
PHYSICAL REVIEW E 99, 012109 (2019)

Globally optimal volume-trap arrangements for the narrow-capture problem inside a unit sphere
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The determination of statistical characteristics for particles undergoing Brownian motion in constrained
domains has multiple applications in various areas of research. This work presents an attempt to systematically
compute globally optimal configurations of traps inside a three-dimensional domain that minimize the average
of the mean first passage time (MFPT) for the narrow capture problem, the average time it takes a particle to be
captured by any trap. For a given domain, the mean first passage time satisfies a linear Poisson problem with
Dirichlet-Neumann boundary conditions. While no closed-form general solution of such problems is known,
approximate asymptotic MFPT expressions for small traps in a unit sphere have been found. These solutions
explicitly depend on trap parameters, including locations, through a pairwise potential function. After probing
the applicability limits of asymptotic formulas through comparisons with numerical and available exact solutions
of the narrow capture problem, full three-dimensional global optimization was performed to find optimal trap
positions in the unit sphere for 2 � N � 100 identical traps. The interaction energy values and geometrical
features of the putative optimal trap arrangements are presented.
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I. INTRODUCTION

First-passage problems concern the time τ (x) during
which a particle undergoing Brownian motion will wander a
domain before it encounters some absorbing boundary. The
time required for such an encounter to occur, averaged over
multiple runs starting from the same initial position x, is
referred to as the mean first-passage time (MFPT) v(x). This
notion is used in various applications, including the diffusion
of protein receptors [1], the interaction between proteins and
DNA [2], predator-prey dynamics [3], and multiple other
research areas (see, e.g., Refs. [4,5]).

For a bounded domain � ⊂ Rn, n = 2, 3, with ab-
sorbing traps and an otherwise reflecting boundary, the
MFPT is known to satisfy a Poisson problem with strongly
heterogeneous Dirichlet-Neumann boundary conditions (cf.
Refs. [6,7]), given by

�v(x) = − 1

D
, x ∈ �\�a, (1.1a)

∂nv = 0, x ∈ ∂�, v = 0, x ∈ ∂�a = N∪
j=1

∂�εj
,

(1.1b)

where � is the Laplacian operator, D is the diffusivity of the
Brownian motion, �a ⊂ � is the set of absorbing traps, ∂nv

denotes the normal derivative on the surface ∂� of �, and
∂�εj

is the surface of a trap. The average mean first-passage
time (AMFPT) is defined as

v̄ = 1

|�|
∫

�

v(x) dnx, (1.2)
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where |�| is the measure, volume or area, of the domain. In
the study of random walks, the average mean first-passage
time is also known as the global mean first-passage time
(GMFPT) [8,9]. [A similar boundary value problem (BVP)
for the Laplace equation in two dimensions is known as the
Keldysh-Sedov problem (see, e.g., Refs. [10,11]).]

In this work we consider the narrow capture problem in
a three-dimensional spherical domain. The narrow capture
problem is a first-passage problem characterized by the pres-
ence of localized absorbing traps within the domain, where the
volume occupied by the traps is asymptotically small in some
parameter. A schematic of the problem is shown in Fig. 1. The
narrow capture problem has applications in the modeling of
biophysical phenomena [12], simple particle reactions [7], and
solid state physics [13,14]. For recent results on the narrow
capture problem, see Refs. [15–18].

In addition to the biological interpretation of the prob-
lem, it is known that many first-passage problems can be
considered from the perspective of electrostatics [7]. The
MFPT problem (1.1) is identical to that of an electrostatics
problem in which v(x) describes the electric potential within a
domain which contains an electric field like that which would
be created by a uniform charge distribution. The boundary
conditions at the domain boundary correspond to the existence
of a field which, at the spherical boundary, exactly cancels
the component of the internal electric field which is normal
to the surface; the boundary conditions on the trap surfaces
mean they could be interpreted as perfect conductors. The
electrical confinement of particles is a wide field of study
[19–22], which includes the study of arrangements of small
metallic particles in a container [23], a situation which bears
some resemblance to the narrow capture problem considered
in this work.

Except for the very simplest cases, exact explicit solutions
of the narrow capture problem (1.1) are not known. In order
to compute the MFPT v(x) and/or the AMFPT v̄ in a generic
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FIG. 1. (a) A two-dimensional narrow capture problem in the
unit disk having internal traps with absorbing boundaries {∂�εj

}.
(b) A three-dimensional narrow capture problem, a sample Brownian
particle trajectory, leading to a capture in a trap (lowermost) denoted
by purple.

domain with volume traps, one has to either retreat to a full
numerical solution of (1.1) or perform computations using
simulated Brownian motion starting from a given point of the
domain. Such computations are computationally expensive
and, moreover, do not provide explicit information about the
structure of the problem, such as the dependence of MFPT
and AMFPT on trap locations in the domain �, on trap sizes,
orientations, etc.; in order to study such dependencies, the
problem (1.1) would require a new numerical solution for each
infinitesimal configuration change. In particular, “global”
questions, such as the calculation of optimal trap positions in
a given domain that would minimize MFPT (AMFPT), can
be addressed only if some kind of an explicit formula for the
MFPT is known.

Recent work on the narrow capture problem [24] used
matched asymptotic expansions to derive an explicit approx-
imation for the MFPT v(x) and the AMFPT v̄ for N small,
well-separated traps in the unit sphere (Sec. II). In addition
to depending on the trap information (size, number, and
shape information through the capacitance coefficient), these
asymptotic formulas depend on trap positions through the
terms involving the Neumann Green’s function of the Poisson
problem. This provides a handle to examine the relationship
between, for example, the average MFPT for the Brownian
particles traveling in the spherical domain and the geometry
of the trap arrangement.

The main objective of this paper is the study of optimal
configurations of traps within the unit sphere, that is, the
arrangements of the traps that minimize the AMFPT. In the
context of the narrow capture problem, such an arrangement
of traps can be thought of as the one which, on average, most
quickly captures particles wandering the domain, regardless
of their initial position. In terms of the analogous electro-
static problem, this optimum would be the distribution of N

small conductors which minimizes the electric potential per
unit volume. In particular, we test a previously expressed
conjecture that the optimal configurations might have the
traps distributed over spherical surfaces nested within the
unit sphere physical domain. In order to study such optimal
trap arrangements, the asymptotic MFPT approximations of
Ref. [24] are employed. Similar work has been done for
narrow capture problems in two dimensions [25], as well as
the closely related narrow escape problem, which considers

an absorbing set which contains asymptotically small areas of
the boundary of the domain [26–30]. The optimal placement
of such an absorbing set can be thought of as one which max-
imizes the rate at which some diffusion through the boundary
of the domain occurs.

The current contribution is organized as follows. In Sec. II
we review the MFPT and AMFPT approximation formulas
for the case of N small well-separated traps of size ε � 1
[24], as well as the exact solution for a finite single spherical
trap centered at the origin of the domain. For the asymptotic
N -trap solution, the leading term depends only on the “total
amount” of traps, and the second-order term involves a pair-
wise quantity depending on the trap arrangement.

