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a b s t r a c t

The problem of determination of globally optimal arrangements of N pairwise-interacting particles arises
in a variety of biological, physical, and chemical applications. At the same time, the important related
question of finding all, or many, local minima of the corresponding energy functions, and the study of
structure of these minima, has received relatively little attention.

A computational procedure is proposed to compute locally optimal and putative globally optimal
arrangements of N particles constrained to a sphere. The procedure is able to handle a wide class of
pairwise potentials, and can be generalized to other kinds of surfaces and interactions.

As computational examples, locally and globally energy-minimizing arrangements of particles on the
unit sphere, interacting via the Coulombic, logarithmic, and inverse square law potentials, are computed.
We present new results for the logarithmic potential consisting of 45 new local minima for N ≤ 65 and
two new global minima (N = 19, 46), as well as results for the inverse square law potential which has
not previously been studied. We provide comprehensive tables of all minima found, and exclude saddle
points. The algorithm can perform computations exceeding N = 100 with reasonable execution times.
Program summary

Program Title: EOPS 1.0 - Energy Optimizer for Particles on the Sphere
Program Files doi: http://dx.doi.org/10.17632/cbn8jt2ffw.1
Licensing provisions: GPLv3
Programming language:MATLAB 2015b, C++98, Maple
Nature of problem: Computation of locally and globally optimal arrangements of N particles on the

sphere for different pairwise potentials. This constitutes a constrained local optimization problem with
2N − 3 degrees of freedom.

Solution method: For N particles, the pairwise potential energy is minimized via steepest descent
trajectory from a starting configuration generated from known putative (N − 1)-particle optimal con-
figurations.

Restrictions: Spherical domain in R3 and pairwise potentials. The number of particles is limited by the
computing power and memory of the machine.

Unusual features: The programs are executed from MATLAB scripts which call C++ and Maple proce-
dures which perform the bulk of the computations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The general problem of finding optimal arrangements of particles on the boundary of a domain in Rn dates back over 100 years to
the Thomson problem, which concerns finding the arrangement of N identically charged particles on the surface of a sphere in R3 that
minimizes the Coulombic energy. This problem arose in J.J. Thomson’s early ‘‘plum pudding’’ model of the atom in which the electrons
are point charges that are suspended in a ‘‘jellium’’ of positive charge. Similar problems now arise in molecular biophysics and material
science.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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An optimal configuration is defined as follows. Given a domain D in Rn, n ≥ 2, an arrangement of N identical particles is said to be an
optimal configuration when the set of particle coordinates {xi}Ni=1 minimizes the pairwise potential,

H(x1, ..., xN ) =

N∑
i<j

h(|xi − xj|), (1.1)

under the constraint xi ∈ ∂D where h is a pairwise energy associated with a single pair of particles. One obtains the Thomson problem
when h is the Coulombic potential

h(d) =
1
d
. (1.2)

Finding optimal configurations constitutes a constrained local optimization problem in which the objective function is given by (1.1).
The problem of distributing points on the boundary of a domain has applications in the narrow escape problem in biophysics. In this

problem, a Brownian particle diffuses inside of a bounded domain with a reflecting boundary except for N small absorbing ‘‘traps’’, or
windows. The problem consists in finding the mean first passage time (MFPT) of Brownian particles through the traps. Narrow escape
problems can be used to model the motion of Brownian particles (proteins, ions, etc.) which must exit a confining domain in order to
accomplish a biological function. Some examples include chemical reactions in microdomains (such as synapses and microvesicles) [1],
the time required for diffusive particles inside a biological cell to react with proteins on the cell membrane [2], the dynamics of receptors
undergoing Brownian motion on the cell membrane [3], and virus transport inside the cell nucleus [4]. A specific example of a narrow
escape problem for the sphere is a model of a biological microstructure known as a dendritic spine (see [1] and references therein). These
structures are found in neurons as the postsynaptic part of a synapse and consist of a head at the end of a long neck. The mean time for a
calcium ion undergoing Brownian motion to escape the spine head (i.e. the MFPT) is an important quantity related to synaptic plasticity.

Multi-term asymptotic expressions for the MFPT have recently been obtained for various domains using the method of matched
asymptotic expansions [5–7]. In the case where the domain is a sphere inR3 with N small absorbing spherical caps on the boundary, it has
been shown [5,8] that finding arrangements of traps that minimize the average MFPT requires minimization of an energy-like function
given by (1.1) over the surface of the sphere where

h(d) =
1
d

−
1
2
log d −

1
2
log(2 + d). (1.3)

A related problem, known as the narrow capture problem, involves finding the MFPT for a Brownian particle diffusing inside a domain
with a reflecting boundary but small absorbing interior targets. This problem also has applications in molecular biophysics (see [9] and
references therein). The case of a general domain with a single interior target consisting of absorbing spherical caps on an otherwise
reflecting boundary has been studied recently [10,11]. In particular, it was shown that when the target is spherical with N absorbing
circular pores, the MFPT is minimized when the target is at the center and the arrangement of pores minimizes a pairwise energy-like
function in which the pairwise energy is similar to (1.3)

h(d) =
1
d

+
1
2
log

(
d

2 + d

)
. (1.4)

Computation of optimal configurations also relates to packing problems. The best-packing problem for the sphere consists of finding
the most efficient way of packing circles (spherical caps) onto the surface of a sphere, or equivalently maximizing the smallest radius of N
circles on the sphere. This problem is also referred to as the Tammes problem after the Dutch botanist who studied the arrangement of exit
places on grains of pollen [12]. Recently this problem has been solved exactly for N = 13, 14 [13], and exact solutions are now known for
all N up to 14. The arrangements of spherical caps minimize an extremely short-range energy function (see [14] and references therein)
which is given by the limiting case

h(d) =
1
dm

, m → ∞. (1.5)

In the low-temperature limit, the geometry of a crystallinematerial is determined by the lowest energy configuration or ‘‘ground-state’’
of the system. The ground state configurations for planar crystals contain nodefects in their structure, however, in general this is impossible
for non-planar crystals due to the Euler theorem of topology. The geometry and arrangements of defects in such materials play a role in
determining their electrical and mechanical properties. As a well-known example of a crystal with non-planar geometry, consider carbon
nanotubes (CNTs). The chirality of a CNT determines whether it is eclectically conducting, insulating, or semiconducting.

Spherical structures occur frequently in material science, notably the class of carbon fullerene molecules discovered in 1985 [15].
Spherical structures also occur in colloidosomes which are shells consisting of colloidal particles surrounding a liquid center. The
arrangements of charged colloids correspond to solutions of the Thomson problem[16]. The Thomson problem also serves as a reasonable
model ofmultielectron bubbles in liquid helium [16,17]. These bubbles are formed above the liquid surfacewhen an electrode is submerged
in the liquid and the electric field strength is increased beyond a critical value. This causes electrons that are initially outside the surface to
enter the liquid via formation of multielectron bubbles. The bubbles contain approximately 105 to 108 electrons spread across the surface
and the bubble radius is between 10 µm and 100 µm. The inter-electron spacing is usually at least 0.2 µm and therefore the electrons
can be considered classical particles distributed such that the Coulomb energy is minimized [17–19]. Furthermore, it has been shown that
a spherical bubble is energetically stable against perturbations under an appropriately pressure [20]. Thus multielectron bubbles indeed
closely resemble Thomson’s original problem albeit in a different context.

The Thomson problem today remains interesting both as a mathematical problem but also as a benchmark for testing optimization
software. A comprehensive list of putative globally energy-minimizing designs has been produced for all N up to 132 and some selected N
up to 282 [21]. Localminima are not aswell known, althoughmany putative localminima have been discovered up toN = 112 [22] and up
to N = 150 for a few selected N [23]. Putative global minima for particles interacting via the logarithmic potential have also been studied
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in [24], and in d-dimensional space in [25]. Local minima for the logarithmic potential have not been studied until now. The logarithmic
potential is believed to model, for example, interacting vortex defects in thin-film superconductors [26].

Various global optimization algorithms have been and are being developed that aim at finding global extrema in general or specific
classes of optimization problems. The well-known general algorithms include, for example, genetic algorithms and simulated annealing
[27–30].

By contrast, systematic computations of not only global but also multiple local extrema in realistic physical settings have received
significantly less attention. A function can have a very large number of local minima which are not global minima. Even for standard
benchmarking optimization problems, the numbers and structure of such local minima is not well-known. A common approach in the
works where local and global minima were sought, including, for example, the study of particles on a sphere interacting through the
Coulombic and logarithmic potential in three dimensions [22,24], performed local optimizations based on an initial ‘‘guess’’ or starting
configuration to begin the iterations. Many previous works have used randomly generated starting configurations [22,24]. It has been
demonstrated that a large number of starting configurations is required even for relatively small N since many local minima have small
basins of attraction. In a recent paper [23], a unique algorithm was employed to systematically find starting configurations for local
optimization. Transition states, defined as a saddle points in which the Hessian matrix of the energy function has exactly one negative
eigenvalue, were optimized by taking a small step in the two lower-energy directions and then using a limited memory BFGS algorithm
[31] to relax to a local minimum. Transition states were identified using known local minimawhich allows the process to be repeated until
no new local minima are identified. The numbers of local minima identified with this method are significantly higher than the numbers
predicted by previous studies [32].

Themethod of [23] allows for paths to be constructed between localminima on the energy surfacewhich pass through transition states.
This is quite powerful as it gives the energy required for configurations to convert between two given local minima which is of interest
when, for example, studying chemical reaction rates. They have also demonstrated that relaxing to the global minimum is typically easier
than relaxing to other local minima.

