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Abstract

A fully nonlinear model of Choi and Camassa [1] describing one-dimensional incom-
pressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water
approximation, is considered. An equivalence transformation is presented, leading to a spe-
cial dimensionless form of the system, involving a single dimensionless constant physical
parameter, as opposed to five parameters present in the original model. A first-order dimen-
sionless ordinary differential equation describing traveling wave solutions is analyzed. Several
multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid
model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling
waves; specific examples are given, and properties of the exact solutions are analyzed.

1 Introduction

Over the years, in order to describe specific physical settings, such as, for example, surface
and internal waves, multiple simplified models of the systems of Euler and Navier-Stokes fluid
dynamics equations have been derived, aiming at the reduction of the mathematical complex-
ity of the full set of equations, while retaining essential properties of phenomena of interest
and providing sufficient physical insight and computational precision. Basic examples of such
simplifications include dimension reductions, linearizations, and more general approximations
involving asymptotic relationships. Fundamental nonlinear partial differential equations (PDEs)
of mathematical physics, such as Burgers’, Korteweg-de Vries (KdV), nonlinear Schrödinger, and
Kadomtsev-Petviashvili (KP) equations, as well as many other important models like shallow
water equations, Camassa-Holm and Degasperis-Procesi (DP) equations, arise in the context of
fluid dynamics. Importantly, such reduced models were often found to exhibit rich mathemat-
ical structure, such as integrability, Hamiltonian structure, existence of infinite hierarchies of
conservation laws, and solutions in the form of single and/or multiple nonlinear solitary waves
(solitons, peakons, etc.). In many cases, exact solutions of reduced models correspond to, and in
fact closely describe, physical phenomena. Examples are provided by solitary wave solutions of
the KdV equation modeling long waves in shallow channels, periodic solutions of the KP equa-
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tion modeling crossing swell-type shallow water surface waves, and internal waves. Classical
nonlinear wave models are reviewed, for example, in [2–5].

In the present work, we consider a model of nonlinear internal waves in a stratified system
of two non-mixing fluids of different densities in a long horizontal channel within the gravity
field. This two-fluid model has been derived in [1] (see also [6,7]) through layer-averaging, under
an asymptotic “shallow water” assumption of a small ratio of the fluid channel depth to the
characteristic wavelength, yet without assuming that wave amplitudes are small compared to
the fluid layer depths. The model is one-dimensional, involving four dependent variables (fluid
interface displacement, pressure at the interface, and layer-average horizontal velocities) that
are functions of time and the spatial coordinate along the channel. The two-fluid equations
generalize the weakly nonlinear model of Choi et al [8]; they can also be viewed as a two-layer
version of the classical Green-Naghdi model [9, 10]. Further extensions have recently appeared
in the literature, including a ‘regularized’ two-fluid model [11], a mutli-layer model [12], and a
rough bottom model [13]. Questions related to the stability of the model at hand and related
models, in particular, the Kelvin-Helmholtz instability, are discussed in [11,14,15].

The original works [1, 6] dedicated to the two-fluid model at hand study the traveling wave
solution ansatz, leading to a curious nonlinear autonomous first-order ordinary differential equa-
tion (ODE) for the surface elevation, solved in terms of the squared first derivative, and having
a rational-polynomial right-hand side. This ODE is not equivalent to any one of the classical
autonomous first-order equations, and is different from ODEs that normally appear in similar
contexts in the literature, such as those with the cubic right-hand side, arising, for example, in
classical fluid models such as KdV or Su-Gardner equations (e.g., [16]). Implicit solutions of the
indicated ODE can be immediately written in terms of integrals, which was done in [6]. In [1], the
reduced traveling wave ODE has been shown to admit, for specific parameter relationships, kink-
and solitary wave-type traveling wave solutions, which were constructed numerically. In [17],
periodic traveling wave solutions were obtained as numerical solutions of the same reduced ODE.
No exact closed-form solutions of the two-fluid model have been reported to date.

The main goal of the current contribution is the derivation of exact closed-form solutions
of the two-fluid model, representing non-harmonic periodic traveling wave displacements of the
fluid interface, traveling solitary waves of depression and elevation, and kink and anti-kink
traveling waves. The paper is organized as follows.

In Section 2, the two-fluid equations are reviewed, together with important aspects of their
derivation, properties, and related models. Equivalence transformations are used to recast the
four equations, for any set of physical and channel parameters, in a general dimensionless form,
which involves only a single dimensionless parameter, namely, the fluid density ratio.

The dimensionless form of the two-fluid model, the traveling wave ansatz, and systematically
computed integrating factors are used in Section 3 to derive a dimensionless first-order nonlinear
ordinary differential equation governing all traveling wave-type solutions of the model, without
restrictions on the boundary conditions. The ODE describes the fluid interface elevation for a
more general class of solutions than those considered in [1], due to the lack of restrictions on
the infinity values of the average fluid velocities. The average velocity values and the pressure
at the interface are given by explicit formulas in terms of the fluid interface elevation. As a
consequence of the Galilei invariance of the model, the governing ODE is independent of the
traveling wave speed.
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In Sections 4 and 5, the reduced ODE is utilized to derive new families of exact closed-
form solutions of the full two-fluid PDE system. Unlike any previously reported solutions for
the considered model, the presented solutions are given by explicit formulae, and include two
families of periodic non-harmonic traveling wave solutions, involving elliptic functions. In the
first solution family, the fluid interface elevation is expressed in terms of squared elliptic cosine
of the traveling wave coordinate, in a way similar to the well-known exact solutions for surface
waves (e.g., [2,16]). The second family of the presented solutions is given by a rational expression
involving elliptic functions, and has not previously appeared in the literature in any related
context. Further, in the long-wave limit, the aforementioned solutions lead to families of exact
expressions describing solitary wave and kink/anti-kink (front-type) solutions of the two-fluid
model. Relationships between the solution parameters are investigated, and several examples
are considered in detail.

The paper is concluded with Section 7 offering a discussion of properties of the obtained
solutions in the context of the existing literature, and outlining related research directions.

The integrating factors and first integrals derived in Section 3 were computed using GeM

software package [18,19] through the direct conservation law construction method [20,21].

2 The Two-Fluid Model, its Properties, and the Dimensionless
Form

2.1 The Governing Equations

The three-dimensional Euler equations of incompressible inviscid fluid flow of constant density
ρ in the gravity field are given by

vt + (v · ∇)v = −1

ρ
grad p− g, divv = 0, (2.1)

where g = −gk is the gravitational acceleration, v = (u(t,x), v(t,x), w(t,x)) is the velocity
vector, and p(t,x) is the fluid pressure. Following Miyata [6], in [1], Choi and Camassa derived
a nonlinear (1+1)-dimensional two-fluid model for an approximate asymptotic description of
long waves at the fluid interface. We briefly overview the relevant notation and elements of the
derivation of the two-fluid equations. Consider an irrotational flow within two fluid layers of
depths h1, h2 and constant densities ρ1, ρ2 (Figure 1). The condition ρ1 < ρ2 is assumed for a
stable stratification.

The incompressible two-dimensional Euler equations in Cartesian coordinates in the (x, z)-
plane are given by

ux + wz = 0,

ut + uux + wuz = −px/ρ,

wt + uwx + wwz = −pz/ρ− g,

(2.2)

with the fluid velocity u = u(t, x, z)i + w(t, x, z)k. For the two-fluid model, the PDEs (2.2) are
written for both fluid layers. Denote the flow parameters by (u,w, p) = (ui, wi, pi), i = 1, 2 for
the upper and the lower fluid, respectively. For the two-fluid setup, z ∈ [−h2, h1]. In the case of
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Figure 1: The two-fluid model.

the static equilibrium situation, 0 ≤ z ≤ h1 corresponds to the first fluid layer, and −h2 ≤ z ≤ 0
to the second one. No-leak boundary conditions are prescribed at the top and bottom horizontal
walls of the channel:

w1(t, x, h1) = w2(t, x,−h2) = 0. (2.3)

Let ζ(t, x) denote the vertical displacement of the interface between the fluids. The boundary
conditions at the interface z = ζ(t, x) of the two fluids are the continuity of normal velocity and
pressure:

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2. (2.4)

In order to derive the model of interest, an assumption was made that the fluid depth be much
smaller than the characteristic length L:

hi/L = ε� 1. (2.5)

The continuity equation in (2.2) yields

wi/ui = O(hi/L) = O(ε)� 1.

