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In the work of Nold and Oberlack [Phys. Fluids 25, 104101 (2013)], it was shown that
three different instability modes of the linear stability analysis perturbing a linear shear
flow can be derived in the common framework of Lie symmetry methods. These modes
include the normal-mode, the Kelvin mode, and a new mode not reported before. As
this was limited to linear shear, we now present a full symmetry classification for the
linearised Navier-Stokes equations which are employed to study the stability of an
arbitrary plane shear flow. If viscous effects for the perturbations are neglected, then
we obtain additional symmetries and new Ansatz functions for a linear, an algebraic,
an exponential, and a logarithmic base shear flow. If viscous effects are included in the
formulation, then the linear and a quotient-type base flow allow for additional symme-
tries. The symmetry invariant solutions derived from the new and classical generic
symmetries for all different flow types naturally lead to algebraic growth and decay for
all cases except for two linear base flow cases. In turn this leads to the formulation of a
novel eigenvalue problem in the analysis of the transition to turbulence for the respec-
tive flows, all of which are very distinct from the classical Orr-Sommerfeld eigenvalue
problems. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934726]

I. INTRODUCTION

The crucial parameter for describing fluid flows is the Reynolds number, which represents
the ratio between inertial and viscous forces in a flow. For low Reynolds numbers, i.e., relatively
slow flows, the fluid flows are linearly stable. However, increasing the Reynolds number leads to
instabilities which may lead to a new laminar state or turbulence. The nature of this transition
is of great interest for industrial applications, as an effective influence or control of the onset of
turbulence could help bring up efficiency and lower costs. The study of the onset of turbulence is
also of paramount importance to better understand flows in nature.

A classical approach to analyse the onset of turbulence is to assume a laminar base flow, and
to linearly superpose a small perturbation. Stability analysis of this perturbation then leads to a
range of stable/unstable modes and corresponding Reynolds numbers. The most famous approach
for the perturbations is the normal mode approach, leading to the famous Orr-Sommerfeld equa-
tion.1 However, for many flows, the results obtained employing the normal mode approach do not
coincide with experimental observations.2,3 Alternatively, for linear base flows, Kelvin modes can
be employed as a perturbation.4 In this case, analytical results5,6 show that the flows are always
stable, clearly contradicting experimental observations.
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In the 1990s, a novel approach revealed an explanation for this apparent paradox. It was shown
that the eigenfunctions for the perturbations of non-uniform flows can be non-orthogonal, meaning
that the eigenfunctions interact: they are spectrally stable, but perturbations are able to gain the
basic (shear) flow energy transiently and, consequently, exhibit strong growth during a limited
time interval.7–10 In the case of large enough initial perturbations, the strong short-term non-normal
growth allows for non-linear effects to take place, which regenerate the transiently growing pertur-
bations. This positive feedback-loop allows for the onset of turbulence and is usually denoted as
bypass-transition.11–13

The limitations of the modal approach in linear stability analysis14 lead us to revisit the linear
stability analysis by further generalizing the normal mode and the Kelvin mode approach. Recently,
it was shown that for a linear shear flow, a systematic application of symmetry analysis allows
to obtain a new invariant solution for the perturbations, which differs significantly from the latter
two classical approaches.15 Here, we perform a complete point symmetry classification and present
a whole set of base shear flows which allow for novel invariant solutions for the perturbations
describing new modes not captured by the classical approaches.

A symmetry of a system of differential equations (DEs) is a transformation which maps the
solution set into itself. For example, any linear homogeneous DE has a scaling symmetry. Sim-
ilarly, any DE that is autonomous in some independent variable has a translational symmetry in
that variable. In particular, physical systems which are autonomous in time and space allow for a
translational symmetry in time and space. An invariant solution is a solution curve that is mapped
into itself upon the application of a given symmetry transformation. For systems of DEs involving
arbitrary functions and/or parameters, symmetry classification is applied to isolate special cases for
which additional symmetries arise.

Local symmetries and invariant solutions reflect the mathematical structure of a given DE sys-
tem. Invariant solutions often have a clear physical meaning. In fluid mechanics, symmetry methods
have been applied successfully in various specific areas; see, e.g., the work of Boisvert, Ames, and
Srivastava;16 Simonsen and Meyer-ter Vehn;17 Oberlack, Wenzel, and Peters;18 Oberlack;19 Avra-
menko et al.;20 Barenblatt, Galerkina, and Luneva;21 and Grebenev.22 One of the most well-known
examples is the invariant solution of the Prandtl boundary layer equations derived by Blasius, which
is often referred to as similarity solution because of the exclusive use of scaling symmetries.

In the current paper, we present several base shear flows for which the linearized Navier-Stokes
equations (LNSEs) admit additional symmetries: four base flows for the inviscid setting, and the
linear shear flow plus one additional base flow for the viscous setting. For each base flow, we
present the corresponding point symmetries, introduce the respective invariant solution forms, and
obtain the corresponding reduced equations by substituting the invariant solution form into the line-
arized Navier-Stokes equations. We briefly discuss physical properties of such invariant solutions.

In Sec. II, we give a brief introduction to the symmetry analysis procedure for the linearized
Navier-Stokes equations for the perturbations, in the streamfunction formulation. We present the
results of the symmetry classification in Sec. III, before presenting the invariant solutions for each
base flow: In Sec. IV, we consider inviscid base flows, whilst we consider viscous base flows in
Sec. V. In both of the latter sections, we present the respective novel eigenvalue equations. We then
summarize the main results and review possible research directions in Sec. VI.

II. SYMMETRY ANALYSIS

Consider an unbounded incompressible parallel two-dimensional shear flow (U(y),0)T with a
perturbation of the form (u(x, y, t), v(x, y, t))T . Assuming that the Navier-Stokes equations hold for
the base flow, one obtains the following set of equations for the perturbations:

∂u
∂t
+U

∂u
∂x
+ v

dU
dy
+


u
∂u
∂x
+ v

∂u
∂ y


= − 1

ϱ

∂p
∂x
+ ν∆u, (1)

∂v

∂t
+U

∂v

∂x
+


u
∂v

∂x
+ v

∂v

∂ y


= − 1

ϱ

∂p
∂ y
+ ν∆v, (2)
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∂u
∂x
+
∂v

∂ y
= 0, (3)

where ν is the kinematic viscosity and ∆ is the Laplace operator. Since only incompressible flows
are considered, the density ϱ will formally be included in the pressure perturbation p. Introducing a
stream function ψ for the velocity perturbations

u =
∂ψ

∂ y
and v = −∂ψ

∂x
(4)

eliminates the continuity equation. Applying the curl on two resulting Equations (1) and (2) elim-
inates the pressure and we obtain a nonlinear equation for the streamfunction of the perturbations,
which in its linearized form gives the LNSE

∂

∂t
∆ψ − d2U

dy2

∂ψ

∂x
+U

∂

∂x
∆ψ = ν∆∆ψ. (5)

For the simplicity of presentation, we only give results for streamfunction formulation (5). All
results obtained in this section also apply if the linearized form of Equations (1)-(3) is used.

