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The entropy principle in the formulation of Müller and Liu is a common tool used in con- 

stitutive modelling for the development of restrictions on the unknown constitutive func- 

tions describing material properties of various physical continua. 

In the current work, a symbolic software implementation of the Liu algorithm, based on 

Maple software and the GeM package, is presented. The computational framework is used 

to algorithmically perform technically demanding symbolic computations related to the 

entropy principle, to simplify and reduce Liu identities, and ultimately to derive explicit 

formulas describing classes of constitutive functions that do not violate the entropy prin- 

ciple. Detailed physical examples are presented and discussed. 
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1. Introduction 

Entropy principles are used in continuum mechanics in order to investigate the material behavior. For a given model,

the universal balance laws, such as those for mass, momentum and energy, are commonly given by a system of partial

differential equations (PDEs). The specific material behavior is defined by a constitutive model , through the specification of

constitutive functions present in the system. While the set of balance equations holds for a wide class of physical settings,

for example, gases, ideal and non-ideal fluids, elastic and plastic solids, etc., the constitutive functions prescribe individual

material behavior. From the mathematical point of view, they provide closure conditions for the system of balance equa-

tions, so that its fields can be uniquely determined. For an overview of constitutive modelling in the context of continuum

mechanics, see, e.g., Hutter and Jöhnk’s extensive work [1] . 

The principles of constitutive modelling may vary depending on the application; they can be based on theoretical consid-

erations, experimental data, and/or heuristic assumptions. Fundamental theoretical principles for the formulation of material

models include the requirements of material objectivity , material symmetry and thermodynamic consistency . The first require-

ment determines that material behavior, and therefore the constitutive equations, must be independent of the observer,

that is, Galilei-invariant. The second rule points towards the fact that the material laws must also satisfy the symmetric

properties of a body, such as invariance under rotations, translations, etc. 

In this work, following the ideas of Müller [2,3] and Liu [4] , we focus on the third requirement, which demands that

the constitutive functions are restricted in such a way that an entropy principle holds for all solutions of the model, thus

are consistent with thermodynamics. The entropy principle is formulated in terms of an entropy inequality expressing the
∗ Corresponding author. 
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second law of thermodynamics (SL). The requirement that the entropy production inequality holds for every solution yields

a set of constraints on the model’s constitutive functions. Müller’s approach is based on the fact that the generalized en-

tropy inequality is linear with respect to a set of independent higher derivatives of field variables; the constraints arise as

coefficients of such derivatives set to zero. 

Multiple alternative approaches to constitutive modelling exist. For example, constitutive modelling approaches can also 

be based on the descriptions of material behavior by balance equations. For this, an additional class of fields is considered,

called the internal variables , accounting for an internal state of the material. Such variables represent the microstructure and

physical mechanisms within the body, and their evolution is described by respective balance equations. An example is given

by the volume fraction (e.g., [5] ), which accounts for the microstructure and the distribution of a granular material. In such

approaches, the entropy principle of Müller and Liu provides an additional useful insight into the possible interdependence

between those newly introduced internal variables and the general constitutive functions of a system. 

Another approach used in micromechanical modelling is based on scale differences. There, microscale models are used

to derive macroscale constitutive functions through the method of homogenization. This approach was employed, for exam-

ple, in [6,7] , to describe anistropic micropolar continua, i.e., structured solids, in the context of continuum mechanics, but

without a reference to the entropy principle. 

As there exist a wide range of definitions of entropy, there are also multiple entropy principles. With the Maximum

Entropy Principle , coming from statistical mechanics, the parameter distribution for problems, in particular, in gas dynamics,

can be derived. An example of an application of this principle to fluid dynamics is given in Ref. [8] , while its connection

with the Extended Thermodynamics for gases, established by Müller and Liu in [9] , is discussed in Ref. [10] . In the context of

continuum mechanics, it is important to mention the approach of Coleman and Noll [11] which provides an entropy principle

based on the Clausius–Duhem inequality. Wang and Hutter [12] pointed out, however, that for mixtures, for structured

continua and for polar continua like solids or liquid crystals, the entropy principle of Müller and Liu is to be favored. To

the present day, the entropy principle of Müller and Liu is applied in many different fields of modelling, with applications

ranging from chemical processes [13] to granular flows [14] . 

Liu [4] (also see [15] ) systematized Müller’s procedure, applying the method of Lagrange multipliers. Liu algorithm is

significantly more general, and can be applied to a wide range of models, without the requirement that external supply

terms be related. It can also be used for models that do not involve the physical entropy. In Section 2 , we review the details

of the problem of constitutive modelling based on entropy principles, and the main steps of Müller’s approach and the Liu

algorithm, illustrating them for a specific example of an anisotropic heat-conducting fluid. 

The Liu algorithm [4] is based on the following lemma, formulated for linear algebraic equations and a linear inequality

(see also [15] and [16] ). 

Lemma 1 (Liu) . Let z ∈ R 

p , and let M be a p × n real matrix. Consider a linear system MY + z = 0 of p equations on the com-

ponents of the unknown vector Y ∈ R 

n , with a non-empty solution set S. Let also μ ∈ R 

n , μ � = 0, and ζ ∈ R be given. Then the

following statements are equivalent: 

1. ∀ Y ∈ S , μT Y + ζ ≥ 0 ; 

2. ∃ λ ∈ R 

p such that ∀ Y ∈ R 

n , μT Y + ζ − λT (MY + z) ≥ 0 ; 

3. ∃ λ ∈ R 

p such that μ = M 

T λ, and ζ ≥λT z. 

As pointed out in [16] , Lemma 1 is related to the fundamental inequality lemma of Farkas and Minkowski. The latter

plays a key role in linear programming, and is in turn related to the general Hahn–Banach separation theorem. 

Lemma 1 has a flavor different from the Lagrange multiplier approach to constrained optimization of nonlinear functions.

In particular, both the equations and the inequality in the problem are linear. Moreover, the geometrical meaning of the

Lemma can be understood as follows: since the inequality F = μT Y + ζ ≥ 0 must hold for all points Y in the set defined by

MY + z = 0 , that set (a line, a hyperplane, etc.) must be, in a certain sense, parallel to isosurfaces F = const . 

