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The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to

the derivation of one-dimensional models of nonlinear wave propagation in fiber-

reinforced elastic solids. Equivalence transformations are used to simplify the resulting

wave equations and to reduce the number of parameters. Local conservation laws and

global conserved quantities of the models are systematically computed and discussed,

along with other related mathematical properties. Sample numerical solutions are

presented. The models considered in the paper are appropriate for the mathematical

description of certain aspects of the behavior of biological membranes and similar

structures.
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1. Introduction

Biological membranes are thin soft biological structures that
play vital roles in a living organism (Humphrey, 1998), and
optimize their shape and function in response to stimuli from
the environment (Badir et al., 2013; Checa et al., 2011). With their
thickness rarely exceeding a fewmillimeters, biomembranes are
able to withstand large physiological loads. Typical examples of
biomembranes include the skin (Zöllner et al., 2012), the mucous
membrane lining the air–organ interfaces of the respiratory and
digestive systems (Li et al., 2011), the fetal membrane (Joyce
et al., 2009), the tympanic membrane (Fay et al., 2005), and the
heart valve membranes (Rabbah et al., 2013).
rved.

ca (A.F. Cheviakov).
The membrane of a biological cell involves an assembly of
filaments linked together as a part of a network, or associated
with the cell membrane to build a two-dimensional thin
sheet. Two-dimensional biological networks may be wrapped
around a cell as its wall, or attached to its plasma or nuclear
membrane. Structural elements of biological cells are soft and
responsible for the large deformability and easy motion of the
cell, contrary to majority of the engineered man-made thin
structural materials used in sheet industries. The mechanics
of biological membranes is clearly related to the network
architecture and the elasticity of the filaments. Mechanical
models for cells can be derived using either micro/nanos-
tructural or continuum approaches, as explained in detail, for
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example, in Assidi et al. (2011) and references therein.
Although the continuum approach is more straightforward,
the identification of the continuum behavior of a membrane
is challenging, as the membrane may be highly anisotropic
due to unequal chain lengths and properties of the threads.
The constitution of biomembranes as bilayers entails a rather
floppy behavior, with bending as the dominant deformation
mode in comparison to stretching (Boal, 2012).

The complex mechanical behavior of soft biological tis-
sues results from the deformations and interactions of the
constituent phases, including collagen, elastin, muscular, and
matrix components, such as proteoglycans. Collagen fibre-
rich tissues are classically modeled as composite materials
made of one or several families of collagen fibers immersed
into a very soft isotropic solid matrix composed mainly of
proteoglycans. The preferred fibre alignment is described by a
structural tensor entering the strain energy function (Boehler,
1978; Spencer, 1984). Elastin fibers stretch out at low mechan-
ical strains, while the wavy collagen fibers uncrimp without a
marked contribution to the overall skin stiffness (Limbert and
Taylor, 2002). At higher strains, the stretched cross-linked
collagen network carries most of the load up to the char-
acteristic strain locking.

Due to the complex multi-scale hierarchical nature of biolo-
gical tissues and the resulting difficulties in their experimental
characterization, the development of structural models has been
limited to favor continuum-based phenomenological hyperelas-
tic and hyper-viscoelastic models (Hurschler et al., 1997;
Holzapfel and Ogden, 2009; Criscione et al., 2003; Sacks, 2000).
The traditional approach to formulate constitutive laws for
biological soft tissues relies on invariant formulations which
postulate the existence of a strain energy function depending on
a set of tensorial invariants of a certain strain measure. Tensor
invariants are selected that characterize the particular deforma-
tion modes reproducing real deformations of the tissue. An
additive split of the fibre and matrix strain energies is assumed
in such phenomenological models that accordingly decouple
fibre and matrix effects (Holzapfel et al., 2000; Humphrey, 2003;
Humphrey and Yin, 1987; Limbert and Taylor, 2002).

Experimental results reveal the insufficiency of elastic mod-
els due to their rough approximation of the actual response,
since they ignore the time-dependent behavior of tissues
(Prevost et al., 2011; Marchesseau et al., 2010). To address this
deficiency, viscoelastic models are used (Fung, 1993; Roylance,
2001). Time-dependent responses of soft biological tissues have
been analyzed through monotonic tensile tests at various strain
rates and through creep tests (Arumugam et al., 1994; Pioletti
et al., 1996; Yanjun et al., 2001; Shergold et al., 2006; Kettaneh
et al., 2007). A large number of phenomenological constitutive
models have been developed to simulate the experimentally
observed anisotropic and time-dependent biomembrane
response. The anisotropy is modeled by introducing structural
tensors into the constitutive models, as illustrated in, e.g.,
Humphrey and Yin (1987), Ehret and Itskov (2007), Peña et al.
(2011), and Maher et al. (2012). Viscous effects can be modeled
using a viscous potential function (Germain, 1973; Pioletti and
Rakotomanana, 2000; Roan and Vemaganti, 2011).

Wave propagation in soft biological materials has received
considerable attention due to its importance for imaging
techniques, which aim at implicit measurements of mechanical
properties or visualization of organs (Valdez and Balachandran,
2013). In particular, tissue stiffness measurements can be
performed in vivo, through the measurement of shear wave
propagation speeds (Sarvazyan et al., 1998; Sandrin et al., 2003;
Rouze et al., 2013). The development of accurate models for
ultrasound propagation in soft tissues requires the considera-
tion of nonlinear effects in wave propagation, due to the large
amplitudes of the acoustic waves. Taking nonlinear effects into
account is beneficial for modern ultrasound scanners that
employ tissue harmonic imaging, since it provides images with
improved clarity and contrast. The attenuation and dispersion
of waves, as well as the wave speed, are essential parameters
determining the depth reached by the waves and the quality of
images. Due to the presence of constituents with viscous
properties, soft tissues are absorbing at ultrasonic frequencies
with the absorption following a frequency power law. In the
context of nonlinear wave propagation, an accurate model of
acoustic absorption is of particular importance as the genera-
tion of higher frequency harmonics due to nonlinear effects is
balanced with their absorption. Furthermore, since soft biolo-
gical tissues such as biomembranes contain different constitu-
ents, including water, their wave propagation characteristics,
such as the sound speed and density, are weakly heteroge-
neous, with variations between the different types of soft tissue
of the order of 5% (Krouskop et al., 1987).

The assessment of viscoelastic properties of soft tissues has
raised a growing interest in the field of medical imaging in the
last two decades, due to the fact that the measurements of local
changes of stiffness can be used to detect pathologies. Methods
related to dynamic elastography (Krouskop et al., 1987; Lerner
et al., 1988; Yamakoshi et al., 1990), such as sonoelastography
(Parker and Lerner, 1992; Levinson et al., 1995) or transient
elastography (Bercoff et al., 2003; Sandrin et al., 2003), can be
used to determine elastic properties of soft biological tissues.
Beyond the estimate of second order elastic moduli, the quanti-
fication of the nonlinear, anisotropic and viscoelastic effects in
soft solids (Catheline et al., 2003, 2004; Bercoff et al., 2004) is an
important task that transient elastography is able to address,
since the latter images, in real time, the transient propagation of
shear waves. Based on the propagation of mechanical shear
waves in tissues, diverse elastography techniques have the
capability to quantitatively estimate the shear modulus of
tissues, in a noninvasive manner (Bercoff et al., 2004; Palmeri
et al., 2008; Mitri et al., 2011; Orescanin et al., 2010; Vappou et al.,
2009; Hah et al., 2010).

The determination of elasticity model parameters for biolo-
gical membranes is more involved in comparison to isotropic
tissues, due to the occurrence of additional parameters asso-
ciated with the fibrous microstructure. Initial stresses and/or
strains are naturally present in soft biological tissues such as
veins, arteries, skin, muscles, ligaments and tendons; for
instance, skin is in a state of natural tension. The initial
deformation introduces additional effective anisotropy into the
wave propagation equations. The anisotropy of the deformation
pattern due to either an initial state of finite deformation or to
the fibrous microstructure is an important issue for various
reasons: the wave speeds in biological materials are direction-
ally dependent, and depend on the level and distribution of the
existing deformation, onto which displacements associated with
wave propagation are superimposed.
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The analysis of nonlinear finite-amplitude wave propaga-
tion in biological tissues requires reliable models of fiber-
reinforced anisotropic materials, which can take into account
hyperelastic and viscoelastic effects. Since the pioneering
contribution of (Toupin and Bernstein, 1961), based on the
superimposition of small-amplitude oscillations on a finite
initial homogeneous deformation, subsequent contributions
followed (Thurston, 1965; Biot, 1965; Truesdell and Noll, 2004;
Tokuoka and Saito, 1969), showing in particular that pure
longitudinal and pure transverse waves can only propagate in
the so-called specific directions, depending on material sym-
metries (Boulanger et al., 1994). The common adopted frame-
work for treating such wave propagation problems is that of
incremental waves based on linear approximations of the
field equations, leading to incremental equilibrium (Ogden,
2007); fewer works consider the more general and more
involved case of finite amplitude waves. The situation with
the nonlinear dynamical theory of elasticity contrasts with
the flourishing activity in the field of nonlinear elastostatics,
especially for incompressible materials, starting from the
landmark paper of Rivlin (1947). This is reflected by the fact
that few closed-form exact solutions of the full governing
dynamical equations have been found (see, e.g., Saccomandi,
2007; Cheviakov and Ganghoffer, 2012; Cheviakov et al., 2015
and references therein). The derivation of exact solutions for
BVPs of nonlinear dynamical elasticity is an important and
challenging problem nowadays. Even simplistic exact and
approximate solutions for symmetry-reduced or simplified
elastodynamic configurations are of value for the applica-
tions mentioned above, both for providing insights into the
physics of the model and for the development and testing of
specific numerical methods.