For finite-amplitude waves, it is assumed that

ui/U0 = O(ζ/hi) = O(1), (2.6)

where U0 = (gH)1/2, H = h1 + h2, is the characteristic speed of the problem.

Denote the actual thicknesses of the fluid layers by

η1 = h1 − ζ, η2 = h2 + ζ. (2.7)

As shown in [1], the asymptotic computation for the Euler system (2.2) with (2.4) leads to a
(1+1)-dimensional PDE system for the unknown interface displacement ζ(t, x), the hydrostatic
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pressure at the interface P (t, x), and the layer-average (depth-mean) horizontal velocities v1(t, x),
v2(t, x) of the two fluids defined as

v1 =
1

η1

∫ h1

ζ
u1(t, x, z) dz, v2 =

1

η2

∫ ζ

−h2
u2(t, x, z) dz. (2.8)

(We note that in [1] and related papers, for the depth-mean velocities, the notation ūi was used
instead.) Finally, the equations, which we refer to as the two-fluid model, are given by

ηit + (ηivi)x = 0, (2.9a)

vit + vivix + gζx = −Px
ρi

+
1

3ηi

(
η3iGi

)
x

+O(ε4), (2.9b)

Gi ≡ vitx + vivixx − (vix)2,

i = 1, 2.

The first-order PDEs (2.9a) are exact; for the purposes of current work, the two remaining PDEs
(2.9b) will also be treated as exact, and the O(ε4) terms will be omitted.

2.2 Discussion of the two-fluid model (2.9)

1) Generalizations and related models. The two-fluid equations (2.9) were derived under the scal-
ing assumption (2.5), not assuming, for example, that the wave amplitudes are small compared
to the channel depth. If the latter assumption is imposed, the PDEs (2.9) lead to the Boussinesq
approximation, and further, the KdV equation for the case of unidirectional waves [1].

The two-fluid equations (2.9) can be viewed as the two-layer version of the Green-Naghdi
homogeneous layer equations [10] (see also [22]), or an extension the weakly nonlinear model
of [8]. The PDEs (2.9) were further generalized in [12] where a closed channel with N ≥ 2 fluid
layers was considered. A ‘regularized’ version of the two-fluid model where instead of layer-mean
horizontal velocities, velocity values at constant z have been used, has been suggested in [11].
A modification of the two-fluid system to account for an uneven bottom topography has been
suggested in [13]. The stability of solutions of the two-fluid model (2.9) and its extensions are
discussed, for example, in [1, 23], and references therein.

2) Asymptotic horizontal velocity estimates. The velocity components of a solution of the two-
fluid equations are the layer-averaged velocity values (2.8). Approximate values of actual veloc-
ities at a fixed value of z can be readily derived. For irrotational flows, the horizontal velocity
components can be written as [2]

ui(t, x, z) = u
(0)
i − 1

2(z ∓ hi)2u(0)i xx +O(ε4), i = 1, 2, (2.10)

where u
(0)
1 (t, x), u

(0)
2 (t, x) are the horizontal velocity values at the top and bottom channel

boundaries z = h1, z = −h2, respectively, and the second term is O(ε2) [1, 11]. Further, as
pointed out in [11], the layer-averaged velocities can be computed from (2.8), (2.10) to yield

vi = u
(0)
i − 1

6η
2
i u

(0)
i xx +O(ε4). (2.11)
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It is straightforward to show that to the same precision, a backward relationship holds (cf. [2]):

u
(0)
i = vi + 1

6η
2
i vi xx +O(ε4). (2.12)

One consequently has an asymptotic expression

ui(t, x, z) = vi +
(
1
6η

2
i − 1

2(z ∓ hi)2
)
vi xx +O(ε4) (2.13)

for the horizontal velocities ui(t, x, z) within the channel in terms of the mean velocity of the
corresponding fluid layer.

3) Boundary conditions in an infinite channel. A physically natural initial value problem for
the two-fluid system (2.9) would be, for example, one stated for x ∈ R, with appropriate initial
conditions, and boundary conditions at infinity:

v1(t, x)→ V −1 , v2(t, x)→ V −2 , ζ(t, x)→ ζ− as x→ −∞,
v1(t, x)→ V +

1 , v2(t, x)→ V +
2 , ζ(t, x)→ ζ+ as x→ +∞. (2.14)

For a kink-type solution, for example, one would have ζ− 6= ζ+, whereas for a solitary traveling
wave or a multi-soliton situation, ζ− = ζ+. Alternatively, for example, for the case of periodic
traveling wave solutions considered below, it may be appropriate to consider PDEs (2.9) in a
finite interval I ⊂ R with periodic boundary conditions.

As noted in [1], the exclusion of ζt from the first two PDEs (2.9a) leads to the formula

∂

∂x
(η1v1 + η2v2) = 0,

which, under zero boundary conditions at infinity, yields
v2
v1

= −η1
η2
. (2.15)

However, in the current manuscript, we do not make any a priori assumptions about boundary
conditions; in particular, the relationship (2.15) is not used.

An important set of boundary conditions for solitary wave solutions is specified by the re-
quirement of zero velocity shear at infinity, |v1−v2| → 0 as x→ ±∞. These boundary conditions
are discussed in Section 6 below.

4) Symmetry properties and traveling wave solutions. It is evident that the symmetry group of
the PDE system (2.9) includes translations in x and t, translation of the pressure by an arbitrary
function of time, and the Galilei group:

x∗ = x+ x0 + Ct, t∗ = t+ t0, (vi)
∗ = vi + C, P ∗ = P + P0(t),

x0, t0, C = const.
(2.16)

The Galilei transformation can be used, for example, to set V −1 = 0 in the boundary conditions
(2.14), without loss of generality.

The space-time translation symmetry of the two-fluid system leads to the existence of the
traveling wave solution ansatz, which is considered in detail in Section 3 below, and used for the
construction of several families of exact solutions of the CC model in the following Sections 4
and 5.

An important property related with the symmetry structure of the two-fluid model (2.9),
considered in Section 2.3, consists in an existence of equivalence transformations that lead to a
dimensionless form and the reduction of the number of parameters.
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2.3 The Dimensionless Form of the System; Parameter Reduction

The two-fluid system has been originally derived using dimensionless variables for the purpose
of asymptotic comparisons, but presented in the dimensional form (2.9) containing five constant
physical parameters

g, ρ1, ρ2, h1, h2. (2.17)

We now derive a different dimensionless form of the PDE system (2.9), with a goal of minimiza-
tion of the number of physical constants in the system. For this purpose, it is convenient to use
the total channel depth H = h1 + h2 as the length parameter, and the quantity

Ẑ =
h1 − ζ
H

≡ η1
H
, 0 < Ẑ < 1, (2.18)

as a dependent variable instead of ζ. The physical meaning of Ẑ is the relative depth of the top
fluid level. Define the further dimensionless variables x̂, t̂, v̂1, v̂2, P̂ by formulas

t = Qt t̂, x = Qh x̂,

P (t, x) = QP P̂ (t̂, x̂), vi(t, x) = Qiv̂i(t̂, x̂), i = 1, 2.
(2.19)

The respective constants Q can be chosen so that the governing equations in terms of variables
with hats will only involve a single parameter

S =
ρ1
ρ2
, 0 < S < 1. (2.20)

The scaling constants are given by

Qh = H, Qt =

√
H

g
, Q1 = Q2 =

√
gH, QP = ρ1gH, (2.21)

and lead to the dimensionless two-fluid system, given by

Ẑt̂ + (Ẑv̂1)x̂ = 0, (2.22a)

Ẑt̂ + (Ẑv̂2)x̂ − (v̂2)x̂ = 0, (2.22b)

v̂1t̂ + v̂1v̂1 x̂ − Ẑx̂ + P̂x̂ − ẐẐx̂Ĝ1 − 1
3 Ẑ

2Ĝ1 x̂ = 0, (2.22c)

v̂2t̂ + v̂2v̂2 x̂ − Ẑx̂ + SP̂x̂ − 1
3(1− Ẑ)2Ĝ2 x̂ + (1− Ẑ)Ẑx̂Ĝ2 = 0, (2.22d)

Ĝi ≡ v̂i tx + v̂iv̂i xx − (v̂i x̂)2, i = 1, 2.