The technical computations related to the execution of the Müller–Liu procedure can be time consuming, and equa-

tions that arise tend to be quite lengthy. While simplest examples can be carried out within minutes by an experienced

researcher, generally, the derivation of constraints on the constitutive functions can become error-prone, especially for com-

plicated settings, such as mixture models involving multiple phases and internal variables, governed by additional balance

equations, and/or having complex material behavior. One of the goals of the current paper is the application of modern

symbolic software to facilitate computations related to the Liu algorithm, in particular, lengthy chain rule differentiations,

computation of coefficients at higher-order derivatives, and efficient reduction and solution of overdetermined systems of

partial differential equations for the unknown constitutive functions. The computations are based on a symbolic package

GeM for Maple , developed in [17–19] for symmetry and conservation law computations. Significant similarities between

the nature of those problems and the algorithm of Liu, and the capabilities of GeM software to efficiently handle linear and

nonlinear PDEs, partial derivatives of field variables, and constitutive functions that may involve derivatives, make Maple
and GeM a natural computational platform choice. It should be noted that this kind of treatment can be transferred to other

applications in the context of constitutive modeling, for example to the aforementioned entropy principle of Coleman and

Noll. 
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The rest of the paper is organized as follows. In Section 2 , we review the main steps of the original Müller method and

the Liu algorithm involving Lagrange multipliers to review their suggested principles of constitutive modelling. A running

example of a model of a simple heat-conducting compressible anisotropic fluid ( Section 2.2 ) is used to illustrate the stages.

Section 3 outlines the main stages of the symbolic computation algorithm. Two examples of symbolic computations of

entropy principle constraints are subsequently considered: an elementary example of one-dimensional gas dynamics model

( Section 3.1 ), and a model of simple heat-conducting compressible anisotropic fluid ( Section 3.2 ). 

The paper is concluded with a discussion Section 4 containing remarks about theoretical and computational aspects of

entropy principles and research directions. 

2. The entropy principle of Müller and Liu for constitutive modelling 

2.1. The problem of constitutive modelling 

Consider the motion of a physical continuum within the domain � ∈ R 

n , n ≥ 1. Specific instances include but are not

limited to elastic media, ideal and non-ideal fluids, gases, and plasmas, as well as various kinds of mixtures, including those

that undergo interactions and chemical reactions. The independent variables of the model are given by the time t and the

spatial variables (commonly Cartesian coordinates) x = (x 1 , . . . , x n ) ∈ R 

n (see also Section 4 ). Depending on the application,

the spatial independent variables may be Eulerian or Lagrangian coordinates, the former choice being common in gas, fluid

and plasma dynamics, and the latter choice in solid mechanics. In one, two and three spatial dimensions, the Cartesian

spatial variables may be denoted, without confusion, by x , ( x , y ), and ( x , y , z ), respectively. 

The physical parameters describing the continuum depend on time and spatial coordinates; they are given by the fields

φ = (φ1 (t, x ) , . . . , φm 

(t, x )) , (2.1)

which are the dependent variables of the model. The evolution of these quantities is described by the PDEs 

�φ = 

{
�φ1 , �φ2 , .., �φm 

}
(2.2)

which include the balance equations and possibly additional constraints (such as, for example, the condition of a fluid being

irrotational, or a plasma being field-aligned, etc.). 

In addition to independent and dependent variables, mathematical models of continua commonly involve arbitrary con-

stitutive functions, which must be specified for any particular model through constitutive equations. Such equations provide

the mathematical closure of the governing equations, describing the material behavior of a specific medium within the gen-

eral class of materials whose dynamics obeys the balance equations �φ (2.2) . As remarked in Müller’s work [2] , constitutive

equations may be nonlocal in time, for example, they may depend on the history of the process. Similarly, constitutive

models may involve spatial integral or delay-type terms, etc. In the simplest, most commonly considered situations, the

constitutive functions ψ are given by local expressions 

ψ = ψ ( φC ) , (2.3)

depending on the set of variables φC that may include independent and dependent variables of the model, as well as possi-

bly the derivatives of the dependent variables. The choice of the constitutive class φC is determined by the specific physical

situation and the required material behavior. For example, the incorporation of temperature or density describes a mate-

rial that is dependent on the distribution of mass and thermal energy; if the constitutive class involves the gradients of

temperature or density, then the constitutive functions may depend on mass and thermal energy fluxes, etc. Furthermore,

quantities like the velocity or the strain tensor components present in the constitutive class account for the mechanical, pos-

sibly anisotropic, behavior. In particular, for fluids, the dependence of constitutive functions on the strain tensor is related

with viscous effects. 

The main problem of constitutive modelling consists in a description of classes of dependencies (2.3) , which affirm, or

do not contradict, certain physical, mathematical, or philosophical principles, as well as possibly the available experimental

data. The principles of constitutive modelling include: 

• Coordinate invariance, i.e., invariance with respect to coordinate transformations. This property is also referred to as the

principle of material objectivity ; see, e.g., [1] . It compromises first of all the choice of the variables for φC , which, in order

to be independent of the reference system, should not contain velocities, but only velocity differences. 

• Material symmetry (e.g., [1] ). 

• Physical postulates and simplifying assumptions of physical and mathematical nature. 

2.2. A Running example 

Throughout the current section, as a running example, we will use the model of a simple heat-conducting compressible

anisotropic fluid, following Müller [2] and Liu [4] . The main physical flow parameters are the density ρ = ρ(x, t) , the velocity

v = (v 1 (x, t) , v 2 (x, t) , v 3 (x, t)) , and the temperature θ = θ (x, t) . The internal energy per unit mass, and the entropy per unit

mass, are denoted ε = ε(x, t) and η = η(x, t) . The components of x = (x , x , x ) are the Cartesian coordinates within a
1 2 3 
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physical domain V ⊂ R 

3 . The field equations express the balance of mass, momentum and internal energy, and are given by

�ρ : 
∂ρ

∂t 
+ 

∂ρv i 
∂x i 

= 0 , (2.4a) 

�v 
i : ρD t v i −

∂T i j 

∂x j 
− ρg i = 0 , i = 1 . . . , 3 , (2.4b)

�ε : ρD t ε + 

∂q i 
∂x i 

− T i j 

∂v i 
∂x j 

= ρr, (2.4c) 

where ρr denotes the external energy supply density, and ρg i is the body force due to gravity. Where convenient, for the

sake of brevity, we will denote time and space partial derivatives by 

∂ρ

∂t 
= ∂ t ρ = ρt , 

∂ρ

∂x j 
= ∂ j ρ, 

etc., and use the Einstein summation convention where appropriate. The material derivative operator is given by 

D t = 

∂ 

∂t 
+ v j 

∂ 

∂x j 
. (2.5) 

In (2.4) , T i j = T i j (x, t) denotes the fluid stress tensor, and q i = q i (x, t) , i = 1 , . . . , n represent the components of the outgoing

energy flux q ( x , t ). For certain classes of models given by Eq. (2.4) , ρ , v and θ may play the role of dependent variables, and

ε, T ij , q i the role of constitutive functions. 

As a basis for the derivation of a set of mathematical constraints on admissible forms of the constitutive functions (2.3) of

the given problem, as it will be explained below, one considers an entropy inequality expressing the Second Law of Thermo-

dynamics (SL). For instance, for a medium described by the equations of motion and energy (2.4) , it may be written in the

local form 

�η : ρD t η + 

∂
i 

∂x i 
− ρs ≥ 0 , (2.6) 

where η = η(x, t) and s = s (x, t) denote respectively the entropy of the medium per unit mass, and the entropy supply (from

external sources) per unit mass, and 
 = (
1 (x, t) , . . . , 
n (x, t)) is the outgoing entropy flux vector. 