Modernmethods of symmetry and conservation law analysis
of differential equations (DEs) provide a framework for the
systematic study of analytical properties of DE systems and
boundary value problems (e.g., Olver, 2000; Bluman and Kumei,
1989; Bluman et al., 2010; Ibragimov, 1994). Similarity and
symmetry-invariant solutions of partial differential equations
(PDEs) arising in elasticity and plasticity theory have attracted
the attention of researchers in recent years (see, e.g., Cheviakov
et al., 2015 and references therein). Local conservation laws of
DEs contain fundamental, coordinate-invariant information
about the structure of the model. For a system of time-
dependent partial differential equations fRσðt;x;u;…Þ � Rσ ½u� ¼
0gNσ ¼ 1 with independent variables t, x¼ fxigni ¼ 1 and dependent
variables u¼ fukðt;xÞgmk ¼ 1, local conservation laws are given by
divergence expressions

DtΘþDiΦ
i ¼ 0; ð1:1Þ

where Dt and Dxi �Di are total derivatives with respect to t and
xi, and the differential functions Θ¼Θ½u� and Φi ¼Φi½u� are the
conservation law density and spatial fluxes respectively. (Sum-
mation in repeated indices is assumed where appropriate.)

Knowledge of local conservation laws (1.1) is essential for
the analysis of existence, uniqueness and stability of solu-
tions of nonlinear PDEs, as well as for the construction of
linearizations and exact and approximate solutions; more-
over, modern numerical methods, such as finite element,
finite volume, and discontinuous Galerkin methods, require
the differential equations in divergence form, or significantly
simplify when this is the case (see, e.g., Lax, 1968; Benjamin,
1972; Knops and Stuart, 1984; Anco et al., 2008; Bluman et al.,
2008, 2010; LeVeque, 1992 and references therein). The exis-
tence of an infinite set of local conservation laws admitted by
a PDE model may be indicative of a special structure of model
equations, such as integrability or invertible linearization. For
reduced models formulated in terms of ordinary differential
equations (ODE), local conservation laws yield first integrals,
and are used to reduce the order and sometimes completely
integrate the differential equations.

If the spatial fluxes Φi of a local conservation law vanish
on the boundary of the spatial domain D, as well as in the
periodic case, the divergence theorem applied to (1.1) yields a
global conserved quantity given by

J ¼
Z Z

D

Z
Θ dV;

dJ
dt

¼ 0: ð1:2Þ

In elasticity theory, a well-known application of conserva-
tion laws is the Eshelby energy–momentum tensor, and
related path-independent integrals, which govern the energy
release rate at a singularity (Budiansky and Rice, 1973;
Hatfield and Olver, 1998).

For totally nondegenerate PDE systems, which include the
vast majority of physical models, local conservation laws can
be represented in terms of linear combinations of the given
differential equations (Olver, 2000; Bluman et al., 2010):

DtΘþDiΦ
i ¼ Λσ u½ �Rσ u½ � ¼ 0; ð1:3Þ

for some conservation law multipliers fΛσ u½ �gNσ ¼ 1. The char-
acteristic form (1.3) is the foundation of the systematic direct
conservation law construction method (Anco and Bluman, 1997;
Olver, 2000; Bluman et al., 2010) (for details, see Appendix A).
For models arising from a variational principle, Noether's first
theorem establishes a correspondence between conservation
laws and variational symmetries of the model. In practical
computations, however, the direct method is often a pre-
ferred way of conservation law computations, for both varia-
tional and non-variational models (Bluman et al., 2009), since
it requires simpler calculations. In the current contribution,
the direct method is employed to compute local conservation
laws of several wave propagation models in elastic and
viscoelastic fiber-reinforced materials.

The main objective of this paper is the derivation of one-
dimensional PDEs and conservation laws describing the
propagation of finite-amplitude waves in soft biological
tissues modeled within the framework of incompressible
nonlinear hyperelasticity and viscoelasticity.

The contribution is organized as follows. In Section 2,
hyperelasticity and hyper-viscoelasticity equations and basic
constitutive models of elastic materials used in the paper are
reviewed. In Section 3, a one-dimensional nonlinear wave
equation describing incompressible anti-plane shear displace-
ments for a single fiber family, for the fiber orientation along a
constant unit vector of an arbitrary direction, is derived. Equiva-
lence transformations are computed, invertibly relating the
general PDE for any fiber direction angle γ to the simpler PDE
for γ ¼ 0. Analytical properties of the nonlinear wave equations
are studied, including the loss of hyperbolicity condition, wave
breaking, and the Lagrangian density for a variational formula-
tion. Local conservation laws and global conserved quantities
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are computed. A sample numerical solution exhibiting d'Alem-
bert-type traveling wave splitting is presented.

In Section 4, a system of coupled nonlinear wave equa-
tions is presented which describes planar shear waves, i.e.,
displacements orthogonal to an axis, in the case of a single
fiber family. Equivalence transformations are derived, which
again invertibly relate the equations for an arbitrary fiber
orientation angle with simpler ones corresponding to zero
fiber angle. Local conservation laws are systematically com-
puted. A variational formulation (a physical Lagrangian) is
derived. Symmetry properties and exact solutions of the PDE
system describing the planar shear waves with fibers along
the propagation direction (fiber angle γ ¼ 0) have been pre-
viously considered in Cheviakov et al. (2015). Through the
newly derived invertible equivalence transformations, the
results of Cheviakov et al. (2015) are generalized onto the
case of arbitrary fiber orientation.

In Section 5, anti-plane shear waves in a general two-fiber
model are studied. The model provides a “flat cylinder” approx-
imation of an arterial wall setup (Holzapfel et al., 2000). An
explicit expression for the hydrostatic pressure and a hyperbolic
nonlinear PDE satisfied by the displacement are derived. It is
shown that the PDE can be invertibly mapped into a simple
generic nonlinear wave equation of Section 3. A numerical
computation illustrating sample fiber displacements is presented.

Section 6 provides a generalization of Section 3 results to
include viscoelastic effects. It is shown that one-dimensional
anti-plane shear type displacements satisfy a nonlinear PDE
involving third-order mixed space–time derivatives in the
damping term. Basic local conservation laws are computed,
and a potential system is constructed. Unlike the initial PDE,
the potential system has a simpler form of coupled evolution
equations. The potential system is used for a numerical
computation, in which the wave shape evolution is compared
to that in the inviscid case.

Symbolic conservation law computations in the current
paper were performed using the GeM software package for
Maple (Cheviakov, 2007, 2010a, 2014). Numerical results were
obtained using Matlab and COMSOL software.
2. Incompressible dynamic models of fiber-
reinforced materials

The continuum governing equations and a number of con-
stitutive models relevant to the description of anisotropic
hyperelastic and hyper-viscoelastic materials exhibiting
incompressible behavior are now considered. In Sections 3–
6, these models are applied to the study of nonlinear wave
propagation in specific symmetric configurations.
2.1. Hyperelastic models

Suppose an elastic body occupies a material (Lagrange) spatial
region Ω0 �R3, where Ω0 is an open bounded connected set
having a Lipschitz boundary (Ciarlet, 1988; Marsden and Hughes,
1994). The corresponding domain in the actual (Eulerian) frame
is denoted by Ω ¼ ϕðΩ0Þ �R3. The position x¼ ðx1; x2; x3ÞAΩ of a
material point depends on the Lagrange coordinates
X¼ ðX1;X2;X3ÞAΩ0 at time t according to

x¼ ϕ X; tð Þ;
where the mapping ϕ is sufficiently smooth. The deformation
gradient is given by

F X; tð Þ ¼∇ϕ; Fij ¼
∂ϕi

∂Xj
¼ Fij: ð2:1Þ

In this work, we study models described by incompressible
motions, which satisfy the incompressibility condition

J¼ det F¼ 1:

For incompressible materials, the reference and actual mass
densities are equal:

ρðX; tÞ ¼ ρ0ðXÞ=J¼ ρ0ðXÞ;
and are assumed time-independent.

The stress in the reference configuration is described by the
first Piola–Kirchhoff tensor P, or a related second Piola–Kirchhoff
tensor S¼ F�1P. For anisotropic hyperelastic materials, a scalar
volumetric strain energy density function Wh ¼Wh X;F;A1;ð
…;AkÞ in the reference configuration is prescribed, defining the
material behavior. Here the unit column vectors Aj; j¼ 1;…; k,
define k independent fiber families. An isotropic hyperelastic
model corresponds to k¼0. For anisotropic models, it is common
to use the form of the strain energy density

Wh ¼Wiso þWaniso ð2:2Þ
a sum of an isotropic and an anisotropic contribution (e.g.,
Basciano and Kleinstreuer, 2009).

