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Abstract: Local conservation laws, potential systems, and 
nonlocal conservation laws are systematically computed 
for three-equilibrium two-component boundary layer 
models that describe different physical situations: a plate 
flow, a flow parallel to the axis of a circular cylinder, and 
a radial jet striking a planar wall. First, local conserva-
tion laws of each model are computed using the direct 
method. For each of the three boundary layer models, 
two local conservation laws are found. The corresponding 
potential variables are introduced, and nonlocally related 
potential systems and subsystems are formed. Then non-
local conservation laws are sought, arising as local con-
servation laws of nonlocally related systems. For each of 
the three physical models, similar nonlocal conservation 
laws arise. Further nonlocal variables that lead to further 
potential systems are considered. Trees of nonlocally 
related systems are constructed; their structure coincides 
for all three models. The three boundary layer models con-
sidered in this work provide rich and interesting examples 
of the construction of trees of nonlocally related systems. 
In particular, the trees involve spectral potential systems 
depending on a parameter; these spectral potential sys-
tems lead to nonlocal conservation laws. Moreover, poten-
tial variables that are not locally related on solution sets 
of some potential systems become local functions of each 
other on solution sets of other systems. The point symme-
try analysis shows that the plate and radial jet flow models 
possess infinite-dimensional Lie algebras of point symme-
tries, whereas the Lie algebra of point symmetries for the 
cylinder flow model is three-dimensional. The computa-
tion of nonlocal symmetries reveals none that arise for the 
original model equations, which is common for partial 
differential equations (PDE) systems without constitutive 

parameters or functions, but does reveal nonlocal symme-
tries for some nonlocally related PDE systems.

Keywords: Boundary Layer; Direct Method; Nonlocal Con-
servation Laws; Potential Systems.

1  �Introduction
For a mathematical model given in terms of partial differ-
ential equations (PDE), its local conservation laws contain 
essential coordinate-independent information about the 
structure of the model. Local divergence-type conserva-
tion laws are given by divergence expressions that vanish 
on solutions of a model; globally, for time-dependent 
problems, they yield a rate of change of the total amount 
of the conserver density in every domain in terms of 
boundary fluxes (e.g. [1]). In many cases, conservation 
principles, such as the conservation of mass, energy, and 
charge, serve as a cornerstone for the formulation of the 
mathematical models themselves. On the other hand, 
when a model is already prescribed, one can systemati-
cally seek its local conservation laws, and obtain addi-
tional conserved physical quantities.

Local conservation laws are employed in the analysis 
of PDE solution behavior, such as stability, existence, 
and uniqueness of solutions (e.g. [2–4]). Infinite dis-
crete sequences of local and nonlocal conservation laws 
involving derivatives of increasing orders may be related 
to the existence of a Lax pair, and consequently, to the 
integrability of a model [5]. Invertible mappings of non-
linear PDEs to linear PDEs through conservation laws 
may exist for PDE systems that admit families of con-
servation laws parameterized by arbitrary functions [6]. 
Nonlocally related potential systems arise directly from 
local conservation laws, and may lead to the discovery of 
new (local and nonlocal) symmetries, conservation laws, 
invariant reductions, and exact solutions of a model at 
hand (see, e.g. [1] and references therein). For variational 
models, the first Noether’s theorem provides a connec-
tion between local variational symmetries and local con-
servation laws; for nonvariational systems, relationships 
between symmetries and local conservation law structure 
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can also be established [1, 7]. Conservation laws play an 
important role in numerical computations, where they 
are key elements in finite-volume and finite-element 
numerical methods [8, 9]; they are also used to construct 
conservative discretizations in finite-difference numeri-
cal methods [10].

In addition to local conservation laws, for certain 
models, nonlocal conservation laws have been obtained 
(see, e.g. [1, 11–15] and references therein). Nonlocal con-
servation laws can arise as formal expressions involving 
integration/inverse differentiation, or can be system-
atically sought as local conservation laws of potential 
systems of a given model. Nonlocal conservation laws can 
be used for the same purposes as the local ones, and bear 
particular importance when a model lacks a sufficient 
number of local conservation laws. As local conservation 
laws of potential systems, nonlocal conservation laws 
arise relatively rarely, usually in special cases of classifica-
tions, within families of models that involve arbitrary con-
stitutive functions and/or parameters. It is less common to 
find a nonlocal conservation law for a given nonlinear dif-
ferential equation model with fixed parameters, outside a 
classification problem.

In the literature, local and nonlocal conservation laws 
have been studied in general as well as for specific models 
and classes of equations; relevant works are included but 
are not limited to Refs. [1, 7, 12, 14, 16–25].

PDE systems equivalent but nonlocally related to a 
given one arise in different contexts, and have been shown 
to be useful for a variety of purposes. In [26], an iterative 
procedure is suggested, where at each step, a known con-
servation law is used to introduce a new potential varia-
ble; then local conservation laws of such potential system 
are studied. This procedure has been recently extended 
and simplified (see, e.g. [1, 14, 21, 27] and related works). 
Potential variables introduced in this way often have a 
direct physical meaning; simplest examples include the 
stream function in fluid dynamics, and electric/magnetic 
potentials. Potential systems and nonlocally related sub-
systems can yield nonlocal symmetries of a given model, 
and may lead to invariant solutions that do not arise as 
symmetry-invariant solutions with respect to any point 
symmetries of the model (e.g. [1, 14, 28–30]). A nonlocally 
related system may yield to a noninvertible lineariza-
tion of a nonlinear PDE system [31]. The introduction of 
nonlocal variables can lead to a variational formulation 
of a PDE model, as is the case with the Korteweg-de Vries 
equation (e.g. [1, 32]). Nonlocally related systems can be 
constructed by other means, for example, using pseudo-
potentials (e.g. [33–35]) or local symmetries [36], and from 
other considerations, such as the construction of nonlocal 

mappings between PDEs [37], or the identification of sym-
metry-integrable equations [38]).

In the current paper, we consider Prandtl-type bound-
ary layer equations in Cartesian and cylindrical coor-
dinates. The models of interest represent asymptotic 
reductions describing three constant-density viscous flow 
types: a boundary layer flow in the vicinity of a plate, an 
axisymmetric flow near a circular cylinder parallel to its 
axis, and a radial wall jet flow. Various properties of these 
and related models, including self-similar, asymptotic, 
and group-invariant solutions and basic conservation 
laws, have been studied in the literature [39–50].

The main goal of the current paper is the systematic 
construction of extended trees of nonlocally related PDE 
systems [1, 14, 27] for the three boundary layer models. 
In particular, for each model, we use its local conserva-
tion laws to introduce potential variables, and consider 
nonlocally related singlet, multiplet, and spectral poten-
tial systems, as well as subsystems, that arise. A “tree” is 
consequently formed; it is further extended through the 
computation of nonlocal conservation laws, which arise 
as local conservation laws of potential systems, and the 
introduction of further potentials. Remarkably, for the 
considered dimensionless models involving no para-
meters, several nonlocal conservation laws arise. For 
each model, all nonlocally related PDE systems obtained 
using the above procedure are equivalent to the given one 
in the sense that the solution set of each PDE system in 
the extended tree yields the solution set of any other PDE 
system within the extended tree.

The paper is organized as follows. Basic facts con-
cerning the conservation laws, the direct conservation 
law construction method, and the notions of potential and 
other nonlocally related systems are reviewed in Section 
2 (for a more general description of various types of local 
conservation laws in multi-dimensions, see, e.g. [1, 51, 
52]). Section 3 introduces the three boundary layer models 
of interest. In Section 4, local and nonlocal conserva-
tion laws are computed, and an extended tree of nonlo-
cally related PDE systems is presented, for the classical 
Prandtl boundary layer model describing a two-dimen-
sional steady flow near a plate. A similar analysis for the 
axially symmetric cylinder and the wall jet boundary layer 
models is performed in Sections 5 and 6. Remarkably, we 
find that the sets of local and nonlocal conservation laws, 
and the corresponding trees of nonlocally related systems, 
are very similar for the three models. Point symmetries are 
computed, and nonlocal symmetries are sought (none is 
found), in each corresponding section.

The paper is concluded with a discussion in Section 
7, where it is shown that the three boundary layer models 
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are not related by a local transformation, and some open 
problems and research directions are outlined.

The conservation law and symmetry computations 
within the current work were performed using the Maple-
based symbolic software package GeM [53–56].

2  �Local and Nonlocal Conservation 
Laws, Nonlocally Related PDE 
Systems

Let U{x; u} be a system of PDE given by

	 [ ] ( , ,  ,  ,  ) 0, 1, ,  ,R u R z u u u Nσµσ σ σ≡ ∂ ∂ = =… … � (1)

with n ≥ 2 independent variables z = (z1, …, zn) and m ≥ 1 
dependent variables u(z) = (u1(z), …, um(z)). The symbol 
∂qu is used to denote all partial derivatives of order q of all 
components of u.

The solution set GU of (1) consists of vector functions 
u(z) that satisfy all PDEs (1). Suppose that (1) has differ-
ential orders 0 < μ

σ
 < μ for some μ > 0. Then for any ν ≥ μ, 

the set of PDEs (1) and all their independent differential 
consequences up to order ν corresponds to a manifold J

UG  
in the jet space Jν(z; u) of order ν (the coordinate space of z, 
u, and derivatives of u up to order ν). A differential function 
f[u] is a smooth function defined on a domain in JV(z; u).

The total derivative of a differential function f[u] with 
respect to zi is given by Dif [u], where

1 1 2

1 1 2

D D i
j j j

i i ii ii ii j j jz
i i i

u u u
z u u u
∂ ∂ ∂ ∂≡ = + + + +

∂ ∂ ∂ ∂
�

denotes the total derivative operator. The summation in 
repeated indices is assumed where appropriate, and

2

, ,i

j j
j j j
i ii iz

u uu u u
z z z

∂ ∂≡ ≡ ≡
∂ ∂ ∂� � …

is a short-hand notation for partial derivatives.

2.1  �Local Conservation Laws

A local (divergence-type) conservation law of the model 
(1) is a divergence expression

	 D [ ] 0i
iZ u = � (2)

holding for every solution u(z) of the given system (1). One 
may denote Z[u] = (Z1[u], …, Zn[u]) to be the density-flux 
vector.

For ordinary differential equations (ODE), local con-
servation laws (2) take the form DZZ[u] = 0 and yield first 
integrals Z[u] = const.

