*P)* (RS — X +1). (4.4)

In order to reduce to a single equation satisfied by one of the leading-order parameter perturbations, one follows the
same process as outlined in Section 3. In particular, the following result can be obtained.

Proposition 4.1. For an arbitrary choice of positive exponents satisfying o« = 8 = q =k in the generalized Gardner-Morikawa
transformation (4.1), the lowest-order e-dependent terms of the Eq. (2.34) are satisfied by the first two terms of the asymptotic
expansions (3.4), with p(1) being an arbitrary solution of a variable-coefficient Burgers equation
apm
AT =B(t
02— 2O

" e P D) +EpD. (4.5)

35 2 35
and P, Pz(l), RM, u(M) determined from (4.2), where A, B, and C are certain polynomials in terms of T, D is a polynomial in
terms of &, and E is a constant.

Thus any solution of the variable-coefficient Burgers Eq. (4.5) yields an approximate solution of the full model (2.30)
with g#£0; this solution is given by the O(1) and O(e?) first two terms of the expansion (3.4).

As in Section 3, the O(¢) terms of the expansions (3.4) of other state variables are related with p(!). The expressions for
these terms, as well as A, B, C, D, and E, are not written here explicitly for the sake of brevity, and are readily derived by an
eager reader.

5. The case of nonzero surface tension

When surface tension of the bubbles is not negligible, the dimensionless Rayleigh-Plesset Eq. (2.34c) (with tildes omitted,
as usual) is modified as follows [37,38]:

/
P=P— (RD2R+ (DR + = 4 (D};R) + 2;) (5.1)
where
o = 4"17”1/3 (5.2)
(37Np1) "~ 2

is a constant dimensionless tension parameter, and o is the coefficient of surface tension of the bubble surface.
The full three-dimensional model of the bubbly flow is consequently given by the Eqgs. (2.27a), (2.27b), (5.1), (2.27d), and
(2.27e).

5.1. Exact equilibrium and traveling wave solutions

Similarly to Section 2.3, we can derive an equilibrium solution of the extended with non-zero surface tension. Seeking
equilibrium solutions in one space dimension, in the form (2.38), we find that the system (2.34) (with (2.34c) replaced by
(5.1)) admits equilibrium solutions satisfying the previously derived Eq. (2.39), where ue(x) satisfies an amended version of
the ODE (2.40):

d? Re (X) due (X) dRe (X)

Re(x)

2
3 (dR.(x) 4 dR.(x) 20’
+2< dx ) T3Rw ax T Re(x))' (5.3)

Pe(x) = Pae(x) — Ue(x) (Re( )
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In the case of ue(x) = 0, the following equilibrium solutions arise:

Ue(X) = 0. Po(X) = Py + f K pe(X)dx,

20" 1
——, Rx)=——+X-1,
R W= 560
where p¢(x) is an arbitrary initial density distribution.
Similarly to the zero-tension case (Section 2.4), the equilibrium solutions (5.4) and the Galilei invariance can be used to
generate time-dependent exact solutions of the form (2.43) of the model (2.34), (5.1).

Pre(x) = Pe(x) +

5.2. Generalized power series solutions

In order to derive series-type and approximate solutions of the extended model with nonzero surface tension, one can
again following the procedure of Section 3 to analyze small perturbations of, for example, horizontal (kx = g = 0) equilibrium
flows with nonzero surface tension.

Perturbing the Eq. (2.34) (with (2.34c) replaced by (5.1)) around the equilibrium (5.4) where we choose p.(x) = pg =
const, Pr(x) = Py (x) = const, R(x) = Ry = const, we pose Su-Gardner-type generalized power series (3.4) and the Gardner-
Morikawa coordinate transformation (3.5) sharing the small parameter €. We find that the equations are satisfied to their
lowest-order terms in € when the O(e9) terms of the solution series (3.4) satisfy

%um _ %%pm, (5.5a)
PO _pi» ¢ %R(”s (5.5b)
Py — _3(“3!%:2‘7'),3(1), (5.5¢)
R — _W‘)m’ (5.5d)
%P(” = poao%u(”. (5.5€)

These equations involve a constraint on ag given by
_ (9RoP + 126)12R3 -X +1)
= 5 ,
3R;
which is an obvious generalization of (3.7) onto the case o’ #0.
It can be shown that perturbations arise from solutions of a single PDE in the following specific cases.