The dimensionless form (2.22) is preferable to the original two-fluid equations (2.9), for example,
in analyses involving classifications, such as symmetry and conservation law classifications, and
stability analysis [21].

The ‘price’ paid for the reduction of the number of parameters is the loss of the apparent
likeness between the pairs of equations (2.9) for each fluid layer. This similarity is, however,
not perfect, in particular, due to the difference of signs in (2.9b). As a result, there is no ‘fluid
interchange’ equivalence transformation that would exchange, for example, (v1, ρ1) ↔ (v2, ρ2),
ζ ↔ −ζ, etc.

Since the two-fluid system (2.9) is mapped into the dimensionless form (2.22) for any set of
physical parameters (2.17), it follows that for the original system (2.9), there exist equivalence
transformations [21, 24] that freely modify the parameters (2.17), while preserving the density
ratio (2.20).
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3 The Traveling Wave Reduction

3.1 The traveling wave ansatz

We start with a brief derivation of an ordinary differential equation describing bidirectional
constant-speed traveling waves for the dimensionless two-fluid system (2.22). The existence of
this important ansatz follows from the invariance of the PDEs (2.22) under the point transfor-
mations (2.16), and consequently, under a combined point symmetry with the generator

X = ĉ
∂

∂x̂
+
∂

∂t̂
,

for an arbitrary dimensionless wave speed ĉ = const. The invariants of X are all dependent
variables of the problem, and the traveling wave coordinate

r̂ = r̂(t, x) = x̂+ x̂0 − ĉt̂ =
1

H
(x+ x0 − ct), (3.1)

x̂0 = const, x0 = Hx̂0, c = ĉ
√
gH. Traveling wave solutions of (2.22) are consequently sought

in the form Ẑ(t̂, x̂) = Ẑ(r̂), etc., leading to a system of four ODEs. This system can be reduced
to a single first-order ODE; our derivation proceeds somewhat differently from the one in [1].

We note that due to the Galilei invariance of the model PDEs (2.9), without loss of generality,
instead of using the full traveling wave ansatz, one may seek static solutions (ĉ = 0), and
then convert them to traveling waves using the Galilei transformations (2.16) with an arbitrary
traveling wave speed C. In the presentation below, however, we employ general formulas with
ĉ 6= 0.

Within the current section, we use primes to denote the derivatives of the dependent variables
Ẑ, v̂1, v̂2, P̂ with respect to r̂. The substitution of the traveling wave ansatz into the first two
ODEs of (2.22) yields

ĉẐ ′ = (Ẑv̂1)
′ = (Ẑv̂2)

′ − v̂′2. (3.2)

The general solution for the average velocity expressions is given by

v̂1 = ĉ+
C1

Ẑ
, v̂2 = ĉ+

C2

1− Ẑ
, (3.3)

where C1, C2 are arbitrary constants. The dimensionless velocity expressions (3.3) are regular
functions, since physically, 0 < Ẑ < 1. Substituting (3.3) into the ODE version of (2.22c), one
explicitly finds the pressure in terms of Ẑ:

P̂ = P̂0 + Ẑ − C2
1

6Ẑ2

(
2ẐẐ ′′ − (Ẑ ′)2 + 3

)
, P̂0 = const. (3.4)

Using (3.3), (3.4) in the final ODE following from (2.22d) yields a rather complicated third-order
ODE for Ẑ(r̂), which we denote by E4[Ẑ] = 0. To reduce its order, we seek conservation law
multipliers (integrating factors) of this equation in the form Λ = Λ(r̂, Ẑ), through the direct
construction method (see, e.g., [18, 19, 21, 25–27]). Two integrating factors are immediately
found, given by

Λ1 = Ẑ−3(1− Ẑ)−3, Λ2 = Ẑ−2(1− Ẑ)−3.
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The respective linearly independent first integrals satisfy

ΛiE4 =
d

dr̂
Φi[Ẑ], i = 1, 2,

and are given by

Φ1[Ẑ] = − 1

2Ẑ2(1− Ẑ)2

[
2Ẑ(1− Ẑ)(α1Ẑ + α0)Ẑ

′′

+
(
α0(1− 2Ẑ)− α1Ẑ

2
)(

3− (Ẑ ′)2
)

+ 6(1− S)Ẑ3(1− Ẑ)2
]

= K1 = const,

(3.5)

Φ2[Ẑ] = − 1

2Ẑ(1− Ẑ)2

[
2Ẑ(1− Ẑ)(α1Ẑ + α0)Ẑ

′′

+
(
α1Ẑ(1− 2Ẑ) + α0(2− 3Ẑ)

)(
3− (Ẑ ′)2

)
+ 3(1− S)Ẑ3(1− Ẑ)2

]

= K2 = const,

(3.6)

where the short-hand notation for constant combinations

α0 = C2
1S, α1 = C2

2 − α0 (3.7)

has been used. In (3.5), (3.6), K1 and K2 are arbitrary constants corresponding to the choice
of the boundary conditions of the original third-order ODE E4[Ẑ] = 0. The two first integrals
(3.5), (3.6) are now used to reduce the order of the ODE at hand by two. This can be done by
substitution of Ẑ ′′ from one expression into the other, or by noticing that the linear combination
Φ1[Ẑ]Ẑ−Φ2[Ẑ] does not involve Ẑ ′′. One arrives at the first-order ordinary differential equation

(Ẑ ′)2 =
A4Ẑ

4 +A3Ẑ
3 +A2Ẑ

2 +A1Ẑ +A0

α1Ẑ + α0

≡ Q(Ẑ), (3.8)

where

A4 = 3(1− S), A3 = 2K1 −A4,

A2 = −2(K1 +K2), A1 = 2K2 + 3α1, A0 = 3α0.
(3.9)

Overall, the family of ODEs (3.8) involves four independent constant parameters. For example,
one may choose

α0 ≥ 0, α1, A2, A3 ∈ R

as arbitrary constants. Then one has

A1 = 3α1 − (A2 +A3 +A4), (3.10)

and the only additional restriction following from (3.7) is given by α0 + α1 ≥ 0. The coefficient
A4 > 0 is physically defined by the fluid density ratio S according to (2.20). Further, for a
nontrivial flow in which the average velocities (3.3) are not constant at the same time, one
requires C1C2 6= 0, hence the denominator of (3.8) does not vanish.
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The physical solution additionally depends on the arbitrary constant parameter ĉ. In terms
of α0, α1, ĉ, S, the dimensionless velocities are given by

v̂1 = ĉ±
√
α0/S

Ẑ
, v̂2 = ĉ±

√
α0 + α1

1− Ẑ
, (3.11)

where the signs ± can be independently chosen in both velocity expressions to yield independent
solutions of the two-fluid model. Indeed, it is straightforward to verify that the model equations
(2.9) are satisfied for any velocity expressions arising from (3.3) with C1, C2 satisfying (3.7).