As remarked in [16] , in rational thermodynamics, a constitutive model (2.3) is considered flawed if there exists a solution

of the field equations �φ that violates the SL. Condition (2.6) , according to Müller [2] , has to be interpreted as a restriction

on the constitutive functions rather than as restriction on the processes that a body can possibly undergo. 

The local entropy inequality (2.6) is related with a global formulation of the SL as follows. Consider a material domain

V(t) moving with the fluid within the physical domain �. Suppose V(t) has a piecewise smooth boundary ∂ V(t) ; it is

defined by 

∂ V(t) = { X (x, t) | D t X (x, t) = 0 } , 
where X ( x , t ) are macroscopic fluid particle labels (i.e., material, or Lagrangian coordinates) of the boundary points. The rate

of change of the total entropy of the fluid in V(t) is given by 

d 

dt 

∫ 
V(t) 

ρη dV = 

∫ 
V(t) 

ρs dV −
∮ 
∂ V(t) 


 · dA + Q V (t) . (2.7) 

In (2.7) , Q V (t) denotes the additional rate of change of the entropy within the given volume due to all other physical effects

that influence the amount of order in the system. Then the local form of the entropy inequality (2.6) provides a sufficient

condition that for every material domain V(t) , the additional rate of change Q V (t) of the entropy is non-negative. 

The requirement of Müller’s principle is that the inequality (2.6) should hold for every admissible thermodynamic pro-

cess, i.e., for every solution ρ, v i , θ of (2.4) . This requirement yields restrictions on the forms of the constitutive functions

(2.3) of the problem. The specific entropy η and the entropy flux components 
i are regarded as additional unknown con-

stitutive functions. 

2.3. Müller’s approach 

In the context of continuum mechanics, Truesdell [20] proposed a set of heuristic postulates on the interdependence and

mathematical specification of the distinct phases within a mixture, known as mixture theory . In particular, it is assumed that

every point in space is simultaneously occupied by every phase, and that each phase is governed by the same balance laws

as the mixture, amended by additional terms that account for interchanges between the phases. Müller [2] , generalizing

the previous work of Coleman and Noll [11] , complemented these postulates by suggesting that for every process, i.e. the

solutions of the balance laws, the constitutive functions of such a mixture (and its constituents) are restricted by the need
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to obey the second law of thermodynamics. The latter was posed in terms of an entropy inequality , introduced in [21] ,

expressing the fact that the entropy production in the system is nonnegative. 

We now outline the main points of Müller [2] , in order to summarize his approach, and to compare with the more

general and systematic Müller-Liu algorithm that will follow. Please not that, for the sake of brevity, not mixtures but sin-

gle phase systems are considered in the following, although the entropy principle is capable of dealing with multi-phase

systems. For a recent example, see [14] . 

1. A mixture of substances involving several constituents is considered. 

2. The classical PDEs describing the dynamics of the mixture in Eulerian coordinates (balance of mass, momentum, and

internal energy, analogs of (2.4) ) are written for each constituent, and for the mixture as a whole. The momentum

equations involve the additional source term responsible for inter-species interactions; the energy supply term in the

energy equation (2.4c) includes a radiation part ρr R . 

3. An entropy production inequality is written, analogously to Eq. (2.6) accounting for the entropy advection, spatial fluxes,

and an external supply term. It is stated that physically relevant thermodynamic processes satisfy the entropy inequality.

4. The external entropy supply term in (2.6) is assumed to equal the external radiative energy supply divided by the tem-

perature: 

s = r R /θ . (2.8)

(Condition (2.8) holds exactly for perfect gases, and is not generally true for other substances.) 

5. The constitutive functions of the model, to be determined, include the energy and entropy densities (in terms of the

specific free energy function ψ) and energy and entropy fluxes (encoded in the flux vectors k i ). Additionally, the stress

tensor of the medium, the entropy and energy fluxes, and constituent mass production terms are also treated as un-

known constitutive functions. 

6. In the entropy production inequality, the external entropy supply term s is replaced by the terms of the energy bal-

ance equation (2.4c) using (2.8) . In the energy balance equation, in turn, the inter-species interaction term is substituted

through a similar term in the momentum balance equation. As a result, the entropy inequality becomes a linear combi-

nation involving essential parts of the energy and momentum equations. This form may be referred to as the extended

form of the entropy inequality . 

7. A form of constitutive functions, involving dependent variables of the problem and their specific partial derivatives, is

assumed, and simplified according to Noll’s principle of material objectivity. 

8. Several additional simplifying assumptions on the form of constitutive functions are made, including linear dependence

on certain higher derivatives of the dependent variables. 

9. The constitutive functions are substituted in the entropy inequality in its extended form. In the result, which is linear in

certain highest derivatives of the field variables, the corresponding terms are collected. 

0. Since the extended entropy production inequality is required to hold for all solutions of the dynamic balance equations,

the independent partial derivatives can assume any value. This allows one to set the corresponding coefficients to zero. 

1. One consequently obtains an underdetermined set of partial differential equations on the unknown constitutive functions,

providing restrictions on the previously posed forms of these constitutive functions. 

2.4. The Liu algorithm 

Müller’s procedure ( Section 2.3 ) has been extended first by the original author in [3] , and then by Liu [4,15] through the

consideration of a constrained entropy inequality and the use of Lagrange multipliers, leading to what is generally referred

to as the entropy principle of Müller and Liu , or the Liu algorithm . In this approach, external supply terms are neglected; it is

argued that they do not affect the material behavior. Instead of a sequence of substitutions that yields a linear combination

of source-free energy and momentum equations within the entropy inequality, the Müller-Liu procedure yields a similar

extended entropy inequality by adding to it a linear combination of the dynamic equations of the model. The application

of Liu’s lemma to the extended entropy inequality leads to the constraints on constitutive function forms. Even though

formulated for algebraic equations, Lemma 1 is traditionally used to analyze entropy-type inequalities, provided that the

model of interest is linear in some parametric derivatives . Since the subsequent work of Müller [3] is written in German,

for further information a reader may be referred to the work of Hutter [22] , which contains both a general overview of the

method and a comparison with other methods. 

The Liu algorithm can be utilized for models that do not necessarily have the “entropy” defined. Instead, one generally

considers an inequality formulated for a scalar, additive and objective thermodynamic constitutive quantity η, which we still

refer to as “entropy” below [16] . 

We now outline the main steps of the Liu algorithm, following the works of Liu [4,15] and Hausner & Kirchner [16] , and

illustrate them using the physical example of Section 2.2 . The notation of Section 2.1 is used. 