When one of the independent variables, e.g. z1 = t, is 
time, the conservation law (2) takes the form

	 2
D [ ] D [ ] 0,

n
j

t j
j

T u Z u
=

+ =∑
�

(3)

and corresponds to the global integral expression

	

d ˆ[ ] d [ ] d ,
d

T u V u S
t ∂

= − ⋅∫ ∫ X n�V V
�

(4)

where X[u] = (Z2[u], …, Zn[u] is the spatial flux vector, V 
is any closed volume within the model domain, having 
a piecewise-smooth boundary surface ∂V with a outward 
unit normal normal vector ˆ .n  The global relationship 
(4) holds on the solution set of the given system (1); its 
physical meaning is the fact that the rate of change of the 
volume quantity

[ ] dC T u V= ∫V
in every subdomain V is balanced by the net flux through 
the boundary surface ∂V.

2.1.1  �Topological Conservation Laws

In models involving only spatial variables z, the vanishing 
divergence expression div Z[u] = 0 (2) corresponds to a top-
ological conservation law (see [57]). In particular, for the 
spatial divergence conservation law (2), the global form is 
obtained by integration of (2) over any connected closed 
volume V within the physical domain of the given model. 
The Gauss’ theorem then yields

	 [ ] d 0,u
∂

⋅ =∫ Z S� V � (5)

holding on the solution set of the given PDE system. Here 
dS = νdA is the outward-directed area element. When 
the domain V is not simply connected, and its boundary 
∂V of a consists of two disjoint surfaces S1 and S2, then 
from (5), on solutions of the given model (1), one has the 
relationship

	 1 2

[ ] d [ ] d .u u⋅ = ⋅∫ ∫Z S Z S� �S S
� (6)

Here the unit normal vectors S1 and S2 are chosen 
so that one is inward-directed and the other is outward-
directed with respect to the volume V. The equality (6) 
does not change if S1, S2 are continuously deformed in a 
topology-preserving manner, for example, in the sense of 
homotopy equivalence.
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2.1.2  �Trivial and Equivalent Conservation Laws

Both from the practical and theoretical point of view, it is 
highly important to distinguish between trivial and non-
trivial conservation laws (2). In particular, the former hold 
as identities and provide no information about solutions 
of the model. A conservation law (2) is trivial if its density-
flux vector has the form

	 I II
triv triv[ ] [ ] [ ],u u u= +Z Z Z � (7)

where I
triv[ ]uZ  vanishes on solutions of the given system 

(1), and II
triv[ ]uZ  satisfies (2) as a differential identity, for 

all functions u(z), not only the solutions of (1) (similarly 
to div curl ≡ 0).

Two local conservation laws (2) of the PDE system (1) 
are equivalent if they differ by a trivial conservation law. 
This notion defines an equivalence class of conservation 
laws; the conservation laws within one equivalence class 
have the same physical meaning, as they correspond to 
the same global conservation principle (4). One is conse-
quently interested in finding, for a given model, a maximal 
set of nonequivalent linearly independent local conserva-
tion laws.

2.1.3  �The Direct Construction Method

The direct conservation law construction method [1, 7, 
16–18] is the most general, coordinate-independent sys-
tematic way to seek conservation laws of any PDE system. 
In particular, it generalizes the Noether’s theorem onto 
nonvariational system. Similarly, Ibragimov’s “new con-
servation theorem” and related constructs are restricted 
versions of the direct method [58]. In addition to the direct 
method, other computational techniques for finding con-
servation laws of PDEs and first integrals of ODEs exist 
(see, e.g. [59–61]), these may be practically useful in spe-
cific situations.

The direct method is based on seeking local conserva-
tion laws (2) for a given system in a characteristic form

	 D [ ] [ ] [ ]i
iZ U U R Uσ

σ
Λ= � (8)

for some set of conservation law multipliers (characteris-
tics) 1{ [ ]} ,NU

σ σ
Λ =  holding for an arbitrary vector function 

U(z). Then on solution of the given model (1), one has a 
local conservation law

	 D [ ] [ ] [ ] 0.i
iZ u u R uσ

σ
Λ= = � (9)

For ordinary differential equations (ODE), local con-
servation law multipliers are the integrating factors.

The computation of local conservation laws in the 
characteristic form proceeds by setting a dependence 
ansatz for each of the multipliers (same or different), and 
formulating the multiplier determining equations. The 
latter arise from the well-known fact that the Euler differ-
ential operators

	
1

1

D ( 1) D D ,j
s

s

s
i i ij j jU

i i iU U U
∂ ∂ ∂= − + + − +

∂ ∂ ∂ …

� … �E

�
(10)

with respect to the functions Uj, j = 1, …, m, annihilate a 
differential function F[U] if and only if it is a divergence 
expression (see, e.g. [1, 62]). Therefore a set of functions 

1{ [ ]}NU
σ σ

Λ =  defines a set of local conservation law multi-
pliers if and only if

	 ( [ ] [ ]) 0, 1, ,  ,jU
U R U j mσ

σ
Λ ≡ = …E � (11)

holding for all U(z). Setting to zero coefficients at highest-
order derivatives not present in multiplier dependence, 
one consequently splits the determining equations (11), 
and obtains a linear overdetermined system of determin-
ing equations for the unknown multipliers 1{ [ ]} .NU

σ σ
Λ =

Importantly, for totally nondegenerate PDE systems, 
any nontrivial local conservation law (2) has an equiva-
lent local conservation law in the characteristic form [1, 7]. 
Moreover, when the numbers of equations and dependent 
variables coincide, N = m, and the given PDE system (1) is 
in an extended Kovalevskaya form (i.e. is solved for highest 
derivatives with respect to some independent variable), 
then the multipliers Ʌ

σ
[U] involve neither these leading 

derivatives nor their differential consequences (See Lemma 
3 of [16], and also [7]). Consequently, for such models, by 
specifying a sufficiently general ansatz for the multipliers 
Ʌ

σ
[U], one can in principle find all local conservation laws 

of the model. Moreover, the multipliers cannot vanish on 
the solution set of the model, as they do not involve leading 
derivatives and their differential consequences. As a result, 
conservation laws computed in this way for extended Kova-
levskaya PDE systems always are nontrivial.

The order of a local conservation law commonly refers 
to the highest order of a derivative of a dependent variable 
present in the density-flux vector (the minimum such number 
in the equivalence class). For the computations using the 
direct method, the order may refer to the highest order of a 
derivative present in multipliers for a given local conserva-
tion law. In the current work, we use the latter definition.

2.1.4  �Symbolic Computation

Within the direct conservation law construction method, 
the split overdetermined linear systems of determining 
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equations for the unknown multiplies often consist of 
hundreds or thousands of interdependent linear equa-
tions, which makes computations by hand feasible only 
in elementary cases. The algorithm therefore has been 
implemented in symbolic software packages, including 
the GeM package for Maple [53–56]. For any given PDE 
system, linear determining equations for multipliers Ʌσ 
are efficiently generated and subsequently solved with 
Maple routines. Conservation law density/fluxes are 
subsequently computed via direct inegration, homotopy, 
or scaling formulas implemented in GeM routines [54]. A 
number of other symbolic software packages for conserva-
tion law computation exist (see, e.g. [59, 63–65]).

2.2  �Nonlocally Related PDE Systems

The vast majority of examples in the theory of nonlocally 
related PDE systems based on conservation laws and 
potential equations has been obtained for the case of two 
independent variables, to which we now mainly restrict 
our attention. It is convenient to denote PDE systems 
using the names of dependent variables they involve. Let 
U{x, y; u} be a system of PDE given by

	 { , ;  } :  [ ] 0, 1, ,  ,x y u R u Nσ σ= =U … � (12)

with m ≥ 1 dependent variables u(x, y) = (u1(x, y), …, um(x, 
y)). Suppose one knows K ≥ 1 nontrivial linearly independ-
ent local conservation laws of (12), having a form

	 D [ ] D [ ] 0, 1, ,  .k k
x yX u Y u k K+ = = … � (13)

holding for every solution u(x, y) of the given system 
(12). Every conservation law (13) yields a pair of potential 
equations

	 ( ) [ ], ( ) [ ],k k k k
y xw X u w Y u= = − � (14)

where wk(x, y) is a nonlocal (potential) variable. A corre-
sponding singlet potential system UWk{x, y; u, wk} [1, 14] 
involving a single potential variable is formed as a union 
of the given PDEs (12) and the potential equations (14). For 
example, for a given conservation law DtT[u] + DxX[u] = 0, 
a singlet potential system with a potential variable w has 
the form

	

[ ] 0, 1, ,  ,
{ , ;  ,  } : [ ],

[ ].
x

t

R u N
x y u w w X u

w Y u

σ σ = =


=
 = −

UW
…

�

(15)

Singlet potential systems arising from linearly inde-
pendent sets of conservation laws are nonlocally related 
to each other [66].

We note that without loss of generality, the potential 
equations can be used to replace the original conservation 
law equation in the given system, or one of the PDEs in the 
given system which yielded the corresponding conserva-
tion law with a nonzero multiplier.

Similarly, using more than one potential, multiplet 
potential systems are formed. For example, using two local 
conservation laws (13) (k = 1, 2), one obtains a couplet 
potential system

	

1
1

1 2 1
1

2
2

2
2

[ ] 0, 1, ,  ,

( ) [ ],

{ , ;  ,  ,  } : ( ) [ ],

( ) [ ],

( ) [ ].

y

x

y

x

R u N

w X u

x y u w w w Y u

w X u

w Y u

σ σ = =

 =
 = −


=
 = −

1 2UW W

…

�

(16)

When a given system has two or more linearly inde-
pendent conservation laws, in addition to a couplet poten-
tial system, one can use linear combinations of these 
conservation laws, with nonzero coefficients, to form a 
spectral potential system. For example, for two conserva-
tion laws, it can be written as

	

1 2

1 2

[ ] 0, 1, ,  ,

{ , ;  ,  } : ( ) [ ] [ ],

( ) ( [ ] [ ]),
y

x

R u N

x y u w w X u X u

w Y u Y u

σ

α α

α

σ

α

α

 = =
 = +


= − +

UW

…

α

�

(17)

where α ∈ ℝ\{0} is a continuous parameter. The PDE 
system UW

α
{x, y; u, w

α
} is nonlocally related to both 

singlet potential systems with potentials w1, w2; two 
spectral potential systems UW

α
{x, y; u, w

α
} and UW

β
{x, 

y; u, w
β
} with α≠β are also nonlocally related. When 

more than two local conservation laws are available, 
similar more general spectral potential systems can be 
constructed.

Another way of obtaining a PDE system nonlocally 
related to a given system U{x, y; u} is forming a non
locally related subsystem, by excluding one or more of the 
dependent variables ui(x, y) through differential substitu-
tions [1].

An initial tree T of nonlocally related systems for a 
given system U{x, y; u} (12) is obtained by considering the 
given system and available systems nonlocally related to 
it. The tree can be extended by seeking nonlocal conserva-
tion laws of the given system, and using them to introduce 
additional potential variables [1].

