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A simple formula is presented that, for any given local divergence-type conservation 
law of a system of partial or ordinary differential equations (PDE, ODE), generates 
a divergence expression involving an arbitrary function of all independent variables. 
In the cases when the new flux vector is a local expression inequivalent to the 
initial local conservation law flux vector, a new local conservation law is obtained. 
For ODEs, this can yield additional integrated factors. Examples of systems of 
differential equations are presented for which the proposed new relationship yields 
important local conservation laws starting from basic ones. Examples include a 
nonlinear ODE and several fundamental physical PDE models, in particular, general 
classes of nonlinear wave and diffusion equations, vorticity-type equations, and a 
shear wave propagation model in hyper-viscoelastic fiber-reinforced solids.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider a system of differential equations (DE) R given by

Rσ[u] = 0, σ = 1, . . . , N, (1.1)

with independent variable(s) z = {zi}ni=1 and dependent variable(s) u = {uk(z)}mk=1.

Definition 1. A local divergence-type conservation law of R is given by a divergence expression

DiΨi[u] = 0 (1.2)

that vanishes for all solutions u(z) of the system (1.1).
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In (1.2), Ψi[u] are the conservation law fluxes, and

Di ≡ Dzi = ∂

∂zi
+ uj

i

∂

∂uj
+ uj

ii1

∂

∂uj
i1

+ uj
ii1i2
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∂uj
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+ · · · (1.3)

denote the total derivative operators. In (1.1), (1.2) and throughout the paper, symbols F [u] denote dif-
ferential functions, i.e., functions that may depend on independent variables, dependent variables, and 
derivatives of dependent variables of a given DE system, to some finite order. In (1.2), (1.3), and below 
where appropriate, summation in repeated indices is used, as well as the notation

uj
i ≡ uj

zi ≡
∂uj

∂zi
, uj

i� ≡
∂2uj

∂zi∂z�
, . . .

for partial derivatives. When the independent variables are time and space variables, z = {t, {xi}ni=1}, local 
conservation laws (1.2) take the form

DtΘ[u] + DxiΦi[u] = 0, (1.4)

where Θ[u] is the local conserved density, and Φi[u] are the spatial fluxes.
Nontrivial local conservation laws of PDE systems are coordinate-invariant expressions incorporating 

fundamental information about the system at hand. They are widely used in analysis and numerical simu-
lation (see, e.g., [9,36] and references therein). For a local conservation law (1.4) of a time-dependent PDE 
system holding in the spatial domain D, under appropriate boundary conditions where fluxes vanish on the 
boundary of the domain or at infinity, the divergence theorem yields a global conserved quantity

J =
∫
D

Θ[u] dV, d

dt
J = 0. (1.5)

For ODEs, local conservation laws DtΘ[u] = 0 yield first integrals Θ[u] = const.
Basic local conservation laws of classical physical PDE systems, such as conservation of mass, energy, 

momentum, vorticity, etc., have often been either the building blocks of the models, or have been derived by 
inspection. For a variational PDE system, the first Noether’s theorem provides a correspondence between 
its local variational symmetries and its local conservation laws; Lie symmetries thus can be employed to 
compute conservation laws (see, e.g., [8,9,35,36]). For general PDE systems, a number of systematic, or 
somewhat systematic, methods of conservation law computation exist (see, e.g., [31–33,41]).

In [29,36,40], a systematic method of construction of local conservation laws applicable for general classes 
of DE systems, sometimes referred to as the direct method, has been developed (see also [2,3,9]). It is based 
on the fact that for totally nondegenerate PDE systems, any local conservation law (1.2) can be written, 
up to equivalence, in a characteristic form

DiΨi[u] = Λσ[u]Rσ[u] (1.6)

for some set of conservation law multipliers {Λσ[u]}Nσ=1, which are also sometimes referred to as charac-
teristics, or generating functions, or integrating factors. (The notion of equivalence of conservation laws 
is discussed in Section 2.2 below.) In particular, the relations (1.6) hold for an arbitrary vector function 
u = u(z). Then on solutions of the given DE system, a local conservation law (1.2) holds. Within the direct 
method, the multipliers {Λσ[u]}Nσ=1 are found from the determining equations obtained through the action 
of Euler differential operators with respect to all dependent variables of the system. The multiplier deter-
mining equations form an overdetermined system of linear PDEs, similar to determining equations arising 
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in local symmetry analysis. The generation and solution of determining equations, as well as subsequent 
conservation law density and flux computations, have been implemented in the symbolic package GeM for 
Maple (see [15–17]), as well as a number of other symbolic software packages (e.g., [41]).