In Sec. III the exact and finite-element numerical solutions
of the MFPT problem (1.1) are employed to examine the
accuracy and applicability limits of the asymptotic MFPT ap-
proximations throughout the domain, as functions of location,
trap proximity, trap sizes, and boundary effects. From test
computations run for simple yet characteristic trap configura-
tions, it is observed that the asymptotic MFPT approximations
may remain applicable and accurate well beyond the limits
in which they were derived. Similar observations have been
previously made for narrow escape problems in two and three
dimensions [28].

In Sec. IV we use the explicit AMFPT formulas and a
Matlab interface for a global optimization software package
[Lipschitz-continuous global optimization (LGO) [31]] to
compute optimal AMFPT-minimizing configurations for N

equal traps in a unit sphere, in the range 2 � N � 100. A
graph of the trap arrangement-dependent part of the AMFPT
as a function of the trap number N is obtained, and a ge-
ometrical characterization of the computed putative optimal
spherical volume trap arrangements is presented. The radial
distributions of the traps in optimal configurations are studied;
it is found that the traps are indeed distributed close to, though
not exactly on, the surfaces of concentric spheres inside the
spherical problem domain. Finally, a table of minimal values
of trap interaction energies and the corresponding radial trap
distributions are listed for optimal designs of 2 � N � 100
traps. Global optimization problems for confined interacting
particles arise in a wide variety of applications. Many papers
consider such problems from theoretical and computational
points of view, in various dimensions and domain geome-
try (see, e.g., Refs. [29,32–35] and references therein). One
of the essential interesting and important features of global
optimization problems involving pairwise potentials is the
existence of local minima, the number of which quickly grows
with N ; in particular, in some applications, those numbers are
believed to increase exponentially [33,35]. Local and global
minima of trap configurations interacting through a pair-
wise Coulombic, logarithmic, and power-law potentials have
been studied in a recent work [36] (see also Refs. [32–34]).
The work presented in the current contribution presents the
first unconstrained three-dimensional computation of optimal
volume trap configurations for the narrow capture problem
(1.1), based on the pairwise potential provided by the explicit
asymptotic MFPT solutions.

The final Sec. V includes a summary and discussion of the
results and open problems.

012109-2



GLOBALLY OPTIMAL VOLUME-TRAP ARRANGEMENTS FOR … PHYSICAL REVIEW E 99, 012109 (2019)

II. THE ASYMPTOTIC SOLUTION OF THE NARROW
CAPTURE PROBLEMS WITH MULTIPLE SMALL TRAPS

IN A UNIT SPHERE

It is evident that the location of the traps within the physical
domain, referred to here as the trap configuration, determines
the boundary conditions of the MFPT problem (1.1), as the
surfaces of the traps define the absorbing boundary condi-
tions within the domain. Even for simple trap configurations,
the linear problem (1.1) has no closed-form solution due
to the complex geometry of boundary conditions provided
by the trap surfaces. For the simplest configuration, the unit
sphere domain with a single spherical trap of radius ε at the
origin, the exact solution in spherical coordinates is readily
found, given by

ve(r ) = 1

6D

[
ε3 + 2

ε
− r3 + 2

r

]
, (2.1a)

depending only on the distance r from the origin, and the
corresponding AMFPT is given by

v̄e = 1

6D

[
ε3 + 2

ε
− 18

5

]
. (2.1b)

For more complicated trap configurations, or nonspherical
domains, exact solutions of the MFPT problem (1.1) are not
available. Numerical approximations of (1.1) quickly become
computationally intensive as the number of traps increase,
particularly when traps of small sizes are considered, since
many points must be sampled around each trap to obtain suffi-
cient resolution. Following the work on a related problem with
surface traps [27], in Ref. [24], explicit asymptotic solutions
of the problem (1.1) for the unit sphere containing N small,
well-separated, generally nonidentical traps were derived. It
was shown that the leading-order terms of MFPT and AMFPT
are given by

vA(x) = |�|
4πNc̄Dε

[
1 − 4πε

N∑
j=1

cjG(x; xj )

+ 4πε

Nc̄
pc(ξ1, . . . , ξN ) + O(ε2)

]
, (2.2a)

v̄A = |�|
4πNc̄Dε

[
1 + 4πε

Nc̄
pc(x1, . . . , xN ) + O(ε2)

]
,

(2.2b)

where N is the number of traps of size O(ε), ε � 1, xj

is the position vector of the j th trap, cj is the capacitance
of the j th trap (a quantity related to the shape of the trap),
and c̄ = 1

N

∑N
j=1 cj is the average capacitance. [For a single

spherical trap of radius aε, the capacitance is given by c = aε.
Capacitances for some other simple trap shapes are given in
Table I. The capacitances c presented in the table are related
with the classical electric capacitances of isolated electric
conductors c̃: c̃ = 4πεc, where ε is the dielectric permittivity
of the material surrounding the conductor, and ε = 1 for the
vacuum.]

The leading-order term of the variable and the average
asymptotic MFPTs vA(x), v̄A ∼ O(1/Nε) in (2.2) is in-
versely proportional to the trap size ε and the trap number N ;

TABLE I. Capacitances cj of some simple trap shapes [24,37,38].

Trap shape Capacitance

Sphere of radius aε cj = aε

Hemisphere of radius aε cj = 2aε(1 − 1√
3

)
Flat disk of radius aε cj = 2aε

π

Prolate spheroid with semimajor
and semiminor axes aε, bε

cj = ε

√
a2−b2

arccosh (a/b)

Oblate spheroid with semimajor
and semiminor axes aε, bε

cj = ε

√
a2−b2

arccos (b/a)

the second-order terms depend on the spatial locations of the
traps inside the domain through the Neumann Green’s func-
tion G(x; xj ) for the Laplacian and the pairwise “interaction
energy” term pc defined below. The approximate solutions
(2.2) were derived using matched asymptotic expansions [24],
in which the outer expansion of the solution in terms of a
generalized power series in the small parameter ε, holding in
a region away from an O(ε) neighborhood of a trap located at
xj , was matched to the inner solutions defined within an O(ε)
region around the trap in terms of appropriately rescaled coor-
dinates. The resulting leading-order matching conditions are
solved to obtain the asymptotic MFPT expression (2.2a). We
note that the AMFPT v̄A is related to the principal eigenvalue
λ(ε) of a linear Laplacian eigenvalue problem [see Eq. (1.1) in
Ref. [24]], with the same boundary conditions as in the MFPT
problem (1.1): λ(ε) ∼ 1/(Dv̄).

The interaction energy term pc is expressed through a sum
of the Green’s functions G(x, ξ ) computed on trap pairs and
their regular parts R(ξ ) computed at single trap locations. For
the unit sphere, G is known explicitly (see, e.g., Ref. [24]
and references therein), while for more complicated domains,
closed-form expressions of the Green’s function are generally
not available.

