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a b s t r a c t

Many composite materials, including biological tissues, are modeled as non-linear elastic materials
reinforced with elastic fibers. In the current paper, the full set of dynamic equations for finite deformations
of incompressible hyperelastic solids containing a single fiber family are considered. Finite-amplitude
wave propagation ansätze compatible with the incompressibility condition are employed for a generic
fiber family orientation. Corresponding non-linear and linear wave equations are derived. It is shown that
for a certain class of constitutive relations, the fiber contribution vanishes when the displacement is
independent of the fiber direction.

Point symmetries of the derived wave models are classified with respect to the material parameters and
the angle between the fibers and the wave propagation direction. For planar shear waves in materials with a
strong fiber contribution, a special wave propagation direction is found for which the non-linear wave
equations admit an additional symmetry group. Examples of exact time-dependent solutions are provided in
several physical situations, including the evolution of pre-strained configurations and traveling waves.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The majority of open problems in the theory of elasticity and
related areas and applications stem from the essential non-linearity of
the governing equations. Starting from the landmark work of Har-
amard and Rivlin [19,34], a large number of theoretical results have
been obtained in the field of non-linear elastostatics, especially in the
case of incompressible materials. The study of non-linear wave
propagation in the elastodynamic setting has received significant
attention. Substantial work in the theory of non-linear elastic waves
in pre-stressed solid bodies relies on the linearization of the equations
of non-linear elastodynamics with respect to small perturbations
superimposed on a state of homogeneous or inhomogeneous finite
strain. The propagation of acoustic waves within finitely deformed
elastic materials was first considered in [45], based on the super-
imposition of small-amplitude oscillations on finite initial homoge-
neous deformations. This pioneering work was then followed by other
contributions, including [3,43,44,46]. It was more specifically shown in
those works that pure longitudinal and pure transverse waves can
only propagate in the so-called specific directions, depending on
material symmetries [7]. A formulation of elastic energy density for

an isotropic medium involving small-but-finite amplitude waves,
relying on certain approximations, has been developed in [20].

In contrast to the approximate treatment of non-linear models
based on the incremental analysis (linear approximation) of the field
equations, the more general situation of finite amplitude waves leads
to fully non-linear models (e.g., [30]). Fewer theoretical results are
available for such models. Fundamental work relevant to this contri-
bution includes that of Carroll [8], where finite-amplitude incom-
pressible elastic waves in non-linear isotropic materials were studied,
and linearly polarized motions in one and two dimensions, and
circularly polarized transverse waves were considered. The topic of
finite amplitude waves in finitely deformed solids is extensively
discussed in [38] and references therein. In the last twenty years,
much attention has been devoted to classes of materials with specific
constitutive relations, such as the neo-Hookean and Mooney–Rivlin
hyperelastic materials. Exact solutions of various non-linear elasticity
models for specific types of motions have been derived in a number
of papers, including [15,36].

The analysis of non-linear wave propagation in pre-strained or
pre-stressed elastic solid bodies is of particular interest in a
number of mechanical and physical areas including geophysics,
electronics, earthquake engineering, composite materials, ultra-
sonic non-destructive analysis of soft biological tissues. Initial
stress and/or strain frequently occurs during the manufacturing
and assembly of structural elements, such as composite materials,
fiber reinforced solids (including dry textiles). Moreover, non-zero
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stress and strain are often naturally present in soft biological
tissues such as veins, arteries, muscles, ligaments and tendons
(see, e.g., [22]); for instance, skin is in a state of natural tension.

The propagation of non-linear waves in many materials, includ-
ing soft tissues, may be further complicated by anisotropy effects
[42]. The anisotropy of the deformation pattern can be induced, for
example, by an initial state of finite deformation, onto which further
motions are superimposed, or by the existence of a fibrous micro-
structure which has preferred directions. Examples of soft biological
tissues which display this type of microstructure are arteries (see
[1,22,23]) and skin (e.g., [2,35]). The analysis of non-linear waves in
soft tissues consisting of a soft matrix reinforced by fibers requires
the theory of fiber-reinforced isotropic hyperelastic materials.
Various constitutive models of fiber-reinforced materials have been
introduced, including models for one and two families of fibers. For
such models, the determination of the elastic constants is more
involved than in the isotropic case due to the presence of additional
anisotropy parameters. Some of these models are reviewed below.