In this work we present a different, iterative numerical technique for finding locally and globally energy-minimizing arrangements of
particles on the sphere. ForN particles constrained to the unit sphere, the problem involves 2N spherical coordinates, and 2N−3 degrees of
freedom. The technique, described in Section 2, allows the construction of N-particle starting configurations from known (N − 1)-particle
local and global minima. The starting configurations are optimized using a modified steepest descent method implemented in C++. We
also present a robust method for reliably identifying geometrically equivalent configurations using a coordinate-independent invariant.
Saddle points are identified and excluded using the eigenvalues of the Hessian matrix. With the exception of the optimization algorithm,
the technique is implemented inMATLAB. In Section 3we apply the technique to the familiar Coulombic potential aswell as the logarithmic
and inverse square law potentials given by

h(d) =
1
d2

, (1.6)

h(d) = − log d (1.7)

respectively. The inverse square law potential is easier to work with than the Coulomb case in the sense that the forces between particles
decay faster with distance and are thus more short range. A similar argument suggests that the logarithmic potential is more difficult
due to the slow decay of the forces. However, it has been noted in [23] (and references therein) that the number of local minima for long
range potentials is smaller than for short range potentials. We perform sample computations up to N = 65 particles to be consistent with
previous literature (see [14,22,24]) but computations exceeding N = 100 are certainly possible within a reasonable execution time.

We find that the technique reproduces most (and possibly all) previous local and global minima for the Coulomb potential. Direct
comparisons are difficult due to the presence of saddle points in previous literature.We also find twonewglobalminima for the logarithmic
potential (N = 19 and N = 46). All local minima for the logarithmic potential are new. The inverse square law has not been studied and
therefore all putative minima for this potential are new as well.

2. Systematic computation of optimal arrangements

Optimal configurations for the sphere in R3 are those that minimize (1.1) with the constraint |xi| = 1. A systematic numerical routine
was developed to find locally and globally optimal arrangements. The algorithm consists of the following general steps:

1. From a known set of optimal configurations of N particles, M(N), generate a set of starting configurations for N + 1 particles,
K1(N + 1) which are non-optimal and not geometrically equivalent through rotational and reflectional symmetries.

2. Perform local optimization on each configuration in K1(N + 1) to obtain the set of optimal configurations K2(N + 1).
3. Many of the configurations in K2(N + 1) are geometrically equivalent. These redundant configurations are removed to obtain the

set of optimal (N + 1)-particle configurations,M(N + 1).
4. Let N → N + 1 and repeat steps 1 through 3, up to some specified Nmax.
5. Remove all non-optimal saddle-point configurations.

There are four central parts in the above steps:

• A local optimization algorithm which performs the energy minimization given a starting configuration.
• An algorithm for generating starting configurations.
• An algorithm for the identification of equivalent configurations.
• A method to remove the non-optimal saddle-point configurations that occasionally result from optimization.

The remainder of this section is devoted to describing these parts in more detail.
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2.1. The local optimization algorithm

A dynamical system is constructed in which the particles interact through forces defined as,

Fi =

N∑
j̸=i

Fij = −∇iH(x1, . . . , xN ), (2.8)

where Fi is the total force acting on particle i, Fij is the force acting on particle i from particle j, and ∇i is the gradient operator with respect
to the cartesian coordinates of particle i.

The particle radial distances are fixed; |xi| = 1, and thus only the component of Fi tangential to the surface, Fτ
i is relevant to the

interaction. The particles are allowed to move in the direction of the tangential force with the constraint that each must remain on the
surface of the unit sphere. For a fixed radial coordinate in (1.1), the gradient in spherical coordinates of particle iwill point in the direction
of Fτ

i . It is therefore more natural to work with tangential forces.
A modified steepest-descent increment is used:

xi →
xi + γ Fτ

i⏐⏐xi + γ Fτ
i

⏐⏐ (2.9)

where γ is a proportionality constant. We define a characteristic distance, a0, as the radius of a circle which encloses the average surface
area on the unit sphere per particle, 4π/N:

πa20 =
4π
N

. (2.10)

For large N , the typical distance between two particles is d0 ∼ 2a0. Define F τ
init as the largest tangential force in the starting configuration.

We then make the choice

γ =
βa0
F τ
init

, (2.11)

where β is a constant specified by the user to maximize convergence, hereafter referred to as the weight parameter. The idea is that
the position increments should be proportional to the characteristic distance. The algorithm is designed to be robust when used with
judiciously chosen starting configurations where the particles start relatively close to a local minimum.

The following iteration scheme was implemented in C++:

1. Initialize the particle positions, xi to a specified starting configuration (see Section 2.3).
2. Compute the characteristic distance a0 (2.10).
3. Compute all tangential force vectors

Fτ
i =

N∑
j̸=i

[
Fij − (xiFij)xi

]
. (2.12)

The calculation of tangential forces can also be done directly using the total force on a particle without the need of a sum over
pairwise forces. However, this leads to cancellation of large forces because the normal components dominate the tangential
components when the tangential forces are small. The largest of the tangential forces, F τ

init = max
i

(|Fτ
i |), is computed on the first

iteration only.
4. Increment particle positions using (2.9).
5. On every 100th iteration compute themaximumtangential force for the current configuration F τ

max = max
i

(|Fτ
i |). If F

τ
max/F

τ
init < 10−15

or the current number of iterations exceeds the maximum number, stop iterating, otherwise go to step 3.

This routine works effectively when a suitable starting configuration is used. However, it performs poorly with randomly generated
starting configurations because the stopping condition is met relatively soon when the initial forces are large.

2.2. The identification of different configurations

The configurations are defined up to rotations and reflections and are therefore not unique. For N particles, there are 2N angular
coordinates, and 2N − 3 degrees of freedom. A challenge then arises in distinguishing between arrangements of particles that are rotated
or reflected with respect to each other.

It is natural to use an invariant (coordinate independent) quantity to distinguish geometrically different configurations. One has several
choices such as energy, coordination number, etc. Two algorithms are presented. The first uses the set of all pairwise distances between
particle pairs. The second uses coordination numbers as well as suitable pairwise energies. A significant difference between the two is
the size of the vector assigned to each configuration. A MATLAB clustering routine requiring the Statistics Toolbox is used in both cases to
group the configurations into bins of geometrically equivalent designs.

In the algorithms below, x(k)i denotes the coordinates of the ith particle in the kth configuration.

2.2.1. Algorithm 1: pairwise distances
The following steps are performed to extract the non-redundant configurations.

1. Compute all scalar pairwise distances d(k)ij = |x(k)i − x(k)j |, i < j ≤ N (in parallel) and store them in a vector. Each configuration now
has a vector of pairwise distances, which are denoted d(k).
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2. For each configuration, sort elements of d(k) in ascending numerical order. Also normalize the elements in each array such that
max

k

(
d(k)ij

)
= 1 for a given i and j. Denote the resulting normalized vector by d̃(k).

3. A tolerance is required for clustering in the next step. A suitable choice of tolerance is based on the understanding of the relationship
between the elements in d̃(k) as well as their relationship with N (see Remark 2.1). The tolerance can either be specified directly or
one can specify the parameter tol (see Appendix B) in which case one of two choices can be made for the tolerance:

δ1 =
|tol|

max
k

∥d̃(k)
∥L2

,

δ2 = |tol| × max
k

∥d̃(k)
∥L2 (2.13)

4. Built-in MATLAB clustering functions are used to put the vectors d̃(k) into clusters. The clustering is based on the Euclidean distance
between vectors. The tolerance specified in the previous step is used.

Given a suitable tolerance, all configurations within one of the resulting clusters are considered equivalent.

Remark 2.1. The relationship between the elements in d̃(k) and N is not well understood. The choices of δ1 and δ2 weremade heuristically.
Values of tol are chosen such that the tolerance δ falls within a suitable range determined through experimentation.

2.2.2. Algorithm 2: pairwise energies
1. Cluster the configurations according to coordination numbers such that configurations with different defect structures are placed

in separate clusters. Let there bem such clusters.
2. For each of the configurations in a given cluster, compute the pairwise energy in (1.1) with the choice

h(|xi − xj|) =
1⏐⏐xi − xj

⏐⏐n (2.14)

where n is user specified and can be an array (see Appendix B). Note that the choice is not required to be the same as the potential
used in the optimization algorithm. Thus each configuration has a vector of pairwise energies, each element of which corresponds
to a choice of n. Denote the kth vector in a given cluster as E(k).

3. For each of them clusters, sort each energy vector in ascending numerical order. Then normalize each element following the same
procedure as in algorithm 1. The resulting arrays are denoted Ẽ(k).

4. For each of them clusters found in 1), cluster the configurationswithin each based on energy. As in the first algorithm, the tolerance,
δ can either be set explicitly by the user or ‘automatically’ by the program. When set automatically, the tolerance is

δ = |tol| × max
k

∥Ẽ(k)
∥L2 (2.15)

where tol is again a parameter specified by the user (see Appendix B). All configurations within an energy cluster will be equivalent
given a suitable tolerance.

As with algorithm 1, suitable tolerances are chosen through experimentation.

2.3. The starting configurations

The local optimization routine requires an initial configuration of particles. Previous work has focused on using many trials with
random starting configurations. This quickly becomes computationally expensive as the number of local minima is believed to increase
exponentially [23,32] which requires the number of random trials to increase quickly as well. A unique algorithm for generating starting
configurations was developed that significantly reduces the number of required optimizations.

The following steps are performed to generate a starting configuration to use with the local optimization routine described in
Section 2.1.

1. Perform Delaunay Triangulation on the particles of a known local minimum and compute the convex hull.
2. Compute the center of mass for each of the resulting triangular facets. Let there bem such centers.
3. Createm new configurations each containing the original N − 1 particles as well as a particle at one of them triangle middles.
4. Many of the resulting N-particle configurations will be equivalent due to the symmetry of the original (N − 1)-particle optimal

configuration. Remove the redundant configurations using one of the algorithms described in Section 2.2.

An illustration of the construction of starting configurations is shown in Fig. 1 for N = 26 from the N = 25 global minimum.

2.4. Removal of putative saddle-point configurations

A routine for removing non-optimal configurations is needed as the local optimization algorithm will occasionally produce saddle-
point configurations. A Maple programwas developed that computes the gradient and Hessian matrix of Eq. (1.1) for a given choice of the
function h(|xi − xj|) and given a set of coordinates, xi, produced by the local optimization routine.