A somewhat formal definition of locally and nonlo-
cally related PDE systems can be given in the following 
way.
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Definition 1. Let UV{x, y; u, v} and UW{x, y; u, w} be 
two PDE systems with independent variables x, y and the 
respective sets of dependent variables, where

	

1

1

1

( ,  ) ( ( , ), ,  ( ,  )), 1;

( , ) ( ( , ), ,  ( ,  )), 0;

( , ) ( , ), ,  ( ,  )), 0, > 0.

m

p

r

u x y u x y u x y m

v x y v x y v x y p

w x y w x y w x y r r p

= ≥

= ≥

= ≥ +

…

…

… �
(18)

u(x, y) denote common, and v(x, y), w(x, y) additional 
dependent variables. The two systems have equivalent 
solution sets if every solution (u(x, y), v(x, y)) of the system 
UV{x, y; u, v} yields a solution (u(x, y), w(x, y)) of the 
system UW{x, y; u, w}, and vice versa.

We note that within trees of nonlocally related PDE 
systems, the sets of dependent variables often signifi-
cantly overlap. Moreover, it is commonly the case that in 
Definition (1), the relationship between the solution sets 
is not one-to-one; this is so, for example, when some of 
the variables within v(x, y) and/or w(x, y) are nonlocal 
(potential) variables.

Definition 2. Let UV{x, y; u, v} and UW{x, y; u, w} be two 
PDE systems with dependent variables (18). Suppose UV{x, 
y; u, v} and UW{x, y; u, w} have equivalent solution sets. 
Then these systems are locally related if vi(x, y) = f i[u, w] for 
all i, 0 ≤ i ≤ p, and wj(x, y) = gj[u, v] for all j, 0 ≤ j ≤ r; in other 
words, all additional dependent variables of one system are 
local expressions on the jet space of the other system, and 
vice versa. Otherwise, the PDE systems UV{x, y; u, v} and 
UW{x, y; u, w} are nonlocally related.

A nonlocal relationship between any two PDE 
systems in the tree of nonlocally related systems holds 
both ways, as it implies a non-one-to-one relationship 
between solution sets of the two systems. The conserva-
tion law, symmetry, or other local analysis for any two 
locally related systems would yield the same results. 
For nonlocally related systems, new results may be 
obtained.

We note that in addition to introducing nonlocal 
(potential) variables, or removing dependent variables 
by differential elimination, other ways of obtaining PDE 
systems nonlocally related to a given one exist; they 
include, for example, inverse potential systems obtained 
via a symmetry-based method [36], potential systems 
and subsystems obtained after point transformations 
[1, 20], and systems with pseudopotentials [33–35]. 
Moreover, nonlocal potential variables are sometimes 
defined not through the use of conservation laws, but 
from other considerations, such as the construction of 

nonlocal mappings between PDEs, or the identification of 
symmetry-integrable equations (e.g. [37, 38]).

2.3  �Nonlocal Conservation Laws

A nontrivial zero divergence expression

	 D 0i
iZ =� � (19)

holding on solutions of a given PDE system U{x, y; u} (1) 
defines a nonlocal conservation law of (1) if it is not equiva-
lent to any local conservation law of the system (1).

In other words, a conservation law (19) is nonlo-
cal if and only if there does not exist a conservation law 

ˆD 0i
iZ =  equivalent to (19) such that for all j, ˆ ˆ [ ],i iZ Z u=  

i.e. the density-flux vector of a nonlocal conservation 
law is not equivalent to a vector differential function on 
a jet space associated with the solution set of the given 
PDE system U{x, y; u} (1), but involves nonlocal variables 
given by integrals of such differential functions. Nonlo-
cal conservation laws arise as local conservation laws of 
potential systems of a given system, or nonlocally related 
subsystems that involve potentials. For example, for the 
potential system UW1W2{x, y; u, w1, w2} (16), one can have 
a local conservation law (19) with the density-flux vector 
components 1 2[ ,  ,  ]i iZ Z u w w=� �  being local differential 
functions on an extended jet space corresponding to the 
solution set of the potential system  UW1W2{x, y; u, w1, w2}; 
such a conservation law would correspond to a nonlocal 
conservation law of the given model U{x, y; u} (12) if there 
does not exist an equivalent conservation law with com-
ponents Z i =  Zi[u].

Nonlocal conservation laws are systematically con-
structed through the direct method applied to a poten-
tial system, or a nonlocally related subsystem involving 
potentials. The following important result gives a neces-
sary condition for such conservation laws to be nonlocal 
[14, 21].

Theorem 1. A conservation law of a potential system 
UW{x, y; u, w} (15), arising from multipliers independent of 
the potential variable w, is equivalent to a local conserva-
tion law of the given system U{x, y; u} (12).

[A more general statement of this theorem, containing 
four equivalent statements, is found in [21] (Theorem 7).

We note that Theorem 1 only holds for potential 
systems. One can, for example, have nonlocal conserva-
tion laws for a given model arising from local multipliers, 
if the direct method is applied to a subsystem of a potential 
system. (An example is given in Section 4.2 below.)

Brought to you by | Lahore School of Economics
Authenticated | drrehana@lahoreschool.edu.pk author's copy

Download Date | 10/27/17 7:08 AM



R. Naz and A.F. Cheviakov: Conservation Laws and Nonlocally Related Systems      1037

2.4  �Local and Nonlocal Symmetries

In this subsection, we again consider a general n-dimen-
sional PDE system U{z; u} (1). A Lie group of point 
symmetries of the system (1) is a Lie group of point trans-
formations that maps the solution set GU into itself. A Lie 
group of point symmetries corresponds to a Lie algebra of 
point symmetry generators

	
X ( , ) ( , ) ,i

iz u z u
z u

µ
µ

ξ η
∂ ∂= +

∂ ∂ �
(20)

which may be equivalently written in the evolutionary 
form (e.g. [1])

	
X̂ ( , ,  ) .z u u

u
µ

µ
ζ

∂= ∂
∂ �

(21)

Higher-order local symmetries, which arise for some 
PDE models, have the form (21) with ζμ = ζμ[u] being dif-
ferential functions that depend on higher derivatives of u. 
Point and higher-order symmetries of a given model are 
computed using the standard Lie’s algorithm.

Lie groups of nonlocal symmetries do not arise from 
an application of the local Lie’s algorithm to a given PDE 
system. For nonlocal symmetries, the components of sym-
metry generators generators are not differential functions 
on a jet space associated with GU. Nonlocal symmetries 
were first explicitly derived as local symmetries of a PDE 
system nonlocally related to the given one; there, the 
infinitesimal generator components corresponding to the 
variables of the original model have an essential depend-
ence on nonlocal variables (see [1, 27, 28]; also [11–13]). 
For example, let U{x, y; u} (12) be a given PDE system, and 
UW{x, y; u, w} (15) its potential system. A point symmetry 
of the latter, given by

	

1 2Y ( , ,  ,  ) ( , ,  ,  ) ( , ,  ,  )

( , ,  ,  ) ,

x y u w x y u w x y u w
x y

x y u w
wu

µ

µ

ξ ξ η

κ

∂ ∂= + +
∂ ∂

∂ ∂+
∂∂� (22)

corresponds to a nonlocal symmetry of U{x, y; u} (12) if 
at least one of the components ξi(x, y, u, w), ημ(x, y, u, w) 
depends on the nonlocal variable w.

The consideration of nonlocal symmetries signifi-
cantly enhances the applicability of symmetry methods 
(see, e.g. [1] and references therein for theoretical results 
and multiple examples pertaining to computation and 
applications of nonlocal symmetries). We mention the fol-
lowing facts concerning nonlocal symmetries.

–– Nonlocal symmetries do not arise for underdeter-
mined potential systems (see [1, 67]).

–– A local symmetry of a given PDE system may corre-
spond to a nonlocal symmetry of a nonlocally related 
system.

–– For a given PDE system (12) in two dimensions which 
has precisely n linearly independent local conserva-
tion laws, all its local symmetries are preserved in the 
n-plet potential system [66, 68].

3  �Boundary Layer Models
In the current section and all subsequent sections, upper 
indices will not be used; upper space in the notation will 
be reserved for powers.

The dimensionless Navier–Stokes equations of incom-
pressible constant-density viscous fluid flow without 
external forces in three dimensions are given by

	 0,∇⋅ =u � (23a)

	 2ˆ( ) 0,t p ν+ ⋅∇ + ∇ − ∇ =u u u u � (23b)

where the fluid velocity vector u = uex + vey + wez and 
the hydrostatic pressure p are functions of x, y, z, t. The 
dimensionless viscosity is given by ˆ const 1 /Re,ν = =  
where Re is the Reynolds number. The inviscid case ˆ 0ν =  
corresponds to the Euler model.

3.1  �Prandtl Equations for Steady Plate Flows

The classical Prandtl boundary layer equations for the 
steady plate flow are obtained under the assumption of 
the two-dimensional time-independent flow [40]

( , ), ( , ), 0,u u x y v v x y w= = =

using a scaling change of variables

, / , ( , ) ( , ),

( , ) ( , ) / , ( , ) ( , ),

x x y y u x y u x y

v x y v x y p x y p x y

δ

δ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

= = =

= =

where δ = (Re)−1/2  1 is a small parameter, and the starred 
variables are of the order of magnitude O(1). As a result, 
keeping the highest-order terms in the PDEs (23a, 23b), 
using the equilibrium solution asymptotics

0 0( , ) , ( , ) 0, ( , )u x y u v x y p x y p∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗→ → →

as y*→ ∞  (outside of the boundary layer), and omitting 
the asterisks, one obtains the dimensionless Prandtl 
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equations describing a two-dimensional steady plate 
boundary layer flow:

	 0,x yu v+ = � (24a)

	 .x y yyuu vu u+ = � (24b)

(In the dimensional form, the right-hand side of the 
PDE (24b) is νuyy, where ν is the viscosity coefficient.)

3.2  �Boundary Layer Equations for Axially 
Symmetric Flows

In order to write (23a, 23b) in the axially symmetric setting, 
the velocity is represented, in cylindrical coordinates, as

	 1 2 3 .r zu u u
ϕ

= + +u e e e � (25)

Upon a transformation to cylindrical coordinates 
and imposing the rotational invariance ∂/∂ϕ ≡ 0, the con-
tinuity equation (23a) and the three components of the 
momentum equation (23b) yield the following system of 
four scalar PDEs, commonly referred to as the dimension-
less axially symmetric Navier–Stokes system in primitive 
variables (cf. [25]):

	 1 3( ) ( ) 0,r zru ru+ = � (26a)

	

2
1 1 1 3 1 2

1 1 12

1( ) ( ) ( ) ( )

1 1ˆ ( ( ) ) ( ) ,

t r z r

r r zz

u u u u u u p
r

r u u u
r r

ν

+ + − = −

 
+ + −  

� (26b)

2 1 2 3 2 1 2 2 2 22
1 1 1ˆ( ) ( ) ( ) ( ( ) ) ( ) ,t r z r r zzu u u u u u u r u u u
r r r

ν
 

+ + + = + −  

� (26c)

	
3 1 3 3 3 3 3

1ˆ( ) ( ) ( ) ( ( ) ) ( ) .t r z z r r zzu u u u u p r u u
r

ν
 

+ + = − + +   �
(26d)

In the PDEs (26a, 26b, 26c, 26d), the four dependent 
variables u1, u2, u3, p are functions of the three independent 
variables t, r, z. We note that the PDEs (26a, 26b, 26c, 26d) 
were obtained in [25] in a more general setting of helical 
invariance, of which the axial symmetry is a special case.