A number of important theoretical results have been obtained
for fiber-reinforced material models. A possibility of singular
behavior of transversely isotropic (single fiber family) incompres-
sible materials under inhomogeneous shear was discovered in
[28]. It was shown that depending on the reinforcement strength,
the static stress field may become discontinuous, which is asso-
ciated with fiber kinking and the loss of ellipticity of the field
equations. In [17], equilibrium states of incompressible materials
with two parallel families of fibers under shear deformations were
considered; it was shown that strain singularities can develop
when mechanical differences between the two fibers families are
sufficiently large. Practical implications of such singular behaviors
in biological and other models have been discussed.

On the side of applications, the topic of non-linear wave
propagation in anisotropic media has received considerable atten-
tion due to its implication in imaging techniques aiming at
accessing mechanical properties or internal visualization of organs
(e.g., [48]). A number of imaging techniques have been developed
to characterize tissue stiffness in vivo by measuring the shear wave
speed propagation [37,40,41].

Invariance properties of the governing equations are an important
aspect of the theoretical understanding of linear and non-linear
physical models. The Lie point symmetry framework and related
methods provide systematic ways of study of invariance properties of
differential equations (DE) with respect to continuous and discrete
symmetry groups. Local symmetries have been widely used to obtain
exact solutions of DEs, as symmetry-invariant solutions, or through
mappings of known solutions into new ones. Many techniques for
exact solution of ordinary and partial differential equations (ODE, PDE),
including superposition principles, integral transforms, existence of
separated solutions, reduction of order for ODEs, construction of
Green's functions, existence of traveling wave solutions, etc., are
directly related to symmetry properties of the equations under study.
In particular, the invariance under space and time translations validates
the traveling wave solution ansatz, which is essential for soliton
equations, such as the Korteweg–de Vries equation, the non-linear
Schrödinger equation, and the Sine–Gordon equation. Most of thewave
equations of physical interest in fact admit larger symmetry groups. For
variational PDE systems, local conservation laws and variational
symmetries are equivalent through Noether's theorem. This is generally
not so for non-variational PDE systems (see, e.g., [4,5,6,31]). An
extensive study of the relationship between symmetries and conserva-
tion laws appears in [31] and references therein. We note that a
number of important equations of mathematical physics, including the
Khokhlov–Zabolotskaya and the integrable Kadomtsev–Petviashvili
and models, arise in non-linear elasticity context (e.g., [13]).

Symmetries of the two-dimensional Ciarlet–Mooney–Rivlin
model of compressible isotropic hyperelastic materials have been

analyzed in [9]. A special value of the traveling wave speed has
been found for which the non-linear Ciarlet–Mooney–Rivlin equa-
tions admit an additional infinite set of point symmetries. A family
of essentially two-dimensional traveling wave solutions has been
derived for that case. An overview of related recent results based
on the application of symmetry methods to elastodynamics
equations can also be found in [9].

The current contribution is concerned with the theoretical
study of fully non-linear wave propagation models in fiber-
reinforced hyperelastic incompressible materials, with a specific
goal of finding closed-form time-dependent exact solutions in two
spatial dimensions. In the present work, we restrict our attention
to the case of a single family of fibers. Wave propagation ansätze
compatible with the incompressibility condition, for a general
fiber family orientation, are used. The work is based on the Lie
point symmetry classification of the governing equations. It is
planned to address the more general situation of two families of
fibers, which is necessary, for example, for an adequate description
of biological tissues [22], in subsequent work.

An outline of the present contribution is as follows. The equations
of motion for incompressible hyperelastic solids reinforced with a
single family of fibers are reviewed in Section 2. Several constitutive
relations are discussed. In our work, we restrict our attention to
incompressible Mooney–Rivlin-type materials.