For incompressible models, the first and the second Piola–
Kirchhoff tensors are respectively given by the formulas

P¼ �p F�T þ ∂Wh

∂F
¼ F S; ð2:3Þ

S¼ �p C�1 þ 2
∂Wh

∂C
; ð2:4Þ

where p¼ pðX; tÞ is the hydrostatic pressure, and C¼ FTF is the
right Cauchy–Green deformation tensor. Since C is sym-
metric, the formula (2.4) is understood in the sense

∂Wh

∂C
� 1

2
∂Wh

∂C
þ ∂Wh

∂CT

 !
:

A constitutive relation for an incompressible isotropic
homogeneous hyperelastic material is usually given as an
expression of the strain energy density Wh ¼WhðI1; I2Þ in terms
of the principal invariants of C:

I1 ¼ Tr C; I2 ¼ 1
2 ðTr CÞ2�Tr C2� �� �

: ð2:5Þ

(For compressible materials, Wh ¼WhðI1; I2; I3Þ with I3 ¼ det C¼
J2.) A wide class of materials, including rubber-like hyperelastic
materials, is described by the Mooney–Rivlin constitutive relation:

Wiso ¼ aðI1�3Þ þ bðI2�3Þ ð2:6Þ
with material parameters a; b40 (measured in the units of
pressure); the case b¼0 is referred to as the Neo-Hookean model.

For anisotropic hyperelastic materials, the energy contribu-
tion Waniso in (2.2) is commonly assumed to depend on pseudo-
invariants involving fiber direction vectors fAjgkj ¼ 1

. For a single
fiber family, for example, one has Waniso ¼WanisoðI4; I5Þ, with

I4 ¼AT
1CA1; I5 ¼AT

1C
2A1: ð2:7Þ



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 8 ( 2 0 1 6 ) 1 0 5 – 1 2 1 109
For two fiber families, one can have, generally,

Waniso ¼WanisoðI4; I5; I6; I7; I8; I9Þ; ð2:8Þ

depending on four pseudo-invariants

I4 ¼AT
1CA1; I5 ¼AT

1C
2A1; I6 ¼AT

2CA2; I7 ¼AT
2C

2A2; ð2:9Þ

and possibly on the interaction pseudo-invariants (e.g.,
Holzapfel, 2000)

I8 ¼ ðAT
1A2ÞAT

1CA2; I9 ¼ ðAT
1A2Þ2: ð2:10Þ

The quantities I4; I6 measure the squared stretch factor λ given
by

λaj ¼ FAj ð2:11Þ

along the fiber directions Aj; j¼ 1;2. The pseudo-invariants I5; I7
are related to the effect of the fiber on the shear response in the
material (Demirkoparan et al., 2010; Merodio and Ogden, 2005;
Pandolfi and Manganiello, 2006). The pseudo-invariant I8 pro-
vides coupling between the two sets of fibers; it is used in
specific models such as that of the cornea (Pandolfi and
Manganiello, 2006). The quantity I9 is an inner product of fiber
direction vectors in the material configuration.

The full system of equations of motion of an incompres-
sible hyperelastic material in three dimensions is given by
the balance of momentum vector equation and the scalar
incompressibility condition:

ρ0xtt ¼ divðXÞPþ ρ0R; J¼ det F¼ 1: ð2:12Þ

In (2.12), R¼ RðX; tÞ is the total body force per unit mass.

Remark 2.1. It is important to note that when the body forces
are absent or potential, the nonlinear PDE model (2.12)
follows from a classical variational principle. In particular,
when R¼ 0, the Lagrangian density is given by

L¼ �KþWh�pðJ�1Þ; ð2:13Þ

where K¼ 1
2 ρ0ð _xÞ2 is the kinetic energy density. (Here and

below, where appropriate, the dot denotes the time derivative.)
The four equations (2.12) arise as the Euler–Lagrange equations
through the action of Euler differential operators with respect to
components of x and the pressure p on the Lagrangian density
(2.13) (see, e.g., Holzapfel, 2000; Cheviakov and St. Jean, 2015).

2.2. Hyper-viscoelastic models

A significant number of practically important materials exhibit,
over specific ranges of stress and time, essentially viscoelastic
behavior. Due to the complexity of the microstructural evolu-
tions occurring within a material body, the constitutive model-
ling of the response of inelastic materials has no unique
formulation. Thermodynamics offers a convenient framework
for the development of constitutive equations (see, e.g., Hutter,
1977 for a review of various approaches). One can distinguish
two different theories, ‘rational thermodynamics’ and ‘irrever-
sible thermodynamics’ (see De Groot, 1951; Bataille and Kestin,
1979 for the works of their proponents). Irreversible thermo-
dynamics differs from rational thermodynamics in the use of
internal variables to account for history effects (dissipation) of
the material. Approaches based on non-equilibrium thermody-
namics prove useful as a framework for the derivation of generic
constitutive laws, as well as specific constitutive models. The
most widely spread existing theory relies on the notion of a local
state, and involves a single potential, which includes the state
laws (reversible part of the constitutive laws) and a dissipation
(or pseudo-dissipation) potential for the description of its
irreversible part (see Biot, 1954). Thereby, Biot laid down a
variational formulation for nonlinear viscous phenomena
including dynamics, based on d'Alembert's principle. Such
approach has proven adequate for the description of a wide
range of materials and a broad spectrum of dissipative behavior
types, including standard, standard generalized, rate dependent
(viscoplasticity), and rate independent (plasticity) ones. Alter-
native theories, such as rational thermodynamics and its gen-
eralizations (e.g., Coleman and Noll, 1963; Truesdell and Noll,
2004; Caruthers et al., 2004), go beyond the local equilibrium
assumption. Finite viscoelasticity models, which can account for
large deformation rates by considering large deviations away
from thermodynamic equilibrium, have been developed in, for
example, Reese and Govindjee (1998), Sidoroff (1974), Haupt
(1993a,b), Lubliner (1985), Le Tallec et al. (1993), and Dafalias
(1991). Linear viscoelasticity theory restricts to small deviations
from thermodynamic equilibrium (see, e.g., Coleman and Noll,
1961). Various other models have been suggested, including
phenomenological ones (Ogden and Holzapfel, 2006) and quasi-
linear viscoelasticity models (Fung, 1993; Abramowitch and
Woo, 2004; Toms et al., 2002). For a review, see, for example,
Boubaker (2009).

In the present work, we adopt the hyper-viscoelasticity
approach of Holzapfel (2000), based on the use of a hyper-
elastic potential to describe purely elastic effects, and a
viscous “dissipative potential” associated to purely viscous
phenomena. The total stress consequently is given by the
sum of an elastic and a viscous stress. (A similar additive
decomposition would be obtained using Biot's approach.)

In Holzapfel (2000) and related works, the hyperelastic
strain energy density function W¼Wh is modified to addi-
tively include the viscous potential:

W¼Wh þWv: ð2:14Þ

The dissipative potential Wv may incorporate terms describ-
ing short-term elasticity effects through pseudo-invariants
that depend on _C, as well as integral terms describing the
long-term viscoelastic response. For example, in Pioletti and
Rakotomanana (2000), in order to account only for short-term
elastic effects, an expression

Wv ¼ η

4
J2 I1�3ð Þ; J2 ¼Tr _C

2
� �

ð2:15Þ

is employed. Similarly, in Merodio and Goicolea (2007), within
a viscoelastic model of a fiber-reinforced material, the dis-
sipative potential is suggested in the form

Wv ¼ η1
4
J2 I1�3ð Þ

þη2J9
k1
2k2

ek2ðI4 �1Þ2 �1
� �

; η1; η2 ¼ const; ð2:16Þ

involving both the pseudo-invariant J2 and an additional
fiber-dependent pseudo-invariant:

J9 ¼ATð _C2ÞA: ð2:17Þ

The two terms of Wv (2.16) replicate the two terms of the
hyperelastic strain energy density Wh used in that work.



Fig. 1 – One-dimensional hyperelastic anti-plane shear motions: fiber orientation.
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Using the combined hyperelastic-dissipative potential
(2.14), one consequently computes the modified second
Piola–Kirchhoff tensor:

S¼ Sh þ Sv ¼ �p C�1 þ 2
∂Wh

∂C

" #
þ 2

∂Wv

∂ _C

� 	
: ð2:18Þ

For (2.15), for example, one has

Sv ¼ ηðI1�3Þ _C:
3. One-dimensional hyperelastic anti-plane
shear motions

As a first specific model, we consider an incompressible
hyperelastic material reinforced with a single family of fibers.
This situation is representative of elongated soft biological
tissues like muscles. Let the strain energy density be given by

Wh ¼ aðI1�3Þ þ bðI2�3Þ þ q I4�1ð Þ2; ð3:1Þ
with anisotropy material parameter q¼ const40, i.e., a com-
bination of the Mooney–Rivlin and the standard (quadratic)
reinforcement terms. We note that the anisotropic term in
(3.1) corresponds to the first term of the Taylor series expan-
sion of a general analytic even function of I4�1, for example,
the exponential model of Merodio and Goicolea (2007).

Consider the following motions explicitly compatible with
the incompressibility condition:

x¼
X1

X2

X3 þ GðX1; tÞ

2
64

3
75: ð3:2Þ

The ansatz (3.2) describes the propagation of the displace-
ments in the direction of X3 along the axis of X1, i.e., the anti-
plane shear motions. With no additional assumptions made
on the finite displacement GðX1; tÞ, one indeed has J� 1.