3.2.1  �A Two-Component Boundary Layer Flow About 
a Circular Cylinder 

When the time-independent boundary layer flow around 
an infinite vertical circular cylinder r = const around the 
z-axis is considered, one can, similarly to the plate flow, 
denote

1 2 3( , ), 0, ( , ),u v x y u u u x y= = =

and employ a rescaling

, / , ( , ) ( ,  ), ( ,  ) ( ,  ) / ,
( , ) ( ,  ).

z z r r u r z u r z v r z v r z
p r z p r z

δ δ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= = = =
=

Retaining the highest-order terms in the PDEs (26a–
d), and using the asymptotics to a steady equilibrium flow 
solution outside of the boundary layer

0 0( , ) , ( , ) 0, ( , )u r z u v r z p r z p∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗→ → →

as r*→ ∞, one obtains the dimensionless cylindrical 
Prandtl equations given by

	 ( ) ( ) 0,r zrv ru+ = � (27a)

	

1 ,z r rr ruu vu u u
r

+ = +
�

(27b)

where the asterisks have been omitted.
(In the dimensional form, the right-hand side of the 

PDE (27b) acquires a factor ν.) The above model has been 
derived by Schlichting [39, 40], and is sometimes referred 
to as an “axisymmetric jet without a swirl”.

3.2.2  �A Radial Wall Jet Boundary Layer Model

The radial wall flow that forms when a circular fluid jet 
strikes a planar wall normally and spreads out over it was 
considered in [41] (see also [42]). In particular, a boundary 
layer approximation was derived. Let the wall be described 
by z = const. Assuming no polar flow, u2 = 0, a constant 
viscosity ν, and denoting the mean velocities u1 = u(r, z), 
u3 = ν (r, z), one arrives at the dimensionless radial wall jet 
boundary layer equations

	 ( ) ( ) 0,r zru rv+ = � (28a)

	 .r z zzuu vu u+ = � (28b)

(In the dimensional form, again, the right-hand side 
of the PDE (28b) has an extra factor ν.)

4  �Conservation Laws and 
Nonlocally Related Systems 
of the Prandtl Plate Flow Model

We now study the conservation laws and nonlocally 
related PDE systems for the Prandtl equations (24a, 24b) 
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describing for steady plate boundary layer flows (Section 
3.1). The corresponding PDE system can be written as

	

,
{ , ;  ,  } : yy x y

y x

u uu vu
x y u v

v u
 = +
 = −

UV
�

(29)

in a solved (extended Kovalevskaya) form with respect 
to the highest derivatives in y. One observes that the first 
PDE of (29) can be solved for ν explicitly,

	 ( ) / ,yy x yv u uu u= − � (30)

and v can be excluded by the substitution into the second 
PDE of (29). As a result, one obtains a subsystem given by 
a single PDE

	 { , ;  } : (( ) / ) 0,x yy x y yx y u u u uu u+ − =U � (31)

which is locally related to the given PDE system UV{x, y; u, 
v} (29), as v = v[u] as per (30).

4.1  �Local Conservation Laws and Potential 
Systems

First we compute all local conservation laws of the 
Prandtl plate flow model UV{x, y; u, v} (29) with fourth-
order multipliers. According to Lemma 3 of [16], the 
leading derivatives uyy, vy of (29) and their differen-
tial consequences can be excluded from the multiplier 
dependence without loss of generality. The fourth-order 
multiplier form becomes

	
[ , ] ( , ,  ,  ,  ,  ,  ,  ,  ,  ,

 ,  ,  ,  ,  ,  ), 1, 2.
x x y xx xy xx

xxx xxy xxx xxxx xxxy xxxx

u v x y u v u v u u u v
u u v u u v

σ σ
Λ Λ

σ

=
= � (32)

The following result is proven by a direct computation 
(cf. [46]).

Proposition 4.1. The linear space of inequivalent nontriv-
ial local conservation laws of the PDE system (29) arising 
from the fourth-order multipliers (32) is spanned by the two 
conservation laws

	 D ( ) D ( ) 0,x yu v+ = � (33)

	 2D ( ) D ( ) 0,x y yu uv u+ − = � (34)

corresponding to the zeroth-order multiplier pairs (Ʌ1, 
Ʌ2) = (0, 1) and (Ʌ1, Ʌ2) = (–1, u).

One can introduce the corresponding potentials, and 
establish potential systems, as follows. Using the first con-
servation law (33), i.e. the first PDE of the model (29) itself, 
we introduce the first potential ψ, the stream function ψ(x, 
y), and obtain a singlet potential system

	

,
{ , ;  ,  ,  } : ,

.

y

x

yy x y

u
x y u v v

u uu vu

ψ

ψ ψ

 =


= −
 = +

UVΨ

�

(35)

This potential system is not in an extended Kovalevs-
kaya form as it stands. However, one may exclude, for 
example, the variable v by a local substitution, to obtain a 
locally related subsystem

	

,
{ , ;  ,  } : 

,
y

yy x x y

u
x y u

u uu u
ψ

ψ
ψ

 =
 = −

UΨ

�
(36)

which is in the extended Kovalevskaya form with respect 
to y, and is more suitable for direct conservation law 
computations. Similarly, one can exclude the variable 
u, which leads to a locally related subsystem VΨ{x, y; v, 
ψ}. Excluding both u and v, or equivalently, excluding u 
from (36) by a local substitution, we arrive at a further 
locally related subsystem, given by a scalar stream func-
tion equation

	 { , ;  } : .yyy y xy x yyx y ψ ψ ψ ψ ψ ψ= −Ψ � (37)

The potential system (35) and its subsystems are non-
locally related to the given plate flow model (29), but are 
locally related to each other.

The second singlet potential system for the Prandtl 
equations (29) is obtained using the second conservation 
law (34). Defining the potential variable φ according to the 
potential equations φy = u2, φx = uy − uv, one may write the 
resulting potential system in the extended Kovalevskaya 
form with respect to y:

	

2 ,
{ , ;  ,  ,  } : ,

.

y

y x

y x

u
x y u v u uv

v u

φ

φ φ

 =


= +
 = −

UVΦ

�

(38)

Again, from the potential system UVΦ{x, y; u, v, φ}, 
the dependent variables u, v can be excluded by local sub-
stitutions, yielding locally related subsystems VΦ{x, y; v, 
φ}, UΦ{x, y; u, φ}, and Φ{x, y; u, φ}.

Using both potentials ψ, φ, one obtains a couplet 
potential system

	

2

,
,

{ , ;  ,  ,  ,  } : 
,

y

x

y

x y

u
v

x y u v
u
u uv

ψ

ψ
ψ φ

φ

φ

 =


= −
 =
 = −

UVΨΦ

�

(39)

nonlocally related to all previously considered systems. 
Its locally related subsystem
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2

,
{ , ;  ,  ,  } : ,

y

y

y x x

u
x y u u

u u

ψ

ψ φ φ

φ ψ

 =


=
 = −

UΨΦ

�

(40)

obtained by a substitution exclusion of v has an extended 
Kovalevskaya form with respect to y and is suitable for 
further conservation law analysis using the direct method. 
One can further exclude from (30) the variable u by a local 
substitution, to obtain a subsystem

	

2 ,
{ , ;  ,  } :

,
y y

yy x x y

x y
φ ψ

ψ φ
ψ φ ψ ψ

 =
 = −

ΨΦ

�
(41)

which is also nonlocally related to the given model, and 
has an extended Kovalevskaya form with respect to y.

Finally, a linear combination of the conservation laws 
(33), (34), without loss of generality with factors 1 and 
α ∈ ℝ\{0},

	 2D ( ) D ( ( )) 0x y yu u v uv uα α+ + + − = � (42)

is used to formulate a spectral potential system with 
potential equations

2( ) , ( ) ( ( )).y x yq u u q v uv u
α α

α α= + = − + −

The variable q
α
 is a local function of the other two 

potential variables ψ, φ:

	 ,q c
α

ψ αφ= + + � (43)

where c is an arbitrary constant, and hence q
α
 is not a non-

local variable on solutions of the couplet potential system 
UVΨΦ{x, y; u, v, ψ, φ} (30), or any of its subsystems that 
involve both ψ and φ.

As the factors 1, α≠0, either PDE of the given system 
(29) can be replaced by the potential equations; we leave 
the first PDE, and obtain the spectral potential system in 
an extended Kovalevskaya form:

	

2( ) ,
{ , ;  ,  ,  } : (( ) ) / ,

.

y

y x

y x

q u u
x y u v q u q v uv

v u

α

α α

α

α

 = +


= + +
 = −

UVQ
α

�

(44)

The dependent variables u and/or v can be eliminated 
from (44) by local substitutions, leading to locally related 
subsystems UQ

α
{x, y; u, q

α
}, VQ

α
{x, y; v, q

α
}, and Q

α
{x, y; 

q
α
}; those subsystems are nonlocally related to the origi-

nal model UV{x, y; u, v} (29). We exclude these systems 
from the consideration below since they do not have a 
simple form, and will not lead to new results compared to 
the analysis of the potential system UVQ

α
{x, y; u, v, q

α
} due 

to their local relationship with it.
The preliminary tree T1 of PDE systems for the Prandtl 

plate boundary layer model (24a, 24b) is summarized in 
Figure 1. In particular, groups of PDE systems of differ-
ent colors are nonlocally related to each other, whereas 
systems shown by boxes of the same color are locally 
related to each other.

Remark 4.1. The tree T1 may be immediately extended 
by considering couplet potential systems UVΨQ

α
{x, 

y; u, v, ψ, q
α
}, UVΦQ

α
{x, y; u, v, φ, q

α
}, and their sub-

systems; Figure  1 does not show these extensions for 
the sake of compactness. Note that the triplet potential 
system UVΨΦQ

α
{x, y; u, v, ψ, φ, q

α
} is locally related to 

UVΨΦ{x, y; u, v, ψ, φ} (30) due to (43) and therefore is not 
considered.