Defining

�(x; ξ ) = G(x, ξ ) = 1

4π |x − ξ | + 1

4π |x||x ′ − ξ |

+ 1

4π
log

(
2

1 − |x||ξ | cos θ + |x||x ′ − ξ |
)

+ 1

8π
(|x|2 + |ξ |2) − 7

10π
, (2.3a)

�(ξ ; ξ ) = R(ξ ) = 1

4π (1 − |ξ |2)
+ 1

4π
log

(
1

1 − |ξ |2
)

+ |ξ |2
4π

− 7

10π
, (2.3b)

one has the following simple expression for the interaction
energy:

pc(ξ1, . . . , ξN ) =
N∑

i=1

N∑
j=1

cicj�(ξi, ξj ); (2.4)

specific details can be found in Ref. [24]. In (2.3), ξ and x are
positions within the spherical domain, x ′ is a point symmetric
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x
x  

FIG. 2. Spatial components in (2.3).

to x with respect to the sphere: |x||x ′| = r2 = 1, and θ is the
angle between the directions of ξ and x (Fig. 2).

The known terms of the asymptotic MFPT and AMFPT
formulas (2.2) are explicit and can be readily used for com-
putations. Moreover, due to their dependance on trap po-
sitions, one can use the asymptotic MFPT expressions to
study optimal trap arrangements minimizing the AMFPT
by optimizing the interaction term (2.4). Recently it has
been found that these optimal arrangements correspond to an
equilibrium configuration of localized spots in a singularly
perturbed Schnakenberg reaction-diffusion model [39]. Such
optimal arrangements are systematically sought in Sec. IV.

Though the asymptotic formulas (2.2) have been derived
in the assumption of small well-separated traps, and provide
MFPT estimates at the points x “far” from every trap, the
practical applicability limits of these formulas may in fact be
much wider. This is known to be the case, for example, for
narrow escape problems with boundary traps [27,28,40]. In
Sec. III we use exact and numerical solutions to study the
quality of the asymptotic approximation (2.2) depending on
the position of the point in the domain, distance between the
traps, and the proximity of a trap to the domain boundary.

III. THE ACCURACY OF THE ASYMPTOTIC
APPROXIMATION FOR THE SPHERICAL DOMAIN

In the limits of their validity, asymptotic approximate
solutions such as (2.2) provide a powerful tool to study
the narrow capture problem (1.1). Indeed, they are given
by explicit formulas, which may be used for analysis and
optimization, and also allow for straightforward computations
of the approximate MFPT and AMFPT values, carried out
quickly in comparison to full numerical simulations.

In the current section, we carry out some comparisons to
obtain qualitative validity characteristics of the asymptotic
MFPT approximations given by (2.2). In the derivation of the
formulas (2.2), it was assumed that the total volume of the
domain occupied by the traps was asymptotically “small” in
ε, and also that the traps were “well separated” by distances
much larger than the trap sizes. Another essential feature
of the narrow capture problem (1.1) is the presence of a
large reflecting boundary; one consequently expects that the

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

FIG. 3. An x-z projection view of a sample three-dimensional
mesh slice from a COMSOL-based numerical MFPT computation:
the case of a spherical domain containing five traps located at
the Cartesian points ξ1 = (0.5, 0.1, −0.2), ξ2 = (0.3, 0.5, 0.1), ξ3 =
(−0.4, 0.1, 0.5), ξ4 = (0.3, −0.3, 0.3), ξ5 = (−0.5, −0.3, −0.5).
(The mesh points within 0.07 � y � 0.13 are shown.)

asymptotic solution may not be precise when traps are located
“close” to the spherical shell.

In order to estimate the effects of these assumptions
on the accuracy of the approximation, we make comparisons
of the asymptotic approximation (2.2) to the exact solution
(2.1) for a single spherical trap located at the center of the
domain, as well as to finite element-based numerical solutions
for configurations with multiple traps. Let us define the rela-
tive errors of the MFPT and AMFPT as

δv(x) = |vA − v|
v

, (3.1a)

δv̄ = |v̄A − v̄|
v̄

, (3.1b)

where vA = vA(x) and v̄A are given by (2.2). In cases when
v(x), v̄ correspond to an exact solution, the quantities δv(x)
and δv̄ (3.1) are the relative errors of the asymptotic approxi-
mation. When an exact solution is not available, the numerical
solutions v(x) = vN (x) and v̄ = v̄N = const will be used to
illustrate the relative errors of the asymptotic formulas (2.2).
In particular, we will examine the dependence of the error
δv(x) on the initial position x of the Brownian particles, the
dependence of the AMFPT error δv̄ on the relative positions
of the traps, and the total volume occupied by the traps.

For trap configurations other than a single spherical trap
centered at the origin, exact solutions of the volume nar-
row capture problem (1.1) do not appear in the litera-
ture. For the comparisons involving more complicated trap
configurations, COMSOL Multiphysics software was used
to obtain the numerical solutions of (1.1). In this finite-
element solver, three-dimensional meshes refined around the
trap boundaries were used. A sample mesh slice for a five-trap
configuration is shown in Fig. 3.
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FIG. 4. (a) A single trap of radius ε, centered at the origin. (b) Asymptotic vs exact MFPT for a trap of radius ε = 10−2. (c) Asymptotic vs
exact MFPT in the region near a trap of radius ε = 10−1, with the distance from the surface of the trap represented relative to the size of the
trap, dr = r − ε. (d) The error in the asymptotic MFPT, relative to the exact MFPT, as a function of position in the domain, for a trap of radius
ε = 10−2. The surface of the trap is indicated by a dotted line. (e) Same as panel (d), rescaled to show the behavior of δv away from the trap.

The comparison results between the asymptotic MFPT
formulas (2.2) and the exact solution (2.1) (single central trap)
or numerical solutions indicate that the asymptotic solutions
provide a close approximation of the mean first passage time
MFPT, remaining valid even when the assumptions of traps
being “small,” “well separated,” and “far from the bound-
ary” are violated; that is, the applicability of the asymptotic
MFPT formulas (2.2) extends well beyond their derivation

assumption. In particular, the comparisons may be summa-
rized as follows:

(1) For a single central trap of radius ε = 10−2, the rel-
ative error between asymptotic and exact MFPT formulas
(2.2a), (2.1a) is δv(x) � 10−6 for the points x located at
distances dr � ε from the trap surface, i.e., |x| � 2ε.

(2) The approximation of the average MFPT provided by
the asymptotic formula (2.2b) for a single centered trap stays

012109-5



JASON GILBERT AND ALEXEI CHEVIAKOV PHYSICAL REVIEW E 99, 012109 (2019)

within 1% relative error from the exact solution (2.1b) for trap
sizes as large as ε � 0.2, i.e., 20% of the radius of the domain.

(3) For two traps of radius ε = 10−2 located away from
the domain center and the boundary, the relative difference
between the asymptotic and numerical MFPT is within 1%
for distances d � ε between trap surfaces.

(4) For a single small trap approaching the reflective
domain boundary, the discrepancy between the asymptotic
AMFPT formula (2.2b) and the numerical solution grows the
same way as when two traps approach each other. For a small
trap of radius ε = 10−2, the relative error stays within 1%
when the trap is further than about ε/2 from the boundary.