3.2 The ordinary differential equation (3.8)

The nonlinear autonomous ODE (3.8) with a rational right-hand side Q(Ẑ) does not belong
to any well-studied ODE class, and a closed form of its general solution is not known. A
dimensional ODE analogous to (3.8) with a rational right-hand side appeared in [6] for the case
of steady solitary waves. The zeroes of the numerator of the right-hand side were analyzed
in [1] using a diagram which established parameter ranges and appropriate initial conditions to
numerically produce solitary wave-type solution curves, which were argued to compare well with
experimental data of [28]. In [17, 29], further analysis led to finding appropriate conditions for
numerical kink and periodic traveling wave solutions. Numerical comparisons of [17] between the
solutions of the full Euler equations for the two-fluid channel, the two-fluid approximate model,
and the KdV equation demonstrated a reasonable agreement between the first two models, and
a relatively poor approximation provided by the latter.

An implicit general solution of (3.8) is readily written,

±
∫ Ẑ

Q(s)−1/2 ds = r − r0, (3.12)

(see, e.g., [6]), but is not useful for practical computations. A similar but different family of
nonlinear ODEs was studied in [30]; in that work, the integral analogous to the left-hand side of
(3.12) was evaluated in terms of general elliptic functions, the solution still remaining implicit.

It is easy to see the ODE (3.8) can be mapped into an equation with a polynomial right-
hand side, as follows. Firstly, if α1 6= 0, then without loss of generality, the transformation
Y (r̂) = (Ẑ − α0/α1)

−1 maps (3.8) to an ODE with the fifth-degree polynomial right-hand side

(Y ′)2 =
A0

α1
Y 5 +

A1

α1
Y 4 +

A2

α1
Y 3 +

A3

α1
Y 2 +

A4

α1
Y. (3.13)

Alternatively, if α1 = 0, the right-hand side of the ODE (3.8) has the fourth degree polynomial
form as it stands. Moreover, if there is a common root for the numerator and denominator of
the right-hand side of (3.8), the ODE (3.8) has a cubic polynomial right-hand side, and belongs
to a class of Jacobi-like equations; e.g., [2].

Multiple exact solutions of the ODE (3.8) can be constructed by inspection that do not
correspond to exact solutions of the two-fluid equations (2.9), since they lead to the violation
of physical conditions, such as the stratification requirements S < 1, the interface displacement
domain −h2 < ζ < h1, etc. In subsequent Sections 4 and 5, we derive exact, explicit, closed-form
expressions for several classes of solutions of the ODE (3.8), leading to physically meaningful
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solutions of the two-fluid equations (2.9). The solutions are expressed in terms of elementary
functions; they satisfy specific physically appropriate boundary conditions. Other exact solution
formulas involving elementary functions can be derived in a similar fashion, in particular, ones
that exhibit singular behaviour. We do not list them since they do not correspond to physical
motions of the two-fluid system.

4 Exact Closed-Form Cnoidal and Solitary Wave Solutions

Solitary and cnoidal waves are known to exist for the Korteweg-de Vries equation and a number
of other nonlinear models. We show that physical solutions of such kinds also arise from the
Camassa-Choi traveling wave ODE (3.8). The following theorem holds.

Theorem 4.1. The family of ODEs (3.8) admits exact solutions in the form

Ẑ(r̂) = B1 sn2(γ r̂, k) +B2, (4.1)

for arbitrary constants k,B1, B2. The remaining constants γ and α1,2 are given by one of the
two relationships (A.1), (A.2) listed in Appendix A.

Theorem 4.1 is proven by a direct substitution. One consequently has two families of exact
solutions of the dimensionless two-fluid system (2.22), each depending on the arbitrary constants
k,B1, B2, ĉ, as well as arbitrarily prescribed physical parameters S = ρ1/ρ2, h1, h2, g. The
dimensional solutions of the two-fluid system (2.9) are computed as follows. First, as per the
definition of Ẑ in (2.18) and the formula (4.1), one has

ζ(x, t) = h1 −HẐ = (h1 −HB2)−HB1 sn2(γ r̂(x, t), k). (4.2)

For both solution families, the pressure, according to (2.19), (2.21), (3.4), is given by

P (x, t) = ρ1gHP̂ (r̂(x, t)). (4.3)

The dimensional average velocities have different expressions for the two cases that arise.

Case 1. For the relationship (A.1) between the solution parameters, one has α0 +α1 = C2
2 = 0.

The mean-layer velocities computed from (3.3) and (2.19) are given by

v1(x, t) =
√
gH

(
ĉ±

√
α0/S

B1 sn2(γ r̂(x, t), k) +B2

)
, v2(x, t) = ĉ

√
gH = const, (4.4)

where different choices of the sign yield different admissible forms of v1(x, t).

Case 2. For the second parameter relationship (A.2), one has C1 = α0 = 0, C2 = ±√α1, the
solution has a constant upper fluid layer-average velocity v1(x, t) and two possible expressions
for v2(x, t):

v1(x, t) = ĉ
√
gH = const, v2(x, t) =

√
gH

(
ĉ±

√
α1

1−B1 sn2(γ r̂(x, t), k)−B2

)
. (4.5)

11



Remark 1. The constant value of a corresponding layer-average velocity vi = const in Cases 1
and 2 above implies, through the asymptotic expression (2.13), that the corresponding horizontal
fluid velocity component ui(t, x, z) = O(ε4). We note that in the papers [1, 17] where solitary
wave profiles were obtained numerically, the behaviour of the layer-average velocities was not
discussed.

Remark 2. In order to describe elevation or depression wave trains positioned directly above
or below the fluid interface ζ = 0, one can choose

B2 =
h1
H
−B1. (4.6a)

This leads to the interface displacement formula

ζ(x, t) = HB1 cn2(γ r̂(x, t), k). (4.6b)

4.1 Periodic cnoidal waves

Periodic cnoidal-type solutions of the two-fluid system (2.9) arise from the formula (4.1) for
0 < k < 1. The period of the elliptic sine sn(x, k) is given by

τ =
2π

M(1,
√

1− k2)
, (4.7)

where M(a, b) denotes the Gauss’ algebraic-geometric mean of a, b; for the function sn2(x, k),
the period equals τ/2. The dimensionless and the dimensional wavelength of the exact solutions
arising from (4.1) are consequently given by

λ̂ =
π

γM(1,
√

1− k2)
, λ = Hλ̂. (4.8)

For the cnoidal wave solutions (4.1), γ = γ(B1, B2, k) according to (A.1) or (A.2). In particular,
γ is independent of the fluid densities since it does not involve the density ratio S. Sample plots
of γ(B1, k) in Case 1 (formulas (A.1)), for the choice of B2 according to (4.6a), with h1/H = 2/5,
are given in Figure 2. The limit k → 1−, λ̂ → +∞ corresponds to the cnoidal-solitary wave
transition.

Sample plots of exact solutions ζ, v1, v2, P of the two-fluid system (2.9), as functions of
dimensionless spatial coordinate x/λ, are presented in Figure 3 for the parameter values

ĉ = 1, h1 = 0.4 m, h2 = 0.6 m, H = 1 m, g = 9.8 m/s2, x0 = t = 0, (4.9a)

and the density ratio

S = 0.9. (4.9b)

for a set of values of k, 0 < k < 1, and B1. The above choice of parameters ĉ, H corresponds
to the dimensional wave speed c = ĉ

√
gH ' 3.13 m/s. Formulas (4.3), (4.4), (4.5), (4.6b) are

used; in (4.4) and (4.5), positive signs are chosen. The four black curves in Figure 3 correspond
to Case 1 solutions plotted for B1 < 0, and represent periodic surface depression waves, with
constant layer-average horizontal speed of the lower fluid. The dashed blue curves for Case 2
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Figure 2: Dependence of the dimensionless wavelength λ̂ of the special cnoidal wave (4.6) on
the elliptic function parameter k, for h1/H = 2/5, for Case 1 (formulas (A.1)). From top to
bottom: curves for B1 = −0.4,−0.32,−0.24,−0.16,−0.08.

solutions are shown for B1 > 0, corresponding to surface elevations, and constant layer-average
horizontal speed values of the upper fluid. The plotted curves correspond to the values of (k,B1)
pairs and wavelengths given in Table 1. We note that despite of the same values of the amplitude
of the elliptic cosine, |B1|, the solutions curves for Case 1 and Case 2 are not symmetric. In
particular, the last, dimensional plot in Figure 3 shows that the wavelengths of the oscillations
are different; this is due to the difference of the expressions for α1 in Case 1 and Case 2, with
k,B1 taken the same for both cases.