Within the direct method, in order to avoid trivial conservation law multipliers, one needs to exclude from 
their dependencies some leading derivatives of the given DE system, as well as their differential consequences 
(see, e.g., [9]). For PDE systems that admit a Kovalevskaya form [36], or more generally, an extended 
Kovalevskaya form [29], multipliers may indeed be chosen independent of appropriately defined leading 
derivatives and their differential consequences, and hence for such systems, the direct method is complete, 
yielding all linearly independent, nontrivial local conservation laws that arise for the multipliers within any 
a priori specified ansatz.

The direct method has been used to compute local conservation laws of multiple PDE systems; see, e.g., 
[6,7,9–11,21,25,26] and references therein. For a comparative discussion of the direct method vs. the first 
Noether’s theorem, see, for example, [8,9,20].

Local divergence-type conservation laws (1.2) can be used to systematically introduce nonlocal variables, 
commonly referred to as potentials, vector potentials, stream functions, etc. A framework of nonlocally 
related PDE systems has been developed in [6,11] (see also [9]). PDE systems that are nonlocally related 
to the given one but have an equivalent solution set are systematically derived within this framework [9]. 
Subsequently, standard local techniques such as symmetry and conservation law analysis may be applied to 
nonlocally related PDE systems, yielding new results, including non-invertible linearizations, and nonlocal 
symmetries and nonlocal conservation laws which essentially involve nonlocal (potential) variables. For the 
direct conservation law construction method, conditions under which local conservation law multipliers of a 
potential system lead to nonlocal conservation laws of a given PDE system have been established in [11,28].

In the current contribution, a recursion formula is presented that formally maps a local conservation law 
of a given DE system into a family of divergence expressions, whose densities/fluxes include an arbitrary 
function of all variables, and may involve local or nonlocal (integral) expressions (Section 2). It is shown 
that under certain conditions, in particular, for certain forms of the initial conservation law and the ar-
bitrary function, the new conservation law(s) will be nontrivial local conservation laws of a given system, 
linearly independent of the given one. The benefit of the suggested formula is the possibility of immediate 
construction of one or more additional local conservation laws from a basic known local conservation law of 
a given DE system, without the need to solve any determining equations that arise in general procedures, 
such as the direct method or Noether-like methods. This possibility of avoiding the generation and solution 
of determining equations is particularly important for complicated systems of nonlinear PDEs.

Several physical PDE examples, for two- and multi-dimensional situations, are presented in Section 3. The 
recursion formula is applied there to derive, in a straightforward manner, basic local conservation laws for the 
nonlinear wave and diffusion equations, vorticity-type equations (arising in fundamental fluid, plasma and 
electrodynamics models), and the nonlinear equation describing wave propagation in a hyper-viscoelastic 
fiber-reinforced solid. An ODE example appears in Section 3.5.

In Section 4, a relationship between the new conservation law recursion formula and the inverse point 
symmetry action on conservation laws is discussed.

Conclusions are provided in Section 5.

2. The conservation law recursion formula

2.1. The basic recursion

We start with the following elementary argument. Consider a PDE system with two independent variables 
x, y and dependent variable(s) u. Suppose it has a nontrivial local conservation law

DxA[u] + DyB[u] = 0, (2.1)
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for some differential functions A, B. Then the multiplication by y and the application of the product rule 
yield a formal divergence expression

Dx(yA[u]) + Dy

(
yB[u] −

∫
B[u] dy

)
= 0. (2.2)

(An expression of the type (2.2) appeared in [34] in the context of Prandtl boundary layer PDE systems.) 
Importantly, when B[u] has a form of a total derivative in y, the divergence expression (2.2) yields a 
nontrivial local conservation law linearly independent of the original one given by (2.1). When the y-flux in 
(2.2) is an essentially nonlocal expression, there is no obvious interpretation of this divergence expression; 
we discuss this question later in a more general setting.

Example. Let u = u(t, x). The linear wave equation that models, for example, small transverse oscillations 
of an elastic string, is given by

utt − uxx = 0. (2.3)

It is well known that any linear PDE or PDE system admits an infinite set of conservation laws [4,9]. Here 
we, however, consider only conservation laws arising from the recursion formula (2.2). The PDE (2.3) is a 
conservation law as it stands,

Dtut − Dxux = 0, (2.4)

expressing the local conservation of linear momentum. The x-flux is evidently a total derivative by x. The 
application of the formula (2.2) with respect to x and t yields two conservation laws

Dt(xut) − Dx(xux − u) = 0, (2.5)

Dt(tut − u) − Dx(tux) = 0. (2.6)

Both (2.5) and (2.6) are physical local conservation laws, expressing, respectively, the conservation of angular 
momentum of the string with respect to the origin, and the motion of the center of mass (see, e.g., [36], 
p. 279; [19]). A further application of the recursion formula (2.2) to the local conservation law (2.5) with 
respect to t, or to the conservation law (2.6) with respect to x, yields a “symmetric” local conservation law

Dt(x(tut − u)) − Dx(t(xux − u)) = 0. (2.7)

It is easy to see that the three local conservation laws (2.5), (2.6), (2.7) arise from the direct conservation 
law construction method, through the multiplication of the given PDE (2.3) by the multipliers Λ = x, Λ = t, 
and Λ = xt.