The main step in the following analysis is to seek Lie point symmetries of partial differential
equation (PDE) (5). Symmetries are given by point transformations T =

�
x̃, ỹ , t̃, ψ̃

�
of the form

x̃ = x̃ (x, y, t,ψ; ε) , ỹ = ỹ (x, y, t,ψ; ε) , (6)

t̃ = t̃ (x, y, t,ψ; ε) , ψ̃ = ψ̃ (x, y, t,ψ; ε) , (7)

for which the transformed quantities satisfy transformed Equation (5),

∂

∂t̃
∆̃ψ̃ − d2U

dy2

∂ψ̃

∂ x̃
+U

∂

∂ x̃
∆̃ψ̃ = ν∆̃∆̃ψ̃. (8)

In other words, we search for transformations (6) and (7) which leave PDE (5) invariant. In (6) and
(7), ε ∈ R is the group parameter, and the transformations are assumed to be smooth functions of ε.

Analytically, it is particularly useful to relate the global transformation group T with the
tangent vector field (ξ x, ξ y, ξ t, η) at ε = 0, defined as

ξ x =
∂ x̃
∂ε

�����ε=0
, ξ y =

∂ ỹ

∂ε

�����ε=0
, ξ t =

∂t̃
∂ε

�����ε=0
, η =

∂ψ̃

∂ε

�����ε=0
. (9)

Tangent vector field components (9) determine T uniquely23 through the relation

T = eεXx, (10)

where x = (x, y, t,ψ) and X is the tangent vector field of T written as an infinitesimal generator

X := ξ x
∂

∂x
+ ξ y

∂

∂ y
+ ξ t

∂

∂t
+ η

∂

∂ψ
≡ ξ x∂x + ξ y∂y + ξ t∂t + η∂ψ. (11)

(The short-hand notation ∂/∂x ≡ ∂x, etc., is used here and below for symmetry generators.)
The infinitesimal generator X related to Equation (5) can be found by requiring that its corre-

sponding symmetry transformation does not change the form of the PDE. In particular, denote PDE
(5) by F

�
x,ψ,ψ[1],ψ[2], . . .

�
= 0, where ψ[n] stands for a vector of partial n derivatives of order n,

n = 1,2,3,4. In order to determine the point symmetries of (5), one solves a system of determining
equations

X (4)F |F=0 = 0, (12)

where X (4) is the 4th prolongation of the symmetry generator X defined in (11).23

One of the most powerful tools of symmetry analysis is the ability to construct invariant solu-
tions, based on the invariants of the symmetry transformation T. These invariant solutions have been
shown to provide special physical solutions of the equations at play.16–22 The mathematical condi-
tion for invariance of a solution is that it should not change its functional form after application of
the infinitesimal generator,
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X (ψ − ψ1 (x, y, t)) |ψ = ψ1(x, y, t) = η − ξ x ∂ψ1

∂x
− ξ y ∂ψ1

∂ y
− ξ t ∂ψ1

∂t
= 0. (13)

From the practical point of view, it is often beneficial to consider combinations of point
symmetries. Since symmetry generators form a linear vector space, for any n symmetries X1, . . . ,Xn

admitted by a given DE system, a linear combination X :=


i aiXi is also a generator of a point
symmetry. For example, invariant solutions with respect to a combination of a space translation
X1 = ∂x and a time translation X2 = ∂t are determined by the condition

X(ψ − ψ1 (x, y, t)) = (a1X1 + a2X2)(ψ − ψ1 (x, y, t)) = −a1
∂ψ

∂x
− a2

∂ψ

∂t
= 0. (14)

The corresponding invariant solution represents a traveling wave ψ = f (a2x − a1t), for which the
advection speed depends on the ratio of the coefficients a1 and a2.

In this work, we show that normal modes, Kelvin modes, as well as a new types of base
solutions can be systematically derived by seeking invariant solutions of linearized perturbation
equation (5) with respect to combinations of its point symmetries for different base flows. For more
details about point and local symmetries and related extensions, see, e.g., the work of Bluman,
Cheviakov, and Anco;23 Bluman and Kumei;24 Bluman and Anco;25 Cantwell;26 Steeb;27 and refer-
ences therein. The point symmetries presented in the current work were derived using the GeM
software package of Cheviakov28 and the DESOLVE package of Carminati and Vu.29

III. SYMMETRY CLASSIFICATION

For general shear base flows
(
U(y),0)T ) , LNSE (5) admits four symmetries: superposition,

translation in x and t and scaling of ψ, all obtained by solving condition (13) for LNSE (5).
The respective infinitesimal generators and the global transformation groups are given below. For
simplicity of notation, we denote ∂/∂x ≡ ∂x, etc.,

X0 = f (x, y, t)∂ψ ⇔ [x̃ = x, ỹ = y, t̃ = t, ψ̃ = ψ + f (x, y, t)], (15)
X1 = ∂x ⇔ [x̃ = x + x0, ỹ = y, t̃ = t, ψ̃ = ψ], (16)
X2 = ∂t ⇔ [x̃ = x, ỹ = y, t̃ = t + t0, ψ̃ = ψ], (17)
X3 = ψ∂ψ ⇔ [x̃ = x, ỹ = y, t̃ = t, ψ̃ = Cψ]. (18)

Here, x0 and t0 are the space and time shift, respectively; f (x, y, t) is an arbitrary solution of PDE
(5); C , 0 is an arbitrary scaling constant. We note that the superposition symmetry X0 and the
scaling symmetry X3 were induced by the linearization, whereas the symmetries X1 and X2 are
already admitted before the linearization leading to (5).

The general set of symmetries (15)-(18) and, in turn, the set of corresponding invariant solu-
tions, can be considerably extended for some special cases of the base flow U(y), as well as for the
case of zero viscosity. In the Appendix, details of the symmetry classification are presented.

In Figure 1, we present the special cases of the symmetry classification modulo to equivalence
transformations, which do not change the differential structure of the equations (see, e.g., Refs. 23

FIG. 1. Base flows U (y) allowing for additional symmetries in the viscous and inviscid case, modulo to equivalence
transformations, where C3 is an arbitrary constant. The nodes of the tree represent the pivot elements of the classification.
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and 30). In the following, for practical purposes of reconstructing solutions for specific cases, we
analyze each case of the symmetry classification in its general form including parameters of the
equivalence transformation, leading to base flows such as listed in Table I.

For viscous flows, we find two special base flows allowing for additional symmetries. Inviscid
flows allow for a richer variety of symmetries (cases V and VI). Besides the linear inviscid shear
flow, which admits six symmetries, algebraic, exponential, and logarithmic base flows also allow for
one additional symmetry each (cases I–IV). Out of these base flows, only the linear shear flow and a
parabolic channel flow profile satisfy the Navier-Stokes equation.