Let φi and θi denote the azimuthal and polar coordinates of particles i. Upon transforming the pairwise distances between particles into
spherical coordinates with the constraint |xi| = 1, one obtains

|xi − xj| =
(
2 − 2 sin θi cosφi sin θj cosφj − 2 sin θi sin θj sinφi sinφj − 2 cos θi cos θj

)1/2
, (2.16)
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Fig. 1. Globally optimal arrangement of 25 particles for the Coulomb potential with all triangle middles shown.

which can be substituted into Eq. (1.1) to express the energy in terms of the spherical angles. Calculating the gradient and Hessian matrix
is computationally easier in spherical coordinates due to the simple form of the constraint. The gradient vector, f, and Hessian matrix, M
are then computed with respect to the 2N − 3 degrees of freedom. The angles θi, φi, and θj for some arbitrary choice of i and j are fixed in
the calculation which removes the rotation and reflection symmetries that cause the Hessian to be semi-definite. The result is evaluated
using numerical values from the computed configurations. The 2N−3 eigenvalues, λk, ofM are computed. All eigenvaluesmust be positive
for the configuration to be a local minimum. In some cases the eigenvalues are very small which can cause them to be slightly negative
when computed numerically even for actual local minima. To deal with this difficulty, two different choices for the fixed angles are used.
Computationally this is done by circular shifting the numerical values of θ and φ that are substituted into the Hessian.

A MATLAB routine then removes all configurations that fail to satisfy the following requirements:

∥f∥∞ < 10−6, min
k

λk > −10−14. (2.17)

The first requirement may seem fairly loose but recall that the local optimization already produces configurations with very small
tangential forces. The requirement is a safety that can identify when the optimization algorithm does not converge or when other
unexpected errors occur.

3. Run examples

The general algorithm for finding optimal configurations on the sphere has been introduced. Now we focus on applications to three
pairwise potentials: the Coulomb potential, the inverse square law potential, and the logarithmic potential given by (1.5)–(1.7).

Consider the case of N = 4 particles for which the optimal configuration for each potential is an inscribed tetrahedron, in fact this
configuration is optimal for all completely monotonic potentials (see [33] for a discussion on universally optimal configurations). This
configuration can be used as a starting point to compute local minima for higher N . A MATLAB program implementing the complete
procedure that computes local minima for N ≤ 65 has been provided. It is straightforward to modify the program to work with other
pairwise potentials.

The following sequence is executed in a MATLAB script called Opt_Procedure.m.

1. Set N = 4.
2. Generate starting configurations for N + 1 particles using the algorithm in Section 2.3. Remove the redundant configurations using

the procedure described in Section 2.2.
3. Perform local optimization on these starting configurations in parallel using the chosen pairwise potential. The optimization process

is by far the main bottleneck especially for large N . Therefore it is important that they are executed in parallel and that redundant
configurations are removed correctly in the previous step. Many of the resulting optimal configurations will be equivalent due to
rotation and reflection symmetries. Remove the redundant configurations again using the procedure of 2.2.

4. Save the current results. Set N → N + 1 and if N = 65 stop, otherwise go to step 2).

3.1. Modifying the program

The script is a general procedure that can be adapted to different potentials in a straight-forward manner. The main program listed in
Appendix D is written for the Coulomb potential and uses algorithm 1 in Section 2.2.1. Detailed information on how tomodify the program
for different situations is given in the Appendix. We expect that the most frequent changes will be the maximum particle number, the
flag to keep temporary files, and the weight parameter (all described in the appendices). These values can easily be changed by modifying
the variables N_END, keep_temp_files, and weight in Opt_procedure.m. Adapting the program to a different potential is discussed in the
appendices.
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3.2. Parameter choices

There are number of tolerances which one must consider. In general, careful testing may be required to find appropriate values as the
results of choosing poor values are not always apparent for small values of N which are relatively easy.

The parameter β in Eq. (2.11) is an important parameter which is chosen based on several trials performed for low numbers of particles
(N ≤ 30). Choices that are too large lead to poor results at best and non-convergent results in extreme cases. Smaller values can be chosen
but too small a value is not necessarily better as it will lead to slow convergence and in some cases a lack of numerical precision during
force calculations. The choices for each potential are as follows:

• Coulomb: β = 0.5
• Inverse square law: β = 0.4
• Logarithmic: β = 0.5

The tolerance in algorithms 1 and 2 must also be chosen with care. We remark that typically it is more difficult to distinguish between
different starting configurations as opposed to local minima. This is due to the fact that of the N particles in a starting configuration, N − 1
of them have identical coordinates. These parameter choices are explored for the Coulomb potential and the choice giving the best results
is used for the remaining potentials.

3.2.1. Parameter choices for Algorithm 1
Algorithm 1 in Section 2.2 is implementedwithin the supplied code. Several different tolerances are used for this algorithm to illustrate

the importance of making a suitable choice. We remark that when the pairwise distance vectors x̃(k1) and x̃(k2) corresponding to two
equivalent configurations are compared in the L2-norm, ∥x̃(k1)− x̃(k2)∥L2 , the difference is typically less than 10−9 and appears to be roughly
independent of N . A loose lower bound on the choice of tol is therefore 10−9. Dissimilar configurations differ by at least 10−1 for small N
but the difference slowly becomes smaller, down to about 10−2 around N = 65. Thus the first tolerance in Eq. (2.13) is a more natural
choice since it decreases with N .

The program is implemented for three choices of the tolerance:

• δ1 in Eq. (2.13) with the choice tol = 10−3

• δ2 in Eq. (2.13) with the choice tol = 10−3

• A constant or ‘manual’ tolerance of 10−7

The first choice results in tolerances on the order of 10−4 for small N and 10−5 for N closer to 65. The second choice gives tolerances of
10−3 for small N and 10−2 for N ≈ 65.

3.2.2. Parameter choices for Algorithm 2
The example is also implemented with algorithm 2 for a single tolerance of −10−7. Two values of n from Eq. (2.14) are chosen: −3 and

3. In almost every case, the energies of different local minima are very closely spaced and thus the normalization procedure described in
Section 2.2.2 results in nearly identical tolerances for all N . Instructions for modifying the program are supplied in Appendix B.

3.3. Results

The following sections describe the results of local optimization for the three potentials. The discussion includes the number of local
minima as a function of the number of particles, comments on scars, comments on the performance of the algorithm, numbers of starting
configurations, and examples of some particular configurations in which optimization proves difficult.

3.3.1. Coulomb potential
The number of local minima is shown in Fig. 2. Prior to extraction of saddle points, both algorithms produce identical local minima.

A complete list of all discovered local and global minima for the Coulomb potential, the corresponding energies, and other geometric
properties is given in Table 1. A total of 116 minima and 5 saddle points were found.

In a planar geometry, particles interacting via a repulsive pairwise potential arrange themselves into a 2D hexagonal lattice in which
each particle has a coordination number of ci = 6 (see [16]). However, for a tessellation of the sphere the Euler theorem of topology
prohibits all particles from having this property and thus a number of defects or scars must be present. As in [16], one can show that all
possible defects that can occur on a sphere tessellated with n-sided polygons must satisfy

N∑
i=1

(6 − ci) = 12. (3.18)

Therefore, the minimum number of defects that can occur is 12. This is the most common case among the local minima identified.
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Table 1
Comprehensive list of local and global minima for the Coulomb potential. In order, the columns show the number of particles, the Coulomb energy, the number of particles
with coordination numbers 3–7, and the number of iterations required to reach the given minimum averaged over the number of starting configurations.

N Coulomb energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

4 3.6742346 4 0 0 0 0 0
5 6.4746915 2 3 0 0 0 200
6 9.9852814 0 6 0 0 0 200
7 14.4529774 0 5 2 0 0 8100
8 19.6752879 0 4 4 0 0 1500
9 25.7599865 0 3 6 0 0 4700

10 32.7169495 0 2 8 0 0 2034
11 40.5964505 0 2 8 1 0 2250
12 49.1652531 0 0 12 0 0 517
13 58.8532306 0 1 10 2 0 5900
14 69.3063633 0 0 12 2 0 1886
15 80.6702441 0 0 12 3 0 4600
16 92.9116553 0 0 12 4 0 1556

92.9203540 0 0 12 4 0 2160
17 106.0504048 0 0 12 5 0 4460
18 120.0844674 0 2 8 8 0 3156
19 135.0894676 0 0 12 7 0 93167
20 150.8815683 0 0 12 8 0 4273
21 167.6416224 0 1 10 10 0 31275
22 185.2875361 0 0 12 10 0 3767

185.3079516 0 0 12 10 0 8800
23 203.9301907 0 0 12 11 0 2950
24 223.3470741 0 0 12 12 0 2543
25 243.8127603 0 0 12 13 0 70167
26 265.1333263 0 0 12 14 0 15812
27 287.3026150 0 0 12 15 0 3288
28 310.4915424 0 0 12 16 0 3275
29 334.6344399 0 0 12 17 0 14960
30 359.6039459 0 0 12 18 0 16412
31 385.5308381 0 0 12 19 0 1822
32 412.2612747 0 0 12 20 0 1055

412.4683972 0 0 12 20 0 6950
33 440.2040574 0 0 13 19 1 28534
34 468.9048533 0 0 12 22 0 11075
35 498.5698725 0 0 12 23 0 29185

498.5734540 0 0 12 23 0 70400
36 529.1224084 0 0 12 24 0 633422
37 560.6188877 0 0 12 25 0 10650

560.6279731 0 0 12 25 0 27180
38 593.0385036 0 0 12 26 0 2850

593.0489435 0 0 12 26 0 6222
39 626.3890090 0 0 12 27 0 2154

626.4409584 0 0 12 27 0 55175
40 660.6752788 0 0 12 28 0 3028

660.7253041 0 0 12 28 0 91364
660.7412143 0 0 12 28 0 3000

41 695.9167443 0 0 12 29 0 2059
695.9786994 0 0 12 29 0 9100

42 732.0781075 0 0 12 30 0 2443
43 769.1908465 0 0 12 31 0 85750
44 807.1742631 0 0 12 32 0 25350
45 846.1884011 0 0 12 33 0 50300
46 886.1671136 0 0 12 34 0 3000

886.1702160 0 0 12 34 0 7260
886.1714324 0 0 12 34 0 11200

47 927.0592707 0 0 12 35 0 8337
927.0622697 0 0 12 35 0 30653
927.0722246 0 0 12 35 0 103819
927.0882335 0 0 12 35 0 13700
927.1410883 0 0 12 35 0 12900