When the local flux or density in a corresponding variable is not a total derivative, the formula (2.2) yields 
formal divergence local containing nonlocal terms. For example, the application of the recursion formula to 
the local conservation law (2.5) with respect to x leads to a zero divergence expression

Dt(x2ut) − Dx

(
x(xux − u) −

∫
(xux − u) dx

)
= 0. (2.8)

Here the spatial flux has the form

Φ = Φ[u,w] = x(xux − u) − w,
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and contains a nonlocal variable w defined by wx = xux − u. We note that the conservation law (2.5) can 
be used to introduce a potential variable q through

qx = xut, qt = xux − u,

and wx = qt. The nonlocal variable w itself is not a potential variable arising from any local conservation 
law of the given PDE (2.3).

A related example for a nonlinear wave equation is considered in Section 3.

2.2. A multi-dimensional generalization

For the two-dimensional case, a sequential application of (2.2) to a given local conservation law (2.1)
yields divergence expressions in the form

DxΘn[u] + DyΨn[u] = 0, n = 1, 2, . . . ,

with Θn[u] = ynA[u]. For an arbitrary analytic function f(y), a linear combination of such expressions leads 
to a divergence expressions with the “density” Θn[u] = f(y)A[u]. This observation leads to a formulation 
of a more general result holding for the multi-dimensional case, as follows.

Lemma 1. Let R (1.1) be a DE system with independent variables z = {zi}ni=1 and dependent variables 
u = {uk(z)}mk=1. Suppose that it admits a nontrivial local conservation law (1.2). Then for an arbitrary 
differentiable function f = f(z), the following formal divergence expression vanishes on any given solution 
u(z) of the system R:

DiΞi ≡ Di

(
fΨi[u] −

∫
∂f

∂zi
Ψi[u] dzi

)
= 0. (2.9)

We now discuss the properties of the recursion formulas (2.9).

A. Locality conditions; Relationship to the direct conservation law construction method
The divergence expressions (2.9) are generally nonlocal, however in multiple instances, including the 

above ones and several important examples of the following Section 3, the formula (2.9) yields useful local 
conservation laws of the given DE system.

For the formal divergence expression (2.9), one has, for an arbitrary vector function u,

DiΞi = f(z) DiΨi[u], (2.10)

the function f(z) in (2.9) playing the role of a conservation law multiplier. Therefore in a manner parallel 
to the ideas used in the direct conservation law construction method, one may employ Euler differential 
operators to provide a condition that is satisfied when the left-hand side of (2.10) is a local differential 
function. In that case, for a given local conservation law (1.2) and a given f(z), the recursion formula (2.9)
provides a new local conservation law.

It is well known that a necessary and sufficient condition that a differential function F [u] is a divergence 
expression, i.e., F [u] = DiQ

i[u] for some differential vector function Q[u] (off of the solution space of the 
given DE system R) if and only if it vanishes identically under the action of Euler operators with respect 
to all the dependent variables [9,22]:
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EujF [u] ≡
(

∂

∂uj
− Di

∂

∂uj
i

+ · · · + (−1)sDi1 . . .Dis

∂

∂uj
i1...is

+ · · ·
)
F [u] ≡ 0, j = 1, . . . ,m.

The following statement holds.

Lemma 2. The divergence expression (2.9) yields a local conservation law of the DE system R if and only if

Euj (f(z) DiΨi[u]) = 0 (2.11)

for an arbitrary vector function u, for all j = 1, . . . , m.

Note that the condition (2.11) generally restricts not only the form of the arbitrary function f(z) but 
also the form of the initial conservation law (1.2). We also remark that if (2.11) holds, the fluxes of the 
divergence expression (2.9) as written are not necessarily local expressions, yet there exists an equivalent 
flux vector that is local. An example of such possibility is provided in Section 3.4 below.

As a simple example, let R be a linear wave equation (2.3), z = (t, x), and let the initial conservation 
law be given by (2.4), the equation itself. In order to answer the question when the divergence expression 
arising from the formula (2.9),

DtΞ1 + DxΞ2 = f(t, x)(DtΨ1[u] + DxΨ2[u]) = 0,

yields a local conservation law of the PDE (2.3), we apply the condition (2.11) with respect to u = u(t, x):

Eu

(
f(t, x)(DtΨ1[u] + DxΨ2[u])

)
= (D2

t − D2
x)f(t, x) = ftt − fxx = 0.