Figure 4 shows sample flood diagrams for the horizontal velocities ui(t, x, z) computed
through the asymptotic formulas (2.13) for the cnoidal wave solutions (4.6b) (Cases 1 and
2).

Remark 3. Depending on the choice of free parameters listed in Theorem 4.1, exact solutions of
the CC model given by formulas (4.1), (4.3), (4.4), (4.5) may or may not satisfy the asymptotic
requirement ε � 1 (2.5). Choosing values of k closer to 1, one can unboundedly increase the
wavelength λ = L (4.8). Exact solutions of both small and large amplitude exist within the
indicated class. Some examples are provided in Table 1, which contains parameter values used
to produce Figures 3 and 4.
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Case k B1 λ, m ε = H/λ

1 0.9990 -0.0300 15.7055 0.0637
2 0.9990 0.0300 90.4410 0.0111

1 0.9900 -0.1000 6.8466 0.1461
2 0.9900 0.1000 22.0327 0.0454

1 0.9000 -0.1800 3.2188 0.3107
2 0.9000 0.1800 7.1438 0.1400

1 0.8000 -0.2500 1.9146 0.5223
2 0.8000 0.2500 3.1912 0.3134

1 0.9900 -0.2500 5.2898 0.1890

Table 1: Sample exact solution parameters and wavelengths for the exact periodic cnoidal wave
solutions (4.1).
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Figure 3: Dimensionless flow parameter curves for the periodic cnoidal wave exact solution
family (4.3), (4.4), (4.5), (4.6b). Case 1 curves are shown in solid black, with amplitudes B1 < 0
(Table 1, rows 1, 3, 5, 7); Case 2 curves are dashed blue, B1 > 0 (small to large amplitude,
Table 1, rows 2, 4, 6, 8). (a): the dimensionless interface displacement; (b) the dimensionless
pressure at the interface; (c), (d): the dimensionless average horizontal velocities of the upper
and the lower fluid. The actual (dimensional) spatial wavelengths of the presented solutions are
not equal; they are given in Table 1.
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(a)

(b)

Figure 4: Flood diagrams for the right-propagating cnoidal wave solutions (4.1), showing di-
mensionless values of the fluid interface displacement (white curve) and the (x, z)-dependent
horizontal velocities ui computed through the formulas (2.13). Figures are given for the solution
parameters (4.9) with (a) k = 0.99, B1 = −0.25 for Case 1, and (b) k = 0.99, B1 = 0.1 for the
Case 2 solution. The corresponding dimensional spatial wavelengths are given in Table 1.

4.2 Solitary waves

For both Case 1 and Case 2, solitary waves arise from the solution (4.1) for k = 1, since
sn2(y, 1) = tanh2 y = 1− cosh−2 y, and

Ẑ(r̂) = (B1 +B2)−B1 cosh−2(γ r̂). (4.10)

Solutions corresponding to Case 1 describe propagating fluid interface depression waves, whereas
Case 2 corresponds to the elevation waves. Coefficient formulas (A.1), (A.2) still hold when
k = 1. The solution family (4.3), (4.4), (4.5), (4.10) depends on the arbitrary parameters B1,
B2, ĉ, the physical parameters S = ρ1/ρ2, h1, h2, g, and on the sign choice in the average
velocity expressions (4.4), (4.5). It is natural to choose B2 according to the formula (4.6a):

ζ(x, t) = HB1 cosh−2(γ r̂(x, t)); (4.11)

then ζ → 0 as x→ ±∞.

In Figure 5, sample right-propagating depression and elevation-type solitary wave exact solu-
tion profiles are shown for channel/fluid parameters (4.9), for B1 = −0.05,−0.15,−0.25 (Case 1)
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and B1 = 0.05, 0.15, 0.25 (Case 2), and B2 given by (4.6a). In formulas (4.4) and (4.5), positive
signs are chosen.

As in the periodic case, for the solitary wave solution family, one of the layer-average velocity
values is constant. Sample plots of the approximate actual (non-average) horizontal velocity
values ui(t, x, z), calculated through the asymptotic formulas (2.13) in a moving frame, are
shown in flood diagrams in Figure 6.

x/H
-4 -3 -2 -1 0 1 2 3 4

ζ
/h

1

-1.5

-1

-0.5

0

0.5

1

(a)

x/H
-4 -3 -2 -1 0 1 2 3 4

P
/ρ

1
g
H

-0.2

-0.1

0

0.1

0.2

0.3

(b)

x/H
-4 -3 -2 -1 0 1 2 3 4

v 1
/√

g
H

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(c)

x/H
-4 -3 -2 -1 0 1 2 3 4

v 2
/√

g
H

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

(d)

Figure 5: Dimensionless flow parameter curves for the right-propagating solitary wave exact
solution families (4.3), (4.4), (4.5), (4.10). Case 1 curves are shown in solid black, with ampli-
tudes B1 = −0.05,−0.15,−0.25; Case 2 curves are dashed blue, for B1 = 0.05, 0.15, 0.25 (small
to large amplitude). In this figure, the dimensionless spatial coordinate is the one normalized
by the total channel depth: x/H. (a): dimensionless interface displacement; (b) dimensionless
pressure at the interface; (c), (d): dimensionless average horizontal velocities of the upper and
the lower fluid.

We are now interested in a relationship between the wave amplitude and the typical wave-
length of the exact solitary wave solutions (4.10). The argument of the hyperbolic cosine is
γ r̂ ∼ γx/H, hence one defines the dimensional wavelength as

λs =
H

γ(B1, B2)
. (4.12)

We use λ
(1)
s , λ

(2)
s to denote the wavelengths (4.12) arising for Cases 1 and 2 (formulas (A.1) and
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(a)

(b)

Figure 6: Flood diagrams for the solitary wave solutions (4.10), showing dimensionless values of
the fluid interface displacement (white curve) and the (x, z)-dependent horizontal velocities ui
computed through the formulas (2.13). Figures are given for the solution parameters (4.9) with
(a) B1 = −0.3, Case 1; and (b) B1 = 0.3, Case 2. The spatial coordinate is the one normalized
by the total fluid height: x/H.

(A.2)), respectively.

Denote the fluid depth ratio

R =
h1
h2
. (4.13)

In [28], for R = 5.09 and the density ratio S = 0.63, for solitary waves of elevation, experimental
measurements of the dimensionless wavelength λs/h2 versus the dimensionless wave amplitude
a/h2 were presented. We consider a similar wavelength-amplitude relationship for the exact
solitary wave solutions (4.11).

For the elevation-type solitary waves (Case 2, B1 > 0), let B2 be given by the formula (4.6a)
(or, in general, by B2 = const−B1), to yield amplitude-independent fluid depths. The elevation
amplitude is given by a = HB1. Using (A.2), it is straightforward to show that the dimensionless
wavelength-amplitude relationship is given by

λ̂(2)s = f(q) =
2√
3

√
1 + q−1, (4.14)
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were λ̂
(2)
s = λ

(2)
s /h2, q = a/h2. Interestingly, the relationship (4.14) is independent of both the

fluid density ratio S and the fluid depth ratio R.

For the depression-type exact solitary wave solutions (Case 1, B1 < 0), with the same choice

of B2, the amplitude is defined as a = H|B1|. The expression for λ
(1)
s /h2 as a function of a/h2

does not turn out elegant, in particular, it is dependent on the fluid depths. However, using

the upper fluid depth h1 for non-dimensionalization, and denoting λ̂
(1)
s = λs/h1, q

′ = a/h1, one

arrives at the same formula λ̂
(1)
s = f(q′) as (4.14). This is another manifestation of the partial

“fluid interchange” symmetry mentioned earlier.