The infinitesimal generators of the additional symmetries for the respective base flows are
given by

I U(y)= ALy+VL : X4,I= ALt∂x+∂y, (19)

X5,I= (x− tVL)∂x+ y∂y, (20)

II U(y)= A2ln(y+L2)+V2 : X4,II= (x+ A2t)∂x+ (y+L2)∂y+ t∂t, (21)

III U(y)= A3(y+L3)C3+V3 : X4,III= (C3V3t− x)∂x− (y+L3)∂y+ (C3−1)t∂t, (22)

IV U(y)= A4eB4y+V4 : X4,IV=−B4V4t∂x+∂y−B4t∂t, (23)

V U(y)= ALy+VL : X4,V= ALt∂x+∂y, (24)

VI U(y)= A6

y+L6
+V6 : X4,VI= (V6t+ x)∂x+ (y+L6)∂y+2t∂t, (25)

and the corresponding global transformations are given by

T4,I : [x̃ = x− y0ALt, ỹ = y− y0, t̃ = t, ψ̃ =ψ], (26)
T5,I : [x̃ = k(x−VLt)+VLt, ỹ = k y, t̃ = t, ψ̃ =ψ], (27)

T4,II : [x̃ = k x+ A2t
lnk

ln(e/k) , ỹ = k(y+L2)−L2, t̃ = kt, ψ̃ =ψ], (28)

T4,III : [x̃ = x−V3t
k
+V3tkC3−1, ỹ =

y+L3

k
−L3, t̃ = kC3−1t, ψ̃ =ψ], (29)

T4,IV : [x̃ = x+ (k−B4−1)V4t, ỹ = k y, t̃ = k−B4t, ψ̃ =ψ], (30)

T4,V : [x̃ = x− y0ALt, ỹ = y− y0, t̃ = t, ψ̃ =ψ], (31)
T4,VI : [x̃ = k x+ tV6

�
k2− k

�
, ỹ = k(y+L6)−L6, t̃ = k2t, ψ̃ =ψ], (32)

where y0, k , 0, Ai,Bi,Ci,Vi, and Li are arbitrary constants.
A general symmetry generator for every special case (base shear flow and viscosity) is given

by a linear combination of four general symmetry generators (15)-(18) and the corresponding addi-
tional symmetry generators for that case. In Secs. III A–V, we derive invariant solutions for different
symmetry combinations. An overview, for both viscous and inviscid setups, is given in Table I.

A. Derivation of the Orr-Sommerfeld equation using symmetry methods

The classical normal mode approach turns out to be an invariant solution with respect to the
combination of the three symmetries X1, . . . ,X3 in (16)-(18),

X (0) := a1∂x + a2∂t + a3ψ∂ψ, a1,2,3 ∈ C. (33)

Invariant solution condition (13) becomes

a3ψ − a1
∂ψ

∂x
− a2

∂ψ

∂t
= 0. (34)

If a2 , 0, the method of characteristics yields the solution

ψ(0)(x, y, t) = f (0) (ξ, y) e
a3
a2

t
, (35)
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TABLE I. An overview of invariant solutions for viscous and inviscid cases (cf. (19)-(32)). Cases I-IV are for inviscid
perturbations, while symmetries V-VI are for viscous flows. In this table, we present simplified versions of the invariant
solutions by setting some parameters to zero. For the complete solutions, see the respective sections. In the present table, f
is a function of the indicated arguments, and α, β, γ, δ, c, k are constant parameters.

Case U (y) a1 a2 a3 a4 a5 Ansatz for ψ(x, y, t)
0 General C C C . . . . . . f (y)eiα(x−ct )

I.a ALy+VL C C\ {0} C C C\ {0} ect f (x/y, t − lny) (for VL = 0)
I.b ALy+VL C 0 C C C\ {0} yk f (x/y, t) (for

AL = 1,VL = 0)
II A2ln(y+L2)+V2 C C C C\ {0} . . . t β f (x/t − A2ln t, y/t)

(for A2= 1, L2=V2= 0)
III A3(y+L3)C3+V3 C C C C\ {0} . . . t β f (xt, y t)

(for L3=V3= 0,C3= 2)
IV A4e

B4y+V4 C C C C\ {0} . . . t β f (x−γ ln t, y− ln t)
(for V4= 0,B4=−1)

V.a ALy+VL C 0 C C\ {0} . . . f (t)eδ(x−y t )+βy (for AL = 1)
V.b ALy+VL C C\ {0} C C\ {0} . . . f (y− t)eδ(x− t2

2 )+βt

(for AL = 1,VL = 0,a2= a4)

VI A6
y+L6

+c C C C C\ {0} . . . t β f
(

x√
t
,

y√
t

)
(for V6= 0)

depending on the traveling wave coordinate in the x-direction,

ξ = x − a1

a2
t . (36)

The function f (0) satisfies the linear fourth order differential equation(
U − a1

a2

)
∂

∂ξ
∆ f (0) +

a3

a2
∆ f (0) −U ′′

∂

∂ξ
f (0) = ν∆∆ f (0) (37)

obtained by inserting form (35) into the LNSE (5). While the number of variables has been reduced
by one, the PDE is still of the fourth order, and the number of parameters has increased by two: in
addition to the viscosity ν, we now also have a1/a2 and a3/a2. Since linear homogeneous PDE (37)
does not involve ξ explicitly, it clearly admits two basic symmetries: the scaling f (0)∂f (0) and the
translation ∂ξ. In order to further reduce the number of independent variables in (37), we require
that the solution f (0) (ξ, y) is invariant with respect to a linear combination

X̃ (0) = b1
∂

∂ξ
+ b2 f

∂

∂ f
, b1,2 ∈ C. (38)

This leads to an invariant Ansatz

f (0)(ξ, y) = g(0)(y)e
b2
b1
ξ
, b1 , 0, (39)

while b1 = 0 leads to the trivial solution ψ = 0. General solution Ansatz (35) becomes

ψ(0)(x, y, t) = g(0)(y) exp
(

b2

b1
x +

a3b1 − a1b2

a2b1
t
)
. (40)

A natural assumption that the solution is bounded for x → ±∞, i.e., Re (b2/b1) = 0, leads to the
classical normal mode approach

ψ(0)(x, y, t) = g(0)(y)eiα(x−ct), (41)
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with the wavelength α = Im (b2/b1) and the wave speed c = Im ((a3b1)/(a2b2) − a1/a2). The use of
Ansatz (41) in the LNSE (5) leads to the well-known Orr-Sommerfeld equation

(U − c)
(

d2

dy2 − α
2
)
g(0) −U ′′g(0) =

ν

iα

(
d2

dy2 − α
2
)2

g(0). (42)

(Note that a similar analysis can be done for a2 = 0 and a1 , 0, yielding the same result.)
Summarizing this section, the Orr-Sommerfeld equation is derived through a successive sym-

metry reduction of linearized Navier-Stokes equation (5) with for an arbitrary U(y). This holds
true for both the viscous and the inviscid case and is usually referred to as normal mode or modal
approach. In this work, we will repeatedly apply the method of successive symmetry reductions in
special flow cases, in order to reproduce further known Ansätze, and introduce new ones.