In Section 3, motions with a special orientation with respect to
the fiber family are considered. In particular, in the general fully
non-linear setting, a theorem is proven stating that if the dis-
placement is independent of the fiber direction, then the fiber-
dependent invariant I4 is a constant. It follows that in models
where a constitutive relation for the fiber-reinforced material
involves a fiber contribution only through I4, motions with the
indicated displacements will not “feel” the presence of fibers.
Examples of such motions are considered in the following sec-
tions. A similar statement in a totally different context of the
incremental analysis and linearized equations has been made in
[29]. There, it is noted that “…the shear wave solution involving
only deformation in the plane of isotropy is not affected by
anisotropic term in the constitutive equation”. In the current
paper, we show that even in the full non-linear setting, motions
with displacements independent of the fiber direction are indeed
not affected by the anisotropic terms if the constitutive relation
only involves the invariant I4. The effect of anisotropy will still be
present if the model involves other fiber-dependent invariants, for
example, I5 (see Section 2).

Fully non-linear anti-plane shear motions, with displacements
orthogonal to a plane, are considered in Section 4, for an arbitrary
fiber family orientation. Displacements dependent on one and two
spatial variables are analyzed. Lie point symmetries are computed
in one- and two-dimensional cases. For the two-dimensional case,
the displacement satisfies a non-linear wave equation with a
differential constraint (cf. [21,25,47]). The loss of hyperbolicity in
the model is discussed; a sufficient condition of hyperbolicity is
derived. A single non-linear wave equation is derived for one-
dimensional transverse wave (s-wave) propagation; its sample
numerical solutions are obtained. It is proven that the one-
dimensional model admits an extra symmetry for a special fiber
orientation. The condition for the existence of the extra symmetry
corresponds to the boundary of the domain of model parameters
in which the loss of hyperbolicity of the PDE may occur. The
additional symmetry is used to construct an exact symmetry-
invariant solution describing the degeneration of the parabolic
shear into a simple linear shear as t-1.

Another situationwhere displacements are orthogonal to an axis
is studied in Section 5, for the general and specific fiber family
orientations. Here displacements in the two transverse directions
and the hydrostatic pressure satisfy a 1þ1-dimensional non-linear
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PDE system. Point symmetries of that system are classified; an
additional symmetry is again found for the special fiber orientation.
Examples of exact closed-form solutions are obtained for this fully
non-linear model in the traveling wave ansatz. (The existence of the
latter follows from the symmetry classification.) The first solution
example is a bounded deformation traveling in the fiber direction
through a pre-stressed medium. The second example is the travel-
ing shear wave where displacements of Lagrangian points follow
circles in the plane transverse to the direction of wave propagation.

Importantly, the ansätze considered in the current paper are
not limited to linear or plane waves.

The paper is concluded with a discussion in Section 6.
The symmetry computations were performed using GeM soft-

ware package for Maple [10].

2. Equations of motion and constitutive relations

In order to set the stage, we recall the main ingredients of
hyperelastic models.

Within the paper, boldface notation will be used to denote
vector and tensor quantities. Partial derivatives are often denoted
by subscripts: ∂u=∂x� ux.

2.1. Setup and notation

Consider a solid body that at time t¼0 occupies the spatial
region Ω0 �R3 (reference, or Lagrange configuration). Here Ω0 is
an open bounded connected set having a Lipschitz boundary [11].

The actual position x of a material point labeled by XAΩ0 at
time t is given by

x¼ϕ X; tð Þ; xi ¼ϕi X; tð Þ:
Coordinates X in the reference configuration are commonly
referred to as Lagrangian coordinates, and actual coordinates x
as Eulerian coordinates. The deformed body occupies an Eulerian
domain Ω ¼ϕðΩ0Þ �R3. The velocity of a material point X is
given by

v X; tð Þ ¼ dx
dt

� dϕ
dt

:

The mapping ϕ must be sufficiently smooth (the regularity
conditions depending on the particular problem). The Jacobian
matrix of the coordinate transformation is given by the deforma-
tion gradient tensor

FðX; tÞ ¼∇ϕ; ð2:1Þ
with components

Fij ¼
∂ϕi

∂Xj
¼ Fij: ð2:2Þ

Throughout the paper, we use Cartesian coordinates and the flat
space metric tensor. The transformation satisfies the orientation
preserving condition

J ¼ det F40:

We restrict to incompressible materials with J¼1.
An essential ingredient of the dynamical equations is the first

Piola–Kirchhoff tensor, given in terms of the Cauchy stress tensor
by

P¼ JσF�T : ð2:3Þ
In (2.3), ðF �T Þij � ðF �1Þji is the transpose of the inverse of the
deformation gradient.