A. The asymptotic MFPT error as a function of
the position in the domain

To determine how the error δv depends on the position
in the domain, the asymptotic MFPT vA(x) (2.2a) can be
compared to the exact solution ve(x) for a single spherical
trap of radius ε centered at the origin of the unit sphere. One
has c = 1, and the asymptotic MFPT formulas (2.2) can be
directly evaluated to give

vA1 = 1

6D

[
2

ε
− r3 + 2

r

]
, (3.2a)

v̄A1 = 1

6D

[
2

ε
− 18

5

]
; (3.2b)

whereas the exact MFPT and AMFPT are given by (2.1).
Due to the spherical symmetry of this configuration, the
asymptotic MFPT and the error term δv may depend only on
the radial distance r from the origin.

By comparison of (III.2) to (2.1), it can be shown that the
asymptotic approximation is exact only when ε = 0. It is also
evident that the boundary condition v = 0 on the surface of
the trap will not be satisfied by (3.2a) unless ε = 0. In addi-
tion, from (3.2b) we observe for ε � 5/9 that the approximate
AMFPT becomes negative, which is a consequence of the
singular term of the Green’s function, and the related validity
of the asymptotic MFPT solution only “far” from the trap.

Furthermore, we observe that for this single trap, the
absolute error of the approximation is in fact constant,
given by

�v1 = �v̄1 = ∣∣vA1 − ve

∣∣ = ∣∣v̄A1 − v̄e

∣∣ = ε3

6D
. (3.3)

The configuration is shown in Fig. 4(a). For a trap of
radius ε = 10−2, Fig. 4(b) shows that the asymptotic MFPT is
close to the exact MFPT throughout the domain, and Fig. 4(c)
illustrates the constant error �v1 = O(ε3) throughout the
spherical domain for ε = 10−1, with the distance from the trap
being represented relative to the size of the trap: dr/ε, dr =
r − ε. Figures 4(d) and 4(e) again use ε = 10−2, and show
the relative error (3.1a) of the asymptotic approximation as a
function of r . The error grows quickly when one approaches
the trap boundary and is bounded away from the trap. In
particular, for the points x as close to the trap as dr = ε, the
relative error is rather small, δv � 10−6.

(a)

0.005 0.01 0.015 0.02 0.025

0.005

0.01

0.015

0.02

0.025

0.03

(b)

FIG. 5. (a) A single trap of radius ε centered at the origin. (b)
The relative error δv̄ (3.1b) between the asymptotic AMFPT (2.2b)
and the exact solution (2.1), as a function of the trap volume.

B. Effects of trap size

To determine the accuracy of the asymptotic approximation
with respect to the size of the traps, we compute the error δv̄

(3.1b), relative to the exact solution v̄e, for a single spherical
trap of radius ε centered at the origin of the unit sphere, as
a function of the trap size ε ∈ [0, 0.1]. Figure 5 depicts the
relationship between δv̄ and the relative trap volume ε3. It
is observed that the error δv̄ grows almost linearly with the
trap volume, at a rate of approximately 0.69% per unit trap
volume ratio. Based on the comparisons, one may conclude
that the approximation of the average MFPT provided by the
explicitly known terms of the formula (2.2b) is valid within
1% precision for trap radii ε � 0.2, i.e., for traps of linear
dimension about 20% of that of the domain.

C. Effects of trap separation

In order to analyze the quality of approximation provided
by the asymptotic solution (2.2a) of the narrow capture prob-
lem (1.1), we analyze the behavior of the relative error δv̄ as a
function of the distance between two identical traps. We pick
“small” identical traps of radius ε = 10−2 fixed at the distance
r1 = r2 = 10ε from the sphere center, located at the equatorial
plane (spherical polar angles θ1 = θ2 = π

2 ). Let the azimuthal
angle φ1 = 0. The angle between the two traps is given by the
azimuthal angle φ = φ2 of the second trap. We let the angle
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FIG. 6. (a) The two-trap configuration used to test the accuracy of the asymptotic approximation with respect to the trap separation distance.
(b) A comparison of the asymptotic and numerical AMFPT as a function of the trap separation d/ε. (c) The relative difference of the asymptotic
and numerical AMFPT as a function of d/ε.

φ2 be varied between 1.05 × φmin � φ2 � π , where φmin is
the angle at which the traps come into contact [Fig. 6(a)]. The
shortest distance between the trap boundaries is given by

d = r
√

2(1 − cos φ) − 2ε. (3.4)

Figure 6(b) shows the dependence of the asymptotic AMFPT
v̄A and the numerical AMFPT v̄N on the trap separation dis-
tance measured in units of trap size ε, while Fig. 6(c) contains
the corresponding plot of the relative AMFPT difference δv̄

(3.1b).
From the comparison it is observed that the relative differ-

ence between the asymptotic and numerical MFPT is already
within 1% for d � ε; that is, the asymptotic formula (2.2b)
provides a decent approximation of the average MFPT even
for rather closely located traps.

Since in the current setup the traps are always located at
the same distance from the domain boundary, the boundary
effects on the approximation error are essentially absent (such
effects are separately studied in the following subsection). We

also note that the contribution of the numerical error in Fig. 6
is not dominant; indeed, for a single centered spherical trap of
radius ε = 10−2, where the exact solution is known, the rel-
ative numerical error of a similar finite-element computation
does not exceed the order of 10−3.

D. Effects of the boundary proximity

Finally, we examine how the proximity of a trap to the
reflective domain boundary influences the accuracy of the ap-
proximate asymptotic AMFPT (2.2b). Indeed, in the asymp-
totic MFPT formulas (2.3), in particular, in the trap interaction
energy (2.4), the first two terms of the Green’s function (2.3a)
involve both the trap position and the symmetric point with
respect to the spherical domain boundary. This corresponds
to every trap “interacting” with its “reflection”—a virtual
trap located at a point symmetric with respect to the unit
sphere—in a similar way it would interact with another trap.
This suggests that as the trap approaches the boundary of the
domain, the error of approximation provided by the known
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FIG. 7. (a) A trap and its image. Here d is the separation between the two boundaries. (b) A side-by-side comparison of the asymptotic
AMFPT (2.2b) and the numerical AMFPT. (c) The difference between the asymptotic and numerical AMFPT, relative to the numerical
approximation (3.1b), as a function of the relative distance d/ε between the trap and its image. The absolute trap-to-image distance d is given
by (3.5).

leading terms of the asymptotic AMFPT (2.2b) may increase,
as if the distance between a trap pair were decreasing.

In order to study the trap-reflection interaction effects, the
relationship between δv̄ and the position of a trap (ξ ) within
the domain of the unit sphere was examined by varying ξ

radially from the origin to 1 − 1.05ε, to keep the trap and
its image from contact, for a single trap of a fixed radius
ε = 10−2 [Fig. 7(a)].