IV. INVISCID PERTURBATIONS

In this section, we consider the inviscid equations for the perturbations by setting ν = 0 in
Equation (5). Let us note that while the base flows may satisfy the viscous Navier-Stokes equations,
the additional symmetries presented in this sections only apply for the inviscid equations for the
perturbations. This simplification has a very long tradition and traces back to the famous work of
Rayleigh, where details may be taken from Refs. 31 and 32. Still, it limits the analysis to inviscid
modes, but could be of interest for scenarios where the stress tensor of the perturbations is small. In
fact, this condition has to be verified a posteriori after obtaining the invariant solution.

A. Solution I.a for a linear shear flow

For case I.a for a linear base flow

U(y) = ALy + VL, (43)

in Table I, we choose a5 , 0, thus employing the general symmetry

X (I.a) = a1∂x + a2∂t + a3ψ∂ψ + a4
�
ALt∂x + ∂y

�
+ a5

�(x − tVL) ∂x + y∂y� . (44)

For the case a2 , 0, Equation (13) yields the corresponding invariant solution form

ψ(I.a)(x, y, t; c,λ2, AL)B ect f (I.a) (ξ,η; c,λ2, AL) , (45)

with ξ B
x − x0 − (y0AL + VL) t

y − y0
(46)

and η B λ2t − ln (y − y0) , (47)

where

c =
a3

a2
, λ2 =

a5

a2
, 0, x0 =

a2

a5
(y0AL + VL) − a1

a5
, y0 = −

a4

a5
. (48)

Substituting this Ansatz into LNSE (5) yields
c

AL
+
λ2

AL

∂

∂η
+

∂

∂ξ

 �
ξ2 + 1

� ∂2

∂ξ2 +

(
1 +

∂

∂η

) (
2ξ

∂

∂ξ
+

∂

∂η

)
f (I.a) (ξ,η; c,λ2, AL) = 0. (49)

This allows for one additional symmetry reduction,

f (I.a) (ξ,η; c,λ2, AL, k) = g(I.a) (ξ; c,λ2, AL, k) ekη. (50)

Insertion into Equation (49) yields(
c

AL
+
λ2

AL
k +

d
dξ

) �
ξ2 + 1

� d2

dξ2 + (1 + k)
(
2ξ

d
dξ
+ k

)
g(I.a) (ξ; c,λ2, k) = 0. (51)
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The latter equation can be integrated once to give an ordinary differential equation (ODE)�
ξ2 + 1

� d2

dξ2 + (1 + k)
(
2ξ

d
dξ
+ k

)
g(I.a) (ξ; c,λ2, k) = e−

(c+λ2k )
AL

ξ
, (52)

which is solved exactly by

g(I.a) (ξ; c,λ2, k) =




C1 + C2 arctan (ξ)+
+

iAL

2c


e

ic
AL Ei1

(
c

AL
(ξ + i)

)
− e−

ic
AL Ei1

(
c

AL
(ξ − i)

)
for k = 0,

C1(ξ + i)−k + C2(ξ − i)−k

− i
2k

 ξ

0




(
ξ̂ + i
ξ + i

)k
−

(
ξ̂ − i
ξ − i

)k


e−
(c+λ2k )

AL
ξ̂d ξ̂ for k , 0,

(53)

where Ei is the exponential integral.

B. Solution I.b for a linear shear flow

This case can be obtained by a simple reformulation of Ansatz (45)-(47). Redefining the second
variable of the problem gives the Ansatz

ψ(I.b)(x, y, t; x0, y0, k) = (y − y0)k f (I.b) (ξ,η; k) , (54)

with ξ =
x − x0 − (y0AL + VL) t

y − y0
(55)

and η = AL

(
t − 1
λ2

ln (y − y0)
)
a2=0
= ALt, (56)

with 1
λ2
=

a2
a5
= 0,

k =
a3

a5
, (57)

and x0, y0 such as defined in (48). In particular, for a2 = 0, the second term of (56) vanishes
and substitution of Ansatz (54) into LNSE (5) yields the following third order partial differential
equation for f (ξ,η; k):(

∂

∂ξ
+

∂

∂η

) (
k(k − 1) + 2ξ(1 − k) ∂

∂ξ
+ (1 + ξ2) ∂

2

∂ξ2

)
f (I.b) (ξ,η; k) = 0. (58)

Integrating to eliminate the first differential operator in (58) yields(
k(k − 1) + 2ξ(1 − k) ∂

∂ξ
+ (1 + ξ2) ∂

2

∂ξ2

)
f (I.b) (ξ,η; k) = h(ξ − η), (59)

which is essentially an ODE with respect to ξ, with h an arbitrary function. The full solution is of
the form

f (I.b) (ξ,η; k) =




g
(I.b)
0,1 (η) + g(I.b)0,2 (η) arctan (ξ)
+

 ξ
 ξ′h(ξ ′′ − η)dξ ′′

1 + ξ ′2
dξ ′ for k = 0,

g
(I.b)
k,1 (η) (ξ + i)k + g(I.b)

k,2 (η) (ξ − i)k

+
i

2k

 ξ

0




(
ξ + i

ξ̂ + i

)k
−

(
ξ − i

ξ̂ − i

)k


h(ξ̂ − η)d ξ̂ for k , 0,

(60)

for arbitrary functions g(I.b)
k,1 (η) and g(I.b)

k,2 (η). Given that η is proportional to the time for a2 = 0 (see
Eq. (56)), this means that the homogeneous part of solution (60), given by its first two terms for
both cases k = 0 and k , 0, yields modes whose absolute values can either increase or decrease,
independent of the initial condition.
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FIG. 2. Velocity field induced by the homogeneous part of solution of (59) for k = 0 such as given by ψ(I.b)
0 in (61). The

velocity field is that of a point sink — or, for a prefactor of inverse sign, a point source — in the half plane.

Insertion into (54) and setting for simplicity x0 = y0 = VL = 0 and AL = 1 yields for the homo-
geneous part of the solution

ψ(I.b)(x, y, t; k) =



g
(I.b)
0,1 (t) + g(I.b)0,2 (t) arctan

(
x
y

)
for k = 0,

g
(I.b)
k,1 (t) (x + iy)k + g(I.b)

k,2 (t) (x − iy)k for k , 0.
(61)

For k < 1, the solution is not continuous at y = 0, in particular, the velocities, defined through
relation (4), diverge for x = 0, y → 0. For k > 1, the velocities resulting from the stream function
ψ(I.b)(x, y, t; k) are unbounded as y → ∞. A special case is given by k = 0, where the second term in
(61) exhibits a discontinuity on the line y = 0 as x → ±0. By considering a linear shear flow in the
half plane y ≥ 0, the discontinuity can be avoided. Note that the first term g

(I.b)
0,1 (t) corresponds to

zero velocities, as it carries no x and y dependency. The velocity field for the case k = 0 is depicted
in Figure 2.