For hyperelasticmaterials, a scalar valued volumetric strain energy
function W ¼W X; Fð Þ in the reference configuration is defined,
encapsulating all information regarding the material behavior. In

the incompressible case, the stress tensor is

P¼ �p F�T þρ0
∂W
∂F

; ð2:4Þ

or, in components,

Pij ¼ �pðF �1Þjiþρ0
∂W
∂Fij

; ð2:5Þ

where p¼ pðX; tÞ is the hydrostatic pressure [26], and ρ0 ¼ ρ0ðXÞ is
the time-independent body density in the reference configuration.
The actual density in Eulerian coordinates ρ¼ ρðX; tÞ is time-
dependent and is given by

ρ¼ ρ0=J:

For the incompressible case considered in the current work,

ρ¼ ρ0:

2.2. Constitutive relations

Consider the left Cauchy–Green strain tensor B and the right
Cauchy–Green strain tensor C defined by

B¼ FFT ; Bij ¼ FikF
j
k; C¼ FTF; Cij ¼ Fki F

k
j : ð2:6Þ

Tensors B and C have the same sets of eigenvalues, given by the
squares of principal stretches: λ21; λ

2
2; λ

2
3. The three principal invar-

iants of the Cauchy–Green tensors B and C are given by

I1 ¼ Tr B¼ FikF
i
k; I2 ¼ 1

2 ½ðTrBÞ2�TrðB2Þ� ¼ 1
2 ðI21�BikBkiÞ; I3 ¼ det B¼ J2:

ð2:7Þ
For an isotropic homogeneous hyperelastic material, the strain

energy density function W ¼W X; Fð Þ is given in terms of the
invariants I1; I2; I3:

Wiso ¼WisoðI1; I2; I3Þ: ð2:8Þ
In the current paper, we restrict our attention to Mooney–

Rivlin materials, a subclass of Hadamard materials [18,26], for
which the constitutive relation is commonly written as

Wiso ¼ aðI1�3ÞþbðI2�3Þ; a; b40; ð2:9Þ
where the constant “�3” can be omitted without loss of general-
ity. The model (2.9) with b¼0 is referred to as the Neo-
Hookean model.

One may consider anisotropic materials involving one or more
sets of fibers. Consider a single fiber bundle, a collection of fibers
oriented along a unit vector A¼AðXÞ in the reference configura-
tion Ω0. In the actual configuration, the fiber direction at x; t is
given by unit vectors

a¼ aðX; tÞ ¼ FA=jFAj ¼ FA=λ; ð2:10Þ
where λ¼ jFAj is the fiber stretch.

The reinforcement of an isotropic hyperelastic material by a
fiber bundle is modeled by adding an anisotropic term to the strain
energy density corresponding to the fiber bundle [1,12,22]; that is,
the strain energy density takes the form

W ¼WisoþWaniso; ð2:11Þ
where Wiso corresponds to the isotropic matrix, and Waniso

captures the anisotropic effects of the fiber bundle.
The anisotropic strain energy is, in general, constructed from

additional invariants corresponding to the fiber behavior,

I4 ¼ATCA; ð2:12aÞ

I5 ¼ATC2A: ð2:12bÞ
Here, I4 accounts for deformations that modify the length of the
fiber, with I441 corresponding to fibers in extension, and I4o1 to
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fibers in compression. The invariant I5 is related to the effect of the
fiber on the shear response in the material [12,27]. The anisotropic
component of the strain energy density is consequently modeled
as a function of the invariants I4 and I5,

Waniso ¼ f I4�1; I5�1ð Þ; f ð0;0Þ ¼ 0; ð2:13Þ

where the “�1” are normalization constants. One of the simplest
models of the anisotropic strain energy density is given by the
“standard reinforcing model”

Waniso ¼ cðI4�1Þ2; ð2:14Þ

where c¼ const40 is a material parameter [14,24,42].
The Gasser–Holzapfel–Ogden model is a model of an artery

that is proposed by Holzapfel, Gasser, and Ogden [22] (see also
[23]), in which the isotropic strain energy density is Neo-Hookean,
and the anisotropic strain energy density for a single fiber family is
of the form

Waniso ¼
k1

k2
ek

2ðI4 �1Þ2 �1
� �

; ð2:15Þ

where k1 and k2 are material parameters.
An additional incompressible artery model has been suggested

in [1], where the isotropic component is also Neo-Hookean, and
the anisotropic component has a non-linear polynomial form

Waniso ¼
Xn
k ¼ 2

ck I4�1ð Þk: ð2:16Þ

In (2.16), ck are material constants to be determined, and n is
chosen appropriately for accurate data fitting. The polynomial
form (2.16) has been used with n¼6 in [1] to optimize finite
element computations.