1. For a given physical model, define the fields of interest φ, and the dynamic PDEs �φ . In the running example, we have

the dependent variables 

φ = (ρ, v , θ ) , 

and the governing equations (2.4) with zero source terms ( g , r = 0 ). 
i 
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2. Define the entropy inequality �η . For our example, it is given by Eq. (2.6) with zero source terms ( s = 0 ). 

3. For each of the governing scalar PDEs �φ , define a scalar Lagrange multiplier �φ . Write down the extended entropy

inequality 

˜ �η : �η − �φ�φ ≥ 0 . (2.9) 

In the running example, ˜ �η is given by 

�η − �ρ�ρ − �v 
i 
�v 

i 
− �ε�ε

= ρ∂ t η + ρv i ∂ i η + ∂ i 
i 

−�ρ( ∂ t ρ + ∂ i (∂ρv i ) ) − �v 
i 

(
ρ ∂ t v i + ρv j ∂ j v i − ∂ j T i j 

)
−�ε

(
ρ ∂ t ε + ρv i ∂ i ε + ∂ i q i − T i j ∂ j v i 

)
≥ 0 . 

(2.10) 

4. Define the full set of constitutive functions ψ (2.3) of the model. This set includes the natural (physical) constitutive

functions, additional entropy-related constitutive functions (entropy density and fluxes), and the multipliers �φ . In the

example, following Sections 7.2, 7.3 of Ref. [15] , we let 

ψ = (ε, q i , T i j , η, 
i , �
ρ, �v 

i , �
ε) . (2.11)

5. Postulate the dependence (2.3) of the constitutive functions on the local variables, including certain field variables, as

well as, possibly, their derivatives, and/or independent variables. (Depending on the application, there may be a substan-

tial freedom of choice of the fields to be placed into ψ and φC .) In the running example, we choose a simplified ansatz

φC = (ρ, θ, ∂ i θ ) . (2.12) 

6. Substitute the chosen constitutive function forms (2.3) into the extended entropy inequality ˜ �η, carrying out the chain

rule of differentiation for every constitutive function: 

∂ψ 

∂t 
= 

∑ 

φC 

∂ψ 

∂φC 

∂φC 

∂t 
, 

∂ψ 

∂x i 
= 

∑ 

φC 

∂ψ 

∂φC 

∂φC 

∂x i 
. (2.13) 

Denote the obtained extended entropy inequality ˜ �
η
(1) 

. 

7. Observe that the extended entropy inequality ˜ �
η
(1) 

is linear with respect to a set of higher derivatives of the field vari-

ables φ. Take the widest set of such derivatives, excluding ones present in the constitutive dependencies φC . In the

running example, this set of “arbitrary elements” is given by 

Y = (∂ t ρ, ∂ i ρ, ∂ t v i , ∂ j v i , ∂ t θ, ∂ t,i θ, ∂ i, j θ ) . (2.14)

8. Collect terms at ˜ �
η
(1) 

with respect to the set Y of higher derivatives. In the example, one obtains 

˜ �η
(1) 

: 
∂ρ

∂t 

(
ρ

∂η

∂ρ
− ρ�ε ∂ε

∂ρ
− �ρ

)

+ 

∂ρ

∂x i 

(
ρv i 

∂η

∂ρ
− �ερv i 

∂ε

∂ρ
− �ε ∂q i 

∂ρ
+ �v 

j 

∂T i j 

∂ρ
+ 

∂
i 

∂ρ
− �ρv i 

)
−∂v i 

∂t 
�v 

i 
ρ + 

∂v i 
∂x j 

(
�εT i j − �v 

i 
v j ρ − �ρρδi j 

)
+ ρ

∂θ

∂t 

(
∂η

∂θ
− �ε ∂ε

∂θ

)

+ ρ
∂ 2 θ

∂ t ∂ x i 

(
∂η

∂(∂ i θ ) 
− �ε ∂ε

∂(∂ i θ ) 

)

+ 

∂ 2 θ

∂ x i ∂ x j 

(
ρv j 

∂η

∂(∂ i θ ) 
− �ερv j 

∂ε

∂(∂ i θ ) 
− �ε

∂q j 

∂(∂ i θ ) 
+ �v 

k 

∂T jk 

∂(∂ i θ ) 
+ 

∂
 j 

∂(∂ i θ ) 

)

+ 

∂θ
(

ρv i 
∂η − �ερv i 

∂ε − �ε ∂q i + �v 
j 

∂T i j + 

∂
i 

)
≥ 0 . 

(2.15) 
∂x i ∂θ ∂θ ∂θ ∂θ ∂θ
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9. In the spirit of Lemma 1 , set to zero coefficients at the arbitrary elements Y . Obtain a set of Liu identities and a residual

inequality . For the running example, the Liu identities are given by 

ρ
∂η

∂ρ
− ρ�ε ∂ε

∂ρ
− �ρ = 0 , 

ρv i 
∂η

∂ρ
− �ερv i 

∂ε

∂ρ
− �ε ∂q i 

∂ρ
+ �v 

j 

∂T i j 

∂ρ
+ 

∂
i 

∂ρ
− �ρv i = 0 ;

�v 
i 
ρ = 0 , �εT i j − �v 

i 
v j ρ − �ρρδi j = 0 , 

∂η

∂θ
− �ε ∂ε

∂θ
= 0 , 

∂η

∂(∂ i θ ) 
− �ε ∂ε

∂(∂ i θ ) 
= 0 , 

ρv j 
∂η

∂(∂ i θ ) 
− �ερv j 

∂ε

∂(∂ i θ ) 
− �ε

∂q j 

∂(∂ i θ ) 
+ �v 

k 

∂T jk 

∂(∂ i θ ) 
+ 

∂
 j 

∂(∂ i θ ) 
= 0 , 

(2.16)

and the residual inequality is given by 

∂θ

∂x i 

(
ρv i 

∂η

∂θ
− �ερv i 

∂ε

∂θ
− �ε ∂q i 

∂θ
+ �v 

j 

∂T i j 

∂θ
+ 

∂
i 

∂θ

)
≥ 0 . (2.17)

0. Solve the Liu identities to obtain constraints on the constitutive functions. For the example of a simple fluid, one obtains

a set of constraints consistent with those presented in Ref. [15] . In particular, one has the following. 

• The requirement of isotropy: T i j = −pδi j , where p = p(ρ, θ ) is the thermodynamic pressure. 

• The vanishing Lagrange multipliers �v 
i 

= 0 . 

• The classical form of the energy Lagrange multiplier �ε = F (θ ) . In particular, in many works including that of Müller,

one has �ε = 1 /θ (see, e.g., [23] ). 