48 968.7134553 0 0 12 36 0 6445
49 1011.5571827 0 0 12 37 0 4460
50 1055.1823147 0 0 12 38 0 4135
51 1099.8192903 0 0 12 39 0 8134

1099.9402311 0 0 12 39 0 5700
52 1145.4189643 0 0 12 40 0 4246

1145.4219806 0 0 12 40 0 6245
1145.4357090 0 0 12 40 0 8667
1145.4375970 0 0 12 40 0 47367

53 1191.9222904 0 0 12 41 0 78006

(continued on next page)
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Table 1 (continued)

N Coulomb energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

1191.9315847 0 0 12 41 0 4431
54 1239.3614747 0 0 12 42 0 8723

1239.3652553 0 0 12 42 0 12300
1239.3711923 0 0 12 42 0 30850
1239.3732007 0 0 12 42 0 7777

55 1287.7727208 0 0 12 43 0 5072
1287.7770275 0 0 12 43 0 7993
1287.7772608 0 0 14 39 2 15185
1287.7887093 0 0 12 43 0 19375
1287.7890572 0 0 12 43 0 8525
1287.8001593 0 0 12 43 0 28900

56 1337.0949453 0 0 12 44 0 8515
1337.0953483 0 0 12 44 0 10280
1337.0987274 0 0 12 44 0 18371

57 1387.3832293 0 0 12 45 0 9383
1387.4200823 0 0 13 43 1 16384
1387.4303725 0 0 12 45 0 31867
1387.4311301 0 0 12 45 0 10725

58 1438.6182506 0 0 12 46 0 6316
1438.6255086 0 0 12 46 0 12780
1438.6262899 0 0 12 46 0 11709
1438.6272252 0 0 12 46 0 15695
1438.6337080 0 0 12 46 0 118867
1438.6381050 0 0 12 46 0 9355
1438.6473598 0 0 12 46 0 15700

59 1490.7733353 0 0 14 43 2 12471
1490.7743861 0 0 12 47 0 14356
1490.7847558 0 0 12 47 0 56532
1490.7907731 0 0 12 47 0 11164

60 1543.8304010 0 0 12 48 0 3873
1543.8350996 0 0 12 48 0 4295
1543.8415351 0 0 12 48 0 13250
1543.9694723 0 0 12 48 0 60400
1543.9807338 0 0 12 48 0 11000

61 1597.9418302 0 0 12 49 0 9773
1597.9515553 0 0 12 49 0 5325
1597.9551278 0 0 12 49 0 81158
1597.9703606 0 0 12 49 0 17658
1597.9726602 0 0 12 49 0 164500
1597.9808036 0 0 12 49 0 21600

62 1652.9094099 0 0 12 50 0 4338
1652.9285937 0 0 12 50 0 19363
1652.9420143 0 0 12 50 0 7888

63 1708.8796815 0 0 12 51 0 9493
64 1765.8025779 0 0 12 52 0 9643
65 1823.6679603 0 0 12 53 0 22113

Fig. 2. Number of configurations found using the local optimization routine for the Coulomb potential. Results are shown before and after removing non-optimal
configurations and are identical for both algorithms presented in Section 2.2. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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(a) (b)

Fig. 3. Scar arrangements for the two most closely spaced Coulomb adjacent energy minima. Left: Arrangement of scars for the second lowest energy minimum for N = 55.
Right: Arrangement of scars for the third lowest energy minimum for N = 55. Blue faces correspond to defects with coordination number 5 and orange faces to defects with
coordination number 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Number of non-redundant starting configurations resulting from algorithms 1 and 2 for different tolerance choices. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The arrangement of scars for various local minima are quite interesting. Consider Fig. 6 which shows all the local minima found for
N = 60. All of these minima exhibit twelve five-fold vertices and similar energies, however the defect structures are clearly different.

An energy spectrum normalized to the global energy minima is plotted in Fig. 5. Adjacent local minima are more closely spaced for
higher particle numbers which illustrates the difficulty in distinguishing between geometrically different configurations using only the
energy to characterize the arrangements for larger particle numbers. The two most closely spaced energies occur for the second and third
smallest local minima for 55 particles, differing by only 2× 10−5%. Despite similar energies, the coordination numbers are different. Fig. 3
shows the arrangements of such defects for these two minima. The configuration in Fig. 3(a) has 12 particles with a coordination number
of 5 while the configuration in Fig. 3(b) has 14 such particles and 2 particles with a coordination number of 7. Furthermore, comparing
the pairwise distance vectors for both configurations as in 3.2.1, one finds that the difference is approximately 0.305. When equivalent
configurations are compared in this manner, the result is on the order of 10−9 or less.

The number of starting configurations for the different algorithm and tolerance choices is shown in Fig. 4. The differences illustrate
the importance of making an appropriate choice for removing redundant configurations. Using algorithm 1 with the tolerance δ1 and
the choice tol = −10−3 in Eq. (2.13) produces the same number of starting configurations as the choice of the constant tolerance. The
tolerance δ2 produces slightly fewer starting configurations than the other choices. For every N , algorithm 2 produces the same or slightly
more starting configurations. Ideally, one would find a range of tolerances spanning at least an order of magnitude that result in the
same number of starting configurations. The similar results from the δ1 tolerance and the constant tolerance indicate that the range of
acceptable choices for algorithm 1 is larger than algorithm 2. However, it is relatively difficult to find a range of tolerances for algorithm
2 that produce results that agree closely with those of algorithm 1. Although the local minima in this case are identical for each choice of
algorithm and tolerance, we choose to use algorithm 1 with δ1 and tol = 10−3 for the remaining potentials since a larger tolerance can be
used to distinguish configurations. While all of the choices give the same local minima up to N = 65, the energies become more closely
spaced as N increases and one will eventually be unable to distinguish configurations based on energy.

Some of the configurations have a negative-definite Hessian matrix despite having very small gradient components and are therefore
believed to be saddle points. These configurations are not localminima although typically have energies that are very close to that of a local
minimum. However the configurations are noticeably different from any of the local minima even upon visual inspection. Furthermore,
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Fig. 5. Normalized Coulomb energies for locally and globally optimal configurations. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

(a) (b)

(c) (d)

(e)

Fig. 6. Arrangements of scars for all N = 60 energy minima for the Coulomb potential, ordered (a–e) from lowest to highest energy.
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(a) (b)

Fig. 7. Left: Evolution of the energy and the condition to terminate the optimization. Note that the energy steps are zero to numerical precision in many cases. These data
points have been replaced with the value 10−16 so that they can be plotted on a logarithmic scale. Right: Resulting configurations after 1000 and 9000 iterations.

performing additional iterations using the optimization algorithm eventually results in the configuration falling into a local minimum.
Most of these putative saddle point configurations cannot be identified with the local optimization routine since they satisfy the stopping
condition and potentially require a large number of further iterations to fall into a local minimum. Further tightening of the stopping
condition tolerance results in much longer runtimes as well as problems with numerical precision and is therefore impractical.

We give an example of this difficulty for the relatively simple case of N = 17. A fixed number of iterations (ignoring the stopping
condition) were performed on a starting configuration generated using the algorithm described in Section 2.3. The starting configuration
comes from the highest energy 16-particle local minimum. Fig. 7(a) shows the evolution of the Coulomb energy step and the stopping
condition, F τ

max/F
τ
init , during the optimization process (evaluated every 100 iterations). The energy step is zero to numerical precision during

most of the optimization so these values are replaced with 10−16 for the purposes of visualization. The stopping condition is satisfied after
1000 iterations and thus the routine would normally stop at a non-optimal configuration. The configurations at 1000 and 9000 iterations
are plotted in figure 7(b) and are noticeably different. The difference in Coulomb energy is about 3.3 × 10−3 which is roughly 0.003% of
the optimal energy.

Saddle points appear for larger N as well and typically require many more iterations to fall into a local minimum. The evolution of
F τ
max/F

τ
init shown in Fig. 7, which is simply a normalized tangential force, is typical for saddle points that have been found. This shows

that these configurations are actually saddle points rather than points of slow convergence. It is remarkable that saddle points are
computationally difficult to avoid with a steepest descent approach since in principle it should not find any.

The nonzero number of saddle points discovered suggests that the energy landscape near the saddle points has some structure that
causes the optimization routine to stop at such configurations. Many of the eigenvalues of the Hessian are typically quite small (∼ 10−3 or
smaller) and therefore the energy landscape is ‘‘flat’’. This alone does not explain the occurrence of saddle points since one could simply
take a larger descent step (by choosing a larger β). The slow convergence from a saddle point suggests that the unstable direction is very
narrow such that the forces have only a very small component along this direction. A schematic of such a saddle point in two dimension
is shown in Fig. 8. Eventually optimization does converge to a minimum and we believe that the algorithm escapes saddle points by
‘hopping’ across the unstable direction, slowly moving away from the saddle until the forces acquire a large enough component in the
unstable direction to escape. These ‘hops’ are illustrated in Fig. 8 as jumps from point a) to b) to c). This 2-dimensional illustration is a
significantly simplified view, however, it does provide some insight into the structure of the energy landscape.

An exhaustive list of local and global minima as well as corresponding properties (dipole moments, occurrence frequency, energy and
angular diversity, etc.) is given by [22]. The approach uses a steepest descent optimization algorithm similar to (2.9) except the total force
is used and the position increment is used in the limit γ → ∞. Starting configurations are generated randomly to give a uniform spherical
distribution. A comparison between the configurations identified by [22] and those obtained here provides significant insight into the
properties of the configurations and the remarkably frequent occurrence of non-optimal configurations.We note twominor corrections to
the configurations found by [22], specifically the highest energy 39- and 58-particle configurations, for which Hessian is negative definite.
The energies were reproduced here exactly to the given precision (7 decimal places) for the 39-particle configuration and to 6-decimal
places for the 58-particle configuration. A comparison between the quoted local minima (excluding the 38-particle and 59-particle saddle
points) is shown in Fig. 9. All of the localminima identified here can bematchedwith configurations from [22], however the configurations
that were not reproduced here cannot be verified since the particle coordinates themselves are not available.