(A) The Burgers case. First, taking the familiar case with @ = B = ¢ = k, we again find that the next order of € in the
bubbly fluid model is satisfied when p(!) satisfies the Burgers equation:
dpm 32pM apm
=A Bp™M ,
97 9gz TPP o
where A and B are constants given by
(PgRg + R(4Py0” + BTo) + 4R307% + [(PyRo + 207)% + 4RoTol (1 - X))(Rg —X+1)

6RAT,

o (5.6)

(5.7)

5

3
RE—X+1) 14
_ _1212 ( 0 P
B=-3 (3P0R0+4a’)1/2R8<P0R0+ 90)'

(B) The linear diffusion equation case. For the choice o = 8 = q/2 = k, one again arrives at the diffusion equation for
the lowest-order perturbation:

apM 32pM
ot~ 0&2
where A is a constant given by
(PgRg +RA(4Pyo’ + BTo) +4R30" + [ (BRo + 267)? + #ReTo | (1 —X))(Rg ~X+1)
6R6‘T0

(5.8)
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(C) The Korteweg-de Vries equation case. When the constant exponents are related by o = 8 = q/2 = k/2, similarly to

the result in Section 3.4, one again observes that the lowest-order perturbation satisfies the Korteweg-de Vries equation
857:) :A8350€(1> +BP(”857;)
with tension-dependent constant parameters A and B given by
A= Q[(RR3(y — 1) +20'Rj(y — 1) — RS + RIX — 1))
+(2PoR3 — 40'Rg) (¥ — 1) (1 = X)
+(Po(y = 1)*+20'Ro(y = 1) = $£)(1 - X)?],

(5.9)

(R -x+1)°

B — _31/2
R(S)(3PORO =+ 40”)1/2

(PoRo + %07),

where we have denoted
(PoRo+30")(RE—X +1)
2R3(9P0R0 +120")172(y = 1)(ByRg +207)

Q=-

Again, similarly to the result in Section 3.4, the Korteweg-de Vries equation holds when the initial values of the physical
fields satisfy a special condition, here given by

P2RS + 4R4Py0’ + (PoRo +20")2(1 — X) + 4R30"”

To=-3 Ro(13R? — 4X + 4)

(5.10)

Again, since physically, Py, Rg >0 and 0 < X < 1, it turns out that the reference initial temperature Ty must be negative, which
does not correspond to a physical reality for applications considered in this work.

6. Discussion

In this paper, an extended Galilei-invariant physical model (2.27) of a three-dimensional flow of a multiphase contin-
uum, namely, a viscous fluid containing bubbles, was presented. The model was based on both physics of a single bub-
ble and the mixture flow as a whole; it incorporates multiple physical effects including gravity, viscosity, and bubble sur-
face tension. Two dimensionless versions of the model, (2.34) and (2.37), were derived. In particular, in the general non-
dimensionalization (2.34) leads to a parameter reduction, i.e., it involves a fewer number of parameters than the dimensional
model (2.30), and these parameters are dimensionless. The “physical” non-dimensionalization (2.37) of the model (2.27),
(2.30) is based on characteristic values of the flow parameters. It leads to a set of dimensionless equations that include
the classical fluid dynamics constants, such as the Reynolds number %, the Euler number Eu, the bubble size/characteristic
length ratio §, the thermal constant W, the dimensionless typical gas content B, and the gravity constant x. The importance
of this non-dimensional version of the model lies in the fact that for any bubbly flow regime of interest, one can compute
AR, Eu, 6, W, B, and x, and determine the relative magnitudes of coefficients at different terms in the governing equations
(see Table 1 where the parameter values for three sample flow types are presented). On the contrary, in the general non-
dimensionalization (2.34), all terms in the equations would generally have similar orders.

Exact and approximate solutions of the one-dimensional reductions (2.30) of the full bubble-fluid mixture model (2.27)
were analyzed, in the cases of absent and present gravity terms. In particular, for the dimensionless Egs. (2.34), equilibrium
solutions holding for an arbitrary initial velocity distribution, as well as static equilibrium solutions and traveling wave
solutions, were considered in Sections 2.3 and 2.4. In particular, through Galilei transformations (2.32), every equilibrium
solution can be mapped into time-dependent traveling wave solutions (2.43) moving with an arbitrary constant speed c
(Proposition (2.3)).