In Figure 7, a plot of the wavelength-amplitude relationship (4.14) is shown.
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Figure 7: The dimensionless wavelength-amplitude relationship λ̂s = f(q) (4.14) for the exact
solitary wave solutions (4.10). Here q = a/h1 and a = H|B1| for depression waves (Case 1), and
q = a/h2, a = HB1 for elevation waves (Case 2).

5 The Second Family of Exact Closed-Form Solutions: Periodic
and Kink-type Waves

Further families of exact solutions of the two-fluid model arise from the traveling wave ODE
(3.8) as follows.

Theorem 5.1. The ODE (3.8) admits exact solutions in the form

Ẑ(r̂) =
B1

sn(γ r̂, k) +B2
, (5.1)

for arbitrary constants B1, B2, S. The remaining constants γ, k, and α1,2 are given by any one
of the three relationships (B.1), (B.2), (B.3) listed in Appendix B.

The above result is also verified by a direct substitution of (5.1) into the ODE (3.8). One
consequently has three families of exact solutions of the dimensionless two-fluid system (2.22),

18



each depending on three arbitrary constant parameters B1, B2, ĉ, as well as on the arbitrarily
prescribed channel/fluid parameters S = ρ1/ρ2, h1, h2 and the free fall acceleration g.

The solution families arising from (5.1) are regular and physically meaningful when |B2| > 1,
0 < Ẑ(r̂) < 1. The dimensional fluid interface position ζ(x, t) and the flow parameters v1(t, x),
v2(t, x), P (t, x) are found from (2.18), (2.19), (3.3), (3.4). They are essentially different from
those described in Section 4. Ranges of parameters exist that satisfy the asymptotic requirement
(2.5).

Case 1. For the coefficient relationship (B.1), α0 + α1 = C2 = 0, and hence, similarly to (4.4),
the mean velocity of the bottom layer v2(t, x) = const.

Case 2. For the relationship (B.2), α0 = C1 = 0, which yields the constant mean velocity of
the top layer, v1(t, x) = const (cf. (4.4)).

Case 3. For the solution family determined by (B.3), both mean horizontal velocities are non-
constant.

From the period formula (4.7), the dimensionless and the dimensional x-wavelength of exact
solutions arising from (5.1) are computed as follows:

λ̂ =
2π

γM(1,
√

1− k2)
, λ = Hλ̂. (5.2)

For the periodic solutions (5.1), the parameters γ and k are functions of B1, B2, and do not
depend on the density ratio S. In particular, for Case 3, one has k = 1/γ, and

λ̂(k) =
2πk

M(1,
√

1− k2)
, (5.3)

which is plotted in Figure 8. The limit k → 1−, λ̂→ +∞ corresponds to the cnoidal-kink wave
transition. Periodic and kink-type traveling wave exact solutions are discussed in Sections 5.1
and 5.2 below.

5.1 Periodic Solutions with Nonconstant Velocities

As a first illustration, we compute periodic solutions to the CC model (2.9) in the form (5.1),
(B.3), that is, in Case 3. Choose the physical constants

ĉ = 1, h1 = 3/7 m, h2 = 4/7 m, H = 1 m, g = 9.8 m/s2, x0 = t = 0, S = 0.9. (5.4)

B1 B2 k λ, m ε = H/λ

2.3995 5 0.9950 20.4057 0.0980
2.3881 5 0.8996 11.3073 0.1769
2.3037 5 0.6000 5.5882 0.3579

Table 2: Sample exact solution parameters and wavelengths for the exact periodic cnoidal wave
solutions (5.1).
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Figure 8: The dimensionless wavelength λ̂(k) (5.3) for the periodic traveling wave solutions
(5.1), Case 3.

Solution curves in Figure 9 are plotted for a set of arbitrary constants B1, B2 and the resulting
values of k and the spatial wavelength λ are given in Table 2. For the chosen sample parameters,
surface wave amplitudes are rather similar, therefore, a dimensional plot of the fluid interface
displacement is shown. The flood diagram in Figure 10 shows a snapshot the horizontal velocity
values ui(t, x, z) (2.13) for the parameters in the second row of Table 2. Figures 9, 10 were
produced under the positive sign choice for both average velocities in (3.11).

5.2 Kink/Anti-Kink Solutions of the Two-Fluid Equations

Since sn(y, 1) = tanh y, one readily constructs exact kink- and anti-kink-type solutions of the
two-fluid PDE system (2.9)

Ẑ(r̂) =
B1

tanh(γ r̂) +B2
(5.5)

by setting k = 1 in formulas (5.1), (B.1), (B.2), (B.3). Physically meaningful solutions exist,
satisfying, in particular, the condition 0 < Ẑ(r̂) < 1.

As an illustration, we consider Case 3, and the coefficient formulas (B.3) with k = 1. This
yields, in particular, the following relationships between an arbitrary constant B1 and other
solution parameters:

B2
2 − 2B1B2 − 1 = 0, γ2 =

3

B2
1

, α1 = 0,

α0 =
A4B

2
1(2B2 −B1)

12(6B2
1B2 + 3B1 + 2B2)

.

(5.6)

The relationships (5.6) lead to physical solutions (other relationships exist, in particular, other
admissible forms of B2, leading to singular solutions). From (5.6), B2 = B1±

√
B2

1 + 1; regular
solutions arise with the positive sign choice when B1 > 0 and the negative sign choice when B1 <
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Figure 9: Sample flow parameter curves for the exact periodic solutions (5.1) of the Camassa-
Choi model, Case 3, in the case of right-propagating waves. Curve colors blue, black, and red
correspond to the tree rows of Table 2. (a): dimensional interface displacement; (b) dimension-
less pressure at the interface; (c), (d): dimensionless average horizontal velocities of the upper
and the lower fluid.

0. The dimensional amplitude and the characteristic wavelength of the interface displacement
for the kink/anti-kink solutions are readily computed from (2.18), (5.5), (5.6), and are given by

a = H|B2|−1, λ =
H

γ
=
H|B1|√

3
. (5.7)

We note that for (5.6), in the limiting case B1 → ±∞, the larger root B2 ' 2B1, and
the kink/anti-kink solutions tend to a constant: Ẑ(r̂) → 1/2, corresponding to an equilibrium
situation in a channel with equal fluid layer thicknesses h1 = h2.

Plots of sample curves of right-propagating kink-type exact solutions, for dimensionless pa-
rameters given in Table 3 and physical constants

ĉ = 1, h1 = h2 = 0.5 m, H = 1 m, g = 9.8 m/s2, x0 = t = 0, S = 0.9, (5.8)

and the flood velocity plot corresponding to the second row of Table 3, are shown in Figures 11,
12, for the choice of the positive sign of γ in (5.6).
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Figure 10: A flood diagram for one period of a right-propagating cnoidal wave solution (5.1),
showing dimensionless values of the fluid interface displacement (white curve) and the (x, z)-
dependent horizontal velocities ui computed through the formulas (2.13), for the solution pa-
rameters in the second row of Table 2.

B1 B2 a λ ε = H/λ

2 4.2361 0.8660 1.1547 0.8660
5 10.0990 0.3464 2.8868 0.3464
15 30.0333 0.1155 8.6603 0.1155
-3 -6.1623 0.5774 1.7321 0.5774
-6 -12.0828 0.2887 3.4641 0.2887
-24 -48.0208 0.2887 13.8564 0.0722

Table 3: Sample exact solution parameters for the kink/anti-kink exact solutions (5.5).