It is worth noting that non-optimal configurations should not be excluded based entirely on the occurrence frequency. The non-optimal
58-particle configuration in [22] has an occurrence frequency of only 0.04%, however there are 58-particle configurations in [22]with lower
occurrence frequencies that are apparently optimal. Further, the non-optimal 39-particle configuration has a large occurrence frequency
of 4.55%.
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Table 2
Comprehensive list of local and global minima for the inverse square law potential. In order, the columns show the number of particles, the inverse power law energy, the
number of particles with coordination numbers 3–7, and the number of iterations required to reach the givenminimum averaged over the number of starting configurations.

N Inverse power law energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

4 2.2500000 4 0 0 0 0 0
5 4.2500000 2 3 0 0 0 300
6 6.7500000 0 6 0 0 0 300
7 10.2500000 0 5 2 0 0 15000000
8 14.3367911 0 4 4 0 0 1300
9 19.2528688 0 3 6 0 0 3900

10 25.0413597 0 2 8 0 0 3429
11 31.8347216 0 2 8 1 0 2650
12 39.0000000 0 0 12 0 0 667
13 47.7733090 0 1 10 2 0 7600
14 57.1212086 0 0 12 2 0 2358
15 67.4861847 0 0 12 3 0 6000
16 78.7726490 0 0 12 4 0 2478

78.8054346 0 0 12 4 0 2880
17 91.0473193 0 0 12 5 0 5180
18 104.3146853 0 2 8 8 0 4112
19 118.8255636 0 0 12 7 0 288300
20 133.9369786 0 0 12 8 0 5206
21 150.3251227 0 1 10 10 0 33650
22 167.6657856 0 0 12 10 0 4478

167.7622724 0 0 12 10 0 11200
23 186.4037129 0 0 12 11 0 3750
24 205.6584380 0 0 12 12 0 3300
25 226.5450773 0 0 12 13 0 81700
26 248.2671389 0 0 12 14 0 20141
27 270.7984042 0 0 12 15 0 4488
28 294.8784716 0 0 12 16 0 4175
29 320.2160318 0 0 12 17 0 12960
30 346.2636306 0 0 12 18 0 20123
31 373.5808690 0 0 12 19 0 2429
32 401.5000000 0 0 12 20 0 1340

402.4773719 0 0 12 20 0 8567
33 431.9318386 0 0 12 21 0 32986
34 462.7012364 0 0 12 22 0 13678
35 494.8164320 0 0 12 23 0 241107
36 527.9142566 0 0 12 24 0 353876
37 562.2556382 0 0 12 25 0 10450

562.2952168 0 0 12 25 0 29277
38 597.7394531 0 0 12 26 0 3675

597.7901988 0 0 12 26 0 7758
39 634.4153334 0 0 12 27 0 2687

634.6932924 0 0 12 27 0 55700
40 672.3093535 0 0 12 28 0 5362

672.5909921 0 0 12 28 0 399034
672.6569114 0 0 12 28 0 3600

41 711.5261515 0 0 12 29 0 2571
711.8931991 0 0 12 29 0 11067

42 751.8751968 0 0 12 30 0 2900
752.5328625 0 0 12 30 0 1218500

43 793.5218863 0 0 12 31 0 71970
44 836.0418318 0 0 12 32 0 26059
45 880.3579693 0 0 12 33 0 97467
46 926.0623438 0 0 12 34 0 2200

926.0698337 0 0 12 34 0 11000
926.0707424 0 0 12 34 0 9650
926.1074258 0 0 12 34 0 10700

47 972.8237449 0 0 12 35 0 11255
972.8393193 0 0 12 35 0 37003
972.8889969 0 0 12 35 0 193636
973.0094385 0 0 12 35 0 30900
973.3156444 0 0 12 35 0 11900

48 1019.8295806 0 0 12 36 0 8684
49 1069.5597398 0 0 12 37 0 5540
50 1119.5995065 0 0 12 38 0 5010
51 1171.3283814 0 0 12 39 0 11067

1172.0869779 0 0 12 39 0 6250
52 1224.4784561 0 0 12 40 0 5153

1224.4984399 0 0 12 40 0 9000
1224.5870561 0 0 12 40 0 9900
1224.6012659 0 0 12 40 0 46756

(continued on next page)
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Table 2 (continued)

N Inverse power law energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

53 1278.6522062 0 0 12 41 0 93346
1278.7144239 0 0 12 41 0 5675

54 1334.0848954 0 0 12 42 0 11407
1334.1009935 0 0 12 42 0 13200
1334.1442304 0 0 12 42 0 25250
1334.1673488 0 0 12 42 0 10916

55 1390.9691942 0 0 12 43 0 7107
1390.9854274 0 0 12 43 0 9832
1390.9959619 0 0 14 39 2 21104
1391.0779067 0 0 12 43 0 23420
1391.0786667 0 0 12 43 0 10232
1391.1428240 0 0 12 43 0 25800

56 1448.9542741 0 0 12 44 0 9118
1448.9605281 0 0 12 44 0 12146
1448.9750705 0 0 12 44 0 20715
1449.8392941 0 0 12 44 0 51700

57 1508.3688385 0 0 12 45 0 7816
1508.4277593 0 0 12 45 0 28550
1508.4322230 0 0 14 41 2 14223
1508.5853825 0 0 13 43 1 21193
1508.6314958 0 0 12 45 0 11388
1508.6578101 0 0 12 45 0 28150

58 1569.0699385 0 0 12 46 0 8300
1569.1051146 0 0 12 46 0 12700
1569.1064753 0 0 12 46 0 14957
1569.1135768 0 0 12 46 0 29078
1569.1243234 0 0 12 46 0 80969
1569.1654449 0 0 12 46 0 23150
1569.1846489 0 0 12 46 0 13329
1569.2582432 0 0 12 46 0 15525

59 1630.9096583 0 0 12 47 0 30045
1630.9107941 0 0 14 43 2 17790
1630.9806275 0 0 12 47 0 64542
1631.0331471 0 0 12 47 0 12955

60 1693.7946118 0 0 12 48 0 4880
1693.8310725 0 0 12 48 0 5352
1693.8823156 0 0 12 48 0 13064
1694.6789561 0 0 12 48 0 25300
1694.7700688 0 0 12 48 0 11900

61 1758.6971340 0 0 12 49 0 12349
1758.7607346 0 0 12 49 0 6331
1758.7927630 0 0 12 49 0 107310
1758.8850228 0 0 12 49 0 18029
1758.8982585 0 0 12 49 0 151200
1758.9516937 0 0 12 49 0 22900

62 1824.3469264 0 0 12 50 0 5486
1824.4602937 0 0 12 50 0 20173
1824.5469417 0 0 12 50 0 10292

63 1891.6323308 0 0 12 51 0 11507
64 1960.2816270 0 0 12 52 0 10681
65 2030.2336785 0 0 12 53 0 28226

Fig. 8. Schematic illustration of an analogous saddle point in two dimensions showing a narrow unstable direction. The path a→b→c is a simplified picture of the steps
that the optimization algorithm might take to escape the saddle point.
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Fig. 9. Number of localminimadiscovered for the Coulombpotential comparedwith results by Erber&Hockney [22] for the Coulombpotential. Note that the twonon-optimal
configurations for N = 39 and N = 58 have been excluded from the previous results. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. Number of configurations found using the local optimization routine for the inverse square law. Results are shown before and after removing non-optimal
configurations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3.2. Inverse square law 1/r2
Analogous results for the inverse square law, Eq. (1.6), are now presented. As per the discussion of different tolerance choices in

algorithms 1 and 2, we choose to use algorithm 1 with the tolerance δ1 and tol = 10−3 in Eq. (2.13).
The number of local minima is shown in Fig. 10. A total of 121 minima and 4 saddle points were found. A comprehensive list of the

local and global minima, the corresponding energies, and other geometric properties is given in Table 2. At the time of writing the authors
are not aware of any data for this potential and therefore no comparisons can be made. The number of starting configurations is shown in
Fig. 11.

The saddle points that arise for the inverse square law potential are also computationally difficult to avoid. In fact, the energy step and
the stopping condition for the 17-particle saddle point behave similar to that for the Coulomb potential shown in Fig. 7.

A normalized energy spectrum is plotted in Fig. 12. The two most closely spaced energies are the fourth and fifth lowest energies for
55 particles which differ by only 5 × 10−5%, similar to the Coulomb case. The particles in each of the two configurations have identical
coordination numbers, however the configurations can be seen to be different when one observes the scars.

3.3.3. Logarithmic potential
Local optimization for the logarithmic potential is more challenging than the previous potentials since the forces are long range. The

number of local minima is shown in Fig. 13 and the number of starting configurations in Fig. 14. We remark that the one configuration
found forN = 33was found to be a saddle point and hence nominimawere found for 33 particles in this run. This difficulty is due in part to
the high symmetry of the 32-particle configuration which admits only 1 starting configuration. A number of attempts were made to avoid
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Fig. 11. Number of non-redundant starting configurations resulting from algorithm 1 with tol = 10−3 for the inverse square law potential. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Normalized inverse square law energies for locally and globally optimal configurations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 13. Number of configurations found using the local optimization routine for the Logarithmic potential. Results are shown before and after removing non-optimal
configurations. Note that the missing 33-particle configuration has been included.
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Table 3
Comprehensive list of local and global minima for the logarithmic potential. In order, the columns show the number of particles, the logarithmic energy, the number of
particles with coordination numbers 3–7, and the number of iterations required to reach the given minimum averaged over the number of starting configurations.