In this case, due to the linearity of (2.3), the condition does not involve u. We observe that any f = f(t, x)
satisfying the linear wave equation ftt − fxx = 0 is indeed a conservation law multiplier, and for all such f , 
the recursion formula (2.9) yields local conservation laws of the wave equation (2.3).

It is challenging to provide a general interpretation of the formula (2.9) when the fluxes Ξi involve essen-
tially nonlocal terms. Such nonlocal divergence expressions are generally not equivalent to local conservation 
laws of potential systems in the usual sense, where potentials are introduced based on local conservation 
laws of a given PDE system (cf. [9,11]). Similar constructs arise, for example, for evolution-type PDEs

ut = F (x, u, ∂u, . . . , ∂nu) (2.12)

involving two independent variables (t, x), with ∂u = ux, etc. Then one can formally write a conservation 
law-type expression

Dt u− Dx

(∫
F dx

)
= 0, (2.13)

which, one may say, has just as much meaning as the expressions (2.9) in the general nonlocal case.
In the case when the formula (2.9) yields a local conservation law, one is naturally interested in its 

mathematical origins, as well as its possible equivalence to, or dependence on, the original local conservation 
law (1.2) of the DE system (1.1). These questions are discussed below.

B. Non-triviality and linear independence of conservation laws (2.9)
Suppose that a DE system R (1.1) has a local conservation law (1.2). The following definitions hold (e.g., 

[9,36,37]).
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Definition 2. The conservation law (1.2) is trivial if its fluxes have the form Ψi[u] = M i[u] + Hi[u], where 
M i[u] and Hi[u] are differential functions such that M i[u] vanishes on the solutions of R, and DiH

i[u] ≡ 0
is a null divergence (i.e., it vanishes identically).

Definition 3. Two conservation laws DiΨi[u] = 0 and DiΓi[u] = 0 are equivalent if Di(Ψi[u] −Γi[u]) = 0 is a 
trivial conservation law. An equivalence class of conservation laws consists of all conservation laws equivalent 
to some given nontrivial conservation law.

If two conservation laws are written in a characteristic form (1.6), their multiplier sets are called equivalent
when they differ by a trivial multiplier set, i.e., one vanishing on the solutions of the given DE system. The 
following theorem holds [36].

Theorem 1. Let R (1.1) be a normal, totally nondegenerate DE system. Let DiΨi[u] = 0 and DiΓi[u] = 0
be its two local conservation laws, with multiplier sets {Λσ[u]}Nσ=1 and {Λ̃σ[u]}Nσ=1. Then the two local 
conservation laws are equivalent if and only if {Λσ[u]}Nσ=1 and {Λ̃σ[u]}Nσ=1 are equivalent multiplier sets.

Definition 4. A set of p conservation laws {DiΨi
(j)[u] = 0}pj=1 is linearly dependent if there exists a set of 

constants {a(j)}pj=1, not all zero, such that the linear combination

Di(a(j)Ψi
(j)[u]) = 0 (2.14)

is a trivial conservation law.

In practice, one is interested in computing the largest possible set of nontrivial, linearly independent 
conservation laws of a given DE system. A conservation law that, up to equivalence, can be expressed as a 
linear combination of the other known ones, is naturally disregarded.

A natural question to ask is whether or not local conservation laws constructed through the recursion 
formula (2.9) are trivial or linearly dependent on the given conservation law (1.2) of the DE system at hand. 
The following statement holds.

Lemma 3. Let (1.1) be a normal, totally nondegenerate DE system, with a nontrivial local conservation law 
DiΨi[u] = 0 (1.2) written in a characteristic form (1.6). Suppose also that for some f(z) �= 0, the formula 
(2.9) applied to that conservation law yields a local conservation law DiΞi[u] = 0. Then the latter is a 
nontrivial conservation law, linearly independent of the given conservation law (1.2).

The proof follows from Theorem 1. Indeed, if the initial conservation law (1.2) has the multiplier set 
{Λσ[u]}, then the new conservation law (2.9) corresponds to the multipliers {Λ̃σ[u]} = {f(z)Λσ[u]}. The 
multiplier set

aΛσ[u] + bΛ̃σ[u] = (a + bf(z))Λσ[u]

is nontrivial, except when a = b = 0. It follows that Di(aΨi[u] + b Ξi[u]) = 0 is a nontrivial conservation 
law unless a = b = 0, which completes the proof.