• The form of the entropy mass density: 

η = 

F 2 

F ′ 
∫ 

p 

ρ2 
dρ + K, (2.18)

where F = F (θ ) , K = K(θ ) are arbitrary functions, following from the total differential that is derived from (2.16) . 

• The form of the energy mass density: 

ε = 

1 

F ′ 
∫ 

(pF ) θ
ρ2 

dρ. (2.19)

• Relation between energy and entropy fluxes, which depend on the components of the temperature gradient. 

Here the functions p , F , K are arbitrary functions of the indicated arguments. 

3. Constitutive modelling using the Liu algorithm: A symbolic implementation 

The symbolic software package GeM for Maple contains routines for the computation of local conservation laws and

Lie point and higher-order local symmetries of ordinary and partial differential equations and ODE/PDE systems [17,19,24] .

The package can also be efficiently used for other computations that involve symbolic manipulation of differential equations

(DE), their differential consequences, and related expressions involving independent and dependent variables, partial deriva-

tives, arbitrary (constitutive) parameters, and arbitrary (constitutive) functions. In particular, equivalence transformations of

DE families can be studied [25] . In conjunction with the standard Maple routine rifsimp for the reduction of overdeter-

mined systems and case splitting, the GeM package has been successfully applied to many previously intractable problems

of symmetry and conservation law analysis and classification. 

The routines of the GeM package employ a computationally efficient representation of differential equations, through the

conversion of the dependent variables and their derivatives to Maple symbols instead of functions or expressions. Then

the chain rule for differential functions of dependent variables is simplified to standard partial derivative operations. For

example, the Maple representation of a function F ( x , y , z ) and its partial derivative by F x in GeM routines is respectively F

and Fx . Consequently, for constitutive functions that depend on functions (dependent variables and their derivatives), the

differentiations significantly sim plify. For exam ple, if H = H ( F (x, y, z) , F x (x, y, z) ) , then in the GeM representation, one has

H = H (F , Fx ) . Its partial derivative, for example, the one with respect to y , is represented as 

∂ 

∂y 
H ( F (x, y, z) , F x (x, y, z) ) = diff (H (F , Fx ) , F ) ∗ Fy + diff (H (F , Fx ) , Fx ) ∗ Fxy , 

and does not involve functions of functions. For details of data representation, routines, options, methods, and examples, see

[17,19,25] . 

In the current work, the GeM package is uses to automate computations within the Liu algorithm ( Section 2.4 ). The

sequence of steps is outlined below, starting from an elementary example of one-dimensional gas flow, and continuing with

the heat-conducting compressible anisotropic fluid (see Section 2.2 ). 
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3.1. Computational example 1: One-dimensional gas dynamics equations 

As a first example, we consider a one-dimensional compressible gas flow, following the notation of Grossman [26] . The

continuity, momentum, and energy equations, in the absence of external supply terms (i.e., under the adiabatic process

assumption), are given by 

�ρ : ρt + (ρv ) x = 0 , (3.1a) 

�v : ρ(v t + vv x ) + p x = 0 , (3.1b) 

�ε : ρ(εt + v εx ) + pv x = 0 , (3.1c) 

where ρ( t , x ) is the mass density, v (t, x ) is the scalar spatial velocity in the x -direction, p ( t , x ) is the scalar pressure, and

ε( t , x ) is the thermal energy per unit mass. An additional “internal” dependent variable not explicitly present in the model

is the temperature θ ( t , x ). 

Model (3.1) involves four unknowns and three equations, and thus requires a closure, a constitutive relation, which will

be determined through an entropy principle. For simplicity, let us assume the gas to be calorically perfect, see [26] , that is,

satisfying 

ε = C v θ, 

where C v = const is the specific heat at constant volume. We note the relation 

C v = 

i 

2 

˜ R = 

˜ R 

γ − 1 

, 

where i is the number of degrees of freedom of a gas molecule, γ = (i + 2) /i is the adiabatic exponent, ˜ R = R/M is the

specific gas constant, and R and M are the universal gas constant and the molar mass of the gas. 

Following the Liu algorithm, we define the entropy inequality by 

�η : ρ(ηt + v ηx ) ≥ 0 , (3.2) 

with η( t , x ) denoting the mass density of entropy. As seen in [26,27] , for an inviscid non-heat-conducting substance, the

external supply terms in the energy and entropy equations are proportional, so it is valid to assume that they vanish simul-

taneously. The extended entropy inequality is given by 

˜ �η : �η − �ρ�ρ − �v �v − �ε�ε ≥ 0 . (3.3) 

We let ρ , v , ε play the role of dependent variables, and allow the five constitutive functions (2.11) 

ψ = (p, η, �ρ, �v , �ε) (3.4) 

to depend on 

φC = (ρ, ε) . (3.5) 

The computations following the Liu algorithm proceed as follows. 

Step A. Initialize. Clear the variables. Initialize the package. 

restart : 

read ( “d : / gem32 1 2 . mpl ”) : (3.6) 

Step B. Declare variables and constitutive functions. 

ind:=t,x; dep:=R(ind), V(ind), E(ind); 

Constit_Dependence:=R(ind), E(ind); 

Constit_F:=P(Constit_Dependence), S(Constit_Dependence), 

LR(Constit_Dependence), LV(Constit_Dependence), 

LE(Constit_Dependence) ; 

gem_decl_vars(indeps=[ind], deps=[dep], freefunc=[Constit_F]); 

Here we used the Maple notation ρ = R , p = P , v = V , ε = E , η = S for the fields, and �ρ = LR �v = LV , �ε = LE for the

Lagrange multipliers. It is our common convention to use small letters for independent variables and capitals for dependent

variables and constitutive functions. 

Step C. Declare the model equations. PDEs (3.1) are defined as follows. 
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Pi_Rho:=diff(R(t, x), t) + diff(R(t, x)*V(t, x), x) = 0; 

Pi_V:=R(t, x)*(diff(V(t, x), t) + V(t, x)*diff(V(t, x), x) 

+ diff(P(Constit_Dependence),x)= 0; 

Pi_E:=R(t, x)*(diff(E(t, x), t) + V(t, x)*diff(E(t, x), x) 

+ P(Constit_Dependence)*diff(V(t, x),x)= 0; 

gem_decl_eqs([Pi_Rho, Pi_V, Pi_E]); 

The last command declares the given PDEs in terms of Maple symbols. The symbolic representation of the left-hand

sides of the PDEs (without “= 0 ”) is stored in the internal variables GEM_ALL_EQ_AN ; they can be extracted as follows: 

Eq_R_Symb:=GEM_ALL_EQ_AN[1]; 

Eq_U_Symb:=GEM_ALL_EQ_AN[2]; 

Eq_E_Symb:=GEM_ALL_EQ_AN[3]; 

For example, the density equation has the form Eq _ R _ Symb = Rt + R ∗ Vx + Rx ∗ V , with all derivatives of dependent vari-

ables replaced by Maple symbols. 