6 Exact Traveling Wave Solutions and the Condition for No
Velocity Shear at Infinity

6.1 Solitary Wave Solutions

The work of Choi and Camassa [1], as well as many other papers on the subject, deals exclusively
with traveling wave-type finite fluid interface perturbations corresponding to the zero boundary
conditions at infinity:

ζ, |v1 − v2| → 0 as x→ ±∞. (6.1)

In general, the relationship between depth and density ratios can be defined using the ratio
parameter β,

R = β
√
S, (6.2)

with 0 < β < 1, β = 1, and β > 1 corresponding to subcritical, critical, and supercritical
cases, respectively. For solitary waves of the two-fluid model (2.9), as well as for the general
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Figure 11: Sample flow parameter curves for right-propagating kink/anti-kink solutions (5.5) of
the Camassa-Choi model. Black solid curves (large to small amplitude) correspond to the first
tree rows of Table 3 (kink solutions). Blue dashed curves (large to small amplitude) correspond
to the rows 4-6 of Table 3 (anti-kink solutions). (a): dimensional interface displacement; (b)
dimensionless pressure at the interface; (c), (d): dimensionless layer-average horizontal velocities
of the upper and the lower fluid.

Green-Naghdi systems, the critical depth ratio

Rc =

(
h1
h2

)

c

=

(
ρ1
ρ2

)1/2

=
√
S. (6.3)

plays an important role [1, 23]. In particular, for the two-fluid equations (2.9), at the critical
depth ratio, solitary wave-type solutions have been shown to not exist [1].

Under the no-shear conditions (6.1), the velocity formulas (3.3) in the traveling wave frame-
work yield

C1 = −ĉB2, C2 = ĉ(B2 − 1). (6.4)

The dimensionless average velocities and pressure are given by the expressions (3.3) and (3.4),
where the dimensionless displacement function Ẑ satisfies the ODE (3.8) with parameters re-
stricted by the condition (6.1).
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Figure 12: A flood diagram for the kink solution (5.5), showing dimensionless values of the fluid
interface displacement (white curve) and the (x, z)-dependent horizontal velocities ui computed
through the formulas (2.13) for the parameters listed in (6.7) and the second row of Table 3.

As discussed in Section 3.2, the general closed-form solution of the ODE (3.8) is not available;
in [1], solitary wave-type solution profiles satisfying (6.1) have been obtained by numerical
integration. A family of solitary wave exact solutions (4.10), (4.11) of the ODE (3.8) has been
derived in Section 4. A direct computation shows that there do exist ranges of parameters B1, B2

for which the exact solutions (4.10) of the ODE (3.8) satisfy the boundary conditions (6.1),
however, all such solutions fail to satisfy the boundedness condition (2.18), and are therefore
non-physical. It follows that the solutions numerically computed in [1] do not belong to the
exact solution family (4.10).

Specifically, for the exact solutions (4.10) with (4.6a), the dimensionless velocity shear values
at infinity |∆v̂|∞ = |v̂1 − v̂2|x=±∞ are readily computed. They are given by

|∆v̂|(1)∞ =

√
1− S
S

(
h1
H
−B1

)
, |∆v̂|(2)∞ =

√
(1− S)

(
h2
H

+B1

)
(6.5)

for the Cases 1 and 2, respectively. From the physical conditions −h2 < HB1 < h1 on the
interface displacement amplitude in (4.11), it follows that the velocity shear values at infinity
never vanish for the presented solitary wave-type solutions. In both cases, a specification of an
admissible velocity shear value prescribes the wave amplitude parameter B1 through (6.5).

6.2 Kink/Anti-Kink Solutions

We now examine the possibility for the members of the second family of exact traveling wave
solutions found in this paper (Section 5) to satisfy zero boundary conditions at infinity. In
particular, for the kink/anti-kink solutions (5.5), one can require that the velocity shear must
vanish at one of the infinities. Requiring |v1 − v2| → 0 as x → ∞ or x → −∞ in the exact
solution (5.1), one obtains, respectively, the following restrictions on the velocity constants:

C2 = C1

(
B2 ± 1

B1
− 1

)
. (6.6)

The two average horizontal fluid velocities will thus match, and through the Galilei transforma-
tion can be set to zero, either at x→∞ or x→ −∞.
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The most general form of solution parameter relationships, for which the exact solutions of the
two-fluid model based on the formula (5.5) satisfy the PDE system (2.9) and the zero velocity
shear condition at one of the infinities, is obtained through the substitution of the formulas
(2.18), (2.19), (3.3), (3.4), and (6.6) into the equations (2.9). For example, for no velocity shear
case at positive infinity, the following statement holds.

Proposition 6.1. The two-fluid model (2.9) admits exact solutions corresponding to the dimen-
sionless interface elevation formula (5.5) and satisfying the boundary condition |v1 − v2| → 0
as x → ∞ for the solution parameters B1, B2, C1, C2, γ satisfying the relationships listed in
Appendix C.

In the relationships, the wave speed ĉ, is arbitrary as usual, due to the Galilei invariance of
the model.

As an example, in Figure 13, we present a flood diagram corresponding to the exact solution
(5.5) with parameters (C.1), (C.2) (first sign choices) for the following choice of the physical
parameters:

ĉ = 1, R = 3, H = 1 m, g = 9.8 m/s2, x0 = t = 0, S = 0.6. (6.7)

Figure 13: A flood diagram for a sample kink solution (5.5) satisfying |v1 − v2| → 0 as x→∞.
The diagram shows the dimensionless values of the fluid interface displacement (white curve),
and the (x, z)-dependent horizontal velocities ui computed through the formulas (2.13).

7 Conclusions and Discussion

The two-fluid model (2.9) is a nonlinear (1+1)-dimensional asymptotic approximation of the
(2+1)-dimensional system of Euler equations and the interfacial conditions between two incom-
pressible stratified fluids of different depth and density in a horizontal channel; the asymptotic
assumption is the smallness of the fluid depth/characteristic length ratio. Mathematically, the
model is given by a system of four nonlinear partial differential equations for the unknown fluid
interface displacement, two layer-average horizontal velocities, and pressure. The PDE system
involves mixed space-time third-order derivatives; it is not a ‘normal’ system of equations in the
sense of [20].
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The two-fluid model (2.9) depends on five physical constitutive parameters (2.17). In Section
2.3, a new dimensionless form (2.22) of the model was derived, involving a single dimensionless
density ratio parameter (2.20). Due to the complexity of the nonlinear model, closed-form solu-
tions of generic initial-boundary value problems for the system (2.9) or (2.22) are not available.

The original two-fluid system and its dimensionless version (2.22) admit space- and time-
translation symmetries, allowing for a travelling wave solution ansatz, which was considered
in Section 3. With the help of systematically calculated integrating factors, the four PDEs in
this ansatz were reduced to an unusual single first-order nonlinear dimensionless ODE (3.8)
with a rational polynomial right-hand side. The ODE (3.8) describes bidirectional travelling
wave profiles of the fluid interface displacement; the layer-averaged velocities are consequently
computed though the formulas (3.11), and the pressure is found from (3.4). Neither the ODE
class (3.8) nor its equivalent form (3.13) have been extensively studied in literature. The implicit
general solution can be clearly written through an integral, as well as possibly a combination of
elliptic functions (Section 3.2), yet no formula for an explicit general solution is known to date.

In the current work, families of exact physically relevant traveling wave solutions of the
two-fluid model were presented, arising from special solutions of the ODE (3.8). These multi-
parameter families hold for wide ranges of physical fluid and channel parameters; they include
the elevation and depression solitary waves, kink/ani-kink, and periodic traveling waves. Given
by closed-form explicit expressions, the exact solutions elucidate some essential features of the
model.