Similarly, if the formula (2.9) yields several new local conservation laws Di Ξi
(j)[u] = 0, j = 1, . . . , s, cor-

responding to linearly independent nonconstant functions f j(z), then a set composed of these conservation 
laws and the original conservation law (1.2) is linearly independent.
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3. Examples

3.1. Nonlinear wave equations

Local conservation laws, and a related tree of nonlocally related PDE systems, were considered in [7] for 
the class of nonlinear wave equations

utt = (c2(u)ux)x (3.1)

with the dependent variable u = u(t, x). It was shown that for an arbitrary constitutive function c(u), 
there are exactly four zeroth-order multipliers Λ = 1, t, xt, x, with corresponding linearly independent local 
conservation laws given by

Dt(ut) − Dx(c2(u)ux) = 0, (3.2)

Dt(tut − u) − Dx(tc2(u)ux) = 0, (3.3)

Dt(xut) − Dx

(
xc2(u)ux −

∫
c2(u)du

)
= 0, (3.4)

Dt

(
x[tut − u]

)
− Dx

(
t
[
xc2(u)ux −

∫
c2(u)du

])
= 0. (3.5)

The first conservation law (3.2) is the PDE (3.1) itself. We observe that the three remaining conservation 
laws can be obtained in a straightforward way by the application of the recursion formula (2.9) to the 
wave equation (3.1) (conservation law (3.2)), without invoking the direct construction or any other generic 
method. Applying (2.9) to (3.2) with respect to t and x, one obtains the conservation laws (3.3) and (3.4). 
Applying the recursion formula to (3.3) with respect to x, one gets (3.5).

Other choices of f(t, x) in the recursion formula of Lemma 1 lead to nonlocal divergence expressions 
(2.9); indeed, the locality condition (2.11) is given by

ftt − c2(u)fxx = 0,

which, for an arbitrary u, has the indicated four linearly independent solutions f(t, x) = 1, t, x, xt.

3.2. Nonlinear diffusion equations

Consider a class of nonlinear diffusion equations for u = u(t, x), given by

ut = (L(u))xx. (3.6)

Every local conservation law of the PDEs (3.6) is equivalent to a local conservation law where ut and its 
differential consequences have been excluded through the substitution of (3.6). Since (3.6) is an evolution 
PDE of order two (even order) in space, and also is quasilinear, it follows that the conserved densities of its 
local conservation laws are of order zero, i.e., involve no derivatives of u [1,24,39]. There are consequently 
exactly two local conservation laws of (3.6) holding for an arbitrary L(u) [12]; they are given by

Dt(u) − Dx

(
(L(u))x

)
= 0, (3.7)

Dt(xu) − Dx

(
x(L(u))x − L(u)

)
= 0. (3.8)
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The first conservation law (3.7) is the PDE (3.6) itself. One can apply the recursion formula (2.9) to (3.7)
for an arbitrary f(t, x) to obtain divergence expressions

Dt

(
fu−

∫
ftu dt

)
− Dx

(
f(L(u))x −

∫
fx(L(u))x dx

)
= 0, (3.9)

which yield local conservation laws if and only if f(t, x) = C1x +C2, C1, C2 = const, correspond to the first 
and the second conservation laws (3.7), (3.8).

3.3. The vorticity-type equations

Consider a system of vorticity-type equations in 3+1 dimensions [18], given by four scalar PDEs

divN = 0, Nt + curlM = 0, (3.10)

in Cartesian coordinates. The system (3.10) involves two vector functions N = (N1, N2, N3), M = (M1,

M2, M3) which depend on the time t and the spatial variables x, y, z.
The system (3.10) is not closed; it can, however, be considered as it stands for the sake of conservation law 

computations. PDEs (3.10) form a part of several fundamental linear and nonlinear physical PDE models 
in various fields, including Maxwell’s equations, vorticity dynamics of Euler and Navier–Stokes equations 
of fluid motion, and magnetohydrodynamics (MHD) equations describing ideal plasmas as well as plasmas 
with nonzero resistivity [18,21]. In Maxwell’s and MHD equations, the vector field N = B represents the 
magnetic induction, and in vorticity equations, N = ω is the fluid vorticity. In many cases, the vector 
function M is a nonlinear function of physical parameters.

The three components of the vector equation in (3.10) are given by

DtN1 + DyM3 − DzM2 = 0,
DtN2 + DzM1 − DxM3 = 0,
DtN3 + DxM2 − DyM1 = 0.