Another physical solution in the homogeneous case is obtained for k = 1. It represents a
superposition of the base flow with a velocity which is constant in space and varies in time,

u(I.b)
1 = i

(
g
(I.b)
k,1 (t) − g(I.b)

k,2 (t)) , (62)

v
(I.b)
1 = −

(
g
(I.b)
k,1 (t) + g(I.b)

k,2 (t)) . (63)

For the inhomogeneous part of the solution for k = 1, Equation (59) simplifies to

�
1 + ξ2� ∂2

∂ξ2 f (I.b) (ξ,η; 1) = h(ξ − η) (64)

leading to the inhomogeneous contribution of Equation (60) for k = 1,

f (I.b) (ξ,η; 1) =
 ξ

0

ξ − ξ̃
ξ̃2 + 1

h
�
ξ̃ − η

�
dξ̃ . (65)

Insertion of this solution into Ansatz (54) then defines a velocity field for the perturbations. In
Figure 3, a solution is given for the right-hand side h(ζ) = ζe−ζ

2
.

C. Solution Ansatz II and a reduced PDE for a logarithmic shear flow

For a logarithmic base flow, the inviscid equations for the perturbations, i.e., Equation (5) with
ν = 0, admit additional symmetries (21) and (28). Obviously, a logarithmic base flow of the form

U(y) = A2 ln (y + L2) + V2 (66)

for y > −L2 does not satisfy the momentum balance in horizontal direction of the full (viscous)
Navier-Stokes equation − ∂p

∂x
+ ν ∂

2U
∂y2 = 0 for the base flow, and hence is, strictly speaking, not
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FIG. 3. The left figure depicts a numerical solution of (59) for k = 1, a base flow U (y)= y for y ≥ 0, and h(ζ)= ζe−ζ2
. The

right figures depict the streamlines and the velocity field of the solution for different points in time (here, η = t). Parameters
for the invariant solution are x0= y0= 0. The perturbed velocity field satisfies the condition v |y=0= 0 at the wall.

suitable for a further analysis. Nevertheless, it is reasonable to investigate (66), since at the large
distance from the wall, y ≫ 1, a log-law region is known to exist in a turbulent wall parallel shear
flow,33

U(y) = 1
κ

ln y + B, (67)

where B = const, and κ is the Kármán constant. In this case, the order of magnitude of the perturba-
tions in (1) is larger than the departure from the Navier-Stokes-Equation for the base flow, i.e.,

�����
∂u
∂t

�����
,
�����
U
∂u
∂x

�����
,
�����
v

dU
dy

�����
≫ ν

�����
d2U
dy2

�����
= ν

�����
1
κ y2

�����
. (68)

Keeping these simplifications and assumptions in mind, we compute an invariant solution with
respect to a general combination of all point symmetries available for the logarithmic base flow,
i.e., (16)-(18) and (21), (28),

X (II) = a1∂x + a2∂t + a3∂ψ + a4
�(x + A2t) ∂x + (y + L2) ∂y + t∂t

�
. (69)

This yields an invariant solution Ansatz

ψ(II)(x, y, t; x0, t0, β) = (t − t0)β f (II) (ξ,η; β) , (70)

with ξ =
x − x0

t − t0
− A2 ln (t − t0) − V2 (71)

and η =
y + L2

t − t0
, (72)
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FIG. 4. Movement of a self-similar perturbation for t = 1–2.5 and for a logarithmic base flow U (y)= 1
κ ln(y)+B with the

typical constants for a log-law region κ = 0.41 and B = 5.2 (Pope33) and with Ansätze (70)-(72) for x0= t0= 0. Note that 1
κ

and B correspond with A2 and V2 in Equation (66), respectively. The box is translated such that the similarity variables ξ and
η are constant in [0,1]× [30,31]. Hence, the form of the perturbations is conserved inside the box, which is stretched with
time. The magnitude of the velocities increases/decreases algebraically with t β−1, depending on the sign of β−1.

where

x0 = A2
a2

a4
− a1

a4
, t0 = −

a2

a4
, and β =

a3

a4
, (73)

and where f (II)(ξ,η; β) satisfies the linear PDE

η2
(
β − 2 + (A2 ln(η) − (ξ + A2)) ∂

∂ξ
− η ∂

∂η

)
∆ f (II) + A2

∂

∂ξ
f (II) = 0. (74)

Figure 4 depicts the movement of a box in which the values of the self-similar variables ξ and
η are kept constant. The shape of the streamlines is stretched with the box, while the magnitude
of the velocity perturbations scales algebraically with tβ−1, as the stream function ψ scales as tβ

according to (70). Following Ansatz (70), it can be observed at which speed invariant perturbations
are transported away from the wall and in direction of the base flow,

x(t) − x0 = (t − t0) (U(y) + ξ − A2 ln η) and y(t) + L2 = η (t − t0) . (75)

Hence, the perturbations travel with the base flow superposed with a constant speed in longitu-
dinal and vertical directions. Two key results may be taken from (74) and (75). First, any invariant
perturbation, no matter if amplified or suppressed due to the value of β in (70), travels away from
the wall, since η is always positive. Second, (74) represents an eigenvalue problem similar to the
Orr-Sommerfeld equation. The eigenvalue β represents the rate of algebraic growth or decay of
the perturbations. We note, however, that any boundary condition applied on (74) acts on moving
boundaries shown in Figure 4.

D. Solution Ansatz III and a reduced PDE for an algebraic shear flow

For an algebraic base shear flow (see case III in Table I for the inviscid case)

U(y) = A3 (y + L3)C3 + V3, (76)

one has an additional symmetry (22) and (29), and the general symmetry generator

X III = a1∂x + a2∂t + a3∂ψ + a4
�(C3V3t − x) ∂x − (y + L3) ∂y + (C3 − 1)t∂t� . (77)
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In the following, we restrict ourselves to the exponent C3 = 2, and obtain the invariant solution

ψ(III)(x, y, t; x0, t0, β) = (t − t0)β f (III) (ξ,η) , (78)
with ξ = (t − t0) (x − x0 − V3(t − t0)) (79)
and η = (y + L3) (t − t0) , (80)

where

x0 =
a1

a4
− 2a2V3

a4
, t0 = −

a2

a4
, and β =

a3

a4
. (81)

The substitution of (78)-(80) into the LNSE (5) with ν = 0 leads to the equation(�
ξ + A3η

2� ∂

∂ξ
+ η

∂

∂η
+ (2 + β)

)
∆ f (III) − 2A3

∂ f (III)

∂ξ
= 0. (82)

For simplicity, we set x0 = t0 = 0 and consider the classical Poiseuille flow as the base shear
flow U(y) = 1 − y2, where the length scales have been normalized by the channel half width h,
and the velocities have been non-dimensionalized by the maximum velocity at the channel center
− h2

2µ
∂p
∂x

. For this case, we have A3 = −1, L3 = 0, C3 = 2, and V3 = −1. The values ξ(x(t), t) = ξ and
η(y(t), t) = η will stay constant on the characteristics defined by

*
,

x(t)
y(t)

+
-
=
*..
,

ξ

t
+ t
η

t

+//
-
. (83)

Various conclusions may be drawn from Equations (79) and (80). For this, we trace a box repre-
senting a disturbance with time where the similarity variables ξ and η are constant (see Figure 5).
Inside this box, the shape of the streamlines is preserved, while the magnitude of the velocities
scales with tβ+1. Furthermore, the linear component in x(t) in (83) derived from (79) suggests that
the disturbance velocity tends to a constant velocity in x-direction, where the velocity corresponds
to the maximal velocity of the channel flow, here chosen to equal 1. Hence, the wave speed of the
perturbation is 50% faster then the bulk velocity, which is 2/3 for the normalized velocity profile
1 − y2. This appears to be an interesting coincidence to the observation that puffs and slugs in
pipe flows exhibit an increased wave speed approximately of the same order and first observed
in Ref. 34.