In Section 4, a family of cnoidal wave-type solutions (4.1), depending on eight constant
parameters, was derived. The arbitrary parameters are the frequency parameter k, the wave
amplitude and displacement B1, B2, the traveling wave speed ĉ, the channel/fluid constants
S = ρ1/ρ2, h1, h2, and the free fall acceleration g. The family contains periodic solutions of an
arbitrary wavelength, as well as solitary wave-type solutions (4.10) corresponding to the infinite
wavelength limit. In particular, both depression and elevation waves arise, for wide ranges of
fluid density ratios S and channel depth parameters. All solutions are given by explicit formulae.
The wavelength (4.8) of the periodic cnoidal solutions depends on the wave shape parameters
k,B1, B2. For the solitary wave solution, the wavelength is a function of the amplitude, and is
determined by the expression (4.14); the amplitude exponentially decreases at infinity, matching
the behaviour of solitary wave solutions of [1]. For all exact solutions of Section 4, one of the
layer-average fluid velocities (v1 for elevation waves, and v2 for depression waves) has a constant
value.

A different family of exact closed-form periodic solutions of the two-fluid model (2.9), also
given by explicit expressions involving elliptic integrals, follows from solutions (5.1) to the ODE
(3.8) (Section 5, Theorem 5.1). The exact solutions involve seven free constant parameters. The
solution family includes examples of periodic solutions where neither of the layer-average fluid
velocities vanishes. In the infinite wavelength limit, this solution family yields exact kink/anti-
kink (front-type) solutions involving a hyperbolic tangent.

The exact explicit solutions found in the current contribution are given by relatively simple
expressions involving well-studied elliptic integrals. The correctness of the solutions was verified
explicitly by substitutions into the full two-fluid PDE system (2.9). Both solution families
describe left- and right-propagating waves, depending on the choice of the sign of the wave
speed ĉ. Additionally, there is a freedom in both families corresponding to independent choice
of the sign in velocity formulas (3.11). Our solutions generally compare well with semi-numerical
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ones presented in [1, 17].

Exact closed-form solutions considered in the current contribution were derived for x ∈
(−∞,∞) without the consideration of boundary condition, under only natural physical lim-
itations, in particular, the stable stratification assumption 0 < S < 1, physical bounds
−h2 < ζ < h1 of the fluid interface displacement, and boundedness of pressure and average
horizontal velocities. In particular, for the solitary wave-type and kink/anti-kink-type solutions
obtained above, an intrinsic feature is the presence of velocity shear at x → ±∞, as discussed
in Section 6. On the contrary, in the literature analyzing solitary traveling waves, it is common
to consider waves with no velocity shear, both for the two-fluid system and related models,
such as general Green-Naghdi systems [1, 23]. For such setup, an important role is played by
the critical depth ratio (6.3); in particular, for the fully nonlinear two-fluid equations (2.9), the
solitary waves computed in [1] were reported to not exist when the depth ratio is critical, and
to correspond to waves of elevation and depression for supercritical and subcritical depth ratios,
respectively.

The above restrictions do not apply for the exact solutions derived in the current paper. In
Section 6, it was shown that the presented exact solitary wave solutions do not satisfy the no
velocity shear condition for any parameter choice, and thus complement the set of solutions
previously studied in the literature. For the presented solutions, the critical depth ratio does
not play a significant role. In particular, for the solitary waves, the fluid interface elevation
(4.10) is independent of the depth ratio; both depression- and elevation-type solitons exist for
wide ranges of amplitude, frequency, and channel/fluid parameters. Consequently, our solitary
wave-type formulas do no apply for the amplitude-wavelength analysis (cf. [1], Figure 5). On
the other hand, exact kink/anti-kink solutions presented in the current work can chosen to have
a velocity shear nonzero at one infinite boundary but zero at the other (Section 6.2).

An interesting feature of the traveling wave solutions of Section 4 is the identically constant
value of the layer-average velocity one of the fluids. It is of interest to compare this finding
with experimental data, which would require new experiments, in particular, ones with nonzero
velocity shear far from the solitary wave. Even for the zero velocity shear boundary condition
case, the behaviour of layer-average velocities of solitary wave solutions were discussed neither
in the work [1, 17] nor in the experimental paper [28].

Exact closed-form solutions of a complicated nonlinear PDE model, presented in the current
work, form rich families involving free parameters and arbitrary physical constants; the solutions
are given by rather simple formulas, having a clear physical meaning. Due to their simplicity,
the solutions are expected to play the role of a natural testbed for various aspects of analysis of
the current and related two-fluid models, numerical code testing, and various extensions.

Future work directions and open questions include the stability study of the presented solu-
tions, in particular, in the view of the Kelvin-Helmholtz instability discussed in [11], and the
possibility of the extension of the results of this work to regularized two-fluid models (e.g., [11]),
including ones featuring nonzero surface tension [15] (see also [14]). Another work direction that
is planned to be published in a follow-up paper is a systematic derivation of local conservation
laws and symmetries of the two-fluid equations, and the comparison of the analytical properties
of the two-fluid model with those of the classical Green-Naghdi-type models, the usual Euler
equations, and other related models (cf. [27, 31,32]).

It is of interest to study the possibility of derivation of other forms of exact solutions of
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the nonlinear ODE (3.8), in particular, through the application of a semi-algorithmic simplest
equation method [33]; a related important question is the possibility of existence of multi-soliton
solutions for various two-fluid models.
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A Coefficient Formulas for Theorem 4.1

The formula (4.1) provides a solution of the ODE (3.8) with (3.9) when the ODE and solution
parameters are expressed in terms of B1, B2, k, S though the formulas

α0 = −α1 =
A4B2

3k2
(B1 +B2)(B1 +B2k

2),

γ2 =
A4B1

4k2α1
,

(A.1)
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or through the formulas

α0 = 0, α1 = − A4

3k2
(B2 − 1)(B1 +B2 − 1)

(
B1 + k2(B2 − 1)

)
,

γ2 =
A4B1

4k2α1
.

(A.2)

In (A.1), (A.2), the constants A4 and A1 are determined by (3.9) and (3.10), respectively.

B Coefficient Formulas for Theorem 5.1

The formula (5.1) yields a solution of the ODE (3.8) when the solution and the equation pa-
rameters γ, k, α0,1 are given in terms of the arbitrary constants B1, B2, S by

α0 = −α1 = − A4B
3
1

6B2(1−B2
2)
,

γ2 =
3B2

2

B2
1

, k2 =
(1− (B1 −B2)

2)

B2(2B1 −B2)(B2
1 + (B1 −B2)2) + (B1 −B2)2

,

(B.1)

or through the formulas

α0 = 0, α1 =
A4(2B2 −B1)(1− (B1 −B2)

2)

6B2(1−B2
2)

,

γ2 =
3B1B

2
2

(2B2 −B1)(1− (B1 −B2)2)
, k2 = B−22 ,

(B.2)

or through the formulas

α0 =
A4B

3
1

3(1−B2
2)

1− (B1 −B2)
2

B2(4B2
1 − 5B1B2 + 2B2

2)− 2B2 +B1
, α1 = 0,

γ2 =
3

B2
1

B2(2B1 −B2)(B
2
1 + (B1 −B2)

2) + (B1 −B2)
2

1− (B1 −B2)2
, k2 = γ−2.

(B.3)

In the expressions above, A4 and A1 are respectively determined by (3.9) and (3.10). Expres-
sions for the constants A2 and A3 are straightforward to obtain; they are not listed here due to
their complicated form and the lack of utility for writing down the physical solution components
of the CC equations (2.9).

C Coefficient Formulas for Proposition 6.1

The relationship of the kink-anti-kink solution parameters for the case of no velocity shear at
x→ +∞ is given in terms of the arbitrary constant S, for any value of the wave speed ĉ, by

C2 = C1

(
B2 + 1

B1
− 1

)
, (C.1)
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and the formulas

B1 = ∓ 2
√
S

1− S , B2 = −1±
√
S

1∓
√
S
, γ2 =

3

4

(1− S)2

S
, C2

1 =
1∓
√
S

(1±
√
S)3

, (C.2)

or through the formulas

B1 = ± 2
√
S

1 + S
, B2 =

−1 + S ± 2
√
S

1 +
√
S

, γ2 =
3

4

(1 + S)2

S
, C2

1 =
1

1− S . (C.3)

The plus or minus signs can be chosen independently.
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