(3.11)

The general application of the recursion formula of Lemma 1 to each of the three PDEs (3.11) using arbitrary 
functions fi = fi(x, y, z, t), i = 1, 2, 3, respectively, leads to a formal divergence expression

Dt

(
f1N1 −

∫
f1 tN1 dt

)
+ Dy

(
f1M3 −

∫
f1 yM3 dy

)
− Dz

(
f1M2 −

∫
f1 zM2 dz

)
= 0, (3.12)

and the two other respective ones obtained from (3.12) by cyclic permutations 1 → 2 → 3 → 1 and 
x → y → z → x. These three divergence expressions generally involve nonlocal terms.

The first basic example when the conservation law (3.12) (with the two permuted ones) is local is when 
one takes f1 = f1(x) in (3.12) (and f2 = f2(y), f3 = f3(z) in the two related formulas). In this case, (3.12) is 
given by

Dt (f1(x)N1) + Dy (f1(x)M3) − Dz (f1(x)M2) = 0. (3.13)

Denoting f = (f1, f2, f3), one may write the three conservation laws together as a vector formula

Dt (N · f) + div (M× f) = 0. (3.14)

The general case when the conservation laws given by (3.12) and the related expressions can yield a local 
conservation law of (3.10) is when the arbitrary functions fi are the three components of a gradient of an 
arbitrary function F = F (t, x, y, z):
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(f1, f2, f3) = gradF. (3.15)

In this case, using the basic differential identities, one can show that the integral terms vanish on the solution 
set of the system (3.10), and the resulting linear combination of the three scalar conservation laws has an 
equivalent form

(N · gradF )t + div (M × gradF − Ft N) = 0. (3.16)

In the context of vorticity equations in gas and fluid dynamics, the conserved density Θ = N · gradF is 
known in literature as potential vorticity [13,18,21,23,30].

The local conservation laws (3.16) are known to hold in a more general context, when the function F is 
an arbitrary differential function, i.e., it may depend not only on independent variables, but also on physical 
parameters of the model and their derivatives [18]. The existence of such a wide class of conservation laws 
has to do with the fact that any PDE system involving equations (3.10) is abnormal. To variational abnormal 
PDE systems, Noether’s second theorem applies [21,35,36].

3.4. Wave propagation in a hyper-viscoelastic fiber-reinforced material

Wave models for elastic solids within the nonlinear incompressible hyperelasticity and viscoelasticity 
frameworks were considered in [19]. A third-order PDE governing anti-plane shear fiber-aligned displace-
ments G(t, x) of a fiber-reinforced viscoelastic solid was derived; it has a dimensionless form

Gtt =
(
G 2

x + 1
)
Gxx

+ η Gx

[
2 (4αG 2

x + 3)GxxGtx + (2αG 2
x + 3)GxGtxx

]
+ ζG3

x

[
12(2αG 2

x + 1)GxxGtx + (4αG 2
x + 3)GxGtxx

]
,

(3.17)

involving three constant constitutive parameters α, η, ζ. It was shown in [19] that the PDE (3.17) can be 
written in the form of a local conservation law

Dt

(
Gt −

[
η(3 + 2αG 2

x ) + ζ(3 + 4αG 2
x )G 2

x

]
G 2

xGxx

)
− Dx

( [
1 + 1

3 G
2
x

]
Gx

)
= 0. (3.18)

To this conservation law, we now apply the recursion formula of Lemma 1 with respect to t. It is convenient 
to rewrite (3.18) as

Dt

(
Gt −A(Gx)Gxx

)
− Dx

(
B(Gx)

)
= 0, (3.19)

with

A(Gx) =
[
η(3 + 2αG 2

x ) + ζ(3 + 4αG 2
x )G 2

x

]
G 2

x , B(Gx) =
[
1 + 1

3 G
2
x

]
Gx.

Using the formula (2.9), one can write a divergence expression

Dt

[
t(Gt −A(Gx)Gxx) −

∫
(Gt −A(Gx)Gxx) dt

]
− Dx

(
tB(Gx)

)
= 0. (3.20)

It can be shown that (3.20) is equivalent to a local conservation law. Indeed, it can be rewritten as
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0 = Dt

(
t(Gt −A(Gx)Gxx) −G

)
+ A(Gx)Gxx − Dx

(
tB(Gx)

)
= Dt

(
t(Gt −A(Gx)Gxx) −G

)
− Dx

(
tB(Gx) −

∫
A(Gx) dGx

)
.

(3.21)

Explicitly, we get the second local conservation law of the PDE (3.17) given by

Dt

(
tGt −G− t

[
η(3 + 2αG 2

x ) + ζ(3 + 4αG 2
x )G 2

x

]
G 2

xGxx

)
+ Dx

(
η
[
1 + 2

5αG
2
x

]
G3

x + ζ
[3

5 + 4
7αG

2
x

]
G5

x − t
[
1 + 1

3 G
2
x

]
Gx

)
= 0,

(3.22)

linearly independent of the first conservation law (3.18).