Let the fiber family be directed along a generic unit
material vector

A¼
cos γ

0

sin γ

2
64

3
75 ð3:3Þ

in the ðX1;X3Þ plane (Fig. 1).
The substitution of (3.1)–(3.3) into the momentum equa-

tions in (2.12) with zero body forces yields a single scalar
nonlinear wave equation on the displacement GðX1; tÞ, and
the hydrostatic pressure is computed explicitly. Using a
simplified notation

X1 ¼ x; G¼Gðx; tÞ; p¼ pðx; tÞ; α¼ 2ða
þ bÞ=ρ040; β¼ 4q=ρ040; ð3:4Þ

one finds that the pressure is given by

p¼ βρ0 cos
3γ cos γGx þ 2 sin γð ÞGx þ f ðtÞ; ð3:5Þ

where f(t) is an arbitrary gauge determined by the boundary
conditions. The transverse displacement Gðx; tÞ satisfies a
nonlinear wave equation

Gtt ¼ αþ β cos 2γ 3 cos 2γ Gxð Þ2 þ 6 sin γ cos γGx þ 2 sin 2γ
� �� �

Gxx:

ð3:6Þ

Two important special cases arise.
Case 1:
γ ¼ π=2.
When the fibers are directed along X3, the dis-
placement Gðx; tÞ is independent of the fiber
direction; the fiber-dependent terms in the
dynamic equation vanish, and the nonlinear
equation (3.6) reduces to a linear wave equation

Gtt ¼ αGxx; px ¼ 0: ð3:7Þ
Case 2:
γ ¼ 0.
When the fibers are directed along the wave
propagation direction x¼X1, the PDE (3.6)
reduces to a nonlinear wave equation

Gtt ¼ ð3βG2
x þ αÞGxx; ð3:8Þ

and the pressure (3.5) simplifies to

p¼ βρ0G
2
x þ f ðtÞ: ð3:9Þ
Since α; β40, the PDE (3.8) is strictly hyperbolic; indeed, a
one-to-one point transformation
x¼ Lx̂; t¼ Lα�1=2 t̂; G x; tð Þ ¼ L
α

3β


 �1=2

Ĝ x̂; t̂
� � ð3:10Þ

maps Eq. (3.8) into a dimensionless PDE

Ĝt̂ t̂ ¼ ðĜ2
x̂ þ 1ÞĜx̂x̂ ð3:11Þ

containing no parameters. In (3.10), L40 (m) is an arbitrary
characteristic length scale.
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3.1. Equivalence transformations and the independence on
the fiber angle γ

For a PDE model that contains MZ1 constitutive functions and/
or parameters K¼ ðK1;…; KMÞ, equivalence transformations are
transformations that map existing independent variables fxig,
dependent variables fuig, and the constitutive functions/para-
meters into other variables and functions/parameters, so that the
form of the PDEs is preserved. Knowledge of the equivalence
transformations lets one efficiently reduce the number of sig-
nificant parameters, and simplify the classes of constitutive
functions the model involves (see, e.g., Ovsiannikov, 1982;
Bluman et al., 2010). Most common equivalence transformations
include, for example, scalings and translations. The scaling
transformation (3.10) for the PDE family (3.8) involving two
constitutive parameters is an example of an equivalence
transformation.

The nonlinear wave equation (3.6) involves three consti-
tutive parameters: two material parameters α; β and the fiber
angle γ. Consequently, a Lie group of equivalence transforma-
tions can be represented by an infinitesimal generator

X¼ ξ1
∂
∂x

þ ξ2
∂
∂t

þ η
∂
∂G

þ ζ1
∂
∂α

þ ζ2
∂
∂β

þ ζ3
∂
∂γ

: ð3:12Þ

A direct computation following the Lie's algorithm yields
three equivalence transformations; they have the simplest
forms in terms of tan γ rather than γ itself, and are given by
the generators

X1 ¼ � t
2
∂
∂t

þ α
∂
∂α

þ β
∂
∂β

;

X2 ¼ � x
∂
∂G

þ 2β sin γ cos 3γ
∂
∂α

þ 4β sin γ cos γ
∂
∂β

þ ∂
∂ tan γð Þ ;

X3 ¼ � x
∂
∂x

þ 2α
∂
∂α

þ 4β cos 2γ
∂
∂β

þ tan γð Þ ∂
∂ tan γð Þ : ð3:13Þ

The transformation generator X1 corresponds to the scaling
of t; α; β. The finite transformation corresponding to the
generator X1 is given by

~α ¼ Sα; ~β ¼ Sβ; ~t ¼ S�1=2t; SAR;

and can be used to set, for example, ~α or ~β to equal 1.
The generator X2 in (3.13) yields shifts in tan γ, having the

global group form

~G ¼G�sx; tan ~γ ¼ tan γ þ s;

~α ¼ αþ 2β cos 4γ
s2

2
þ s tan γ


 �
; ~β ¼ β cos 4 γ tan 2γ

�
þ2s tan γ þ s2 þ 1

�2
;

with a group parameter sAR. In particular, the choice of
s¼ � tan γ lets one map the PDE (3.6) into one with
tan ~γ ¼ ~γ ¼ 0, i.e., into the simpler PDE (3.8) written in terms
of the corresponding quantities with tildes. The transforma-
tion is given by

x¼ ~x; t¼ ~t; G¼ ~G�x tan γ; α¼ ~α

þ ~β tan 2 γ; β¼ ~β cos �4 γ; ð3:14Þ
Substituting (3.14) into the full PDE (3.6) yields

~Gtt ¼ ð3 ~β ~G
2
x þ ~αÞ ~Gxx ð3:15Þ

with
~α ¼ α� β

4
sin 2 2γ; ~β ¼ β cos 4 γ:

which is Eq. (3.8) up to the omission of the tildes. Unlike the
PDE (3.8), Eq. (3.15) involves the parameter ~α that is not
necessarily positive.

Remark 3.1. Equivalence transformations corresponding to
the generators X2 and X3 become degenerate in the special
case γ ¼ π=2, when the PDE (3.6) is equivalent to Eq. (3.7)
instead of (3.8).

Remark 3.2. The loss of hyperbolicity of the PDE model (3.6), or
equivalently (3.15), can occur when the coefficient of Gxx

(respectively, ~Gxx) vanishes or changes sign. This may happen
for certain solutions when the coefficient of Gxx, a quadratic
expression in terms of Gx (respectively, ~Gx), has a nonnegative
discriminant. The latter is the case when ~αr0. Hence the
necessary (but not sufficient) condition for the loss of hyper-
bolicity in the PDE (3.6) is given by

sin 2 2γð ÞZ 4α
β
: ð3:16Þ

Clearly, (3.16) can only hold for special fiber orientations γ if
the fiber strength provided by the material parameter β is
significantly large (cf. Cheviakov et al., 2015). In the further
analysis, the boundary case

sin 2 2γð Þ ¼ 4α
β

ð3:17Þ

plays an important role.

Remark 3.3. Since in the transformation of (3.6)–(3.15), ~β40, but
~α may be positive, negative or zero, it is clear that a further
transformation similar to (3.10) can map the PDE (3.6) into

Ĝt̂ t̂ ¼ ðĜ2
x̂ þ KÞĜx̂x̂ ; Ĝ ¼ Ĝðx̂; t̂Þ; K¼ Sign ~α ¼

1; ~α40;

�1; ~αo0;

0; ~α ¼ 0

8><
>: ð3:18Þ

(cf. (3.11)). For this PDE family, it is clear that the loss of
hyperbolicity may occur only when K¼0 or K¼ �1.

3.2. Analytical properties of the nonlinear wave equations
(3.18)

In Section 3.1, it has been shown that the one-dimensional
anti-plane shear equation (3.6) for any fiber orientation γ is in
a one-to-one local correspondence with a PDE of the class
(3.18). This class of equations has been well-studied in the
literature. We now discuss some of its basic properties.
Within this section, for the simplicity of notation, all hats
in the dimensionless variables are omitted.
(a)
 A variational formulation: Any PDE of the class (3.18) follows
from a variational principle, with the Lagrangian density
given (up to equivalence) by the formula

L¼ 1
12 G

4
x þ 1

2 KG
2
x�1

2G
2
t : ð3:19Þ

Due to the existence of the variational formulation, according
to Noether's theorem, there is a one-to-one correspondence
between equivalence classes of variational symmetries and
local conservation laws (e.g., Olver, 2000).
(b)
 Local conservation laws: Local conservation laws for the
current model can be systematically sought using the



(c)
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direct method (Appendix A). The following conservation
laws hold for the PDE family (3.18), and consequently, for
the equivalent full one-fiber physical model (3.6), for an
arbitrary fiber family orientation.
1. The local conservation of the Eulerian momentum in

the perturbation direction X3 follows from the multi-
plier Λ¼ 1, and corresponds to the Eulerian spatial
translation symmetry ∂=∂G:

Dt Gtð Þ�Dx Gx
1
3G

2
x þ K

� �� �¼ 0: ð3:20Þ

For example, for finite perturbations with a compact
support, S�R, the conserved linear momentum is a
constant of motion given by

MðX3Þ ¼
Z
S
Gt x; tð Þ dx; d

dt
MðX3Þ ¼ 0: ð3:21Þ

Global conserved quantities for other local conserva-
tion laws below are computed in a similar manner.