N Logarithmic energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

4 −2.9424878 4 0 0 0 0 0
5 −4.4205072 2 3 0 0 0 300
6 −6.2383246 0 6 0 0 0 200
7 −8.1824779 0 5 2 0 0 15000000
8 −10.4280178 0 4 4 0 0 900
9 −12.8877527 0 3 6 0 0 3400

10 −15.5631234 0 2 8 0 0 2815
11 −18.4204797 0 2 8 1 0 2950
12 −21.6061452 0 0 12 0 0 534
13 −24.8667219 0 1 10 2 0 6700
14 −28.4078130 0 0 12 2 0 2472
15 −32.1478763 0 0 12 3 0 5900
16 −36.1061522 0 0 12 4 0 1600

−36.1027947 0 0 12 4 0 2600
17 −40.2730670 0 0 12 5 0 4880
18 −44.6502873 0 2 8 8 0 3400
19 −49.1998916 0 0 12 7 0 53534
20 −54.0111300 0 0 12 8 0 4137
21 −59.0009121 0 1 10 10 0 69875
22 −64.2060078 0 0 12 10 0 4523

−64.1988790 0 0 12 10 0 9600
23 −69.5783826 0 0 12 11 0 3584
24 −75.2139848 0 0 12 12 0 2686
25 −80.9975100 0 0 12 13 0 101267
26 −87.0094231 0 0 12 14 0 18775
27 −93.2519864 0 0 12 15 0 3567
28 −99.6586094 0 0 12 16 0 3750
29 −106.2545712 0 0 12 17 0 69950

−106.2544605 0 0 12 17 0 46000
30 −113.0892555 0 0 12 18 0 21042
31 −120.1103466 0 0 12 19 0 2015
32 −127.3788676 0 0 12 20 0 1724
33 −134.7478208 0 0 13 19 1 1000000
34 −142.3758523 0 0 12 22 0 15091
35 −150.1920585 0 0 12 23 0 15200

−150.1916099 0 0 12 23 0 20580
36 −158.2240684 0 0 12 24 0 162559
37 −166.4506975 0 0 12 25 0 19600

−166.4473062 0 0 12 25 0 40714
38 −174.8801972 0 0 12 26 0 3308

−174.8761457 0 0 12 26 0 8193
39 −183.5092257 0 0 12 27 0 2607

−183.4934373 0 0 12 27 0 63412
40 −192.3376899 0 0 12 28 0 3023

−192.3235723 0 0 12 28 0 49974
−192.3168507 0 0 12 28 0 4360

41 −201.3592066 0 0 12 29 0 2554
−201.3427393 0 0 12 29 0 10725

42 −210.5845116 0 0 12 30 0 3005
43 −220.0034771 0 0 12 31 0 188667
44 −229.6418015 0 0 12 32 0 27092
45 −239.4536983 0 0 12 33 0 33867
46 −249.4558479 0 0 12 34 0 3700

−249.4546504 0 0 12 34 0 13700
−249.4525407 0 0 12 34 0 14200

47 −259.6617599 0 0 12 35 0 9354
−259.6608278 0 0 12 35 0 55400
−259.6572394 0 0 12 35 0 92347
−259.6545257 0 0 12 35 0 9567
−259.6389655 0 0 12 35 0 102550

48 −270.1179500 0 0 12 36 0 6714
49 −280.7019031 0 0 12 37 0 5020
50 −291.5286007 0 0 12 38 0 4913
51 −302.5336735 0 0 12 39 0 8067

−302.5020271 0 0 14 35 2 8250
52 −313.7323719 0 0 12 40 0 5215

−313.7315714 0 0 12 40 0 7645
−313.7281773 0 0 12 40 0 10800

53 −325.1382347 0 0 12 41 0 126538

(continued on next page)
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Table 3 (continued)

N Logarithmic energy ci = 3 ci = 4 ci = 5 ci = 6 ci = 7 Average
iterations

−325.1361679 0 0 12 41 0 5546
54 −336.7454644 0 0 12 42 0 10520

−336.7439517 0 0 12 42 0 22100
−336.7429857 0 0 12 42 0 8308
−336.7428868 0 0 12 42 0 260034

55 −348.5417963 0 0 12 43 0 5409
−348.5405384 0 0 14 39 2 15373
−348.5400024 0 0 12 43 0 10500
−348.5379975 0 0 12 43 0 24216
−348.5379778 0 0 12 43 0 11263

56 −360.5458992 0 0 12 44 0 16896
−360.5456829 0 0 12 44 0 14628

57 −372.7412006 0 0 12 45 0 7990
−372.7307204 0 0 13 43 1 23150

58 −385.1328298 0 0 12 46 0 7384
−385.1306381 0 0 12 46 0 205915
−385.1304746 0 0 12 46 0 11813
−385.1297172 0 0 12 46 0 33560
−385.1269588 0 0 12 46 0 10595
−385.1265181 0 0 12 46 0 41034
−385.1017210 0 0 14 42 2 47100

59 −397.7281497 0 0 14 43 2 11457
−397.7274834 0 0 12 47 0 15606
−397.7261278 0 0 12 47 0 50472
−397.7249559 0 0 12 47 0 1805743
−397.7242154 0 0 12 47 0 15319

60 −410.5331628 0 0 12 48 0 4896
−410.5322566 0 0 12 48 0 5332
−410.5311780 0 0 12 48 0 27984
−410.4944688 0 0 12 48 0 23900

61 −423.5076360 0 0 12 49 0 12377
−423.5051974 0 0 12 49 0 6848
−423.5048303 0 0 12 49 0 295760

62 −436.7039792 0 0 12 50 0 5864
−436.6952127 0 0 12 50 0 10950

63 −450.0812392 0 0 12 51 0 11782
64 −463.6544330 0 0 12 52 0 21472
65 −477.4264261 0 0 12 53 0 24052

Fig. 14. Number of non-redundant starting configurations resulting from algorithm 1 with tol = 10−3 for the Logarithmic potential. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

this saddle point by adjusting the weight parameter β , however all attempts failed. A global minimumwas obtained by setting the weight
parameter to 0.4 and performing 106 iterations on the single starting configuration (ignoring the stopping condition). None of the other
parameters were changed. We remark that the saddle point is found after only 104 iterations but the global minimum requires around
5 × 105 iterations to reach. In the discussion and figures that follow, the 33-particle configuration refers to the configuration obtained
in this way, not the saddle point. A total of 107 minima (including the 33-particle global minimum) and 4 saddle points (including the
33-particle saddle point) were found (see Table 3).
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Fig. 15. Normalized inverse square law energies for locally and globally optimal configurations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 16. Difference between the globally optimal energies obtained by [24] and those obtained here. Two new global minima have been found, one at N = 19 and another
at N = 46.

Globally optimal energies have previously been found by [24] up to 9 significant digits. Fig. 16 shows the difference between these
energies and those obtained here up to the same precision. We note that two new global minima have been found, one for N = 19 and
another for N = 46. All 45 local minima given here are also new.

The normalized energy minima are shown in Fig. 15. Note that the logarithmic energies are negative and therefore the global minima
are larger in magnitude than the local minima. The two closest energy levels again occur at N = 55 between the fourth and fifth lowest
energies. The difference is around 6 × 10−6% but as with the other potentials they can be easily distinguished both visually with the scar
picture and with the algorithms from Section 2.2.

4. Discussion

An iterative systematic procedure to compute multiple locally and putative globally optimal spherical designs for pairwise potentials
has been presented. The proposed algorithm generates N-particle starting configurations from known (N −1)-particle optimal configura-
tions and performs amodified steepest-descent optimization to compute local and globalminima. Geometrically equivalent configurations
are identified and excluded using pairwise distances or total energy. Saddle points are excluded using a symbolic-numerical Maple-based
routine that computes the eigenvalues of the Hessian matrix.

Sample calculations were performed up to N = 65 for the Coulombic, logarithmic, and inverse square law potentials. The algorithm
reproducesmost, if not all, known putatively optimal configurations for the Coulombic and logarithmic potentials. Two new globalminima
and 45 new local minima were discovered for the logarithmic potential. The inverse square law has not previously been studied and thus
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all configurations for this potential are new. The number of starting configurations required is much fewer than is required for randomly
generated configurations.

The presented computational procedure is able to handle a wide class of pairwise potentials, and can be generalized to other kinds of
surfaces and interactions, in particular, cases involving interacting particles of non-equal ‘‘charges". It is planned to apply the algorithm
to the cases of more complicated potential functions, such as non-monotone pairwise potentials, as well as to the cases of non-spherical
domains in appropriate curvilinear coordinates (see, e.g., [34]).

Another important future work direction is the improvement of the optimization algorithm convergence near a saddle point, for
example, by implementing an eigenvector-following technique (cf. [23]).
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Appendix A. Program structure: local optimization algorithm

The local optimization algorithm implements a modified steepest descent algorithm as given in Eq. (2.9) to find a local minimum from
a given starting configuration. The program is implemented in C++ and consists of several files:

• main.cpp: Responsible for reading in the input arguments, beginning the algorithm, and writing the results to the output file. The
particles’ coordinates in the starting configuration are also initialized here.

• simulation.cpp, simulation.h: Defines a classwhosemember functions perform the iteration scheme described in Section 2.1.
• sph_vector.cpp, sph_vector.h: Defines a class containing member functions that define cartesian vectors and perform some

basic operations such as scaling and adding vectors.
• sph_vector_functions.cpp: A namespace defining support functions that compute force, energy, distances, etc.
• simulation.h, sph_vector.h, sph_vector_functions.h: Header files.
• The makefile.
• The executable.

The Windows executable is named trap_dyn_sys_xxxx.exewhere xxxx is used to abbreviate the pairwise potential used i.e. coul,
log, etc. The program accepts three input arguments via the command line and has two command line outputs. An output file is also
generatedwhich contains the configuration after the final iteration. See Table 4 for input and output descriptions. The following command-
line input executes the program for the Coulomb potential with a weight parameter of 0.5 (see Eq. (2.11)) using the starting configuration
specified in infilename and writing the optimal configuration to outfilename.

trap_dyn_sys_coul.exe infilename outfilename weight
The program should rarely be executed directly from the command line except in the case where debugging is required. The MATLAB

scripts deal with executing the optimization algorithm. Executing the program once will perform local optimization on the provided
starting configuration and produce an output file with the resulting optimal configuration.

Table 4
Descriptions of input arguments (in order) and outputs for the program implementing the local optimization routine.

Name Description

Inputs
infilename A string specifying the name of the input file containing the starting

configuration. The format is a single column consisting of all the polar
angles θi followed by all the azimuthal angles φi in the same column.

outfilename A string specifying the name of the output file to which the results are
printed. The format is identical to infilename.

weight A string specifying the parameter β in Eq. (2.11).