3.5. Computation of a new first integral from a known one for a nonlinear third-order ODE

Formula (2.9) can be used for ODEs, and thus lead to further reduction of order, when the new conser-
vation law density (first integral) is also a local quantity. For example, consider an ODE for K(x),

K ′′′ = 2 (K ′′)2 K − (K ′)2 K ′′

KK ′ , (3.23)

arising in a symmetry classification problem. (In (3.23), primes denote derivatives.) It can be shown that 
there is a first integral of (3.23) given by

Dx

(
KK ′′

(K ′)2

)
= 0. (3.24)

We apply the formula (2.9) with f = x to (3.24) to get an independent first integral, which indeed appears 
to be a local quantity:

0 = Dx

(
x
KK ′′

(K ′)2 −
∫

KK ′′

(K ′)2 dx

)
= Dx

(
xKK ′′

(K ′)2 + K

K ′ − x

)
. (3.25)

Generally, using the direct method, one can construct three independent integrating factors and therefore 
three first integrals of the ODE (3.23), thus completely integrating it; the three first integrals are given by

KK ′′

(K ′)2 = C1,
xKK ′′

(K ′)2 + K

K ′ − x = C2,
KK ′′ lnK

(K ′)2 − lnK ′ = C3, (3.26)

however, the transition from (3.24) to (3.25) via the formula (2.9) is much simpler since it only requires an 
elementary calculation.

4. Relationship between the recursion formula (2.9) and symmetry action on conservation laws

It has been long established that local symmetries of DEs can be used to map their local conservation 
laws into local conservation laws (e.g., [5,14,27,36–38,40]). In particular, suppose that a DE system R (1.1)
has a point symmetry with an infinitesimal operator

X = ξi(x, u) ∂

∂xi
+ ημ(x, u) ∂

∂uμ
,

and X(k) denotes its k-th prolongation. Let (1.2) be a nontrivial local conservation law of R, with fluxes 
Ψi[u] involving derivatives of u up to order r. Then the differential functions
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Ωi[u] = Mi
X[Ψ] ≡ −X(r)Ψi + (Djξ

i)Ψj [u] − (Djξ
j)Ψi (4.1)

are fluxes of a local conservation law DiΩi[u] = 0 of the system (1.1). Formulas similar to (4.1) for infinites-
imal symmetry generators in evolutionary form appear in [24,36]. It is worth noting that conservation laws 
arising from a symmetry action (4.1) on nontrivial conservation law(s) may be trivial or linearly dependent 
on the original conservation law(s). Nevertheless, this approach may be practically beneficial for compli-
cated DE systems where a complete conservation law analysis is not feasible, yet some basic symmetries 
and conservation laws are known.

We observe that the recursion formula (2.9), in the case when it yields a local conservation law (2.9), is 
related to finding a pre-image of the local symmetry mapping (4.1). As an example, consider the nonlinear 
wave PDE family (3.1). For an arbitrary c(u), the PDE (3.1) has conservation laws (3.3)–(3.5), which are 
obtained through the formula (2.9) applied to the obvious conservation law (3.2),

DtΘ + DxΦ ≡ Dt(ut) − Dx(c2(u)ux) = 0.

Every wave equation (3.1) is invariant with respect to time and space translations, with the generators 
X1 = ∂/∂t and X2 = ∂/∂x. Denote the respective densities and fluxes of the conservation laws (3.3)–(3.5)
by (Θ(i), Φ(i)), i = 1, 2, 3. Then, for example, the symmetry action of these generators on the respective 
density and flux of the conservation laws (3.3), (3.4) yields

MX1

(
Θ(1),Φ(1)

)
= MX2

(
Θ(2),Φ(2)

)
=

(
ut, − c2(u)ux

)
=

(
Θ,Φ

)
.

Similarly, for the conservation law (3.5),

MX1MX2

(
Θ(3),Φ(3)

)
=

(
Θ,Φ

)
.

Thus the conservation laws (3.3)–(3.5) essentially arise from an inversion of the symmetry action (4.1). The 
computation of the pre-image under the mapping (4.1) naturally involves integration, in agreement with 
the form of the recursion formula (2.9).

In the case of a general f(z), it is not evident how one can identify a local symmetry that maps a (local) 
conservation law (2.9) into the simpler conservation law DiΨi[u] = 0 according to the symmetry mapping 
like (4.1); additional coordinate transformations may be involved in such a mapping.

To our knowledge, it remains an open problem to find out in which cases an inverse symmetry action, 
similar to the one discussed above, can be applied to a local conservation law of a given DE system, and 
yield independent local conservation law(s) of that system.