Step D. The entropy inequality; the extended entropy inequality. The left-hand side of the entropy inequality (3.2) is defined

as 

Pi_S:= R(ind)*diff(S(Constit_Dependence), t) 

+ R(ind)*V(ind)*diff(S(Constit_Dependence), x) 

+ diff(Phi1(Constit_Dependence),x); 

It is subsequently converted into a Maple expression using the GeM command 

Eq_S_Symb:=gem_analyze(Pi_S); 

The left-hand side of the extended entropy inequality (3.3) is obtained: 

Entropy_Inequality:= Eq_S_Symb - LR(R, E)* Eq_R_Symb 

- LV(R, E)* Eq_U_Symb - LE(R, E)* Eq_E_Symb; 

this expression is linear in terms of the higher derivatives 

Y = (ρt , ρx , v t , v x , εt , εx ) , 

which are not parts of the constitutive dependence φC (3.5) . 

Step E. Obtain a system of constraints. According to the Liu’s lemma, one now sets to zero coefficients at elements of Y ,

and obtains a split set of constraints, and a residual entropy inequality. 

The independent terms in the extended entropy inequality can be collected as follows: 

Y:= [ Rt, Rx, Vt, Vx, Et, Ex ]; 

collect(Entropy_Inequality, Y); 

the output is 

((diff(S(R, E), R))*R-LR(R, E))*Rt 

+((diff(S(R, E), R))*R*V-LR(R, E)*V-LV(R, E)*(diff(P(R, E), R)))*Rx 

-LV(R, E)*Vt*R+(-LV(R, E)*R*V-LR(R, E)*R-LE(R, E)*P(R, E))*Vx 

+((diff(S(R, E), E))*R-LE(R, E)*R)*Et 

+((diff(S(R, E), E))*R*V-LE(R, E)*R*V-LV(R, E)*(diff(P(R, E), E)))*Ex 

The collect step is not necessary – it simply formats the extended entropy inequality as a sum of terms proportional

to the elements of Y . Moreover, one observes that the residual entropy inequality is zero, since every term in the output

above is proportional to an arbitrary element contained in Y . 

The actual split set of constraints (Liu identities) is obtained by setting to zero the coefficients of the elements of Y , as

follows: 
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coeffs_constraints:=[coeffs(Entropy_Inequality, Y)]; 

 

 

 

 

 

 

 

 

 

 

 

 

The six corresponding constraints are given by 

ρ�ρ + ρv �v + p�ε = 0 ; ρv 
∂η

∂ε
− �v ∂ p 

∂ε
− ρv �ε = 0 ;

ρ
∂η

∂ρ
− �ρ = 0 ; v 

(
ρ

∂η

∂ρ
− �ρ

)
− �v ∂ p 

∂ρ
= 0 ;

ρ�v = 0 ; ρ

(
∂η

∂ε
− �ε

)
= 0 . 

Step F. Rif-simplify the constraints. At this optional step, one can use the Maple rifsimp routine for the Gröbner basis-

based reduction of the overdetermined linear system of determining equations obtained at the previous step. 

all_f := [P(R, E), S(R, E), LR(R, E), LV(R, E), LE(R, E)]; 

simplified_eqs := DEtools[rifsimp](coeffs_constraints, all_f, mindim = 1); 

This step is particularly important for large systems of constraint equations, since through the elimination of the redun-

dancy, it leads to a significant simplification and reduction of the number of PDEs in the set of constraints. The output of

rifsimp is a Maple table. The simplified constraints are stored in simplified \ _eqs[Solved] . 
When used with mindim = 1 option, the rifsimp routine determines the dimension of solution space without solv-

ing the DEs: simplified \ _eqs[dimension] . The infinity value corresponds to the presence of arbitrary functions. An-

other option, casesplit , may be also useful in specific settings, when the most general situation needs to be avoided

(such as in the case of an a priori vanishing constitutive function, etc.; see [17,19,24] and Maple help for details). 

In our case, the rifsimp output simplified \ _eqs[Solved] contains a simple set of constraints 

�v = 0 , 
∂η

∂ρ
= 

�ρ

ρ
, 

∂�ε

∂ρ
= 

1 

ρ

∂�ρ

∂ε
, 

∂η

∂ε
= �ε, p = −ρ

�ρ

�ε
. (3.7) 

Step G. Solve the Liu identities. PDEs (3.7) can be readily solved by hand, or using the built-in Maple PDE solver: 

pdsolve(simplified_eqs[Solved],all_f); 

The resulting solution is given by 

�ρ(ρ, ε) = ρ

∫ 
F ρ dε + G (ρ) , �v (ρ, ε) = 0 , �ε(ρ, ε) = F (ρ, ε) , 

p(ρ, ε) = −ρ
�ρ

�ε
, η = 

∫ 
F d ε + 

∫ 
G 

ρ
d ρ, 

(3.8) 

where F ( ρ , ε) and G ( ρ) are arbitrary functions. Alternatively, one may treat p = p(ρ, ε) as an arbitrary function, and express

the restrictions on η and the multipliers in its terms. Solution (3.8) is in agreement with Müller and Ruggeri [27] . Moreover,

PDEs (3.7) yield a well-known formula 

p = −ρ2 ηρ

ηε
. (3.9) 

It is easy to verify that indeed, for any η( ρ , ε) satisfying (3.9) , the original entropy inequality �η (3.2) vanishes identically

as long as (3.1a), (3.1c) are satisfied, that is, on all solutions of the given model. This is consistent with the initial assumption

of the adiabaticity of the flow: the entropy of the system is conserved due to the absence of external energy and entropy

supply terms. 

As a special case, consider an ideal (thermally perfect) gas; then one has 

p = ρ ˜ R θ, η = C v ln (ρ1 −γ θ ) . (3.10) 

This yields a particular case of the solution (3.8) , given by 

p(ρ, ε) = (γ − 1) ρε, η(ρ, ε) = C v ln 

(
ε

C v ργ −1 

)
, 

�ρ(ρ, ε) = − ˜ R , �v (ρ, ε) = 0 , �ε(ρ, ε) = 

C v 

ε
= 

1 

θ
. 

In particular, the form of �ε is a well-known result, which commonly arises in constitutive modelling with Lagrange multi-

pliers. 
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3.2. Computational example 2: Heat-conducting anisotropic fluid 

We now apply the same symbolic algorithm to the running example of a two-dimensional ( n = 2 ) simple heat-conducting

compressible anisotropic fluid ( Section 2.2 ). The computations presented here are the ones that lead to the formulas dis-

cussed above in Section 2.4 . 

Step A. Initialize. The initialization proceeds using (3.6) . 