In order to systematically construct approximate solutions of the one-dimensional mixture model (2.30) in the case of
a vanishing gravity term, in Section 3, generalized asymptotic expansions of solutions of the bubbly fluid model in terms
of a small parameter €, about the constant equilibrium state, were considered, in terms of the Gardner-Morikawa variables
(3.5) (large wavelength, slow time) involving the same small parameter. It was shown that for several choices of Gardner-
Morikawa exponents, leading terms of the solution perturbation series arise from solutions of single PDEs, namely, the
Burgers Eq. (3.9), the linear diffusion Eq. (3.14), or the Korteweg-de Vries Eq. (3.19). Thus exact solutions of these three clas-
sical models can be used to construct closed-form approximate solutions of the bubbly fluid model (2.30). This is illustrated
for the classical tanh kink-type traveling wave solution of the Burgers Eq. (3.11) in Section 3.2. The quality of approximation
is demonstrated through a comparison with a numerical solution based on the method of lines (Appendix A).

Flows that essentially involve the gravity were considered in Section 4; there, in order to reduce the problem to a single
nonlinear PDE, the Gardner-Morikawa scale transformations needed to be generalized (formula (4.1)) to include a variable
wave speed a(t). It is shown that this choice can lead, for example, to a variable-coefficient Burgers Eq. (4.5) satisfied
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by the leading-term density perturbation. Consequently, any solution of a single PDE (4.5) yields, through (4.2), yields an
approximate two-term solution (first two terms of (3.4)) p(x, t), u(x, t), P(x, t), Py(x, t), R(x, t) of the bubbly fluid model
(2.34) with a nonzero gravity term: g, k #0.

The bubble-liquid mixture flow model (2.27) was further extended in Section 5 by incorporating surface tension effects
into the (modified) Rayleigh-Plesset Eq. (5.1). Equilibrium and traveling-wave one-dimensional solutions were constructed,
and generalized power series solutions were considered. It was shown that leading-order terms of the solution perturbations
around the static equilibria for such flows can also satisfy a single simplified PDE, such as linear diffusion, Burgers, or
Korteweg-de Vries equation, whose coefficients now essentially involve tension. Hence again solutions of a single PDE give
rise to approximate solutions of the full one-dimensional flow model (2.30).

The presented model provides a significant extension and modification of the one obtained in a recent work [7,29]. The
differences include the full three-dimensional formulation, the Galilean invariance, the use of the full Navier-Stokes instead
of Euler mixture flow equations, nonzero gravity, and a different physical assumption on the heat transfer term between the
two phases.

An interesting aspect of Kudryashov and Sinelshchikov [29] is their use of asymptotic expansions to derive a new third
and fourth-order equation for small solution perturbations. We were able to obtain these equations up to first order in € by
taking similar choices of parameters as Kudryashov and Sinelshchikov [29] (8 = q =k =1, and & = m). In this case, leading
terms of the solution perturbation series arise from the following non-linear equation

1) 2 4(1) 3,

%pm +c1p<1>ag’T + Gem-! 33‘%_’2 + Cze2m-1 88‘5’3 -0, (6.1)
where C;, C5, and C3 are constants. Depending on the choice of m, (6.1) collapses into either the Burgers’ case in
Section 3.2 for m =1 or Korteweg-de Vries case in Section 3.4 for m = 1/2 including the requirement on C, vanishing.
It was not feasible to obtain the higher-order terms due to the time derivatives of gas pressure in our heat transfer equa-
tion, which prevents splitting of the orders of €. Our results show agreement with the work of Kanagawa et al. [30], in the
case of expansion parameters f = q =k =1, and o = m, which corresponds to their case of the high frequency and long
wavelength band-up. This agreement is up to the constants of the resulting PDE; the difference is a result of different choice
of bubble surface equations.

The physical model presented in this work can be extended further. Physically relevant extensions would include the
consideration of heat loss to the environment, a description of bubble formulation and collapse, and accounting for the gas
exchange between the bubbles and the surrounding fluid; the latter is important for a more accurate description of the
mixture dynamics in the magma chamber as well as the vertical volcanic conduit in a wider range of depths.