FIG. 5. Translation of the box (ξ,η) ∈ [0,1]× [0.5,0.7] in the physical space with time for x0= t0= 0 for a parabolic channel
flow with Ansätze (78)-(80). The magnitude of the velocities within the box scales with t β+1.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.233.13.87 On: Wed, 25 Nov 2015 22:33:30



113101-13 Nold, Oberlack, and Cheviakov J. Math. Phys. 56, 113101 (2015)

Consider also that conceptually, the perturbations are transported from the margins towards the
center of the flow, as we may conclude from (83). At the same time, the box itself shrinks in time
which relates to the fact that the wavelength of the perturbations decrease in time, i.e., we observe
a front steepening (see Figure 5). Equation (82) represents an eigenvalue problem in which the
eigenvalue β represents the rate of algebraic growth or decay of the perturbations. We also note
that given a specific Poiseuille flow with fixed values for A3, L3, C3, and V3, there remain no further
undefined parameters in Equation (82). Similar to eigenvalue problem (74) for a logarithmic base
flow, the boundary conditions act on a moving boundary, as discussed above and shown in Figure 5.
We note that no successive symmetry reduction of Equation (82) can be found, such as done, e.g., in
the derivation Orr-Sommerfeld equation in Section III A. This means that we cannot further reduce
the complexity of this equation with the help of symmetry methods.

E. Solution Ansatz IV and a reduced PDE for an exponential shear flow

Let us now consider an exponential base flow of the form

U(y) = A4eB4y + V4. (84)

An exponential mean velocity profile for the wake region of a turbulent flat-plate boundary-layer
flow was first found by Oberlack.19 The exponential base flow may also be taken as a model
for a laminar boundary layer profile in order to discuss how disturbances travel. Hence, similar
to the case of a logarithmic base flow, here the exponential base flow, written in dimensionless
form as U(y) = 1 − e−y is analysed though it does not satisfy the viscous version of perturbation
equation (5). However, it is reasonable to apply perturbation methods if the departure from the
momentum balance in longitudinal direction is assumed to be small compared to the contributions
from the perturbations, in particular, if

�����
∂u
∂t

�����
,
�����
U
∂u
∂x

�����
,
�����
v

dU
dy

�����
≫ ν

�����
d2U
dy2

�����
=

1
Re

�
e−y

�
(85)

for Re → ∞ and y → ∞. Under the restriction of the above mentioned assumptions, we obtain the
general symmetry from (16)-(18) and (23),

X = a1∂x + a2∂t + a3∂ψ + a4
�
−B4V4t∂x + ∂y − tB4∂t

�
. (86)

The general invariant solution is derived by employing (86) in (13) to obtain

ψ(IV)(x, y, t; x0, t0, β) = (t − t0)β f (IV) (ξ,η; β) , (87)
with ξ = x − V4t − γ ln (t − t0) (88)

and η = y +
1
B4

ln (t − t0) , (89)

where

t0 =
a2

B4a4
, γ =

V4a2 − a1

B4a4
, β = − a3

B4a4
. (90)

Substitution into the LNSE (5) leads to(
βB4 +

∂

∂η
+ B4

�
A4eB4η − γ

� ∂

∂ξ

)
∆ f (IV) − A4(B4)3eB4η

∂ f (IV)

∂ξ
= 0. (91)

In Figure 6, we trace a box which has constant self-similar variables ξ and η over time. Ansatz (87)
suggests that perturbations travel with decreasing velocity away from the wall, while in downstream
direction it approaches a constant velocity,

x(t) = ξ + V4t + γ ln (t − t0) and y(t) = η − 1
B4

ln (t − t0) , (92)

and for the perturbations a bending effect is observed towards the x-axis, when traveling downstream.
Again, the velocities exhibit algebraic growth or decay with (t − t0)β, depending on the sign of β.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.233.13.87 On: Wed, 25 Nov 2015 22:33:30



113101-14 Nold, Oberlack, and Cheviakov J. Math. Phys. 56, 113101 (2015)

FIG. 6. Movement of a self-similar perturbation for an exponential base flowU (y)= 1−e−y. The box is translated such that
the similarity variables ξ and η are constant. Hence, the form of the perturbations is conserved inside the box. The magnitude
of the velocities increases/decreases algebraically with (t − t0)β, depending on the sign of β.

Note that (91) represents an eigenvalue problem where — similar to Sections IV C and IV D —
the eigenvalue β stands for the rate of algebraic growth or decay of the perturbations. The boundary
conditions needed in order to solve this eigenvalue problem are set in terms of the variables ξ and
η, which in the Cartesian x-y-coordinate system will move such as depicted in Figure 6. We also
note that in (91), coordinates cannot be rescaled such that any of the appearing parameters may be
eliminated. Hence, the eigenvalue β and the eigenfunctions depend on the parameters A4 and B4.
Analogous to Sec. IV D, we note that no successive symmetry reduction of Equation (91) can be
found, such that we cannot reduce the complexity of this equation further or indeed find solutions to
this equation by using symmetry methods.

V. VISCOUS FLOWS

We now consider the viscous equation for perturbations satisfying the LNSE (5) with ν , 0. In
this case, only the linear shear flow and a quotient type flow allow for additional symmetries and
lead to new modes for the perturbations.

A. Solution V.a for a linear shear flow

For a linear base flow

U(y) = ALy + VL (93)

we have four symmetries (16)-(18) and (24). Excluding time-translation symmetry (17) leads to

X (V.a) = a1∂x + a3∂ψ + a4
�
ALt∂x + ∂y

�
. (94)

With this the respective invariant solution from (13) is given by

ψ(V.a)(x, y, t; t0, β) = eβy f (V.a) (ξ,η; β) , (95)
with ξ = x − ALy (t − t0) (96)
and η = t − t0, (97)

where

t0 = −
a1

ALa4
and β =

a3

a4
. (98)
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Using (95)-(97) in the LNSE (5), we obtain a fourth-order linear PDE for f (V.a), given by(
VL

∂

∂ξ
+

∂

∂η

) (
β2 − 2ALη β

∂

∂ξ
+
�
1 + AL

2η2� ∂2

∂ξ2

)
f (V.a) =

= ν

(
β2 − 2ALη β

∂

∂ξ
+
�
1 + AL

2η2� ∂2

∂ξ2

)2

f (V.a). (99)