Figure 1: A preliminary tree T1 of locally and nonlocally related systems for the Prandtl plate flow boundary layer model (24a, 24b). Groups 
of the same color (color online) correspond to PDE systems locally related to each other; groups of PDE systems of different colors are nonlo-
cally related. Nonlocal relations between PDE systems are illustrated with solid lines, and local relations with dashed lines. [The same tree 
structure, in terms of different notation, also describes locally and nonlocally related systems of the cylinder and radial jet boundary layer 
models (Sections 5 and 6).]
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4.2  �Nonlocal Conservation Laws and Further 
Potential Systems

For the Prandtl plate boundary layer model given by the 
PDE system UV{x, y; u, v} (29), we now seek nonlocal con-
servation laws that arise as local conservation laws of its 
potential systems within the preliminary tree discussed in 
Section 4.1.

4.2.1  �A Nonlocal Conservation Law Arising 
from the Potential System UVΦ{x, y; u, v, ϕ}

First, we compute local conservation laws of the potential 
system UVΦ{x, y; u, v, φ} (38) using second-order 
multipliers, i.e.

[ , ] ( , ,  ,  ,  ,  ,  ,  ,  ,  ,  ),
1, 2, 3.

x x x xx xx xxu v x y u v u v u v
σ σ

Λ Λ φ φ φ

σ

=
=

The general solution involves two linearly independ-
ent multiplier sets. The first set (0, 0, 1) yields the local 
conservation law (33), and the second set (v, –u, φ) a con-
servation law

	
21D ( ) D 0,

2x yu v uφ φ
 

+ − =   �
(45)

It is clear that (45) is a nonlocal conservation law of 
the Prandtl boundary layer system UV{x, y; u, v} (29), as its 
fluxes explicitly involve the potential variable.

Using (45), one can introduce a further potential 
variable γ(x, y) satisfying

21, ,
2y xu u vγ φ γ φ= = −

and thereby obtain a potential system

	

2

2

,
,

,{ , ;  ,  ,  ,  } : 
,

1 .
2

y

x y

y x

y

x

u
u uv

v ux y u v
u

u v

φ

φ

φ γ
γ φ

γ φ

 =


= −
 = −

=

 = −

UVΦΓ

�

(46)

[Any of the first three PDEs of (46) can be dropped 
from this system, as the corresponding multipliers that 
yield the conservation law (45) are nonzero.]

Through obvious local substitutions, the variables φ 
and/or u and/or v can be excluded, to obtain PDE systems 
UVΓ{x, y; u, v, γ}, VΦΓ{x, y; v, φ, γ}, UΦΓ{x, y; u, φ, γ}, 
VΓ{x, y; v, γ}, ΦΓ{x, y; φ, γ}, and UΓ{x, y; u, γ}, locally 
related to UVΦΓ{x, y; u, v, φ, γ} (46). In Figure 2, the cor-
responding tree extension is outlined.

4.2.2  �A Nonlocal Conservation Law Arising from the 
Potential System UVΨ{x, y; u, v, ψ}

We now seek local conservation laws of PDE systems 
involving the nonlocal variable ψ. The computations for 

Figure 2: An extended tree T3 of nonlocally related systems for the Prandtl plate flow boundary layer model (24a, 24b) obtained using the 
nonlocal conservation laws (45) and (47). Groups of the same color (color online) correspond to PDE systems locally related to each other; 
groups of PDE systems of different colors are nonlocally related. Nonlocal relations between PDE systems are illustrated with solid lines, 
and local relations with dashed lines. [The same extended tree structure, in terms of different notation, also describes locally and nonlocally 
related systems of the cylinder and radial jet boundary layer models (Sections 5 and 6).]
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the system UΨ{x, y; u, ψ} (36) involving third-order multi-
pliers leads to two first-order multiplier pairs (−ux, 1) and 
(−uxψ, ψ). The first one is equivalent to the local conserva-
tion law (34) of the given model UV{x, y; u, v} (29), and the 
second one can be equivalently written as

	
2 21D ( ) D ( ) 0.

2x y yu uv u uψ ψ
 

+ − + =   �
(47)

The divergence expression (47) yields a nonlocal 
conservation law of the plate flow Prandtl model (29). 
(The same result is obviously obtained if one analyzes 
the potential system UVΨ{x, y; u, v, ψ} (35), or any other 
locally related system, instead.)

From the conservation law (47), one introduces a 
further potential γ*(x, y) satisfying

2 21, ( ) .
2y x yu uv u uγ ψ γ ψ∗ ∗  

= = − − +  

As a result, one has a potential system

	

2

2

,

,

,{ , ;  ,  ,  ,  } : 
,

1( ) .
2

y

x

yy x y

y

x y

u

v

u uu vux y u v
u

uv u u

ψ

ψ

ψ γ
γ ψ

γ ψ

∗

∗

∗

 =


= −

 = +

 =


 
= − − +   

UV ∗ΨΓ

�

(48)

[Any of the first three PDEs of (48) can be dropped 
from this system, as the multipliers that lead to the con-
servation law (47) for UVΨ{x, y; u, v, ψ} are given by 
(−uxψ + uy, ψuy, ψ) and are nonzero.]

Through local substitutions, the variables ψ and/or u 
and/or v can be excluded, to obtain PDE systems UVΓ *{x, 
y; u, v, γ*}, VψΓ *{x, y; v, ψ, γ*}, UΨΓ *{x, y; u, ψ, γ*}, UΓ *{x, 
y; u, γ*}, and ΨΓ *{x, y; ψ, γ*} locally related to UVΨΓ *{x, 
y; u, v, ψ, γ*} (48). Figure 2 shows the corresponding tree 
extension.

4.2.3  �A Local Relationship between the Potentials 
in a Combined Potential System

Instead of considering the PDE systems UΨ{x, y; u, ψ} 
(36) and UVΨ{x, y; u, v, φ} (38) independently, as we did 
above, one could start from the couplet potential system 
UVΨΦ{x, y; u, v, ψ, φ}, and use its two local conservation 
laws (45) and (47) to introduce the potential variables γ 
and γ*, obtaining the potential systems

	

2

2

,
,

,
{ , ;  ,  ,  ,  ,  } : ,

,
1
2

y

x

y

x y

y

x

u
v

u
x y u v u uv

u

u v

ψ

ψ

φ
ψ φ γ φ

γ φ

γ φ

 =


= −
 =

 = −


=

 = −


UVΨΦΓ

�

(49)

and

	

2

2

2

,
,

,
{ , ;  ,  ,  ,  ,  } : ,

,
1( ) .
2

y

x

y

x y

y

x y

u
v

u
x y u v u uv

u

uv u u

ψ

ψ

φ
ψ φ γ φ

γ ψ

γ ψ

∗

∗

∗

 =


= −
 =

 = −


=
  
 = − − +  

UV ∗ΨΦΓ

� (50)

as well as the joint potential system UVΨΦΓΓ *{x, y; u, v, 
ψ, φ, γ, γ*}. The latter, however, appears redundant, as the 
following statement holds.

Lemma 4.1. The potentials γ and γ* are locally related on 
the solution set of the PDE systems UVΨΦΓ{x, y; u, v, ψ, φ, 
γ} (49) and UVΨΦΓ *{x, y; u, v, ψ, φ, γ*} (49):

	 ( , ) ( , ) const.x y x yγ γ ψφ∗= − + + � (51)

The PDE systems (49) and (49) are consequently locally 
related.

The relationship (70) is verified by a direct computa-
tion. For example, the x-flux of (45) can be written as

2( ) ( ) ,y y y yu uφ ψ φ ψφ ψφ ψφ ψ= = − = −

which is an x-flux equivalent to that of (47). The same is 
true for the y-flux. It follows that the conservation laws 
(45) and (47) are equivalent on solutions of the PDE 
system UVΨΦ{x, y; u, v, ψ, φ} (30), or any subsystem that 
includes the dependent variables ψ and φ. In particular, 
a local conservation law equivalent to (45), (47) can be 
found for the PDE system ΨΦ{x, y; ψ, φ} (41), using a pair 
of multipliers (ψx, ψy) ≡ (− v, u); the resulting divergence 
expression

	 2D ( ) D ( ) 0,x y y y x x yψφ ψ φ ψ φ ψφ ψ− + − + = � (52)

is equivalent to (45). The latter also illustrates that 
Theorem 1 does not hold for subsystems: local multipliers 
[on solutions of the Prandtl equations UV{x, y; u, v} (29)] 
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for a nonlocally related subsystem yield a nonlocal conser-
vation law of the Prandtl model (29).

The potentials γ, γ* are not locally related on the solu-
tion set of UVΦ{x, y; u, v, φ} (38) and UVΨ{x, y; u, v, ψ} 
(35), so the PDE systems UVΦ{x, y; u, v, φ} and UVΨ{x, y; 
u, v, ψ}, with their corresponding subsystems, are non-
locally related. Yet UVΨΦΓ{x, y; u, v, ψ, φ, γ} (49) and 
UVΨΦΓ *{x, y; u, v, ψ, φ, γ*} (49), and their subsystems 
obtained by local substitutions of u and/or v and/or ψ 
and/or φ as appropriate, are locally related to each other 
(Fig. 2).

In order to seek further nonlocal conservation laws, 
nonlocal symmetries, etc., arising from PDE systems 
involving the new nonlocal variable γ, one may use the 
PDE system UVΨΦΓ{x, y; u, v, ψ, φ, γ} (49) or any system 
locally related to it. A direct symbolic computation of con-
servation laws for the PDE system (49) with second-order 
multipliers reveals no additional conservation laws of the 
plate flow Prandtl equations (23a, 23b).

4.2.4  �A Nonlocal Conservation Law Arising from the 
Potential System UVQ

α
{x, y; u, v, q

α
}

We now compute local conservation laws of the spectral 
potential system UVQ

α
{x, y; u, v, q

α
} (44). Seeking third-

order local multipliers, we find the multiplier triple (v, 
−αu, q

α
), corresponding to a local conservation law

	
21D ( ) D 0.

2x yuq vq u
α α

α
 

+ − =   �
(53)

The conservation law (53) generally (α≠0) yields a 
nonlocal conservation law of the plate flow Prandtl model 
(29), linearly independent of (47).