Outputs
– The first command-line output giving the energy after the last

iteration.
– The final command-line output specifying the maximum tangential

force (see Section 2.1)
– An output file containing the particle configuration after the final

iteration. The file name is given by outfilename and the format is
identical to infilename.

Appendix B. Program structure: the identification of different configurations

The twoalgorithms for identifying different configurations (see Section 2.2) are implemented inMATLAB and each requires the Statistics
Toolbox. Algorithms 1 and 2 implement the routines utilizing pairwise distances and energy respectively.

Algorithm 1 consists of two files:

• remove_redundant_dist.m: The function implementing algorithm 1. Requires the Statistics Toolbox.
• pairwise_distance.m: A support function that computes every pairwise distance between the pairs of particles

The input and output parameters for remove_redundant_dist.m are described in Table 5. The input cell_en_coord is formatted into k
rows and 3 ormore columnswhere k is the number of configurations to be compared. Only the second column contains data that is relevant
to the algorithm. Each cell in the second column contains an N × 5 matrix. In this matrix, the first and second columns contain the polar
and azimuthal angles respectively of the N particles and the final three columns contain the particles’ cartesian coordinates. Note that the
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Table 5
Descriptions of inputs and outputs for the functions programs implementing algorithms 1 and 2,
remove_redundant_xxxx.m.

Name Description

Inputs
cell_en_coord A cell array variable containing the configurations to be compared. The

array can contain other information that is relevant to the
configurations and will not be modified by the function.

max_tol The tolerance used in the clustering described in Section 2.2.
pow_array A vector containing the user-specified values of n in Eq. (2.14)

(remove_redundant_energy.m only).

Output really_different_configs A cell array identical to cell_en_coord but with the rows corresponding
to redundant configurations removed.

other cell columns can contain relevant information and will not be modified by the function with two exceptions: the column containing
the number of iterations and the column containing parent numbers. In general, these columns will contain entries that are different for
each configuration, even those that are geometrically equivalent. When the identical configurations are removed, the average number of
iterations is computed so that the output cell array contains the average number of iterations required to obtain the corresponding local
minimum. The parent numbers keep track of the (N − 1)-particle local minima that yield a given N-particle minimum after optimization.
Since multiple (N − 1)-particle local minima can yield the same N-particle minimum, the smallest parent number is used for the output
cell array.

Algorithm 2 consists of four files

• remove_redundant_energy.m Contains the implementation of the pairwise energy clustering.
• remove_redundant_coord.m Implements the clustering based on coordination number.
• get_coordination_all.m Computes the coordination number for each particle.
• pairwise_energy.m Calculates energy of a given configuration.

The input and output parameters for remove_redundant_energy.m and remove_redundant_coord.m are given in Table 5. The
usage of these functions is demonstrated within the main optimization script given in Appendix D.

Appendix C. Program structure: the starting configurations

The algorithm is implemented in MATLAB but not as a standalone function. It is part of a larger routine described in Section 3 and
shown in Appendix D within the main routine. There is one support function:

• compute_triangle_middles_D.m: Performs Delaunay Triangulation on the particle locations and computes the convex hull.
Returns the center of mass of each of the triangular facets that make up the convex hull.

Appendix D. Program structure: run examples

This section contains descriptions of the main routine and support functions used to produce the results in Section 3 for the Coulomb
potential. The required file structure is also described.

The following file structure is used.

• all_loc_min.m
• compute_triangle_middles_D.m
• coordination_numbers.m
• coul_energy.m
• eval_coul_energy.m
• get_coordination_all.m
• get_coordination5.m
• number_loc_min.m
• Opt_procedure.m
• pairwise_distance.m
• pairwise_energy.m
• plot_configuration.m
• point_coordinates.m
• read_data.m
• remove_redundant_coord.m
• remove_redundant_dist.m
• remove_redundant_energy.m
• run_dyn_sys.m
• trap_dyn_sys_coul.exe
• write_data.m
• C++Source (folder)

– All C++ files listed in Appendix A
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• input (folder)

– initialConfig_N4.dat

• Maple (folder)

– configFiles (folder)
– io (folder)
– extract_optimal_configs.m
– MinChecker.mpl
– MinChecker.mw
– run_min_checker.m
– write_maple_data.m

• output (folder)
• temp (folder)

The main script described in Section 3 is contained in Opt_procedure.m. The files under theMaple subfolder perform the removal of
saddle point configurations. The script that executes the Maple program described in Section 2.4 is extract_optimal_configs.m.

After executing Opt_procedure.m the output and temp folders will contain some files. The new file in the temp folder is simply a log
file containing the MATLAB command window output as a .txt file. The others will be stored in output and are files containing MATLAB
variables storing the result of the optimization after each N . Each of these files stores the results of all previous optimization up to that
N . For example a file called N065-loc_opt.mat will store a MATLAB variable containing all minima from N = 4 up to N = 65. There is flag
called keep_temp_fileswhich can be set to keep intermediate files thatwould normally be deletedwhich contain the starting configurations
as well as the raw text files resulting from the optimization algorithm. The initial and final values of N can be modified as well. To change
the final value of N , change the value of N_END to the desired value. The default starting value for N is 4 which can be modified by
commenting the section of code delimited by ‘‘load to start from N=4’’ and uncommenting the section of code immediately after. Then the
value of N_START should be changed to the desired value. Note that any starting value of N other than 4 requires an additional .mat file to
load the local minima for the chosen value of N_START. This file is automatically generated by the program after optimization for each N .
The option to change the starting value of N is most useful when one wishes to pause the computations and resume at a later time.

The potential can be changed by modifying the following files.

• coul_energy.m
• eval_coul_energy.m
• Opt_procedure.m
• trap_dyn_sys_coul.exe
• sph_vector_functions.cpp
• MinChecker.mpl
• MinChecker.mw

Modifying the first two functions is straightforward as they simply compute the energy for the potential of interest using (1.1). The
variable potential in Opt_procedure.m determines the name of the executable that performs the local optimization. For example, if
potential =’log’, then the program would call trap_dyn_sys_log.exe. Within Opt_procedure.m, one must also change function calls
to eval_coul_energy.m. The C++ program sph_vector_functions.cpp is adapted by modifying the methods named force and
energy which is straightforward. The C++ program must then be recompiled and one should change the name of the executable in the
Makefile. The calculation of the energy in MinChecker.mwmust be changed and exported to .mpl format.

The script given below is set up to run the implementation algorithm 1 in Section 3. To implement algorithm 2, some simple changes
must be made:

• Replace both function calls to remove_redundant_dist.m and replace with calls to remove_redundant_coord.m, include
The_comp_powers as the second input argument.

• Make any necessary changes to the variable the_tol. The values used here are given in Sections 3.2.1 and 3.2.2.
• (Optional) A variable called The_comp_powers which is n in Eq. (2.14) can be changed, however the value in the script below is the

one that was used here.

Changing between the tolerances δ1 and δ2 in Eq. (2.13) is done by editing remove_redundant_dist.m. There are two lines where
tol is computed (the variable is called the_tol), one simply selects either δ1 or δ2 by commenting/uncommenting the appropriate line.

The file initialConfig_N4.dat contains the coordinates of the 4-particle global minimum as a single column with the first four
entries being the θ-coordinates and the last four the φ-coordinates.

The following files which are also listed above are complementary functions and return useful data:

• all_loc_min.m
• coordination_numbers.m
• number_loc_min.m
• plot_configuration.m
• point_coordinates.m
• coul_energy
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They are straightforward to use and return data on the local minima such as the number of local minima, cartesian and spherical
coordinates, coordinationnumbers, and energies. The functionplot_configuration.mplots a visual representation of the configuration
which also shows the coordination numbers.

A listing of the main program for the Coulomb potential implementing algorithm 1 is given below.

close a l l
c learvars ;
clc
format long

formatdate = ’yyyy_mm_dd HH_MM’ ;
diary ( [ ’ output / _log ’ , datestr (now, formatdate ) , ’ . tx t ’ ] ) ; % log output

keep_temp_files = f a l s e ; %option to keep temporary input / output f i l e s f o r C prog . Note :
%enabl ing t h i s opt ion f o r l a rge computations w i l l generate a la rge number
%of f i l e s .
The_tol = 1 e 3 ; % <0; hence do automatic in ex t r a c t i ng redundant con f i g s !
The_comp_powers = [ 3 , 3 ] ; % [ 1 ] ; % f o r use with e x t r a c t _ r e a l l y _ d i f f e r e n t _ c o n f i g s . the vec tor o f powers , n , in the po t en t i a l
potent ia l = ’ coul ’ ; %po t en t i a l energy func t ion used f o r opt imizat ion Note :
% t h i s s t r i n g i s important f o r program dependencies and
%should match the name of the . exe l o c a l opt . program .
% i . e t rap_dyn_sys_ log_ t rack_ i t e r . exe ,
% t rap_dyn_sys_cou l_ t rack_ i t e r . exe , e t c .
%Format o f Leve l_Current : matr ; each row i s {N , E ,X , prev_conf ig , avg_ i ter , n5 } ;
% ∗ N= current number o f t raps ; (Same throughout a l l rows of Leve l_Current )
% ∗ E energy of current l o c a l minimum;
% ∗ X=[ theta phi x y z ] coords o f current l o c a l minimum
% ∗ prev_conf ig = number o f the " parent " (N 1 ) trap l o c a l min that t h i s N trap loc min i s coming from (1= g loba l min ;

2 next lowest energy ; e t c .
% ∗ avg_ i t e r = average number o f i t e r a t i o n s in the l o c a l opt .
% algori thm to achieve t h i s l o c a l minimum from prev . N 1 minima
% ∗ n5 = number o f po int s with coord number=5 in current l o c a l minimum