As the trap approaches the boundary, the discrepancy δv̄

between the asymptotic and numerical solutions v̄A, v̄N in-
creases and can be easily distinguished from the numerical
error present in v̄N . Figures 7(b) and 7(c) show v̄A, v̄N

and their relative difference δv̄ as functions of the distance
between the trap and its image, defined as

d = x−1 − x − 2ε. (3.5)

It is observed that the relative difference δv̄ between v̄A and
v̄N is below 1% already for d � ε, i.e., when the trap “almost
touches” the domain boundary. In particular, we note that
the error plots in Figs. 6(c) and 7(c) are virtually indistin-
guishable, hence the trap-trap and trap-reflection interactions
indeed have a similar effect on MFPT, at least at small
separation distances.

IV. OPTIMAL CONFIGURATIONS OF MULTIPLE TRAPS

A. The optimization approach

For a given set of N traps that may move in a particular
physical domain, higher values of the average mean first
passage time (1.2) correspond to the situations when traps are
small, or clustered together, located in domain “corners,” or
are otherwise “hard to find” for an average Brownian particle
that begins its journey from some point x0 in the domain. A
question of practical interest is:

What trap arrangement minimizes the AMFPT?
This is the simplest of the global optimization questions,

since it involves only a single scalar value v̄ to be optimized
as a function of 3N trap locations. The “simplest” problem
setup is finding such optimal arrangements when N traps are
identical and a domain has a simpler geometry, such as a
unit sphere. Harder practically relevant optimization questions
would include optimizations of nonscalar quantities related to
v(x), nonequal traps, extensions to moving traps and domains
changing in time, etc.

Yet even in the simplest setup, when N small identical
traps are placed to minimize the AMFPT (1.2) in a domain as
simple as the unit sphere, neither the analytical solution of the
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optimization problem nor even a general closed-form exact
solution v(x) of the MFPT problem (1.1), are known. The
AMFPT optimization using, for example, a numerical solution
of the MFPT problem (1.1) would involve multiple sampling
the AMFPT v̄ in its 3N -dimensional domain, resulting in a
high number of separate time-consuming numerical solutions
of the BVP (1.1). The numerical problem becomes even
more difficult when traps are small, since those would require
extensive mesh refinement near the traps.

By contrast, the asymptotic solution v̄A (2.2b) is directly
suitable for global optimization with respect to locations of N

(identical or nonidentical) traps, since it involves an explicit
trap interaction term (2.4) given in terms of a known spherical
Neumann Green’s function (2.3). In Sec. III we have verified
that the asymptotic MFPT formulas are suitable in terms
of approximation precision. We now proceed to use these
approximations to compute the optimal trap arrangements in
a unit sphere.

To answer the basic question, we seek optimal spherical
arrangements of N equal-strength traps (cj ≡ 1) minimizing
the AMFPT v̄A (2.2b), or equivalently, the quantity

Hball = 4πpc + 14

5
N2 , (4.1)

with respect to trap positions.
In Ref. [24] numerical optimization of Hball was carried

out for 2 � N � 20 traps in a much simpler, constrained
setup: it was assumed that all traps lie on a single nested
sphere of radius 0 < r < 1, with perhaps one trap lying at the
origin; free implementations of ECAM and DSO numerical
optimization software algorithms were used. In the current
study, we perform a full three-dimensional optimization of
N � 100 traps.

Inside the unit sphere, the location of each of the traps ξj

is given by its spherical coordinates (rj , θj , φj ). In order to
eliminate the continuous rotational symmetry of the spherical
domain, the trap ξ1 may be fixed at the z axis by taking θ1 =
φ1 = 0, and the trap ξ2 may be forced to lie in the x-z plane
by taking the azimuthal coordinate φ2 = 0. [We note that the
reflection symmetries will indeed remain.] Consequently, for
N traps, the global optimization problem involves minimizing
Hball as a function of 3N − 3 parameters within the bounds

0 � rj < 1, j = 1, . . . , N ; 0 < θj � π, j = 2, . . . , N ;

0 < φj � 2π, j = 3, . . . , N.

Due to the high dimensionality of the problem, the number of
local minima grows quickly with N . These local minima may
lie very near the global minima, or one another. Nevertheless,
the putative optima reported below give insights into the
nature of the optimal trap configurations, if not the exact
coordinates of each trap.

Trap configurations which minimized Hball were sought
using a Matlab interface for a Lipschitz-continuous global op-
timizer (LGO) [31]. LGO software is one of the most efficient
global optimizers. It seeks the putative solution of constrained
global optimization problems using a combination of global
and local search algorithms. The input includes the starting, or
“nominal,” configuration, with which LGO begins its search.
Experimentation showed that for the optimization procedure

(a) (b)

FIG. 8. Sample starting configurations for N = 20 (a) and N =
150 (b), with traps colored according to the azimuthal angle φ. The
traps are located on spirals about the surface of a sphere of r = 0.5.

described below, the results do not depend on the starting
configuration, as long as the latter are sufficiently spaced out;
the global sampling is performed by LGO throughout the
function domain. From the results of Ref. [24] and references
therein, as well as the results of two-dimensional global
optimization in a disk [25], it can be conjectured that optimal
trap arrangements within a spherical domain may be close to
those which distribute the traps over surfaces of some smaller
spheres nested within the given one. We will refer to those as
“shells” and use the notation

r◦
k = 1

N◦
k

N◦
k∑

j=1

r◦
j . (4.2)

In (4.2), r◦
k is the radius of the kth shell, N◦

k is the number of
traps on the kth shell, and r◦

j is the radial coordinate of the j th
trap on the kth shell.

It is well known that “homogeneous” arrangements of
points on a sphere may be obtained using spiral designs. The
starting configurations were chosen so that the unconstrained
traps were distributed across spirals on a shell of radius 0.5,
with the angular coordinates depending on N . The coordinates
of the traps on the shell are given by

rj = 0.5, θj = 2πj

N − 2
, φj = 100Nπj

N − 3
mod 2π,

(4.3)
shown in Fig. 8.

The optimization procedure. In order to seek the optimal ar-
rangement of N traps, the optimization was carried out in two
stages, referred to as the search stage and refinement stage.
The important parameters of the LGO algorithm employed
in the optimization include the global function evaluations
(GFE), the local function evaluations (LFE), and the number
of iterations without improvement (IWI). The search stage
took a large number of GFE (∼108) and a small number
of LFE and IWI (∼104). These parameters were chosen to
perform a superficial, but broad, investigation of the parameter
space. Relative to the search stage, the refinement stage took
a moderate number of GFE (∼106), a larger number of LFE
(∼106), and a similar number of IWI (∼104). These param-
eters were chosen to perform a more thorough search in the
vicinity of promising configurations found during the search
stage. The optimization routine carries out iterative sweeps of
the parameter space, with the nominal configurations of the
first search sweep being the spirals defined in (4.3), and the
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FIG. 9. The interaction energy pc (2.4) and the cubic polynomial
interpolant p̃(N ) (4.4) for the putative optimal configuration of N

equal traps (cj = 1) minimizing the AMFPT for the unit sphere.

best results from the previous sweep being taken as the nomi-
nal for the next sweep. Search sweeps were performed until a
trap configuration giving pc � 0 was first discovered, as this
was found to be a characteristic of the optimal configuration
determined earlier (see Fig. 9). After that, refinement sweeps
were performed until the changes in pc between each sweep
became small (typically ∼10−7).