Using the new conservation law (53), one can intro-
duce a further potential variable ω, and obtain a potential 
system

	

2

,

1 ,
2{ , ;  ,  ,  ,  } : 

(( ) ) / ,

.

y

x

y x

y x

uq

u vq
x y u v q

u q v uv

v u

α

α
α

α

ω

ω α
ω

α

 =

 = −

 = + +

 = −

UVQα Ω

�

(54)

also involving the spectral parameter α ∈ ℝ\{0}.
The extended tree T3 for the plate flow Prandtl model 

(24a, 24b) including the potential system (55) and its 
locally related subsystems obtained by local substitutions 

of the dependent variables u and/or v and/or q
α
 is shown 

in Figure 2.
In order to study nonlocal conservation laws of 

the plate flow model (24a, 24b) arising from the above-
described new nonlocally related systems, one may con-
sider, for example, a PDE system

2

1 1 2

,
{ , ; , , } : ( ) ,

1( ) (1 ) ,
2

y

y

y x x

uq
x y u q q u u

u q q u u

α

α α

α α

ω

ω α

α α ω α− −

 =


= +


   = + − +     

UQ Ω
α

� (55)

in an extended Kovalevskaya form with respect to y, where 
v has been eliminated by a local substitution

1 21 .
2 xv q u

α
α ω−  

= −  

By a direct computation, one can show that for the 
third-order multipliers, only one conservation law of (55) 
arises. It corresponds to the multiplier triple ((q

α
)x/(q

α
)2, 

v/q
α
, −u/q

α
), and is equivalent to the local conservation 

law (the continuity equation) (33) of the plate flow model 
(24a, 24b). Thus no nonlocal conservation laws arise for 
the plate flow model (24a, 24b) in the chosen multiplier 
ansatz.

We have established the following result.

Proposition 4.2. The plate flow boundary layer Prandtl 
model (29) admits nonlocal conservation laws (45), (47), 
and (53). Moreover, the conservation laws (45) and (47) 
are locally equivalent on solution sets of the PDE systems 
nonlocally related to the Prandtl model, which include the 
dependent variables ψ and φ.

The full set of local and nonlocal conservation laws 
arising for the Prandtl boundary layer model (24a, 24b), 
the corresponding multipliers, and nonlocal variables are 
summarized in Table 1.

4.3  �Symmetry Analysis of the Plate Prandtl 
Model

For basic facts about point symmetries of PDEs, an unfa-
miliar reader is referred to any standard book on the 
subject, for example, [1, 7, 69].

First, the point symmetries of the PDE system (24a, 
24b) are found from a direct symbolic computation; they 
are given by
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1 2

3 4

X 2 , X 2 ,

X , X ( ) ( ) ( ) ,

x y v y u v
x y v y u v

f f x uf x
x y v

∂ ∂ ∂ ∂ ∂ ∂= + − = − −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂= = + ′
∂ ∂ ∂ �

(56)

corresponding to two scalings, a translation, and a family 
of generalized translations

, ( ), , ( ) ,x x y y f x u u v v f x u∗ ∗ ∗ ∗= = + = = + ′

involving an arbitrary function f(x). We note that when 
f(x) = const, the generator X4 = ∂/∂y correspond to a pure 
translation in y.

The symmetry commutator table for the generators 
(55) is shown in Table 2.

In order to seek nonlocal symmetries of the Prandtl 
plate flow model (24a, 24b), one can compute point sym-
metries of each of the nonlocally related PDE system 
groups within the tree T3, (shown using different colors 
in Fig. 2) and compare them with point symmetries of the 
PDE system (24a, 24b).

Direct symbolic symmetry computations using the 
Maple/GeM software demonstrate that no nonlocal sym-
metries arise within the extended tree T3. In particular:

–– All symmetries of the potential systems UVΨ{x, y; u, 
v, ψ} (35), UVΦ{x, y; u, v, φ} (38), UVΨΦ{x, y; u, v, ψ, 
φ} (30), UVΨΦΓ{x, y; u, v, ψ, φ, γ} (49), UVQ

α
{x, y; u, 

v, q
α
} (44), and UVQ

α
Ω{x, y; u, v, q

α
, ω} (55) project 

on point symmetries of the given model UV{x, y; u, 
v} (29).

–– The local symmetry X2 of the Prandtl model yields a 
nonlocal symmetry of the potential systems UVQ

α
{x, 

y; u, v, q
α
} (44) and UVQ

α
Ω{x, y; u, v, q

α
, ω} (55).

–– The PDE system UVΨΦΓ{x, y; u, v, ψ, φ, γ} (49) has a 
local symmetry

	
X ,ψ

γ φ
∂ ∂= +
∂ ∂ �

(57)

which corresponds to a nonlocal symmetry of all PDE 
systems in the tree T3 that include the potential γ but not 
the potential ψ (cf. Fig. 2).

5  �Conservation Laws and 
Nonlocally Related Systems of the 
Cylinder Boundary Layer Model

We now consider (27a, 27b) for a two-component bound-
ary layer flow about a circular cylinder. The notation for 
all PDE systems and variables in the current section is not 
in any way related to that for the plate flow model dis-
cussed in Section 4.

Writing the corresponding PDE system in an extended 
Kovalevskaya form with respect to r, we obtain the system

	

1 ,
{ , ;  ,  } : 

1 .

rr z r r

r z

u uu vu u
rr z u v

v u v
r


= + −


 = − −

UV

�

(58)

Similar to what happens in Section 4, the first PDE of 
(58) can be solved for v; the latter is thus given by a local 
differential function in terms of u:v = v[u]. The substitution 
of v into the second PDE of (58) consequently leads to a 
single equation U{r, z; u} locally related to the PDE system 
UV{r, z; u, v} (58).

5.1  �Local Conservation Laws and Potential 
Systems

In order to compute local conservation laws of (58), we 
use the direct method, and establish the following result 
which is proven by a direct computation.

Proposition 5.1. The linear space of inequivalent nontrivial 
local conservation laws of the PDE system (58) arising from 

Table 1: Conservation laws and nonlocal variables of the plate flow 
boundary layer model (24a, 24b).

PDE system Multipliers Conservation 
law

Nonlocal 
variable

UV (29) (1, 0) (33) ψ
(u, 1) (34) φ
(1 + αu, α) (42) q

α

UVΦ (38) (v, −u, φ) (45) γ
UVΨ (35) ( − uxψ + uy, ψuy, ψ) (47) γ*

UVQ
α
 (44) (v, −αu, q

α
) (53) ω

Table 2: Symmetry commutators for two-dimensional plate Prandtl 
boundary layer model (24a, 24b).

X1 X2 X3 X4(f(x))

X1 0 0 −2X3 X4(g)
X2 0 0 0 −X4(f )
X3 2X3 0 0 X4(f ′)
X4(f) −X4(g) X4(f ) −X4(f ′) 0

Here f = f(x) is an arbitrary function; g(x) = 2xf ′(x) − f(x). Note that 
[X4(p), X4(q)] = 0 for any p(x), q(x).
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the fourth-order multipliers is spanned by the two vanishing 
divergence expressions

	 D ( ) D ( ) 0,r zrv ru+ = � (59)

	 2D ( ( )) D ( ) 0,r r zr uv u ru− + = � (60)

corresponding to the zeroth-order multiplier pairs (Λ1, 
Λ2) = (0, r) and (Λ1, Λ2) = (− r, ru).

In a manner similar to that of Section 4, the conserva-
tion laws (59) and (60) can be used to introduce poten-
tial variables. In particular, the first conservation law (59) 
yields the potential equations

	 ,r zru rvψ ψ= = − � (61)

for the stream function ψ(r, z). The second conservation 
law (60) leads to the potential equations

	 2 , ( )r z rru r u uvφ φ= = − � (62)

for the nonlocal variable φ(r, z). A linear combination 
of the conservation laws (59) and (60) with factors 1, α, 
given by

	 D ( ( ( ))) D ( (1 )) 0,r r zr v u uv ru uα α− − + + = � (63)

α ∈ ℝ\{0} is a continuous parameter, yields a spectral 
potential system with potential equations

	 ( ) (1 ), ( ) ( ( ) )r z rq ru u q r u uv v
α α

α α= + = − − � (64)

for the nonlocal variable q
α
(r, z).

For the cylinder flow boundary layer equations 
(58), one consequently has the singlet potential systems 
UVΨ{r, z; u, v, ψ}, UVΦ{r, z; u, v, φ}, the spectral poten-
tial system UVQ

α
{r, z; u, v, q

α
}, and a couplet potential 

system UVΨΦ{r, z; u, v, ψ, φ}, nonlocally related to each 
other and to the given model (58). Exclusions of depend-
ent variables by an explicit substitution yield the subsys-
tems in a manner exactly parallel to that of the Section 
4. The initial tree T1 of nonlocally related PDE systems 
coincides with that for the two-dimensional plate flow 
Prandtl equations (see Fig. 1 and also Remark 4.1 which is 
relevant here as well).

5.2  �Nonlocal Conservation Laws and Further 
Potential Systems

We now seek further conservation laws of the cylinder 
flow boundary layer equations (58), arising as local con-
servation laws of its potential systems.

5.2.1  �Preliminary Analysis

The following conservation laws are found within the 
second-order multiplier ansatz.
1.	 For the potential system UVΦ{r, z; u, v, φ} and its 

locally related systems, one finds a local conservation 
law equivalent to (59), and an additional local conser-
vation law

	
2 21D (1 ) D ( ) 0;

2r zrv r u ruφ φ
 

+ − + =   �
(65)

the latter is a second nonlocal conservation law of 
the cylinder flow boundary layer equations (58). The 
conservation law (65) yields a new nonlocal variable γ 
satisfying the potential equations

	
2 21, (1 ) ,

2r zru rv r uγ φ γ φ= = − + +
�

(66)

and leads to the potential system UVΦΓ{r, z; u, v, φ, γ} 
and, as usual, its locally related subsystems.

2.	 For the potential system UVΨ{r, z; u, v, ψ} and the 
locally related systems, one finds a local conservation 
law equivalent to (60), and an additional local con-
servation law

2 2 21D ( )( ) D ( ( )) 0;
2r r zr uv u z r u ru zψ ψ

 
− − + + − =   �

(67)

the latter is a nonlocal conservation law of the cylin-
der flow boundary layer equations (58). The conserva-
tion law (67) yields a nonlocal variable γ* satisfying 
the potential equations

	
2 2 21( ), ( )( )

2r z rru z r uv u z r uγ ψ γ ψ∗ ∗  
= − = − − − +   �

(68)

and leads to the potential system UVΨΓ *{r, z; u, v, 
ψ, γ*}.

3.	 For the potential system UVQ
α
{r, z; u, v, q

α
}, using the 

second-order multiplier ansatz in the direct method, 
one obtains two conservation laws; one of them is 
equivalent to (59), and another one is given by

	
2 2D (1 ) D ( ( )) 0;

2r zrv q rvz r u ru q z
α α

α 
+ − − + − =   �

(69)

The divergence expression (69) yields a nonlocal 
conservation law of the cylindrical boundary layer 
model UV{r, z; u, v} (58). Using this conservation 
law, one can introduce a further potential variable ω 
satisfying

2 2( ), (1 ) .
2r zru q z r u rv q rvz

α α

α
ω ω= − = − + +
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One consequently obtains a higher-level poten-
tial system UVQ

α
Ω{r, z; u, v, q

α
, ω} and further locally 

and nonlocally related subsystems, also involving the 
spectral parameter α ∈ ℝ\{0}.