This equation has a point symmetry

X = b1∂ξ + b2 f ∂f , b1,b2 = const, (100)

leading to the invariant solution

f (V.a) (ξ,η) = g(V.a) (η) eδξ, (101)

where δ = b2
b1

. The function g(V.a) (η) must solve the ODE(
VLδ +

d
dη

) ((β − δALη)2 + δ2
)
g(V.a) = ν

((β − δALη)2 + δ2
)2
g(V.a). (102)

Up to an arbitrary multiplicative constant, the solution of the latter is given by

g(V.a) (η) = exp
�η

3

�
νδ2AL

2η2 − 3ν βδALη + 3ν β2 + 3νδ2 − 3VLδ
��

(β − δALη)2 + δ2
. (103)

Note that Ansatz (95) together with (103) corresponds exactly to the classical Kelvin modes.4

B. Solution V.b for a linear shear flow

We note that formula (94) is not the most general form of a point symmetry generator for linear
base flow (93), since time-translation symmetry (17) was excluded. Including the time-translation
symmetry leads to the following form of the generator:

X (V.b) = a1∂x + a2∂t + a3ψ∂ψ + a4
�
ALt∂x + ∂y

�
. (104)

The corresponding invariant function is given by

ψ(V.b) (x, y, t; t0,c, β) = eβ(t−t0) f (V.b) (ξ,η; β) , (105)

with ξ = x − ALc
2

(t − t0)2 (106)

and η = y +
VL

AL
− c (t − t0) , (107)

with

β =
a3

a2
, c =

a4

a2
, and t0 = −

a1

ALa4
. (108)

Insertion of this approach into (5) leads to the partial differential equation(
β + ALη

∂

∂ξ
− c

∂

∂η

)
∆ f (V.b) = ν∆2 f (V.b). (109)

Similar to Sec. V A, PDE (109) can be further reduced by looking for its invariant solutions
with respect to its point symmetry

X = b1∂ξ + b2 f ∂f , b1,b2 = const. (110)

Such invariant solutions have the form

f (V.b) (ξ,η) = g(V.b) (η) eδξ, (111)

where g(V.b) (η) satisfies the ODE(
δALη + β − c

d
dη

) (
δ2 +

d2

dη2

)
g(V.b) = ν

(
δ2 +

d2

dη2

)2

g(V.b). (112)
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The solution of this equation in the inviscid and the viscous setting is extensively discussed in
Ref. 15. In summary, the inclusion of viscous effects in the equations for the perturbations leads
to unphysical solutions, which diverge for y → ∞, while the exclusion of viscous effects leads to
novel invariant modes which conserve energy and travel in parabola-shaped trajectories.

C. Solution VI for a quotient flow

The final form of the base shear flow that leads to additional symmetries admitted by perturba-
tion equation (5) is the quotient flow, given by

U(y) = A6

y + L6
+ V6. (113)

This power law for the viscous case is a part of general power law base flow family (76) that arises
for the inviscid case.

The general symmetry generator for the quotient flow is a linear combination of symmetries
(16)-(18) and (25), given by

X = a1∂x + a2∂t + a3∂ψ + a4
�(V6t + x)∂x + (y + L6)∂y + 2t∂t

�
. (114)

The corresponding invariant solution is given by

ψ(VI)(x, y, t; x0, t0, β) = (t − t0)β f (VI) (ξ,η; β) , (115)

with ξ =
x − x0 − V6 (t − t0)√

t − t0
(116)

and η =
y + L6√

t − t0
, (117)

where

t0 = −
a2

2a4
, x0 =

V6a2 − 2a1

2a4
, β =

a3

2a4
. (118)

The substitution of (115)-(117) into the LNSE (5), f (VI) yields

η2
(
(2A6 − ηξ) ∂

∂ξ
− η2 ∂

∂η
+ 2η (β − 1)

)
∆ f (VI) − 4A6

∂ f (VI)

∂ξ
= 2η3ν∆2 f (VI). (119)

The characteristic curves ξ,η = const are given by parametric equations

x(t) = x0 + V6(t − t0) + ξ√t − t0, y(t) = −L6 + η
√

t − t0, (120)

which correspond to parabolas

x = x0 +
V6

η2 (y + L6)2 + ξ
η
(y + L6).

We note that no further symmetry reduction of Equation (119) can be found, such that symmetry
methods cannot be used to further simplify this equation.

VI. CONCLUSION

In conclusion, we have presented a systematic symmetry classification for the linearised Euler
and Navier-Stokes equations for perturbations of a laminar base flow. We have found that a general
base shear flow without any restrictions allows for four symmetries: time and space translations, a
scaling symmetry, and a superposition symmetry. A systematic symmetry reduction based on these
symmetries leads to the classical normal mode approach, which yields the famous Orr-Sommerfeld
equation.1 A symmetry classification with respect to the viscosity ν being zero or non-zero, as well
as the type of the base flow U(y), leads to special cases of base shear flows which admit additional
symmetries not reported before.
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Assuming that for the perturbations viscous terms can be neglected leads to four different base
shear flows which admit additional symmetries. In particular, the linear base flow case admits two
extra symmetries, while the logarithmic, the algebraic, and the exponential base flows lead to one
extra symmetry. Respective invariant solutions for the perturbations were presented and discussed.
Each invariant solution leads to an eigenvalue-type problem of a nature similar to that of the
Orr-Sommerfeld equation.

In particular, in the case of the linear base flow, the symmetry reduction with respect to new
symmetry (44) with a2 , 0 leads to an ODE (52), which is further integrated completely as per
(53). The reduction with respect to same symmetry (44) with a2 = 0 yields another ODE (59), with
exact solution (60). For logarithmic flow (66), under the reduction with respect to a new general
symmetry (69), a reduced linear PDE (74) is obtained. Similarly, for algebraic and exponential base
flows (76) and (84), the use of special symmetries (77) and (86) leads to reduced PDEs (82) and
(91). For the algebraic, the logarithmic, and the exponential base flows, the eigenvalue represents
the rate of algebraic growth or decay of the perturbations. The eigenvalue problem is formulated in a
coordinate system which is translated over time in a way characteristic for each base flow.

If viscous terms are included in the equations for the perturbations, then only two base flows
allow for additional symmetries: a linear base flow and a quotient flow of the form U(y) =
a/(y + b) + c. The invariant solution for the linear base flow turns out to lead directly to classical
Kelvin mode Ansatz (95).4 The other invariant reduction (105) for the linear base flow, with a further
reduction (111), leads to an ODE (112). The latter, as discussed in Ref. 15, can be solved analyti-
cally, leading to stable modes which travel in parabola-shaped trajectories. Finally, we presented an
invariant solution for the quotient flow, yielding a reduced linear PDE (119).