Horgan and Saccomandi [24] derive two anisotropic strain
energy densities to account for the limited extensibility of fibers as

Waniso ¼ �μk1 ðI4�1Þþk1 ln 1� I4�1

k1

� �� �
; ð2:17Þ

Waniso ¼ �μk2 ln 1�ðI4�1Þ2
k2

 !
; ð2:18Þ

where μ is a shear modulus measuring the degree of anisotropy,
and k1 and k2 are constants that measure rigidity of the fiber
reinforcement. Note that I4�1oki, i¼1,2, such that the stress P is
finite.

A number of models of shear response in fiber-reinforced
materials involving the invariant I5 have been studied in, e.g.,
[27,29]. Namani and Bayly [29] study shear waves in anisotropic
tissue, in which the isotropic strain energy density is that of a
compressible Neo-Hookean material, while the anisotropic strain
energy density is

Waniso ¼ cðI5�ðI4Þ2Þ; ð2:19Þ

where c is a material parameter.
An anisotropic viscoelastic model involving neo-Hookean iso-

tropic and the standard reinforcing model anisotropic energy
density components, (2.9) (b¼0) and (2.14), with an additional
anisotropic viscous constitutive term, was considered in [16].

A practically important generalization of the above framework
lies in the consideration of two families of parallel fibers. In this
case, one generally considers anisotropic strain energy density
functions depending on five fiber invariants I4;…; I8 [42]. A com-
mon anisotropic constitutive model is given by the standard
quadratic reinforcing model using only a single fiber invariant for
each family (see, e.g., [17]), of which (2.14) is a special case.

2.3. Equations of motion

The full system of equations of motion of an incompressible
hyperelastic material in three dimensions is given by

J ¼ det F¼ 1; ð2:20aÞ

ρ0xtt ¼ divðXÞPþρ0R; ð2:20bÞ

P¼ �p F�T þρ0
∂W
∂F

; ð2:20cÞ

Eq. (2.20b) expresses the balance of momentum for an infinitesi-
mal volume in the reference configuration; R¼ RðX; tÞ is the total
body force per unit mass; divergence is taken with respect to
material coordinates and is given by

ðdivðXÞPÞi ¼
∂Pij

∂Xj
:

Another necessary equation FPT ¼ PFT is equivalent to the
Cauchy stress tensor symmetry condition σ ¼ σT and expresses
the balance of angular momentum in terms of the nominal stress.
For isotropic elastic materials, it can be shown (see, e.g., [9]) that
this symmetry condition is identically satisfied.

The anisotropic constitutive model used in this work is as
follows. We start from a general model

W ¼WisoðI1; I2ÞþWanisoðI4; I5Þ: ð2:21Þ

Then we consider in greater detail a model involving Mooney–
Rivlin isotropic strain energy density (2.9), and the quadratic
anisotropic strain energy density (2.14), that is,

W ¼ aI1þbI2þq I4�1ð Þ2; ð2:22Þ

where a; b; q40 are constant material parameters. The first two
terms in (2.22) correspond to the classical isotropic behavior given
by Mooney–Rivlin model, which is adequate, for example, for
rubbers. The last term represents the standard quadratic reinfor-
cing model [27].

Remark 1. It is important to note that in the case of zero forcing
or when external forces are conservative, equations of motion
(2.20a), (2.20b) follow from a variational principle [32].

3. Motions with a special orientation with respect
to the fiber family

Consider the anisotropic part of the strain energy density given
by (2.21). Denote the push-forward of the material vector A by the
transformation gradient and the right Cauchy–Green tensor by
vectors

q¼ FA; w¼ CA: ð3:1Þ

In particular, q is directed along the fibers in the actual configura-
tion. Due to the symmetry of C, it is easy to see that the invariants
(2.12) are given by

I4 ¼ qTq¼ jqj2; I5 ¼wTw¼ jwj2: ð3:2Þ

The following examples are of importance for the future
analysis.