% % load to s t a r t from N=4
%
% X_START = read_data ( ’ input / i n i t i a l Con f i g _N4 . dat ’ ) ;
% N_START = s i z e ( X_START , 1 ) ;
% N_END=16; %number o f p a r t i c l e s to work up to .
% E_START = eval_coul_energy ( [ X_START ( : , 1 ) X_START ( : , 2 ) ] ) ; %evaluate s t a r t i n g energy
% [ n5this , coord5th i s ] = get_coord inat ion5 ( X_START ) ;
% Leve l_Current =[ {N_START , E_START , X_START , 1 , 0 , n5th i s } ] ;
%
% %format o f ALL_LEVELS : 1) N traps ; 2) A l l l o c opt con f i g s ; 3) M=# l o c a l minima ( found from 2) ) ;
% %4) # d i f f e r e n t t r i ang l e centre con f i g s fo l l owing from the M loc min ’ s , used to obtain the NEXT (N+1) l o c a l minima
% ALL_LEVELS={N_START , Leve l_Current , 1 , 0 } ;
% runtimes = [ ] ; %execut ion times f o r each l e v e l .
% %format : column 1) N, column 2) execut ion time from N to N+1
% %to N+1
% % load to s t a r t from N=4 , end

% % load to continue

N_START=16; %number o f p a r t i c l e s to s t a r t from
N_END=17; %number o f p a r t i c l e s to work up to

load ( [ ’ output /N ’ ,num2str (N_START , ’%03d ’ ) , ’ loc_opt .mat ’ ] ) ;
Level_Current=Level_Next ;

Lev_num_in_ALLLEV=find ( cell2mat (ALL_LEVELS ( : , 1 ) ) ==N_START) ;
Level_Current=ALL_LEVELS {Lev_num_in_ALLLEV , 2 } ;
% % load to continue

%de l e t e ( gcp ( ’ nocreate ’ ) ) ;
%parpool (4) ; %change number o f workers as des i r ed

for NN=1:N_END N_START %trap l e v e l s

% For ALL l o c a l minima in the current l e v e l : hor i z dimension of Leve l_Current
N_curr_ level_cof igs= size ( Level_Current , 1 ) ;

Level_Next= c e l l (1 ,3) ;

N_traps_this_ level =N_START+NN 1 ;

str1 =[ ’∗∗∗ Going from current leve l : N= ’ , num2str ( N_traps_this_ level ) , ’ to N+1= ’ ,num2str ( N_traps_this_ level +1) , ’
∗∗∗ ’ ] ;

disp ( s tr1 ) ;
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str1 =[ ’∗∗∗ ( including ’ , num2str ( N_curr_ level_cof igs ) , ’ l o c a l l y optimal conf igurat ion ( s ) ) . ∗∗∗ ’ ] ;
disp ( s tr1 ) ;

str1 =[ ’ ∗ Computing t r i ang le middles . . . ∗ ’ ] ;
disp ( s tr1 ) ;

al l_Nplus1_inserted_triang_middle_coords= c e l l (0 ,1) ; %has a l l N l e v e l con f i g s + a l l t h e i r t r i a n g l e middles

all_Nplus1_inserted_triang_coming_from= ce l l (0 ,1) ; %remember which con f i g i t i s a r i s i n g from!

for LevIdx =1: N_curr_ level_cof igs % l o c a l l y optimal con f i g s
%For each l o c a l l y optimal con f i gura t i on in current l e v e l :
% proceed with t r i angu l a t i on

N_curr=Level_Current { LevIdx , 1 } ; %=N_ th i s _ l e v e l
X_curr=Level_Current { LevIdx , 3 } ;
TRI_curr = compute_triangle_middles_D ( X_curr ) ;
N_TRI_curr= size ( TRI_curr , 1 ) ;

% i n i t va r i ab l e s
Al l_TRI_conf ig_curr= c e l l ( N_TRI_curr , 1 ) ;

% put con f i gura t i on #LevIdx and in s e r t ed t r i a ng l e middles in a c e l l
%array ; throw away redundant .

for i = 1:N_TRI_curr % t r i an g l e middles
Al l_TRI_conf ig_curr { i }=[ X_curr ; TRI_curr ( i , : ) ] ;
all_Nplus1_inserted_triang_coming_from =[ all_Nplus1_inserted_triang_coming_from ; LevIdx ] ;

TPh=[ Al l_TRI_conf ig_curr { i } ( : , 1 ) ’ , A l l_TRI_conf ig_curr { i } ( : , 2 ) ’ ] ;
end

all_Nplus1_inserted_triang_middle_coords = [ al l_Nplus1_inserted_triang_middle_coords ; { Al l_TRI_conf ig_curr { : } } ’ ] ;
%disp ( LevIdx ) ;

end
% rout ines f o r removing redundant confs expects a ce r t a in format and
%number o f columns so dummy values must be added
All_Tri_column = 1e20∗ones ( size ( al l_Nplus1_inserted_triang_middle_coords , 1 ) ,1 ) ; %dummy column

% Now remove redundant
cel l_en_coord_TRI_CurrLevel =[num2cell ( All_Tri_column ) , al l_Nplus1_inserted_triang_middle_coords , . . .

all_Nplus1_inserted_triang_coming_from , num2cell ( All_Tri_column ) , num2cell ( All_Tri_column ) ] ;

% ∗ s e l e c t algori thm fo r removing redundant con f i g s∗
%pairwise d i s tance s
cell_en_coord_TRI_CurrLevel_nonredundant=remove_redundant_dist ( cell_en_coord_TRI_CurrLevel , The_tol ) ;

% optimize these non redundant con f i g s with in s e r t ed t r i a n g l e middles

t i c
n_tri_nonredundant= size ( cell_en_coord_TRI_CurrLevel_nonredundant , 1 ) ;

str1 =[ ’ Performing optimizations for ’ , num2str ( n_tri_nonredundant ) , ’ sub conf igurat ions ( t r i ang le middles ) . . . ’
] ;

disp ( s tr1 ) ;

All_energies_Np1=1e20∗ones ( n_tri_nonredundant , 1 ) ;
All_config_Np1= c e l l ( n_tri_nonredundant , 1 ) ;
All_config_coming_from= ce l l ( n_tri_nonredundant , 1 ) ;
Al l_config_n5= c e l l ( n_tri_nonredundant , 1 ) ;

%p r ea l l o ca t e f o r s t o r i ng the number o f i t e r a t i o n s
i t e r _ t h i s _ l e v e l = c e l l ( n_tri_nonredundant , 1 ) ;
parfor i = 1: n_tri_nonredundant

% fo r i = 1: n_tri_nonredundant
X_tmp1 = cell_en_coord_TRI_CurrLevel_nonredundant { i , 2 } ;
i n F i l e = [ ’ temp/N ’ , num2str ( N_traps_this_ level +1 , ’%03d ’ ) , ’ ’ , num2str ( i , ’%04d ’ ) , ’ unopt . txt ’ ] ;
outF i le = [ ’ temp/N ’ , num2str ( N_traps_this_ level +1 , ’%03d ’ ) , ’ ’ , num2str ( i , ’%04d ’ ) , ’ opt . txt ’ ] ;
write_data (X_tmp1 , i n F i l e ) ;
weight = 0 .5 ;

%run l o c a l opt imizat ion
res = run_dyn_sys ( inF i l e , outFi le , weight , potent ia l ) ; % l o c a l opt imizat ion

i t e r _ t h i s _ l e v e l { i } = str2double ( res ) ;
X_tmp2opt = read_data ( outF i le ) ;
i f ~keep_temp_files

delete ( inF i l e , outF i le ) ;
end
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%evaluate pairwise po t en t i a l energy funt ion
newEnergy = eval_coul_energy ( [ X_tmp2opt ( : , 1 ) X_tmp2opt ( : , 2 ) ] ) ;

All_energies_Np1 ( i ) =newEnergy ;
All_config_Np1 { i }=X_tmp2opt ;
All_config_coming_from { i }= cell_en_coord_TRI_CurrLevel_nonredundant { i , 3 } ;

[ n5this , coord5this ] = get_coordination5 (X_tmp2opt ) ;
Al l_config_n5 { i }= n5this ;

end
runtimes = [ runtimes ; [ N_curr , toc ] ] ;
disp ( s t r ca t ( ’ Elapsed time : ’ ,num2str ( runtimes (end , 2 ) ) ) ) ;

cell_en_coord_Np1 =[num2cell ( All_energies_Np1 ) , . . .
All_config_Np1 , All_config_coming_from , i t e r _ th i s _ l eve l , Al l_config_n5 ] ;

cell_en_coord_Np1_sortd=sortrows ( cell_en_coord_Np1 , 1 ) ;

%now remove redundant with pairwise d i s tance s
cell_en_coord_Np1_nonredundant=remove_redundant_dist ( cell_en_coord_Np1_sortd , The_tol ) ;

All_TRI_Ns=N_traps_this_ leve l∗ones ( size ( cell_en_coord_Np1_nonredundant , 1 ) ,1 ) ;

Level_Next =[num2cell ( All_TRI_Ns ) , cell_en_coord_Np1_nonredundant ] ;

% so r t energ i e s
Level_Next=sortrows ( Level_Next , 2 ) ;

%Level_Next=cell_en_coord_Np1_nonredundant ;

for i i =1: size ( cell_en_coord_Np1_nonredundant , 1 )
Level_Next { i i ,1 }= N_traps_this_ level +1;

end

ALL_LEVELS {end , 4 }= n_tri_nonredundant ; %add in f o about how many d i f f t r i a n g l e middles from Prev (N trap ) con f i g gave r i s e
to t h i s N+1 trap con f i g

%update r e s u l t s
ALL_LEVELS=[ALL_LEVELS ; { N_traps_this_ level +1 , Level_Next , size ( cell_en_coord_Np1_nonredundant , 1 ) , 0 } ] ;

%done f o r t h i s N , save be fore going to next
save_F i le = [ ’ output /N ’ , num2str ( N_traps_this_ level +1 , ’%03d ’ ) , ’ loc_opt .mat ’ ] ;
save ( save_Fi le , ’ Level_Next ’ , ’ ALL_LEVELS ’ , ’ runtimes ’ ) ;

Level_Current=Level_Next ;

end

diary o f f ;
disp ( [ ’ . . . Finished computations s ta r t ing from N= ’ ,num2str (N_START) , . . .

’ up to N= ’ ,num2str (N_END) , ’ for ’ , potentia l , ’ . ’ ] ) ;

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cpc.2018.03.029.
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