In summary, the systematic application of symmetry analysis performed in the current contri-
bution has been shown to lead directly not only to the two classical approaches of perturbation
stability analysis, namely, the normal mode and the Kelvin mode approach, but also to different,
new Ansätze of the same nature, arising from special point symmetries admitted for particular
classes of base flows. Open questions remain, in particular, the formulation of an appropriate set
of boundary conditions for the newly derived eigenvalue problems. This would naturally lead to
a numerical study of the stability of the novel modes in terms of the algebraic growth rate of the
perturbations.
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APPENDIX: CLASSIFICATION OF SYMMETRIES OF LNSE (5)

The set of symmetries of the LNSE (5) is computed by solving invariance condition (12).
Comparison of coefficients yields independent equations for the infinitesimals ξ x, ξ y, ξ t, and η. Out
of these, the following symmetry determining equations are equally valid in the inviscid and the
viscous case:

∂ψxη = ∂ψyη = ∂ψtη = ∂ψψη = 0, (A1)

∂ψξ
x = ∂ψξ

y = ∂ψξ
t = 0, (A2)

∂xξ
t = ∂yξ

t = 0, (A3)

∂xξ
x − ∂yξ y = 0, (A4)

∂yξ
x = ∂xξ

y = 0, (A5)
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∂xxξ
x = ∂xyξ

x = ∂y yξ
x = 0, (A6)

∂xxξ
y = ∂xyξ

y = ∂y yξ
y = 0, (A7)

∂t∆η −U ′′∂xη +U∂x∆η = ν∆∆η, (A8)

∂tξ
y = 0. (A9)

Assuming U(y) to be completely generic, Equations (A1)-(A8) have the general solution

ξ x(x, t) = α(t)x + f1(t) + a1, (A10)

ξ y(y) = α(t)y + γ, (A11)

ξ t(t) = f3(t) + a2, (A12)
η = a3ψ + f (x, y, t), (A13)

where f (x, y, t) has to satisfy (A8), which is equivalent to the LNSE (5).

1. The inviscid case

In the case of an inviscid flow, the set of determining Equations (A1)-(A9) is extended by two
additional equations

∂xtξ
x = 0, (A14)

U∂tξ t − ∂tξ x −U∂xξ x +U ′ξ y = 0. (A15)

This leads to

α = const. (A16)

Note that implementing the latter into (A15) and differentiating (A15) with respect to y and t give
that f3(t) has to be a linear function in t, i.e., f3(t) = δt, provided that U is non-constant. Inserting
this result back into (A15) and differentiating once with respect to t yields that f1(t) also exhibits
linear behavior in t, i.e., f1(t) = ϵt. For simplicity, we incorporate the constant contributions to f1(t)
and f3(t) into a1 and a2, respectively. This gives

ξ x(x, t) = αx + ϵt + a1, (A17)

ξ y(y) = αy + γ, (A18)

ξ t(t) = δt + a2, (A19)

η = a3ψ + f (x, y, t). (A20)

The insertion of the above equations into (A15) yields

ϵ = U (δ − α) +U ′ (αy + γ) , (A21)

which gives, after taking the derivative with respect to y ,

0 = U ′δ +U ′′ (αy + γ) . (A22)

The latter equation leads to the following two special cases.

1. In the case of a linear base flow U(y) = ALy + VL, i.e., if U ′′ = 0, δ has to vanish. We
can choose α and γ independently of each other. (A15) then gives the respective value for
ϵ = ALγ − VLα. This yields five symmetries, given here as a combination of their infinitesimals
with prefactors {a1,a2,a3,α,γ},

ξ x(x, t) = α (x − VLt) + γALt + a1, (A23)

ξ y(y) = αy + γ, (A24)

ξ t(t) = a2, (A25)
η = a3ψ + f (x, y, t). (A26)
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2. If δ and U ′′ do not vanish, we may divide (A22) by U ′′. Then, the fraction U ′/U ′′ has to exhibit
linear behavior in y , i.e., its second derivative has to vanish. This yields the defining equation

2U ′U ′′′2 −U ′′2U ′′′ −U ′U ′′U IV = 0, (A27)

which has the three classes of nontrivial solutions

{A2 ln (y + L2) + V2, A3(y + L3)C3 + V3, A4eB4y + V4}. (A28)

Let us insert these solutions into (A21) and (A22). A comparison of coefficients defines three of
the parameters α,γ, δ, and ϵ in terms of the coefficients of the base flows in (A28). In particular,
(A17)-(A20) transform through (A21) to the following set of equations:
• U(y) = A2 ln (y + L2) + V2. In this case, we obtain

ξ x(x, t) = α (x + A2t) + a1, (A29)
ξ y(y) = α (y + L2) , (A30)

ξ t(t) = αt + a2, (A31)
η = a3ψ + f (x, y, t), (A32)

where α is kept as an independent parameter, defining one additional symmetry.
• U(y) = A3(y + L3)C3 + V3. In this case, we find

ξ x(x, t) = α (x − C3V3t) + a1, (A33)
ξ y(y) = α (y + L3) , (A34)

ξ t(t) = −α (C3 − 1) t + a2, (A35)
η = a3ψ + f (x, y, t), (A36)

where α is kept as an independent parameter, defining one additional symmetry.
• U(y) = A4eB4y + V4. In this case, the infinitesimals write

ξ x(x, t) = −B4V4γt + a1, (A37)
ξ y(y) = γ, (A38)

ξ t(t) = −B4γt + a2, (A39)
η = a3ψ + f (x, y, t), (A40)

where γ is kept as an independent parameter, defining one additional symmetry.

2. The viscous case

In the case of a viscous flow, the set of symmetry determining Equations (A1)-(A9) is extended
by three additional equations

2∂xξ x − ∂tξ t = 0, (A41)
∂t yξ

y = 0, (A42)

ξ yU ′ +U∂xξ x − ∂tξ x = 0. (A43)

(A41) and (A42) lead to

α = const., f ′3(t) = 2α. (A44)

We distinguish between two qualitatively distinct cases:

1. If the base flow is linear, i.e., if U(y) is of the form ALy + VL, then insertion of (A10)-(A13)
with (A44) into (A43) and comparing coefficients yields

α = f ′3= 0, f ′1 = ALγ.

Insertion into (A10)-(A13) and keeping γ as the parameter defining the additional symmetry
yields

ξ x(x, t) = γALt + a1, (A45)
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ξ y(y) = γ, (A46)

ξ t(t) = a2, (A47)
η = a3ψ + f (x, y, t), (A48)

where f3, being constant, has been adsorbed in a2.
2. In the case of a nonlinear base flow, inserting (A10)-(A13) with (A44) into (A43) yields

(αy + γ)U ′ +Uα − f ′1 = 0. (A49)

By comparison of coefficients for t, we see that f ′1 = const. We conclude by solving (A49) with

U(y) = A6

y + L6
+ V6, (A50)

where L6 =
γ

α
and V6 =

f ′1
α
. (A51)

Insertion into (A10)-(A13) and keeping α as the parameter defining the additional symmetry
yields

ξ x(x, t) = α (x + V6t) + a1, (A52)
ξ y(y) = α (y + L6) , (A53)

ξ t(t) = 2αt + a2, (A54)
η = a3ψ + f (x, y, t). (A55)

With this the symmetry classification of Equation (5) with respect to U(y) is complete.
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