2. The conservation of Lagrangian momentum corre-
sponds to the multiplier Λ¼Gx and the Lagrangian
spatial translation symmetry ∂=∂x. It is given by the
divergence expression

Dt GxGtð Þ�Dx
1
2 G2

t þ KG2
x

� �þ 1
4G

4
x

� �¼ 0: ð3:22Þ

3. The local conservation of energy

Dt
1
2 G2

t þ KG2
x

� �þ 1
12G

4
x

� ��Dx GtGx
1
3G

2
x þ K

� �� �¼ 0 ð3:23Þ

arises from the multiplier Λ¼Gt. The corresponding
symmetry is the time-translation ∂=∂t. The total
energy, if it is finite, is a constant of motion given by

E¼
Z
S

1
2 G2

t þ KG2
x

� �þ 1
12G

4
x

� �
dx¼ const:

4. A conservation law following from the multiplier Λ¼ t
has the form

Dt G�tGtð Þ þDx tGx
1
3G

2
x þ K

� �� �¼ 0: ð3:24Þ

It is well-known in mechanics (see, e.g., Olver, 2000, p.
279), and may be called the “center of mass theorem” in
models where G represents mass density. The corre-
sponding variational symmetry is the Galilei transfor-
mation t∂=∂G. The related global conserved quantity, in
conjunction with (3.21), yieldsZ
S
Gðx; tÞ dx�tMðX3Þ ¼C¼ const;

describing the rate of change of the average displacement.
5. An infinite number of conservation laws of (3.18) can

be shown to arise from local multipliers ΛðGt;GxÞ given
by solutions of a linear PDE:

ΛGx ;Gx ¼ G2
x þ K

� �
ΛGt ;Gt : ð3:25Þ

Due to the self-adjoint nature of the PDE family (3.18),
these multipliers are equivalent to a set of contact varia-
tional symmetries X̂ ¼ θðGt;GxÞ∂=∂G (3.18) (see also Bihlo
et al., 2012). Such an infinite set of local conservation laws
or contact symmetries can be used to construct a Legendre
contact transformation (Anco et al., 2008; Kumei and
Bluman, 1982; Bluman et al., 2010):

u¼Gx; v¼Gt; Wðu; vÞ ¼Gðx; tÞ�xGx�tGt;
which invertibly maps each nonlinear PDE (3.18) into a
linear wave equation

Wuu ¼ u2 þ K
� �

Wvv: ð3:26Þ

6. Higher-order conservation laws of the PDEs (3.18) exist.
An example of a conservation law corresponding to a
third-order multiplier is given by

Dt
Gxx

G2
tx�ðG2

x þ KÞG2
xx

þDx
Gtx

G2
tx�ðG2

x þ KÞG2
xx

¼ 0: ð3:27Þ

The physical interpretation of the conserved density in
(3.27) remains to be studied. The family of PDEs (3.18)
can have further higher-order conservation laws,
which may be, however, harder to compute.

7. When K¼0, Eq. (3.18) reads Gtt ¼G2
xGxx. It can be shown to

have an additional variational symmetry Ŷ ¼ ðG�3xGx�
5tGtÞ∂=∂G (see Cheviakov et al., 2015), which is a scaling
symmetry. According to Noether's theorem, one has the
corresponding conservation law multiplier Λ¼G�3xGx�
5tGt. The local conservation law is given by

Dt GGt�5
2 t G

2
t þ 1

6G
4
x

� ��3xGtGx
� �
�Dx

1
3 GG

3
x�5

3 t GtG
3
x�3

2 x G2
t þ 1

2G
4
x

� �� �¼ 0: ð3:28Þ

The analogs of the conservation law (3.28) hold for the
general nonlinear wave equation (3.6) with an arbitrary
fiber direction when the condition (3.17) is satisfied.
Wave breaking: The squared characteristic speed c2 ¼G2
x þ K

of (3.18) is variable, hence points on the solution curve
corresponding to higher values of the curve slope jGxj will
yield higher characteristic speeds. Depending on the
initial data, this may lead to the intersection of character-
istic curves and shock formation. Such effects restrict
applicability limits of non-dissipative hyperelastic models
(cf. Cheviakov et al., 2015; Saccomandi and Vitolo, 2014).
3.3. A sample numerical simulation

For an illustration of solution behavior, we numerically solve
the nonlinear wave equation (3.18) with K¼1 for a stationary
Gaussian initial displacement:

Ĝðx̂; 0Þ ¼ expð� x̂2Þ; Ĝt̂ ðx̂; 0Þ ¼ 0; ð3:29Þ

to obtain a nonlinear D'Alembert-like pair of left- and right-
traveling waves (Fig. 2).

The above solution can be used to plot, for example, the
material lines X1 ¼ const and the fiber lines X3 ¼ const for the
one-dimensional hyperelastic anti-plane shear PDE (3.8) for
the fiber angle γ ¼ 0. We employ the parameter values

ρ0 ¼ 1:1 � 103 kg=m3; a¼ 1:5 � 103 Pa; b¼ 0; q¼ 1:18

� 103 Pa; ð3:30Þ

which are typical for a rabbit carotid artery media (Holzapfel
et al., 2000), in the transformations (3.10). The above numerical
solution of the dimensionless PDE (3.18) with the initial Gaus-
sian profile at t̂ ¼ 3 yields the displacements of the material and
fiber lines shown in Fig. 3.



Fig. 2 – Right-traveling wave profiles for the dimensionless
PDE (3.18) with K¼1 and initial conditions (3.29), for the
times t̂ ¼ 0;2;4;6 (left to right).
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4. Planar shear waves – displacements
transverse to an axis

Another class of displacements of interest is given by dis-
placements orthogonal to the X1 direction:

X¼
X1

X2 þ HðX1; tÞ
X3 þ GðX1; tÞ

2
64

3
75; ð4:1Þ

which again propagate along the direction of X1, with the
single fiber family given by unit vector (3.3) (see Fig. 1). For the
motions (4.1), the incompressibility condition is identically
satisfied. For this essentially one-dimensional problem, we
again employ the simplified notation (3.4), H¼Hðx; tÞ.

Using the strain energy density (3.1) and the ansatz (4.1) in
the equations of motion (2.12) with zero body forces, we find
that the pressure equation decouples again, and the hydro-
static pressure can be computed explicitly:

p¼ βρ0 cos 3 γ cos γðG2
x þ H2

xÞ þ 2 sin γ Gx
� �þ f ðt

�
; ð4:2Þ

where f(t) is an arbitrary function. As noted in Cheviakov et al.
(2015), the PDEs for the displacements Hðx; tÞ, Gðx; tÞ have the
form

Htt ¼ αþ β cos 3 γ 2 sin γ Gx þ cos γ ð3H2
x þ G2

xÞ
� �� �

Hxx

þ 2β cos 3 γ ð sin γ þ cos γ GxÞHxGxx;

Gtt ¼ 2β cos 3 γ ð sin γ þ cos γ GxÞHxHxx

þ αþ β cos 2 γ cos 2 γ ðH2
x þ 3G2

xÞ þ 3 sin ð2γÞ Gx þ 2 sin 2 γ
h i� �

Gxx:

ð4:3Þ
The PDEs (4.3) are variational. The Lagrangian density in the
present case is given by

L¼P�K; ð4:4Þ
where the potential energy is obtained from (3.1) and has the
form

P ¼Wh ¼ α

2
H2

x þ G2
x

� �
þ β

4
cos 2 γ G2

xð cos 2γG2
x þ 2 sin ð2γÞGx þ 4 sin 2 γÞ

h

þ cos γH2
x cos γð2G2

x þH2
xÞ þ 4 sin γGx

� ��
; ð4:5Þ

the kinetic energy is given by

K¼ 1
2 H2

t þ G2
t

� �
: ð4:6Þ

The Lagrangian density (4.4) does not involve the pressure term
of (2.13), since for the displacements (4.1), J� 1.

Special cases arise for the system (4.3) for the fiber angle
values γ ¼ π=2 and γ ¼ 0. For γ ¼ π=2, the fibers are directed
along X3, and both displacements Hðx; tÞ and Gðx; tÞ are
independent of the fiber direction. In agreement with Theo-
rem 1 of Cheviakov et al. (2015), such motions are described
by independent linear PDEs:

Htt ¼ αHxx; Gtt ¼ αGxx: ð4:7Þ
The second special case corresponding to the fiber angle γ ¼ 0
yields a symmetric form of the wave equation (4.3):

Htt ¼ αHxx þ β 3H2
x þ G2

x

� �
Hxx þ 2GxHxGxx

� �
;

Gtt ¼ αGxx þ β 2GxHxHxx þ H2
x þ 3G2

x

� �
Gxx

� �
: ð4:8Þ
Remark 4.1. Similar to the case of the anti-plane shear,
equivalence transformations in the form of Lie point trans-
formations can be computed for the general PDE system (4.3).
It can be shown that there exists an equivalence transforma-
tion that invertibly maps the general PDE system (4.3), for an
arbitrary fiber direction γaπ=2 into the symmetric case (4.8)
corresponding to γ¼ 0 ; the two systems are thus mathema-
tically equivalent. This point transformation is given by

x¼ ~x; t¼ ~t; G¼ ~G�x tan γ; α¼ ~α

þ ~β tan 2γ; β¼ ~β cos �4γ: ð4:9Þ

Substitution of (4.9) into (4.3) and the omission of tildes yields
the system (4.8) corresponding to the fiber angle γ ¼ 0.

The parameter transformation obtained by the inversion
of (4.9):

~α ¼ α� β

4
sin 2 2γ; ~β ¼ β cos 4 γ ð4:10Þ

shows that ~α ¼ 0 in the case (3.17); as shown below, this case
yields an additional point symmetry and an additional con-
servation law.