The generalized asymptotic series analysis of the bubbly fluid models considered in this paper, as well as in the related
literature, can also potentially be extended, to systematically seek additional classes of Gardner-Morikawa exponents «, £,
g, k that would lead to other non-constant values of first-order solution perturbations, and perhaps to the discovery of new
simplified PDEs that describe the perturbation dynamics. An example of such work would be the nonlinear Schrédinger that
has been derived in [30] from similar equations. A related avenue that could lead to new important results is the use of
physical non-dimensionalizations like (2.37), where equations would already involve small parameters coming directly from
the physical setting (e.g, Table 1). Then the choice of the powers of the small parameter ¢ in the Su-Gardner-Morikawa-
type expansions (3.4), (3.5) naturally can, and should, be informed by the different scales of physical parameters contained
in the dimensionless model equations.
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Appendix A. The numerical method

Since the dimensionless bubbly fluid model Eq. (2.34) is not given by evolution equations, in order to solve it numerically,
a non-standard procedure must be used. (Throughout this section, tildes in the equations of (2.34) and related formulas are
omitted.) We employ a modified method of lines, as follows.

The first step is to solve for and exclude P(x, t) and R(x, t) using the algebraic Eqgs. (2.34c) and (2.34e), and the time
derivatives R;, R using the differential consequences of the necessary equations from (2.34). A new PDE system is obtained:

dp 0

F (A1)
BPZ _ P2 ou BPZ P2R2 1

ot~V pR3 dx ‘ax“‘”"w‘”(ww) (A1b)

ou ou 0%u 0A 1 0p 0%u 1 0OR d%u 1 d%u

3t TP T 9x2 T 9x T 3p2R 9x 9xdt | 3pR? 9x 9xdt _ 3pR 929t

at (Alc)
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where A(x, t) is given by

A(x.t) = P u 0%u 1 (ou)’ 4 Qu 1 o\’
XO=0"3 k9% " 3pR\ 9x ) T 9pRC ox + 18p2R4\ 9x ) -

The PDE system (A.1) is also not a set of evolutionary equations, due to the presence of the mixed derivative 93u/dx29t
in the PDE (A.1c). However, together with appropriate initial and boundary conditions, the PDEs (A.1) describe the dynamics
of the fields p(x, t), u(x, t), and P,(x, t). When the values of p(x, t), u(x, t), and P,(x, t) are obtained, the grid functions P(x,
t) and R(x, t) are computed from the algebraic Eqs. (2.34c) and (2.34e).

We choose homogeneous space steps h = L/N, and approximate the spacial derivatives in (A.1) using central differences,
to solve for the time derivatives of the unknowns at the nodes. The first two Eqs. (A.1a) and (A.1b) are already in the right
form, whereas (A.1c) yields the difference form

1 piy1 = pia N 1 Ruy-R,y 1 1 iw
12 wp2r, 12 h2pRZ 3 hpR Jdt !

1 101+1—pn 1 Ry —Riy 1 1 < )E .
+< T mpR 12 mepR? 3 Fepl ””+ R)act

1piti @iy —tin) 1 Aws — Ay Uipg = 2Ui + Uiy

A2
2 h 2 h h2 =0. (A2)
The approximate state variable values (u;, p;, P;, (P2);, Ri, A;) at the ith node are functions of t. Denoting
. 1 1
D -0 - —
1) = pi+ 3 RpR,

1 pp1—pia 1T Rpp—-Ry 1 1

D0 =13 p2R | 12 h2pR2 3 h2pR’

D (l) — _l Pit1 — Pi-1 _ i Ri+] _Rifl _ 1 1
} 12 p2p?R, 12 m2pR? 3 h2pR

1 PilliUigr =) 1A —Aig | Ui — 20+ U

BO = h "2 h 2 :
one can rewrite the differential-difference Eq. (A.2) as the following linear system:
Di(1) D,(1) 0 0 D;(1) ur (1) B(1)
D3(2) Di(2) D2(2) 0 . 0 u (2) B(2)
0 D;3) - 0 : 5
) = . (A3)
0 " D,(N-2) 0
0 : 0 Ds(N-1) D;(N-1) Dy(N-1) : :
Dy (N) 0 e 0 D3(N) Dy (N) u; (N) B(N)

The Eq. (A.3) can be solved for the time derivatives of u at the nodes. We employed Matlab’s ode23 to integrate in time
the ODEs that arise from the solution of (A.3) and the spatial discretizations of PDEs (A.1a) and (A.1b).

Depending on the nature of the sought solution, relevant boundary conditions (for example, periodic ones with a spatial
period L, or Dirichlet or Neumann boundary conditions at x =0, L) and appropriate initial conditions are used.
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