5.2.2  �The Relationship between the Potential Variables. 
An Extended Tree for the Cylindrical Model

For the couplet potential system UVΨΦ{r, z; u, v, ψ, φ} of 
the the cylindrical model, one has two local conservation 
laws (65) and (67). Similarly to Lemma 4.1, the following 
statement is proven by a direct computation.

Lemma 5.1. The potentials γ and γ* given by (66) and (68) 
are locally related on the solution set of the PDE systems 
UVΨΦΓ{r, z; u, v, ψ, φ, γ} and UVΨΦΓ *{r, z; u, v, ψ, φ, γ*}:

	 ( ,  ) ( , ) ( ) const.r z r z zγ γ φ ψ∗= − + − + � (70)

The PDE systems UVΨΦΓ{r, z; u, v, ψ, φ, γ} and 
UVΨΦΓ *{r, z; u, v, ψ, φ, γ*} are consequently locally related.

We observe that the structure of conservation laws 
and potential systems of the two-component cylindrical 
boundary layer flow model (58) is parallel to that of the 
basic plate flow equations (Section 4). The notation in the 
current section has been chosen to underline this fact. 
The tree of nonlocally related PDE systems for the bound-
ary layer about the cylinder discovered so far is equivalent 
to the one shown in Figure 2.

In summary, the following result has been obtained.

Proposition 5.2. The boundary layer model (58) for the 
flow around the circular cylinder admits nonlocal conserva-
tion laws (65), (67), and (69). Moreover, the conservation 
laws (65) and (67) are locally equivalent on solution sets of 
the PDE systems which include the dependent variables ψ 
and φ.

5.2.3  �Further Conservation Laws

In order to complete the conservation law analysis of the 
cylinder boundary layer model (58), we seek local conser-
vation laws of the potential systems UVQαΩ{r, z; u, v, q

α
, 

ω} and UVΨΦΓ{r, z; u, v, ψ, φ, γ}.
The PDE system UQαΩ{r, z; u, q

α
, ω} obtained by a 

local substitution of v from UVQαΩ{r, z; u, v, q
α
, ω} can be 

written in the Kovalevskaya form with respect to r. A com-
plete direct conservation law computation with second-
order multipliers yields only a previously known local 
conservation law (59).

A computation for the PDE system UVΨΦΓ{r, z; u, v, 
ψ, φ, γ} with first-order multipliers reveals no additional 
conservation laws.

The local and nonlocal conservation laws arising for 
the cylinder flow boundary layer model (58), with the cor-
responding nonlocal variables, are summarized in Table 3.

5.3  �Symmetry Analysis of the Cylinder 
Boundary Layer Model

The point symmetries of the cylinder boundary layer 
model (58) are found from a direct symbolic computation, 
and are given by the three generators

	
1 2 3Y , Y , Y 2 .z u z r v

z z u z r v
∂ ∂ ∂ ∂ ∂ ∂= = + = + −
∂ ∂ ∂ ∂ ∂ ∂ �

(71)

corresponding to a translation and two scalings. Table 4 
shows the commutators of the generators (71).

In order to seek nonlocal symmetries of the cylinder 
boundary layer model (58), we can compute point symme-
tries of all independent nonlocally related PDE systems 
found so far. Direct symbolic computations using the 
Maple/GeM software demonstrate that no nonlocal sym-
metries arise. In particular:

–– All symmetries of the potential systems UVΨ{r, z; 
u, v, ψ}, UVΦ{r, z; u, v, φ}, UVΨΦ{r, z; u, v, ψ, φ}, 
UVΨΓ{r, z; u, v, ψ, φ, γ}, UVΨΓ *{r, z; u, v, ψ, φ, γ*}, 
UVΨΦΓ{r, z; u, v, ψ, φ, γ}, UVQ

α
{r, z; u, v, q

α
} and 

UVQ
α
{r, z; u, v, q

α
, ω} project on point symmetries of 

the given model (58).

Table 3: Conservation laws and nonlocal variables of the cylinder 
flow boundary layer model (58).

PDE system Conservation law Nonlocal variable

UV (59) ψ
(60) φ
(63) q

α

UVΦ (65) γ
UVΨ (67) γ*

UVQ
α

(69) ω

Table 4: Symmetry commutators for the axisymmetric cylinder 
boundary layer model (58).

Y1 Y2 Y3

Y1 0 Y1 2Y1

Y2 −Y1 0 0
Y3 −2Y1 0 0
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–– The local symmetry Y2 in (71) yields a nonlocal sym-
metry of the potential systems UVQ

α
{r, z; u, v, q

α
} and 

UVQ
α
Ω{r, z; u, v, q

α
, ω}.

–– The PDE system UVΨΦΓ{r, z; u, v, ψ, φ, γ} has a local 
symmetry

	
Y ( ) ,zψ

γ φ
∂ ∂= − +
∂ ∂ �

(72)

which corresponds to a nonlocal symmetry of all PDE 
systems within the tree that include the potential γ but not 
the potential ψ (cf. Fig. 2).

6  �Conservation Laws and 
Nonlocally Related Systems 
of the Radial Jet Boundary Layer 
Model

We now consider the third model: the radial jet bound-
ary layer equations (28a, 28b). The notation in the current 
section is again independent of the notation in the previ-
ous sections.

We start from writing the dimensionless PDEs (28a, 
28b) in an extended Kovalevskaya form with respect to z:

	

,
{ , ;  ,  } : 1 .

zz r z

z r

u uu vu
r z u v

v u u
r

 = +



= − −

UV

�

(73)

The substitution of v from the first PDE of (58) yields a 
locally related PDE U{r, z; u}.

6.1  �Local Conservation Laws and Potential 
Systems

The direct method is now used to compute local conserva-
tion laws of (73). The following result holds.

Proposition 6.1. The linear space of inequivalent nontriv-
ial local conservation laws of the PDE system (73) arising 
from the fourth-order multipliers is spanned by the two con-
servation laws

	 D ( ) D ( ) 0,r zru rv+ = � (74)

	 2D ( ) D ( ( )) 0,r z zru r uv u+ − = � (75)

corresponding to the zeroth-order multiplier pairs (Λ1, 
Λ2) = (0, r) and (Λ1, Λ2) = (− r, ru).

Similar to the above models, the conservation laws 
(74) and (75) are used to introduce potential variables ψ(r, 
z) and φ(r, z), satisfying as it was done in the previous sec-
tions, and define the singlet potential systems

	

,
{ , ;  ,  ,  } : ,

,

r

z

zz r z

rv
r z u v ru

u uu vu

ψ

ψ ψ

 = −
 =
 = +

UVΨ

�

(76)

	

2

( ),
{ , ;  ,  ,  } : ,

1 ,

r z

z

z r

r u uv
r z u v ru

v u u
r

φ

φ φ

 = −
 =
 = − −

UVΦ

�

(77)

the couplet potential system UVΨΦ{r, z; u, v, ψ, φ}, and 
locally related subsystems UΨΦ{r, z; u, ψ, φ}, VΨΦ{r, z; v, 
ψ, φ}, UΨ{r, z; u, ψ}, VΨ{r, z; v, ψ}, Ψ{r, z; ψ}, UΦ{r, z; u, 
φ}, VΦ{r, z; v, φ}, and Φ{r, z; φ}. The use of a linear combi-
nation of the conservation laws (74), (75)

	D ( (1 )) D ( ( ( ))) 0, \ {0}r z zru u r v uv uα α α+ + + − = ∈R � (78)

leads to the spectral potential system UVQα{r, z; u, v, q
α
}

	

2

( ) ( ( )),
{ , ;  ,  ,  } : ( ) ( ),

1 ,

r z

z

z r

q r v u uv
r z u v q q r u u

v u u
r

α

α α

α

α

 = − + −
 = +
 = − −

UVQα

�

(79)

and the locally related subsystems UQα{r, z; u, q
α
}, VQα{r, 

z; v, q
α
}, and Qα{r, z; q

α
}. The resulting preliminary tree T1 

of nonlocally related systems for the radial jet model (28a, 
28b) and (73) coincides with the one for the Prandtl plate 
flow boundary layer model shown in Figure 1 (see also 
Remark 4.1 which holds here as well).

6.2  �Nonlocal Conservation Laws and Further 
Potential Systems

We now seek further conservation laws of the radial jet 
boundary layer model (73) arising as local conservation 
laws of its potential systems.

The following conservation laws are found within the 
second-order multiplier ansatz.
4.	 For the potential system UVΦ{r, z; u, v, φ} (79) and 

its locally related systems, one finds a local conser-
vation law equivalent to (74), and an additional local 
conservation law

	
2 21D ( ) D 0;

2r zru rv r uφ φ
 

+ − =   �
(80)
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the latter is a nonlocal conservation law of the radial 
jet boundary layer equations (28a, 28b) and (73). The 
conservation law (80) yields a new nonlocal variable 
γ satisfying the potential equations

	
2 21, ,

2z rru r u rvγ φ γ φ= = −
�

(81)

and yields the potential system UVΦΓ{r, z; u, v, φ, γ} 
with its locally related subsystems.

5.	 Using the potential system UVΨ{r, z; u, v, ψ} (76), one 
finds a local conservation law equivalent to (75), and 
an additional local conservation law

	
2 2 21D ( ) D ( ) 0;

2r z zru r u r uv uψ ψ
 

+ + − =   �
(82)

this is a nonlocal conservation law of the radial jet 
model (73). The conservation law (82) yields a nonlo-
cal variable γ* satisfying the potential equations

	
2 2 21, ( ) ,

2z z zru r u r uv uγ ψ γ ψ∗ ∗  
= = − + −   �

(83)

and leads to the corresponding potential system 
UVΨΓ *{r, z; u, v, ψ, γ*}.

6.	 For the potential system UVQα{r, z; u, v, q
α
} (79), 

using the second-order multiplier ansatz in the direct 
method, one obtains two conservation laws, the first 
being equivalent to (74), and the second given by

	
2 2D ( ) D 0.

2r zruq rvq r u
α α

α 
+ − =   �

(84)

The divergence expression (84) yields a nonlocal 
conservation law of the cylindrical boundary layer 
model UV{r, z; u, v} (73). Using this conservation 
law, one can introduce a further potential variable ω 
satisfying

2 2, .
2z rruq r u rvq

α α

α
ω ω= = −

One obtains a further potential system UVQαΩ{r, 
z; u, v, q

α
, ω} and further locally and nonlocally 

related subsystems, also involving the spectral para-
meter α ∈ ℝ\{0}.

Similar to the plate and cylindrical boundary layer 
models, for the couplet potential system UVΨΦ{r, z; u, v, 
ψ, φ} of the radial model, the potentials γ, γ* arising from 
its two local conservation laws (80), (82), again turn out to 
be locally related. The following statements hold.