Remark 4.2. Both the PDEs (4.8) and the general system (4.3)
can be further invertibly transformed into a one-parameter
family of PDE systems:

Htt ¼KHxx þ 3H2
x þ G2

x

� �
Hxx þ 2GxHxGx

� �
;

Gtt ¼ KGx þ 2GxHxHxx þ H2
x þ 3G2

x

� �
Gx

� �
;

K¼ 0;71: ð4:11Þ
In particular, the PDEs (4.8) with α; β40 are transformed into
(4.11) with K¼1 by a scaling transformation

x¼ Lxn; t¼ Lα�1=2tn; G¼ L
α

β


 �1=2

Gn; H¼ L
α

β


 �1=2

Hn;

ð4:12Þ
L¼ const40, and a subsequent omission of the asterisks.

The general family (4.3) is first transformed into the
system (4.8) (see Remark 4.1), where one could have α40,
α¼ 0, or αo0. In the case α40, the transformation (4.12) is
used, and the system is mapped into (4.11) with K¼1. If αo0,



Fig. 3 – Material lines X1 ¼ const (vertical) and the fiber lines X3 ¼ const (blue, horizontal) for the one-dimensional hyperelastic anti-
plane shear model (3.8) (fiber angle γ¼ 0), with physical parameters (3.30), and the Gaussian initial condition for the time
t¼ 1:82 � 10�3 s (the corresponding dimensionless time is t̂ ¼ 3). The material configuration (left) and the actual configuration (right).
Spatial coordinates are dimensional, given inmillimeters. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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the transformation

t¼ Lð�αÞ�1=2tn; G¼ L
�α

β


 �1=2

Gn; H¼ L
�α

β


 �1=2

Hn: ð4:13Þ

maps the system into (4.11) with K¼ �1. Finally, when α¼ 0,
one takes

t¼ Lβ�1=2tn; G¼ LGn; H¼ LHn: ð4:14Þ

and upon the omission of asterisks, obtains the Eq. (4.11) with
K¼0.
4.1. Conservation laws of the planar shear equations
(4.11)

As per Remark 4.2, to study the local conservation laws of the
models (4.3) and (4.8), it is sufficient to classify the local
conservation laws of the simplified system (4.11) with respect
to the single discrete parameter K. The direct method is
employed. Since the system (4.11) is in the Kovalevskaya
form with respect to time, one may assume, without loss of
generality, that neither the multipliers, nor the density, nor
the fluxes of the conservation laws depend on Htt, Gtt and
their derivatives. In order to compute the complete set of
second-order local conservation law multipliers, the latter are
assumed to have the dependency:

Λi ¼ Λiðx; t;H;G;Hx;Gx;Ht;Gt;Hxx;Gxx;Hxt;GxtÞ; i¼ 1;2: ð4:15Þ

The system of multiplier determining equations consists of
213 linear PDEs, and is solved to yield the following two cases:

Case 1: Ka0. In this case, one has seven linearly indepen-
dent conservation laws, as follows:
1.
 The local conservation laws for Eulerian linear momenta
in X2 and X3 directions arise for multiplier pairs
ðΛ1;Λ2Þ ¼ ð1;0Þ and ð0; 1Þ. This yields the divergence forms
of the momentum equation (4.2):

Dt

�
HtÞ�Dx Kþ G2

x þH2
x

� �
Hx

� �¼ 0; ð4:16Þ
Dt

�
GtÞ�Dx Kþ G2

x þH2
x

� �
Gx

� �¼ 0: ð4:17Þ

The global conserved quantities are the total linear
momenta, given by (3.21) and the corresponding expres-
sion involving the amplitude H.
2.
 The conservation of the momentum in the Lagrangian
frame, which is a conservation law independent of the
Eulerian momenta, corresponds to the multiplier pair
ðΛ1;Λ2Þ ¼ ðHx;GxÞ and the Lagrangian spatial translation
symmetry ∂=∂x. It is given by

Dt HxHt þ GxGtð Þ�Dx
1
2 H2

t þ G2
t þ KðH2

x þ G2
xÞ

� �þ 3
4ðH2

x þ G2
xÞ2

� �¼ 0:

ð4:18Þ
We note the difference in the factor 3

4 vs.
1
4 here and in the

anti-plane shear case (3.22); the difference is due to the
factor of 3 difference in the choice of equivalence
transformations (4.12) and (3.10).
3.
 The local conservation of energy:

Dt
1
2 H2

t þ G2
t þ KðH2

x þ G2
xÞ

� �þ 1
4ðH2

x þ G2
xÞ2

� �
�Dx GtGx

1
3G

2
x þ K

� �� �¼ 0 ð4:19Þ

arises from the multiplier pair ðΛ1;Λ2Þ ¼ ðHt;GtÞ, or from
Noether's theorem for the variational time-translation
symmetry ∂=∂t. The total energy is given by the spatial
integral of the conserved density in (4.19) over the
domain where the perturbation H2 þ G240.
4.
 Two local conservation laws following from the multi-
plier pairs ðΛ1;Λ2Þ ¼ ðt; 0Þ and ð0; tÞ, the “center of mass
theorem” components in the direction of X2 and X3, are
given by

Dt

�
H�tHtÞ þDx tHx H2

x þ G2
x þ K

� �� �¼ 0; ð4:20Þ

Dt

�
G�tGtÞ þDx tGx H2

x þ G2
x þ K

� �� �¼ 0: ð4:21Þ

The corresponding global conserved quantities describe the
rates of change of the average displacement in each
direction (cf. (3.24)).
5.
 Finally, the multiplier pair ðΛ1;Λ2Þ ¼ ð�G;HÞ corresponds to
the rotation symmetry �G∂=∂Hþ H∂=∂G in the



Fig. 4 – (a) Fiber directions. (b) Arterial wall (adventitia or media) setup with two helical fiber families (cf. Holzapfel et al., 2000).
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ðx1; x2Þ-plane, and expresses the conservation of the Eulerian
angular momentum in the x3-direction. It is given by

Dt

�
HGt�GHtÞ�Dx ðHGx�GHxÞ H2

x þ G2
x þ K

� �� �¼ 0: ð4:22Þ

The conserved density Θ¼HGt�GHt is the linear density of
angular momentum in the material direction x¼X1. The
global conserved quantity is the total Eulerian angular
momentum of a material slab orthogonal to the axis of
x¼X1, for arxrb:

A¼
Z b

a
ðHGt�GHtÞ dx¼ const:
Case 2: K¼0. In this case, one obtains an additional multi-
plier pair ðΛ1;Λ2Þ ¼ ðH�3xHx�5tHt;G�3xGx�5tGtÞ, which

clearly corresponds to the evolutionary form of the scaling
symmetry:

Y¼ 3x
∂
∂x

þ 5t
∂
∂t

þ G
∂
∂G

þ H
∂
∂H

: ð4:23Þ

The additional local conservation law is given by the
divergence expression

DtΘþDx Ψ ¼ 0; ð4:24Þ

with the conserved density

Θ¼HHt þ GGt�3x HtHx þ GtGxð Þ�5
4 t 2ðH2

t þ G2
t Þ þ ðH2

x þ G2
xÞ2

� �
;

and the flux

Ψ ¼ 3
2 x ðH2

t þ G2
t Þ þ 3ðH2

x þ G2
xÞ2

� �
þ 5tðHtHx þ GtGxÞ�ðHHx þ GGxÞð Þ H2

x þ G2
x

� �
:

It is challenging to provide an immediate physical interpreta-
tion of the conservation law (4.24); we note that it is evidently
a generalization of the anti-plane shear conservation law
(3.28) (Section 3.2) onto the case Ha0.

Remark 4.3. For the planar shear model (4.3), the infinite set of
first-order conservation laws does not arise for the multiplier
ansatz (4.15), as it does for the anti-plane shear model (Section
3.2). Respectively, no analog of the linearizing Legendre trans-
formation exists for the model (4.3); this is a result of essential
coupling between the two nonlinear wave equations. It remains
an open problem to seek conservation laws of the PDE system
(4.3) arising from higher-order multipliers.
Remark 4.4. In Cheviakov et al. (2015), Lie point symmetries
of the PDE model (4.8) ðγ ¼ 0Þ have been computed, and a
family of traveling wave-type exact solutions has been
derived. With the help of the invertible transformations
(4.12), these results directly carry over to the planar shear
model (4.3) for an arbitrary fiber angle γAð0; π=2Þ.
5. A two-fiber anti-plane shear model

We now generalize the model of Section 3 onto a more
practically realistic case of two fiber families. We suppose
that the fibers in the material configuration are straight,
parallel respectively to the unit vectors

A1 ¼
cos γ1
0

sin γ1

2
64

3
75; A2 ¼

cos γ2
0

sin γ2

2
64

3
75 ð5:1Þ

in the ðX1;X3Þ-plane. The configuration is shown in Fig. 4(a). It
can be viewed as an “flat cylinder” approximation of an
arterial wall setup (Holzapfel et al., 2000) with no displace-
ments in the radial direction, and when displacements are
small compared to the radius of curvature (Fig. 4(b)).