Step B. Declare variables and constitutive functions. 

ind:=t,x,y; dep:=R(ind), U(ind), V(ind), W(ind); 

gem_decl_vars(indeps=[ind], deps=[dep]); 

The independent variables are given by t , x 1 = x , x 2 = y ; the physical fields are the density ρ = R , the velocity in the

x -direction u = U , the velocity in the y -direction v = V , and the temperature θ = W . Unlike the previous example, here the

temperature is considered a field, while the internal energy ε is treated as a constitutive function. The constitutive depen-

dence φC and the constitutive functions ψ are defined according to Eqs. (2.11) and (2.12) , using the commands 

Constit_Dependence:=R(ind),W(ind),diff(W(ind),x),diff(W(ind),y); 

Constit_F:=T11(Constit_Dependence), T12(Constit_Dependence), 

T22(Constit_Dependence), 

Q1(Constit_Dependence), Q2(Constit_Dependence), 

E(Constit_Dependence), S(Constit_Dependence), 

Phi1(Constit_Dependence), Phi2(Constit_Dependence), 

LR(Constit_Dependence), LU(Constit_Dependence), 

LV(Constit_Dependence), LE(Constit_Dependence) ; 

Instead of an isotropic pressure, the current example features a symmetric stress tensor, with three independent entries

denoted by T 11 = T11 , T 12 = T 21 = T12 , T 22 = T22 . The heat flux is denoted by q 1 = Q1 , q 2 = Q2 , the entropy and the internal

energy by η = S , ε = E , and the entropy flux components by 
1 = Phi1 , 
2 = Phi2 . The Maple expressions LR , LU , LV , LE
denote the respective Lagrange multipliers. All these quantities are declared using the command 

gem_decl_vars(indeps=[ind], deps=[dep], freefunc=[Constit_F]); 

Step C. Declare the model equations. Before defining the balance equations, we introduce the symbolic material derivative

operator (2.5) : 

MaterialDer:=Q- > diff(Q,t)+U(ind)*diff(Q,x)+V(ind)*diff(Q,y); 

The PDEs are entered as follows. 

Pi_Rho:=diff(R(ind), t) + diff(R(ind)*U(ind), x) 

+ diff(R(ind)*V(ind), y)= 0; 

Pi_U:=R(ind)*MaterialDer(U(ind)) - diff(T11(Constit_Dependence),x) 

- diff(T12(Constit_Dependence),y)= 0; 

Pi_V:=R(ind)*MaterialDer(V(ind)) - diff(T12(Constit_Dependence),x) 

- diff(T22(Constit_Dependence),y)= 0; 

Pi_E:=R(ind)*MaterialDer(E(Constit_Dependence)) 

+diff(Q1(Constit_Dependence),x) 

+diff(Q2(Constit_Dependence),y) 

-T11(Constit_Dependence)*diff(U(ind),x) 

-T12(Constit_Dependence)*diff(U(ind),y) 

-T12(Constit_Dependence)*diff(V(ind),x) 

-T22(Constit_Dependence)*diff(V(ind),y)=0; 

The equations are declared and converted to Maple symbolic expressions using 

gem_decl_eqs([Pi_Rho, Pi_U, Pi_V, Pi_E]); 

and are copied into the variables 
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Eq_R_Symb:=GEM_ALL_EQ_AN[1]; 

Eq_U_Symb:=GEM_ALL_EQ_AN[2]; 

Eq_V_Symb:=GEM_ALL_EQ_AN[3]; 

Eq_E_Symb:=GEM_ALL_EQ_AN[4]; 

 

 

 

 

 

 

 

Step D. The entropy inequality; the extended entropy inequality. The left-hand side of the entropy inequality (2.6) ( s = 0 ) is

defined and converted into a Maple expression using the commands 

Pi_S:= R(ind)*MaterialDer(S(Constit_Dependence)) +diff(Phi1(Constit_Dependence),x) 

+diff(Phi2(Constit_Dependence),y); 

Eq_S_Symb:=gem_analyze(Pi_S); 

The left-hand side of the extended entropy inequality (2.10) is given by 

Entropy_Inequality:= Eq_S_Symb - LR(R, W, Wx, Wy)* Eq_R_Symb 

- LU(R, W, Wx, Wy)* Eq_U_Symb 

- LV(R, W, Wx, Wy)* Eq_V_Symb 

- LE(R, W, Wx, Wy)* Eq_E_Symb; 

Step E. Obtain a system of constraints. The independent terms in the extended entropy inequality can be isolated as

follows: 

Y:= [ Rt, Rx, Ry, Ut, Ux, Uy, Vt, Vx, Vy, Wt, Wxx, Wxy, Wyy, Wtx, Wty ]; 

collect(Entropy_Inequality, Y); 

The split set of constraints, i.e., the Liu identities, is obtained as follows: 

coeffs_constraints:=[coeffs(Entropy_Inequality, Y)]; 

It is given by the formulas (2.16) . Note that the terms of the entropy inequality that involve no components of | Y | yield

the residual entropy inequality. 

Step F. Rif-simplify the constraints. The simplification step proceeds the same way as for the gas dynamics example. This

time, following [4] we apply additional constraints in order to simplify the computations. In particular, we require that the

Lagrange multiplier of the energy equation does not vanish, �ε � = 0, and both the internal energy and entropy are func-

tions of the temperature but not of the temperature gradient: i.e. η = η(θ, ρ) and ε = ε(ε, ρ) . In order to achieve these

restrictions, we append to the determining equations the conditions 

∂η

∂θx 
= 

∂η

∂θy 
= 

∂ε

∂θx 
= 

∂ε

∂θy 
= 0 , �ε � = 0 . 

Then, 

all_f := [T11(R, W, Wx, Wy), T12(R, W, Wx, Wy), T22(R, W, Wx, Wy), 

Q1(R, W, Wx, Wy), Q2(R, W, Wx, Wy), 

Phi1(R, W, Wx, Wy), Phi2(R, W, Wx, Wy), 

E(R, W, Wx, Wy), S(R, W, Wx, Wy), 

LR(R, W, Wx, Wy), LU(R, W, Wx, Wy), 

LV(R, W, Wx, Wy), LE(R, W, Wx, Wy)]; 

simplified_eqs := DEtools[rifsimp]([coeffs_constraints[], 

LE(R, W, Wx, Wy)< > 0, 

diff(S(R, W, Wx, Wy),Wx)=0, diff(S(R, W, Wx, Wy),Wy)=0, 

diff(E(R, W, Wx, Wy),Wx)=0, diff(E(R, W, Wx, Wy),Wy)=0, 

diff(S(R, W, Wx, Wy),W)< > 0, diff(E(R, W, Wx, Wy),W)< > 0], 

all_f, mindim=1); 

simplified_eqs[Solved]; 

Step G. Solve the Liu identities. PDEs (3.7) are subsequently solved, for example, symbolically: 

The output contains the results discussed in the end of Section 2.4 . In particular, The Lagrange multipliers have the form 

�u = �v = 0 , �ρ = H, �ε = 

1 
G 
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pdsolve(simplified_eqs[Solved],all_f); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in terms of the arbitrary functions G = G (θ ) and H = H(ρ, θ ) . For the stress components, one has 

T 12 = 0 , T 11 = T 22 = ρ G H = −p, 

that is, the requirement of fluid isotropy, and the form of the hydrostatic pressure p = p(ρ, θ ) consistent with the entropy

principle. The internal entropy and energy density forms are consequently given by Eqs. (2.18) and (2.19) . The results are in

agreement with [4] . 