In the following subsections, the above-described global
optimization procedure is used to compute N trap arrange-
ments, 2 � N � 100, corresponding to putative minima of
the asymptotic AMFPT v̄A (2.2b) or, equivalently, the trap
interaction energy pc given by (2.4). It is shown that pc(N ) is
a decreasing function, and a cubic interpolation polynomial is
computed. The computed putative global minima for N � 20
are shown to yield lower energy values than the configurations
obtained by constrained optimization in Ref. [24]. For N �
23, traps in the optimal configurations are found to lie around
(though not exactly on) a single spherical shell within the unit
sphere domain. For N � 24, traps may be located in a close
vicinity of two or three nested spherical shells.

B. Putative optimal configurations for N � 100

Though the search algorithm implementation minimizes
Hball (4.1), it is more meaningful to discuss the configurations
in terms of the values of trap interaction energy pc given by
(2.4). From a plot of pc for 2 � N � 100, shown in Fig. 9,
it can be seen that the interaction energy for an optimal
configuration is monotone decreasing. In particular, based on
the data presented below, the Matlab polyfit routine yields
the cubic interpolation curve described by

p̃(N ) ∼ 1.47246 × 10−5N3 − 4.82389 × 10−3N2

− 3.18915N + 6.53625 × 10−1. (4.4)

This relationship was used to estimate the globally optimal
values of pc for consequent computations and to more effi-
ciently guide the optimization routine as N grew large.

TABLE II. A comparison of putative optimal interaction energy
values pc (2.4) for N equal traps (cj = 1), 5 � N � 23, obtained
using the general three-dimensional unconstrained optimizations
(column 1) vs two constrained optimizations of Ref. [24]: all traps
on a spherical shell (column 2) and one centered trap with N − 1
traps on a spherical shell (column 3). The lowest value [the putative
global energy minimum of the interaction energy values pc (2.4)] is
shown in boldface.

Trap at origin
No constraint One shell r2 = · · · = rN

N r1, . . . , rN r1 = · · · = rN (r1 = 0)

5 − 1.09668 −1.09667 −0.94042
6 −1.44441 − 1.44441 −1.25076
7 −1.76390 − 1.76522 −1.62993
8 − 2.13677 −2.13455 −1.98057
9 − 2.52013 −2.52011 −2.36166
10 − 2.91473 −2.91471 −2.79922
11 − 3.30392 −3.30388 −3.22597
12 −3.76236 − 3.76236 −3.64697
13 −4.15781 − 4.15792 −4.13912
14 − 4.59881 −4.59872 −4.56650
15 −5.04074 − 5.04122 −5.04014
16 − 5.51557 −5.49573 −5.51546
17 − 6.00303 −5.95685 −6.00278
18 − 6.49702 −6.42519 −6.49697
19 − 6.99849 −6.87892 −6.99845
20 − 7.48530 −7.37047 −7.48503
21 − 8.00992 −7.84980 −8.00968
22 − 8.52223 −8.33926 −8.52215
23 −9.04471 −8.80148 − 9.04517

C. Radial distribution of traps in optimal
configurations (N � 23)

First we use the above-described procedure to perform
a full three-dimensional search of putative globally optimal
configurations of N identical traps minimizing the AMFPT
(1.2) for lower values of N , in order to compare the results
with those obtained in a constrained optimization in Ref. [24],
where all traps, except for possibly a single central one,
were constrained to a surface of a single spherical shell of
radius 0 < r < 1. In Ref. [24] it was shown that between
these two constrained scenarios, for N < 16, configurations
with no central trap yielded lower values of v̄, whereas for
16 � N � 20 traps, configurations with one trap centered at
the origin were preferred.

In Table II we show that for 5 � N � 23, in 13 out of 19
cases, the full three-dimensional unconstrained optimization
yields lower minimum values of pc (AMFPT) than both
constrained situations. (The column “one shell” refers to the
case when all traps are fixed on a single shell: r1 = · · · = rN ,
giving 2N − 2 optimization parameters; the column “trap at
origin” corresponds to all traps on a single shell with one trap
at the origin: r1 = 0, r2 = · · · = rN with 2N − 4 optimization
parameters.)

The results described above do not mean that the dis-
tribution of traps over the surface of a sphere is the opti-
mal arrangement in six of the 19 cases; rather, these values
were obtained by allowing the search algorithm described in
Sec. IV A to run the same number of sweeps on each case
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FIG. 10. (a) The putative optimal trap configuration and (b) radial distribution of traps for N = 5, showing two discrete radial distances of
traps located closely to a single “shell” [see (4.2)]. Three traps are found at the equator at a common distance, while two traps are found along
the z axis at a common distance.

of constraint using the best result found between all cases as
the nominal configuration for each case in the next sweep.
Comparing the six questionable values of N found in Table II
to the final putative optimums given in Table III, it can be
seen that in all cases the unconstrained search gives the lowest
minimum value of pc.

The search routine was tested to see if it would be advan-
tageous to first search for a constrained optimum, then use
the configuration obtained there as a nominal configuration
for an unconstrained search. The idea behind it is that if the
constrained and unconstrained optimal configurations were
near enough to each another, the majority of the search could
be carried out using the lower-dimensional problem, and then
that neighborhood of the parameter space could be searched
using the higher-dimensional unconstrained problem. It was
found that this search routine was able to converge to the
neighborhood of the optimum more quickly, but the overall
search time did not decrease appreciably.

Interestingly, it appears that in most cases, the optimal
configuration is one which the traps are distributed discretely
across a narrow range of r , so indeed, in most numerical

globally optimal configurations, traps are located close to
being on a single or multiple, sometimes extremely closely
located, spherical shells. This is illustrated for N = 5, N = 8,
and N = 19 in Figs. 10–12.

We note that the range of r the traps are found within does
not clearly reflect the variation in pc between the constrained
optimal configuration and the unconstrained optimal config-
uration. Compared to the pc associated with a constrained
optimal configuration, a small (∼10−7) range of varying
radial trap positions r may give a significant difference in
pc for some N (∼10−2 · · · 10−4), while a larger (∼10−3)
range of r can result in a small difference in pc for other N

(∼10−4 · · · 10−7). It should be noted that the relative differ-
ences in pc values between constrained and unconstrained
configurations (∼10−3 · · · 10−4) are relatively small, though
the similarities between the unconstrained trap configurations
imply that the optimal configuration is often likely to be
one which distributes the traps over several values of r . This
relationship between pc and r implies that for some N the
optimal configuration is more similar to a spherical shell than
other N .

FIG. 11. (a) The putative optimal trap configuration and (b) radial distribution of traps for N = 8, showing five discrete radial distances of
traps located closely about a single “shell” [see (4.2)].
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FIG. 12. (a) The putative optimal trap configuration and (b) radial distribution of traps excluding the origin for N = 19, showing three
characteristic spherical shell radii of traps located closely about a single “shell”; see (4.2).