Consider a specific form of the strain energy density (cf.
(2.6) and (2.8)) given by

W¼ aðI1�3Þ þ bðI2�3Þ þ q1 I4�1ð Þ2 þ q2 I6�1ð Þ2 þ K3I28
þ K4I8; ð5:2Þ

We assume

γ1A 0;
π

2

� �
; γ2A � π

2
; 0

� �
;

in particular, for arterial wall models, it is common to take

γ2 ¼ �γ1; q2 ¼ q1; ð5:3Þ

which we do not generally assume.
The model (5.2) involves six positive constant material

parameters: a; b;q1;2;K3;4. As before, a; b are Mooney–Rivlin
constants, q1;2 represent the strengths of fiber effects for the
two fiber families (5.1), and K3;4 are fiber interaction constants
(Peng et al., 2010). The model (5.2) is rather general in the sense
that it contains first Taylor terms of the dependence of the



i;
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strain energy density W on the invariants I1, I2, I4, I6, and I8 for a
wide class of two-fiber hyperelastic constitutive models.

We are interested in deriving a nonlinear wave equation
for the anti-plane shear displacement in the ansatz (3.2),
naturally compatible with the incompressibility condition.
This PDE will generalize the Eq. (3.6).

Upon the substitution of (5.2) and (3.2) into the dynamic
equation (2.12) with no forcing, it is found that the momen-
tum equation in the direction of X1 can be integrated and
explicitly yields the hydrostatic pressure

p¼ 2ρ0κ1 cos γ1 cos γ2 cos
2
�
γ1�γ2Þ cos γ1 cos γ2Gx þ sin ðγ1 þ γ2Þ

� �
Gx

þ
X2
i ¼ 1

ρ0βi cos
3γi cos γiGx þ 2 sin γi
� �

Gx þ f ðtÞ

¼M2G
2
x þM1Gx þ f ðtÞ; M1;2 ¼M1;2ðκ1; β1;2; γ1;2Þ ¼ const; ð5:4Þ

where the notation

X1 ¼ x; G¼Gðx; tÞ; p¼ pðx; tÞ; α¼ 2ðaþ bÞ=ρ040;
β1;2 ¼ 4 q1;2=ρ040; κ1 ¼ 2K3=ρ040; κ2 ¼ 2K4=ρ040; ð5:5Þ

similar to (3.4), has been adopted. The X2-component of the
momentum equation vanishes, and the X3-component yields
the wave nonlinear equation

Gtt ¼ AG2
x þ BGx þ C

� �
Gxx; ð5:6Þ

where the constants A;B, and C depend on the material
parameters as follows:

A¼ 6κ1 cos 2 γ1�γ2
� �

cos 2γ1 cos
2γ2 þ 3

X2
i ¼ 1

βi cos
4γi40;

B¼ 6κ1 cos 2 γ1�γ2
� �

sin γ1 þ γ2
� �

cos γ1 cos γ2 þ 6
X2
i ¼ 1

βi sin γi cos
3γ

C¼ κ1 cos 2 γ1�γ2
� �

sin 2γ1 sin2γ2 þ cos 2γ1 þ cos 2γ2
� �

þ κ2 cos γ1�γ2
� �

cos γ1 cos γ2 þ
X2
i ¼ 1

βi
2
sin 22γi þ α: ð5:7Þ

Depending on the sign of the discriminant D¼ B2�4AC,
the loss of hyperbolicity in the PDE (5.6) may be possible. In
particular, if Do0, Eq. (5.6) is always hyperbolic, and can be
mapped into the familiar equation (3.18) with K¼1. When
Fig. 5 –Material lines X1 ¼ const, X3 ¼ const (black, vertical and ho
red) for the one-dimensional hyperelastic two-fiber anti-plane s
actual configuration (right) at the time t¼ 5 � 10�4 s. Spatial coor
references to color in this figure caption, the reader is referred t
D40, the PDE is equivalent to Eq. (3.18) with K¼ �1. In both
cases, the transformation is given by

x¼ Lx̂; t¼ 2Lt̂

ffiffiffiffiffiffiffi
A
jDj

s
; G x; tð Þ ¼

ffiffiffiffiffiffiffi
jDj

p L
2A

Ĝ x̂; t̂
� �� B

2A
x: ð5:8Þ

When D¼0, Eq. (5.6) is equivalent to (3.18) with K¼0.
Due to the equivalence of the two-fiber anti-plane shear model

(5.6) to the nonlinear wave Eq. (3.18) for some fixed K, the
conservation law classification repeats that of Section 3.2. Simi-
larly, for numerical simulation, it is sufficient to perform computa-
tions for (3.18) and use the transformations inverse to (5.8) to
obtain the results for the two-fiber model (5.6). The Lagrangian
density for the PDEs (5.6) is also obtained from the K-family
Lagrangian (3.19) through transformations inverse to (5.8).

We now present a numerical illustration of an anti-plane
shear wave propagating in a material described by the
constitutive model (5.2). We take the numerical parameters
corresponding to the rabbit carotid artery media (Holzapfel
et al., 2000), given by (3.30), with fiber angles

γ1 ¼ �γ2Cπ=6;

and sample anisotropy parameters

κ1 ¼ 5 m2=s2; κ2 ¼ 0:

The corresponding constants A;B, and C in the wave equation
(5.6) are given by

AC18:70 m2=s2; B¼ 0; CC6:88 m2=s2;

and the discriminant D¼ B2�4ACo0. Fig. 5 shows the material
lines X1 ¼ const, X3 ¼ const and the fiber lines X3�X1 tan γi ¼
const; i¼ 1;2, in the Lagrangian and Eulerian configurations, for
the initial conditions given by Gðx; 0Þ ¼G0expð�ðkxÞ2Þ,
G0 ¼ 1=k¼ 1 mm, with Gtðx; 0Þ ¼ 0. The d'Alembert-like solution
is symmetric with respect to the X3-axis.
rizontal) and the fiber lines X3�X1 tan γi ¼ const, i¼1, 2 (blue,
hear model (5.2). The material configuration (left) and the
dinates are given in millimeters. (For interpretation of the
o the web version of this paper.)
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6. A one-dimensional hyper-viscoelastic
model

The anti-plane shear model of Section 3 is now generalized to
include viscoelastic effects through the use of the pseudo-
invariants J2 and J9 defined in (2.15) and (2.17). We assume the
displacements in the X3-direction, of the form (3.2), propagat-
ing in the X1-direction ðX1 � xÞ, and a single fiber family
directed along the vector (3.3). The pseudo-strain energy
density is given by

W¼Wh þWv ¼ a I1�3ð Þ þ b I2�3ð Þ þ q I4�1ð Þ2

þH1

4
J2 I1�3ð Þ þ H2

2
J9ðI4�1Þ2: ð6:1Þ

The model involves five constant constitutive parameters. Due
to the presence of the components of the tensor _C, the forms of
the PDEs resulting from the substitution of (6.1) into the
equations of motion (2.12) (with no forcing) are significantly
more complicated than that for the purely hyperelastic case.

We again use the short-hand notation (3.4), additionally
denoting

η¼H1=ρ0; ζ ¼H2=ρ0:

The physical dimension units of the coefficients η; ζ are the
units of the kinematic viscosity of a viscous fluid ðm2=sÞ. For
displacements of the form (3.2), the incompressibility condi-
tion J¼ det F¼ 1 is identically satisfied, and the X2-compo-
nent of the momentum equation vanishes identically.

For the general form of W in (6.1), the hydrostatic pressure
expression and the PDE for Gðx; tÞ can be derived from the X1-
and X3-components of the momentum equation; their forms,
however, are given by rather complicated expressions. We
consider a special case of interest corresponding to the wave
propagation in the fiber direction, i.e., γ ¼ 0. In this case, the
hydrostatic pressure and the PDE for the displacement are
respectively given by

p¼ ρ0 βG2
x þ 2ðηþ 2ζG2

xÞG3
xGtx

� �þ f tð Þ; ð6:2Þ

Gtt ¼ αþ 3βG2
x

� �
Gxx

þ ηGx 2ð4G2
x þ 1ÞGxxGtx þ ð2G2

x þ 1ÞGxGtxx
� �

þ ζG3
x 4ð6G2

x þ 1ÞGxxGtx þ ð4G2
x þ 1ÞGxGtxx

� �
: ð6:3Þ

When η¼ ζ¼ 0, Eqs. (6.2) and (6.3) reduce to the formulas (3.8)
and (3.9) for the hyperelasticity model. We note that the damping
η- and ζ-terms in (6.3) are significantlymore complicated than, for
example, a basic friction forcing term �ηGt in a linear wave
model describing small oscillations of an elastic string in a
viscous medium.