4. Discussion and conclusions 

In the present work, a CAS (computer algebra software) implementation of the entropy principle of Müller and Liu,

a framework to derive thermodynamically consistent constraints for the constitutive functions of a system in continuum

mechanics, has been presented and discussed. Two examples were analyzed: a one-dimensional gas dynamics model, and a

model of a anisotropic compressible heat-conducting fluid. The entropy inequality and the extended entropy inequality were

presented as Maple expressions in terms of the independent and dependent variables of the problem and their derivatives

(treated as Maple symbols), and unknown constitutive functions (treated as functions of several simple scalar variables).

Using routines of the GeM package, the coefficients at independent higher-order derivatives of field variables were automat-

ically set to zero, yielding Liu identities. The latter were efficiently simplified and solved using standard Maple commands.

The results obtained provided the required restrictions on the constitutive functions; these restrictions are physically mean-

ingful and are in agreement with the literature. 

The presented computational automation of the well-known and widely used Liu algorithm is particularly important

since such computations, when done by hand, tend to be technically demanding, time-consuming, and prone to human

error. For the examples considered in this work, the full set of computations performed on a standard desktop computer

took seconds. The Maple -based symbolic framework developed in the current contribution can be applied with minimal

changes to treat similar as well as more complicated models; the program sequence can also be naturally modified as

necessary. Nonetheless, the presented scheme is not universally applicable to a model of arbitrary complexity. Steps A–E can

be carried out efficiently for virtually any set of equations and modelling assumptions, however, steps F (simplification of Liu

identities) and G (their solution) may not be computationally accessible if the dependency φC of the constitutive functions

involves a large number of variables. Exact numbers that are symbolically tractable depends on the types of PDEs involved

in the model. For example, in a similar Maple -based computation of local conservation laws of Euler equations [28] , the

unknown multipliers depended on 45 variables, including partial derivatives of the fields; however, the conservation law

determining equations were substantially more overdetermined. The Liu identities in constitutive modelling are usually less

overdetermined (for example, six conditions on five functions in Computational Example 1, Section 3.1 ; 16 conditions on 13

functions in Computational Example 2, Section 3.2 ). In particular, Liu identities never include conditions on the derivatives

of the Lagrange multipliers �φ . 

Several research directions aimed at the extension of the symbolic algorithm outlined in this work can be named. 

1. The presented procedure can be generalized to aid in constitutive modelling for thermodynamic equilibria , the states of

minimal (i.e., zero) entropy production. In these states, additional equations are formulated that serve as constraints for

the equilibrium parts of the unknown constitutive functions [1] , based on the residual entropy inequality. 

2. Depending on the model, the solution of Liu identities may not lead to one set of closed-form expressions for constitu-

tive functions. In related symbolic computations, the rifsimp routine used without the casesplit option, as done

in the above example, returns the simplified equations in the most general case, when no pivot coefficient is zero. Piv-

oting based on zero or nonzero values of certain coefficients may lead to different cases, for example, more general

forms of some constitutive functions and less general forms of the other ones. The casesplit option of the Maple
rifsimp routine may be useful to produce investigate trees of such special cases. Indeed, in specific physical situations,

assumptions that some coefficient (such as a Lagrange multiplier or its certain partial derivative) does vanish may lead to

additional physical solutions. The caseplot routine for case tree plotting, with its ability display of zero and nonzero

pivots for the cases, may then be used to visualize possible case trees that arise. 

3. The choice of the constitutive dependencies (2.3) may have a significant effect on both the results themselves and the

related symbolic computations. We note the importance of choosing a coordinate-invariant approach. Indeed, if one al-

lows the constitutive functions ψ = ψ ( φC ) (2.3) to depend on spatial partial derivatives, the dependence should in fact

involve only coordinate-invariant combinations of such derivatives, such as a divergence, norm of a gradient, etc., but

not, for example, Cartesian components of a gradient. Such choices would ensure the consistency of the application of

the procedure in different coordinate systems. In particular, when computations are done in curvilinear coordinates, one

needs to explicitly include into φC the spatial variables, to accommodate for the scaling (Lamé) factors that will appear

in coordinate-invariant differential operators. The importance of this coordinate invariance requirement is illustrated in

Ref. [29] ; in contrast, the original work of Liu [4,15] does not mention this aspect. The efficient computational treatment
of cases in which symmetric tensor relations emerge is an important direction of the future research. 
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It is also of interest to investigate the mathematical details related to Liu’s lemma itself, when it is applied to a set

of nonlinear partial differential equations. The standard Liu algorithm described in Section 2.4 above attempts to apply

Lemma 1 to move away from the solution set of the given PDE system (2.2) , and consider the vector Y of higher-order

partial derivatives of field variables as a set of arbitrary values. However, it is not completely clear how the linear algebra-

based Lemma 1 applies to PDEs. Indeed, there is a substantial difference between linear equations and inequalities, where

solutions and isosurfaces are given by linear or affine spaces, and solution manifolds of nonlinear differential equations in

the jet spaces (see, e.g., [30] ). It is normally assumed that the considered PDE systems are locally solvable , i.e., the solution

set of the PDE system in jet space is actually represented by these PDEs. In addition to the model PDEs (2.2) , further

relations between the field variables are provided by their differential consequences . It follows that if one was to consistently

follow through with the Liu’s approach, the extended entropy inequality ˜ �η would possibly need to include the differential

consequences of the equations �φ (2.2) , with additional multipliers. For example, for the heat-conducting fluid model (2.4) ,

if one extends the constitutive dependence φC (2.12) to include ∂ t ρ , it is clear that the time derivative ∂ t ε in the energy

balance will include the second derivative ∂ 2 t ρ . It follows that the entropy condition (2.10) should include an additional

term �
ρ
1 
∂ t �ρ involving a time differential consequence of the continuity equation. In a similar way, spatial differential

consequences ∂ x i �
ρ would be added, with appropriate Lagrange multipliers. 

In a related forthcoming publication, we will present a generalization of Liu algorithm, which considers the entropy

inequality a priori on the solution set of the dynamic equations of a given model, thus requiring no Lagrange multipliers,

and respecting the nonlinear nature of the solution set of the model. 
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