D. Radial distribution of traps in optimal configurations
(N � 24)

The first trap configuration which significantly differs from
those previously studied in Ref. [24] for N � 20 is N = 24.
Here all but two of the traps are distributed about a shell of r =
0.763, while the others are found at the poles of a shell with
r = 0.226. From a plot of the radial coordinates of each of the
traps for N = 24, shown in Fig. 13, it can be seen that the traps
located about the outer shell do not lie exactly on the shell.
Similar to the radially unconstrained configurations discussed
for N � 23, the traps on the outer shell are distributed over a
small range of discrete values of r . N = 25 is the largest value
of N for which a single shell is observed, with 24 of the traps
located on a shell r = 0.736 and one shell at the origin. For
all N > 25 which were examined, the optimal configuration
was one which distributed the traps over several shells, with
or without a trap at the origin.

In order to concisely describe the optimal trap configura-
tions, the following notation will be used. The presence of
trap at the origin will be indicated in the subscript, where “•”
denotes a trap at the origin, and “◦” denotes otherwise. The

number of shells in a configuration will be indicated in normal
type. The number of traps on each shell will be indicated
by a list in superscript, in order of smallest to largest radius
of shells. For example, the configuration code notation for
N = 24 and N = 25 would be the following:

N24 = ◦2[2,22] , N25 = •1[24] . (4.5)

A plot of the how traps are distributed across shells for each
2 � N � 100 can be found in Fig. 14, and a plot of the radius
of each shell, defined as (4.2), can be found in Fig. 15. From
these plots it can be seen that, in general, the size of the shell
is proportional to the number of traps associated with it. For
some N , such as 59, this trend does not hold. In such cases a
single trap can be found between two shells.

Cursory computations of optimal configurations for N =
200, 250, 300, 350, . . . , 500 have also been performed but are
not presented here. The form of optimal configurations of
N > 100 traps is not yet well understood, making it difficult to
say with confidence that these configurations are the optimal
ones. To speculate on the form these configurations may
take, for N > 100 we expect that the nested shell structure

FIG. 13. (a) The putative optimal trap configuration and (b) radial distribution of traps excluding the origin for N = 24, the traps distributed
near two clearly different nested spherical “shells”; see (4.2).
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TABLE III. Interaction energy and radial distribution of traps for putative optimal trap configurations for 2 � N � 100. For each optimal
trap configuration, the traps are located in one, two, or three nested spherical “shells” [see (4.2)]; the configuration codes (4.5) contain the
numbers of traps in each shell. The radial trap distributions are illustrated in Figs. 14 and 15.

N pc Code N pc Code N pc Code

2 −0.31224 ◦1[2] 35 −15.88018 ◦2[4,31] 68 −38.79978 •2[14,53]

3 −0.53279 ◦1[3] 36 −16.48464 ◦2[5,31] 69 −39.58469 •2[15,53]

4 −0.81459 ◦1[4] 37 −16.92749 •2[4,32] 70 −40.33126 •2[14,55]

5 −1.09668 ◦1[5] 38 −17.72523 ◦2[5,33] 71 −41.09708 •2[15,55]

6 −1.44441 ◦1[6] 39 −18.19441 •2[5,33] 72 −41.65766 •3[1,14,56]

7 −1.76531 ◦1[7] 40 −18.83246 •2[5,34] 73 −42.61921 •2[16,56]

8 −2.13677 ◦1[8] 41 −19.62695 ◦2[6,35] 74 −43.28359 ◦3[2,17,55]

9 −2.52013 ◦1[9] 42 −20.26309 ◦2[7,35] 75 −44.04266 ◦3[2,17,56]

10 −2.91474 ◦1[10] 43 −20.89590 ◦2[7,36] 76 −45.00034 •2[18,57]

11 −3.30396 ◦1[11] 44 −21.59580 ◦2[7,37] 77 −45.75273 •2[17,59]

12 −3.76236 ◦1[12] 45 −22.20394 ◦2[8,37] 78 −46.50311 •2[17,60]

13 −4.15808 ◦1[13] 46 −22.77657 •2[7,38] 79 −47.43354 •2[17,61]

14 −4.59883 ◦1[14] 47 −23.28838 ◦3[2,7,38] 80 −48.11157 ◦3[2,18,60]

15 −5.04138 ◦1[15] 48 −24.11670 •2[9,38] 81 −48.93729 •2[20,60]

16 −5.51557 •1[15] 49 −24.85055 •2[8,40] 82 −49.76916 ◦3[2,19,61]

17 −6.00303 •1[16] 50 −25.51602 •2[10,39] 83 −50.62332 •2[18,64]

18 −6.49702 •1[17] 51 −26.36141 ◦2[10,41] 84 −51.46399 •2[21,62]

19 −6.99849 •1[18] 52 −26.94522 •2[9,42] 85 −52.01166 •3[2,20,62]

20 −7.48530 •1[19] 53 −27.67077 •2[10,42] 86 −53.12100 •2[21,64]

21 −8.00992 •1[20] 54 −28.37220 •2[10,43] 87 −53.85227 •2[22,64]

22 −8.52231 •1[21] 55 −29.09366 •2[10,44] 88 −54.66680 ◦3[2,20,66]

23 −9.04517 •1[22] 56 −29.82679 •2[10,45] 89 −55.52195 ◦3[2,21,66]

24 −9.55173 ◦2[2,22] 57 −30.46590 •2[13,43] 90 −56.26874 •3[1,23,65]

25 −10.09123 •1[24] 58 −31.29196 •2[12,45] 91 −57.32729 ◦3[2,21,68]

26 −10.65106 ◦2[2,24] 59 −31.64227 •4[1,8,1,48] 92 −58.08717 •3[1,22,68]

27 −11.18152 ◦2[2,25] 60 −32.51241 ◦3[2,12,46] 93 −58.96340 ◦3[3,24,66]

28 −11.73199 ◦2[2,26] 61 −33.47995 •2[12,48] 94 −59.71180 •3[1,24,68]

29 −12.31676 ◦2[2,27] 62 −34.24925 •2[12,49] 95 −60.64756 ◦3[3,22,70]

30 −12.90418 ◦2[3,27] 63 −34.71043 •3[1,13,48] 96 −61.45780 ◦3[2,25,69]

31 −13.45832 ◦2[3,28] 64 −35.70522 •2[14,49] 97 −62.23226 •3[2,24,70]

32 −14.06814 ◦2[4,28] 65 −36.52133 •2[13,51] 98 −63.19786 ◦3[3,25,70]

33 −14.65509 ◦2[4,29] 66 −37.26078 •2[12,53] 99 −63.80895 •2[28,70]

34 −15.26558 ◦2[4,30] 67 −37.97035 •2[15,51] 100 −64.84156 ◦3[4,26,70]

of the optimal configurations will persist for N as large as
several hundred. These expectations come from observing
the convergence of the trap locations to their optimum con-
figuration, which appear to be of familiar form, as well as
results obtained by others for arrangements of several hundred
confined particles [19,20,22].