The equivalence transformation (3.10) with some L¼ const
can be used to map the PDE (6.3) into a dimensionless form

Ĝt̂ t̂ ¼ Ĝ
2
x̂ þ 1

� �
Ĝx̂x̂

þη̂Ĝx̂ 2ð4α̂Ĝ2
x̂ þ 3ÞĜx̂x̂ Ĝ t̂ x̂ þ ð2α̂Ĝ2

x̂ þ 3ÞĜx̂ Ĝt̂ x̂ x̂

h i
þζ̂Ĝ

3
x̂ 12ð2α̂Ĝ2

x̂ þ 1ÞĜx̂x̂ Ĝ t̂ x̂ þ ð4α̂Ĝ2
x̂ þ 3ÞĜx̂ Ĝt̂ x̂ x̂

h i
; ð6:4Þ

involving the dimensionless parameters

α̂ ¼ α

β
; η̂ ¼ η

ffiffiffi
α

p

9Lβ
; ζ̂ ¼ ζα3=2

27Lβ2
: ð6:5Þ
6.1. Conservation laws and potential systems of the
hyper-viscoelastic fiber-aligned wave propagation model (6.4)

We now use the direct conservation law construction method
(Appendix A) with third-order multipliers to seek local con-
servation laws of the dimensionless nonlinear PDE (6.4). For
the simplicity of notation, hats on the dimensionless vari-
ables x̂; t̂; Ĝ will be omitted. Let the conservation law multi-
pliers have the form

Λ¼ Λðx; t;G;Gt;Gt;Gxx;Gxt;Gxxx;GxxtÞ:

In the general case, for arbitrary α̂, η̂, ζ̂ , two local conservation
laws arise:
1.
 The conservation law for the multiplier Λ1 ¼ 1 is given
by

Dt Gt� η̂ð3þ 2α̂G2
xÞ þ ζ̂ð3þ 4α̂G2

xÞG2
x

h i
G2
xGxx

� �
�Dx 1þ 1

3G
2
x

� �
Gx

� �¼ 0: ð6:6Þ
2.
 The conservation law for the multiplier Λ2 ¼ t is given by

Dt tGt�G�t η̂ð3þ 2α̂G2
xÞ þ ζð3þ 4α̂G2

xÞG2
x

� �
G2
xGxx

� �
þDx η̂ 1þ 2

5α̂G
2
x

� �
G3
x þ ζ̂ 3

5 þ 4
7α̂G

2
x

� �
G5
x�t 1þ 1

3G
2
x

� �
Gx

� �
¼ 0:

ð6:7Þ
An immediate application of the conservation laws (6.6)
and (6.7) is the construction of potential systems which

allows for a simpler finite-difference numerical solution than
the original PDE (6.4). Indeed, in the third-order PDE (6.4),
derivatives involving time of the form Gtt, Gtx, and Gtxx occur
linearly. In order to solve this PDE “as is”, specialized explicit
finite-difference schemes can be derived. For a simpler
numerical solution, one can use, for example, the conserva-
tion law (6.6) to introduce a potential variable Vðx; tÞ (cf.
Bluman et al., 2010) so that the pair (G,V) satisfies the
potential system

Vx ¼Gt� η̂ð3þ 2α̂G2
xÞ þ ζ̂ð3þ 4α̂G2

xÞG2
x

h i
G2
xGxx;

Vt ¼ 1þ 1
3G

2
x

� �
Gx: ð6:8Þ

One consequently obtains a coupled system of evolution
equations

∂
∂t

G

V

� 	
¼

Vx þ η̂ð3þ 2α̂G2
xÞ þ ζ̂ð3þ 4α̂G2

xÞG2
x

h i
G2
xGxx

1þ 1
3G

2
x

� �
Gx

2
4

3
5 ð6:9Þ

involving the time derivatives only in the left-hand sides. The
system (6.9) can be used, for example, for numerical compu-
tations that employ a higher-order Runge–Kutta-based
method of lines.

The second potential system arising from the local con-
servation law (6.7) is given by

Wx ¼ tGt�G�t η̂ð3þ 2α̂G2
xÞ þ ζð3þ 4α̂G2

xÞG2
x

� �
G2
xGxx;

Wt ¼ � η̂ 1þ 2
5α̂G

2
x

� �
G3
x þ ζ̂ 3

5 þ 4
7α̂G

2
x

� �
G5
x�t 1þ 1

3G
2
x

� �
Gx

� �
; ð6:10Þ

and involves a nonlocal variable Wðx; tÞ.
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6.2. A sample numerical computation

We now numerically solve the dimensionless PDE (6.4) with
the same initial data and constants as used in Section 3.3 for
the dimensionless inviscid model. The finite-difference
method of lines implemented in Matlab is applied to the
potential system (6.9). The initial condition for the potential
Vðx; tÞ corresponding to (3.29) is given by Vðx;0Þ ¼ 0. The
parameters (6.5) corresponding to the choice (3.30) with
η¼ 10 m2=s, ζ ¼ 5 m2=s are given by α̂ ¼ 0:636, η̂ ¼ 0:427,
ζ̂ ¼ 0:0453.

Similar to the case of Section 3.3, the problem is solved in
�30rxr30 with homogeneous Dirichlet boundary condi-
tions. The results, in comparison to those with zero viscosity
(Fig. 2), are presented in Fig. 6. In addition to the evident
decrease of the wave amplitude with time, for the viscoelastic
case, we observe an increased stability of the computation
due to the absence of wave breaking.
7. Discussion

Wavemethods are widely used for themeasurement of mechan-
ical properties of biomembranes in a non-destructive manner.
This involves the solution of complicated nonlinear boundary
value problems. Mathematical formulation of the related basic
nonlinear wave propagation models and the analysis of their
structure and solution properties are therefore of high practical
relevance.

In contrast to the commonly adopted incremental framework
based on linear approximations of the field equations, the current
contribution considered fully nonlinear time-dependent elasticity
and viscoelasticity equations. Several PDE models have been
presented, describing the dynamics of the following displace-
ments in fiber-reinforced incompressible hyperelastic media:
Fig. 6 – Right-traveling wave profiles for the hyper-
viscoelastic fiber-aligned anti-plane shear wave propagation
model (6.4) with initial conditions (3.29) (black solid curves)
compared to the same initial value problem for the case of
zero viscosity (dimensionless PDE (3.18) with K¼1, blue
dashed curves), for the dimensionless times t̂ ¼ 0;2;4;6 (left
to right). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of
this paper.)
�
 Anti-plane shear displacements, hyperelastic model, sin-
gle fiber family, and general fiber family orientation.
�
 Planar shear displacements perpendicular to the wave
propagation direction, hyperelastic model, single fiber
family, and general fiber family orientation.
�
 Anti-plane shear displacements, hyperelastic model, two
fiber families, and general fiber family orientations.
�
 Anti-plane shear displacements, single fiber family, and
hyper-viscoelastic framework.

Equivalence transformations were derived to substantially

reduce the number of parameters in the models. In particular,
it was shown that the nonlinear wave equations, arising in
Sections 3 and 5, can be invertibly mapped to a nonlinear
wave equation (3.18) involving a single parameter K¼ 0;71.

Local conservation laws of the models were systematically
constructed using the direct construction method. It was
shown that the basic nonlinear PDE (3.18) admits an infinite
number of conservation laws, and can be invertibly mapped
into a linear variable-coefficient wave equation (3.26).

Other analytical properties of the presented models have
been considered, and sample numerical solutions have been
obtained. The numerical examples of Sections 3.3 and 5, even
though provided mostly for illustration purposes in rather
idealized settings, are based on real experimental data. The
numerical solutions describe finite perturbations, thereby
going significantly beyond the usual laboratory testing cap-
abilities. Predictions of numerical simulations similar to the
presented ones can be used to evaluate physical parameters,
such as mechanical moduli, from an inverse approach based
on a comparison with real dynamical measurements.

Future work directions will include the application of the
obtained results, in particular, the local conservation laws, to
analytical and numerical computations for biomembranes
and other tissues and materials of interest for applications.
Work will continue to extend the presented analysis to
models in other geometries, including cylindrical coordinates
and axial symmetry, spherical coordinates, pertinent to
specific biological contexts, such as artery and cornea models
(cf. Holzapfel et al., 2000; Pandolfi and Manganiello, 2006). It is
also of interest and importance to generalize the presented
analysis to include more general constitutive relations, ide-
ally, constitutive relations involving arbitrary functions.

An important question related to one-dimensional reductions
considered in this paper is their stability in the sense of the full
three-dimensional model, in particular, the possibility of non-
linear mode interaction in three-dimensional mechanics.
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Appendix A. Direct construction of
conservation laws

Consider a system of N partial differential equations

Rσ ¼ 0; σ ¼ 1;…;N; ðA:1Þ
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with m dependent variables uðt;xÞ ¼ ðu1;…;umÞ, and indepen-
dent variables t, x¼ ðx1;…; xnÞ. The direct conservation law
construction method is based on finding linear combinations
of the given equations with some multipliers Λσ ¼ Λσ ½u�,
leading to divergence expressions

ΛσRσ �DtΘþDiΦ
i: ðA:2Þ

Multipliers can depend on dependent and independent vari-
ables t;x, u, and prescribed partial derivatives of u, to a fixed
order. (In practice, multipliers are assumed to depend on
derivatives of u up to some chosen prescribed order kZ0.)
Then on solutions Rσ ¼ 0, a local conservation law (1.1) holds.

A differential function F½u� is a divergence expression if
and only if it is annihilated by Euler differential operators Eui

with respect to each scalar dependent variable ui, i¼ 1;…;m
(Anco and Bluman, 1997; Olver, 2000; Bluman et al., 2010). The
conservation law multipliers are consequently found as
solutions of the linear determining equations:

Eui ΛσRσ½ � ¼ 0; i¼ 1;…;m; ðA:3Þ

holding for arbitrary functions uðt;xÞ, i.e., off of the solution
space of the given system (A.1) (see, e.g., Bluman et al., 2010).

Having computed the multipliers, one proceeds to finding the
conservation law density and fluxes (Cheviakov, 2010b). Specia-
lized symbolic software is often used in conservation law (multi-
plier and density/flux) computations (e.g., Cheviakov, 2007).

The direct construction method is known to be complete, i.e.,
to yield all nontrivial conservation laws of the model up to a
prescribed order, when the equations are written in the standard,
general, or extended Kovalevskaya form with respect to some
independent variable (Olver, 2000; Alonso, 1979).
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