5. Discussion and conclusions

The current contribution is concerned with the basic properties and applications of the simple conserva-
tion law recursion formula (2.9) (Lemma 1), which, for a known local divergence-type conservation law of a 
given system of differential equations, yields a set of formal divergence expressions that vanish on solutions 
of that system.

The practical value of the suggested formula (2.9) is the possibility of immediate construction of additional 
local conservation law(s) of DE systems from its known local conservation law(s), without the need to solve 
determining equations that arise in general conservation law construction procedures, such as the direct 
method, or methods related to Noether-type results. The result therefore can be useful to efficiently derive 
basic conservation laws of even rather complicated models.

Lemma 2 provides an explicit condition (2.11) for the recursion formula (2.9) to yield a local conservation 
law. In fact, it is shown that new local conservation laws obtained through the recursion formula (2.9) are 
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equivalent to those computed by the application of the direct conservation law construction method to one 
object, the initial conservation law of the given DE system, rather than to all its equations. Though the use 
of linear combinations of subsets of equations of a given system to obtain conservation laws has been used 
in literature for various applications (see, e.g., [18,26]), the result of Lemma 2 contains a general, explicit, 
and rather practically useful instance of this approach.

When the given system is a normal, totally nondegenerate system of differential equations, and when a 
divergence expression arising from the recursion formula (2.9) (f �= const) is local, this divergence expression 
provides a new nontrivial conservation law of the given DE system, linearly independent of the initial 
conservation law (Lemma 3).

Local conservation laws following from the recursion relation (2.9) for basic models have a transparent 
physical meaning. Examples of fundamental physical PDEs, including 1+1-dimensional nonlinear wave and 
diffusion equations, were considered. In both cases, the application of the formula to the given equation 
as it stands has led directly to all its known local conservation laws holding for an arbitrary nonlinearity 
(Sections 3.1, 3.2). In Section 3.3, for vorticity-type equations in three space dimensions, the recursion 
formula was shown to give rise to the important family of potential vorticity local conservation laws, involving 
an arbitrary function of all variables. In Section 3.4, for a nonlinear third-order PDE describing wave 
propagation in a hyper-viscoelastic fiber-reinforced material, an additional local conservation law was derived 
from the basic one using the recursion formula (2.2). An example where the formula (2.9) was used to derive 
an independent first integral of a nonlinear ODE from a known one was presented in Section 3.5.

It is worth mentioning that within the framework of nonlocally related PDE systems [6,7,9,11], for 
many models, the majority of useful results, such as nonlocal symmetries and conservation laws, new exact 
solutions, etc., are known to arise from simplest potential systems. The latter, in turn, follow from basic 
local conservation laws of a given PDE system. This is the case, for example, for the nonlinear telegraph 
(NLT) equations [11] given by

utt − (F (u)ux)x − (G(u))x = 0, (5.1)

u = u(t, x). The first conservation law holding for arbitrary constitutive functions F (u), G(u) is the PDE 
(5.1) itself, with the conserved density given by ut. The second conservation law follows from Lemma 1 and 
has the conserved density given by tut−u. It is these two conservation laws that yield the couplet potential 
system having the largest set of Lie symmetries for the case of power nonlinearities, including a nonlocal 
symmetry of the NLT equations that does not arise as a local symmetry of any other potential system [11].

The presented general recursion formula (2.9) and even its elementary version (2.2) are practically useful 
to immediately derive, without tedious computations, additional local conservation laws from basic ones 
for equations where the integrals in (2.2), (2.9) yield local quantities. These formulas provide an additional 
insight into the structure of many known conservation law classifications, in particular, those for the models 
in fluid and solid mechanics (e.g., [19,20,26]).

A relationship between the conservation law formula (2.9) and the action of point symmetries on local 
conservation laws of DEs is discussed in Section 4.

In the recursion formula (2.9), instead of f(z), one may consider a general differential function f [u] (then 
in (2.9), one replaces ∂f/∂zi by Di). In this case, the result is generalized, however, from the practical 
point of view, the locality condition (2.11) becomes more complicated to verify. The development of useful 
examples that employ such a generalization is in the realm of future research.

Possible applications of nonlocal divergence expressions obtained from the recursion formulas (2.9) when 
the locality condition (2.11) is not satisfied also remain to be studied. The nonlocal terms that arise do not 
obviously correspond to classical nonlocal potential variables constructed from a potential PDE system. It is 
of interest to study cases when the nonlocal quantities appearing in (2.9) can be endowed with a geometrical 
meaning; this would lead to an extension of the framework of nonlocally related PDE systems, and may 
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lead to new analytical results for a given PDE system, such as new nonlocal symmetries, reductions, and 
exact solutions.
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