V. CONCLUSIONS

In the current contribution, global optimization of config-
urations of N small traps minimizing the average mean first
passage time (1.2) of a Brownian particle required to leave
the unit sphere [see problem (1.1)] was performed. In Sec. II
a simple exact solution (2.1) of the narrow capture problem
(1.1) for a single trap, as well as the explicit approximate
asymptotic solutions (2.2) for N � 1 small traps of size
ε � 1 derived in Ref. [24], were reviewed. The asymptotic
solutions (2.2) involve a trap interaction term pc (2.4), whose
optimization is equivalent to the minimization of the AMFPT
in the domain.

In Sec. III the asymptotic approximations were tested
against the exact and numerical solutions under the conditions
when the asymptotic assumptions were violated, in order
to examine the accuracy of the asymptotic approximations
throughout the domain, as well as test the relationship be-
tween the trap sizes and locations with the accuracy of the
approximation. It was found that the asymptotic MFPT is
remarkably accurate in regions of the domain not only rela-
tively far from the surface of a trap, producing relative errors
∼10−7, but also near the trap, where the relative errors were
�10−6 as close as |x| � 2ε. Moreover, the average MFPT
provided by the asymptotic formula (2.2b) was found accurate
within 1% relative error even for rather large size of a single
trap (ε � 0.2), or for a pair of traps located close to each
other (distances ∼ε), or a trap located closely to the reflective
domain boundary about (distances ∼ε). From the analysis
of the quality of asymptotic approximations of simple trap
configurations, it was concluded that these approximations are
acceptable for the study of optimal configurations of more
complicated configurations of small traps.
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FIG. 14. The distribution of traps over each shell. The length of each bar represents the percentage of traps, relative to the total number
of traps excluding the trap at the origin, which are located on a particular shell. For configurations where multiple shells exist, each shell is
distinguished by the shading of the bar, the lightest shading corresponds to the innermost traps, and the darkest to the outermost.

Putative optimal global arrangements of 2 � N � 100
traps minimizing the AMFPT in the unit sphere were sought in
Sec. IV. It was found that the interaction energies pc (2.4) of
such configurations lie on a monotone decreasing curve. The
radial distribution of traps in optimal configurations was ex-
amined, and it was found that the traps were distributed near,
though not exactly on, surfaces of concentric spheres. It was
found that, in general, the radii of these spheres grow larger
as the number of traps found about them increases. A table
of minimal interaction energies and radial trap distributions,
were constructed (Table III; Figs. 14 and 15).

It was found that the optimal configurations of traps in
the narrow capture problem have a structure which resembles
other energy minimizing configurations of particles in three
dimensions, for example, the sphere-packing problem, both
theoretical [41] and experimentally realized [42].

As the number of traps N increases, one may expect that
the shell structure observed here will eventually dissipate,
and the traps will be distributed “homogeneously” throughout
the domain. Indeed, the structure of an optimal configuration
is determined by the tendency of the traps to repel from
one another, as well as from trap “images” in the reflective
boundary. Figures 14 and 15 demonstrate that as N increases,
so do the number of shells and the shell radii. If this trend
continues, the distance between traps on different shells will
become comparable to the distance between traps on a shell,
and the distance between traps on the outermost shell and the
boundary will become comparable to the distance between
a trap and its immediate neighbor, hence the shells with
effectively disappear.

For the structure of the optimal trap configurations ob-
served in the current work, one might expect that the
optimal arrangement of identical traps within the highly
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FIG. 15. The average radius of the traps associated with each shell vs the total number of traps. A filled marker indicates a trap at the
origin, and an open marker indicates otherwise.
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FIG. 16. Polyhedra with optimal
trap locations as vertices for (a) N = 3,
(b) N = 4, (c) N = 5, (d) N = 8, (e)
N = 19. (The spherical shell structures
for the optimal arrangements of N =
5, 8, 19 traps are shown in Figs. 10–
12.)

symmetric domain of the unit sphere would be highly sym-
metric itself. Yet in the study of the optimal arrangement
of confined particles, which is in essence the problem we
consider here, symmetric configurations appear to arise only
in special cases. Some examples of two-dimensional highly
symmetric potential-minimizing arrangements can be found
in Refs. [43,44], whereas in three dimensions, particles are
often located about shells, such as spherical shells [19,20], or
cylindrical shells [22] in the case of a cylindrically symmetric

container. Comparing our results with other optimal parti-
cle configurations in three-dimensional domains (see, e.g.,
Refs. [21,41,42,45]), it is not surprising to find that the traps
lie near the surfaces of spheres rather than on them. For
small N (N < 24), the traps lie on a single spherical shell, in
particular, at the vertices of polyhedra, such as an equilateral
triangle for N = 3, a tetrahedron for N = 4, and a trigonal
bipyramid for N = 5 (Fig. 16); for the last, the distances
from each of the traps at the north and south poles is slightly
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smaller than that for traps in the equatorial plane (the same
was observed in Ref. [45]).

An immediately accessible extension of the work done here
is a study of configurations of nonidentical traps which min-
imize the average mean first-passage time; in particular, one
may ask how capacitances (shape and size factors) of the traps
(Table I) characterize and affect the N -trap configuration.

The asymptotic MFPT formulas (2.2) used in the current
study involve the domain’s Green’s function which is known
explicitly. It would be of interest and importance to generalize
the expressions (2.2) to other domains (see a related work
[40] for narrow escape problems). Moreover, when Green’s
functions which are not known in closed form, their approx-
imations, such as those employed in Refs. [16,46], could be
used. MFPT results in nonspherical domains would be useful,
for example, to model intracellular interactions and chemical
reactions in biological structures of irregular shapes, such as
blood cells and dendrites. Direct numerical simulations for the
problem (1.1) and their comparison of numerical simulations
of Brownian motion confined to a reflecting domain contain-
ing absorbing traps is also of interest (similar work has been
done for the narrow capture problem in two dimensions in
Ref. [16]).

It is also interesting to study a possibility of deriving a
scaling law that would predict a limiting behavior of the mean
first-passage time, as the number N of “homogeneously”

distributed traps grows, N → ∞, while the total volume (or
another integral characteristic) of the trap set is controlled.
This problem was successfully addressed, and linked with the
dilute trap limit and a homogenized boundary value problem,
in the model with boundary traps [27,29] (the narrow escape
problem), but here it presents an additional difficulty, since
the radial distribution of a large number of traps repelling
according to the pairwise energy pc (2.4) remains unknown.
Another possible direction of future work could be to consider
the case when the capture of a Brownian particle by the trap
is imperfect, for example, time-dependent or probabilistic in
nature (see, e.g., Ref. [47]).

Finally, while the putative globally optimal volume trap
arrangements minimizing the AMFPT (2.2b) for the narrow
capture problem (1.1) have been computed in the current
work, no data exist about numbers or structure of local
minima. Steps have been made to understand the structure
of local minima of pairwise potential for surface-constrained
problems (see, e.g., Ref. [36] and references therein), but little
is understood about locally optimal arrangements of particles
confined within three-dimensional domains.
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