Lemma 6.1. The potentials γ and γ* given by (81) and (83) 
are locally related on the solution set of all PDE systems 
that include the dependent variables ψ, φ. The relationship 
is given by

	 ( ,  ) ( , ) const.r z r zγ γ φψ∗= − + + � (85)

Proposition 6.2. The boundary layer model (73) for the 
radial jet boundary layer flow admits nonlocal conserva-
tion laws (80), (82), and (84). Moreover, the conservation 
laws (80) and (82) are locally equivalent on solution sets 
of the PDE systems which include the dependent variables 
ψ and φ.

The extended tree of nonlocally related PDE systems 
for the radial jet boundary layer model described so far 
is equivalent to the one for the other two models, and is 
shown in Figure 2.

The local and nonlocal conservation laws computed 
for the radial jet equations (73) and the respective nonlo-
cal variables are summarized in Table 5. The direct com-
putation with first-order multipliers reveals no additional 
conservation laws analysis of the radial jet equations (73) 
arising from the potential systems UVΨΦΓ{r, z; u, v, ψ, φ, 
γ} or UQ

α
Ω{r, z; u, q

α
, ω}.

6.3  �Symmetry Analysis of the Radial Jet 
Boundary Layer Model

The point symmetries of the radial jet equations (73) are 
found by a direct symbolic calculation; the infinite-dimen-
sional Lie symmetry algebra is spanned by the generators

2

3 42 3 4

Z 2 , Z 2 ,

1 3Z , Z ( ) ( ) ,

r z v z u v
r z v z u v

z zu rv f r uf r
r z v z vr r r

∂ ∂ ∂ ∂ ∂ ∂= + − = − −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ + ∂ ∂ ∂= − + − = + ′
∂ ∂ ∂ ∂ ∂

� (86)

corresponding to a translation and two scalings. Table 6 
contains the commutator relations generators (86).

Table 5: Conservation laws and nonlocal variables of the radial jet 
boundary layer model (73).

PDE system Conservation law Nonlocal variable

UV (74) ψ
(75) φ
(78) q

α

UVΦ (80) γ
UVΨ (82) γ*

UVQα (84) ω
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In order to seek nonlocal symmetries of the radial jet 
boundary layer model (73), we now seek point symmetries 
of all independent nonlocally related PDE systems for this 
model as described above. Symbolic computations using 
the Maple/GeM software show that no nonlocal symme-
tries arise. In particular, the following relationships hold.

–– All symmetries of the potential systems UVΨ{r, z; u, v, 
ψ}, UVΦ{r, z; u, v, φ}, UVΨΦ{r, z; u, v, ψ, φ}, UVΦΓ{r, 
z; u, v, ψ, φ, γ}, UVΨΓ *{r, z; u, v, ψ, φ, γ*}, UVΨΦΓ{r, 
z; u, v, ψ, φ, γ}, UVQ

α
{r, z; u, v, q

α
} and UVQ

α
Ω{r, z; 

u, v, q
α
, ω} project on point symmetries of the given 

model (73).
–– The local symmetry Z2 in (86) yields a nonlocal sym-

metry of the potential systems UVQ
α
{r, z; u, v, q

α
} and 

UVQ
α
Ω{r, z; u, v, q

α
, ω}.

–– The PDE system UVΨΦΓ{r, z; u, v, ψ, φ, γ} has a local 
symmetry

	
Z ,ψ

γ φ
∂ ∂= +
∂ ∂ �

(87)

which yields a nonlocal symmetry of all PDE systems 
within the tree that include the potential γ but not the 
potential ψ (cf. Fig. 2).

7  �Discussion
In the current study, local and nonlocal conservation laws 
were systematically obtained, and trees of nonlocally 
related systems were constructed, for three models of two-
dimensional, two-component boundary layer fluid flow: 
the Prandtl equations for steady plate flows (24a, 24b) 
(Section 4), a layer flow about a circular cylinder (27a, 27b) 
(Section 5), and a radial wall jet boundary layer model 
(28a, 28b) (Section 6).

It is remarkable that for these three physically dif-
ferent models, the analysis reveals essentially the same 
structure of local conservation laws, potential systems 

and subsystems, and nonlocal conservation laws. In par-
ticular, for each model, two linearly independent local 
conservation laws arise, leading to the introduction of 
the stream function ψ, and a second potential φ. Further, 
using the corresponding potential systems UVΨ and 
UVΦ, for each of the three models, two local conservation 
laws were found, corresponding to nonlocal conservation 
laws of each boundary layer model.

Another interesting relationship is observed: for each 
of the three models, the independent nonlocal variables 
γ and γ* introduced using the two nonlocal conservation 
laws appear to be locally related on the solution set of the 
most general potential systems (Lemmas 4.1, 5.1, and 6.1): 
one has, for example, γ = γ[γ*, φ, ψ], a local differential 
function.

For each of the three boundary layer models, a spec-
tral potential system UVQ

α
 for the potential q

α
, arising 

from a linear combination of the two local conservation 
laws and depending on a continuous parameter α ∈ ℝ\{0} 
(e.g. (44)), has been also shown to possess a local conser-
vation law that corresponds to a nonlocal conservation 
law of a given PDE system; this yields a family of nonlocal 
conservation laws parameterized by α. The conservation 
laws and potential variables for the three PDE systems 
(24a, 24b), (27a, 27b), and (28a, 28b) have been sum-
marized in Tables 1, 3, and 5. The three physical models 
consequently possess the same trees of locally nonlocally 
related systems; the preliminary version of such a tree was 
shown in Figure 1, and a more extended version involving 
potentials that arise from nonlocal conservation laws was 
presented in Figure 2. These trees can be possibly further 
extended using other techniques, such as exclusion of 
variables following a local coordinate change to obtain 
nonlocally related subsystems (e.g. [1, 20]), and/or inverse 
potential systems obtained using symmetries [36].

As a further observation, the computations carried 
out in the current work provide an illustration that com-
plements the important result of [14, 21] (Theorem 1). The 
theorem establishes that if a direct conservation law con-
struction method is applied to a potential system of some 
given PDE system, then local multipliers lead only to local 
conservation laws of the given system. In Section 4.2, for 
example, for the plate flow model UV (29), we derive its 
potential system UVΦ (38). The latter has a local conser-
vation law (45) arising from multipliers (v, −u, φ), which 
are not local functions for the given model UV and indeed, 
the conservation law (45) is nonlocal for the PDE system 
UV. Yet an equivalent conservation law (52) arises from a 
locally related subsystem ΨΦ (41) of the potential system, 
and here, the multipliers are given by (ψx, ψy) ≡ (−v, u), 
which are local on solutions of the given model UV. This 

Table 6: Symmetry commutators for the radial boundary layer 
model (73).

Z1 Z2 Z3 Z4[f(r)]

Z1 0 0 −6Z3 Z4[g(r)]
Z2 0 0 0 −Z4[f(r)]
Z3 6Z3 0 0 Z4[h(r)]
Z4[f(r)] −Z4[g(r)] Z4[f(r)] −Z4[h(r)] 0

Here f = f(r) is an arbitrary function; g(r) = 2rf′(r) − f(r); 
h(r) = −[f ′(r)/r2 + f(r)/r3]. Note that [Z4(p), Z4(q)] = 0 for any p(r), q(r).
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illustrates that the statement of Theorem 1 does not hold 
for subsystems.

It is natural to ask the question about the origins of 
the complete correspondence observed in the conser-
vation law structure and the trees of nonlocally related 
systems for the three boundary layer models. One may 
expect that they belong to a general family of PDE 
systems possessing the same local and nonlocal con-
servation law structure; it is an open problem to specify 
such a family. From the physical point of view, this is 
challenging because the systems describe substantially 
different physical situations. Yet the similarity of conser-
vation laws and nonlocally related systems is striking; 
one might conjecture that the three models are related 
by a coordinate change. However, the following result 
holds.

Proposition 7.1. Neither pair of the three boundary layer 
models (24a, 24b), (27a, 27b), and (28a, 28b) is related by a 
local transformation.

For two PDE systems having more than one independ-
ent variable to be related by an invertible transformation, 
the transformation must be point [70] (see also Section 
2.2.1 in [1], and [71]). One can show that there is no point 
transformation mapping any of the three PDE systems to 
another one. First, it is well known that if two PDE systems 
are related by a point transformation, the Lie algebras of 
their point symmetries are isomorphic. Comparing the 
respective symmetry generators (56), (71), and (86) for the 
three boundary layer models, we conclude that the model 
(27a, 27b) of equilibrium two-component boundary layer 
flow about a circular cylinder is not connected to any of 
the other two models by an invertible transformation. On 
the other hand, the symmetry structures (56) and (86) of 
the plate and radial jet flows do not preclude the possible 
existence of a point coordinate transformation between 
the systems. In order to prove that it does not exist, we 
take the following steps.
1.	 Pose a general point transformation

	

( , ,  ( , ), ( , )),

( , ,  ( , ), ( , )),

( , ) ( , ,  ( , ), ( , )),

( , ) ( , ,  ( , ), ( , )),

r F x y A x y B x y

z G x y A x y B x y

u r z H x y A x y B x y

v r z K x y A x y B x y

=

=

=

= � (88)

satisfying the nondegeneracy condition |∂(F, G, H, 
K)/∂(x, y, u, v) |  ≠ 0.

2.	 Change the variables in the radial jet model (28a, 28b) 
according to (88).

3.	 Assume u = A(x, y), v = B(x, y) is a solution of the plate 
flow model (24a, 24b). Substitute the PDEs (24a, 24b) 

(solved, for example, with respect to the leading 
derivatives Ayy, By) and their differential consequences 
into the transformed equations.

4.	 Set to zero coefficients of all nonleading derivatives. 
Solve the resulting PDEs (with the nonzero Jacobian 
constraint) for the unknown F, G, H, K.

A symbolic computation that employs GeM and Maple 
rifsimp routines shows that such transformations (86) 
do not exist. This completes the proof. An alternative 
proof can likely be obtained using the general Cartan’s 
method of equivalence [72–74].

For each of the three models, we have computed their 
point symmetries, as well as point symmetries of all non-
locally related PDE systems within each extended tree 
(Sections 4.3, 5.3, and 6.3). No nonlocal symmetries were 
found for the given physical equations, but nonlocal sym-
metries for some nonlocally related PDE systems within 
the tree were identified.

Open problems related to the subject of this contri-
bution include the physical interpretation of the nonlo-
cal topological conservation laws obtained for the three 
models, as well as the derivation and analysis of exact 
solutions, including symmetry-invariant solutions, in par-
ticular, those arising from the symmetries that involve an 
arbitrary function.
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