3.1. Displacement orthogonal to the fiber direction

As a first example, consider now motions

x¼XþG; ð3:3Þ

A.F. Cheviakov et al. / International Journal of Non-Linear Mechanics 71 (2015) 8–21 11



such that the displacements G¼ GðX; tÞ are orthogonal to the
fibers:

GTA¼ 0:

Suppose that fibers are in the direction of X1,

A¼ ½1 0 0�T : ð3:4Þ
Then one has, for the motions indicated above,

G¼
0

G2ðX1;X2;X3; tÞ
G3ðX1;X2;X3; tÞ

2
64

3
75: ð3:5Þ

The vector q in (3.1) becomes

q¼ FA¼ 1;
∂G2

∂X1;
∂G3

∂X1

" #T
;

and hence

I4 ¼ 1þ ∂G2

∂X1

 !2

þ ∂G3

∂X1

 !2

:

A similar but more involved expression follows for the invariant I5.

3.2. Displacement independent of the fiber direction

For the second type of motions of interest, the following simple
yet important theorem holds.

Theorem 1. Consider the motion of the material such that the
displacement from the stress-free equilibrium is independent of the
fiber direction, i.e., it has the form (3.3) with the displacements
independent of the fiber direction A, in the sense that for all XAΩ0,

ð∇GÞA¼ 0: ð3:6Þ
Then the invariant I4 is constant.

Proof. One has

∇G� F�I;

and hence from (3.6),

q¼ FA¼A:

In particular, such motions preserve the fiber direction and do not
stretch fibers, since a¼A (cf. (2.10)). For such motions, the first
anisotropic invariant I4 given by (2.12a) and (3.2), reduces to

I4 ¼ jAj2 ¼ 1: □

Remark 2. It is important to note that under the conditions of
Theorem 1, the displacement component in the fiber direction
does not have to vanish.

Example. Without loss of generality, let the fibers be directed in
X1-direction,

A¼ ½1 0 0�T ; ð3:7Þ
and consider (in the compressible or incompressible case) fully
non-linear motions of the form

x¼
X1þG1ðX2;X3; tÞ
X2þG2ðX2;X3; tÞ
X3þG3ðX2;X3; tÞ

2
64

3
75: ð3:8Þ

The displacement in the fiber direction is non-zero; it is given by
G1ðX2;X3; tÞ. However the displacements do not depend on X1, the
fiber direction. Then by a direct computation,

I4 ¼ qTq� C11 ¼ 1;

i.e., the fibers do not stretch. However, the invariant dependent on
the shear is still of importance: one has w¼∇x1, and

I5 � ðC2Þ11 ¼ ð∇x1ÞT∇x1 ¼ 1þ ∂G1

∂X2

 !2

þ ∂G1

∂X3

 !2

:

Corollary 1. For compressible materials, where one has [22]

F ¼ J�1=3F; C ¼ F
T
F ¼ J�2=3C;

and the first fiber invariant (2.12a) is given by

I4 ¼ ATCA¼ J�2=3I4; ð3:9Þ
it follows from the proof of Theorem 1 that for motions satisfying (3.6),
the invariant I4 is only a function of J, and is thus not an independent
invariant.

4. Motions transverse to a plane

We consider the solutions of the partial differential equations
(PDEs) (2.20) in the form of fully non-linear perturbations GðX; tÞ
of the stress-free configuration, i.e.,

x¼XþGðX; tÞ;
which must be compatible with the incompressibility condition
(2.20a). Importantly, the ansätze considered below are not limited
to linear or plane waves.

The first ansatz considered describes transverse displacements
orthogonal to the ðX1;X2Þ plane, and is referred to as linearly
polarized motions in [8], and anti-plane shear in [33]. The coordi-
nate dependence for such displacements is given by

x¼
X1

X2

X3þG X1;X2; t
� �

2
664

3
775: ð4:1Þ

See Fig. 1 for a sample deformation of this type. We consider the
fiber family directed along a unit orientation vector in the
reference configuration,

A¼
cos γ
0

sin γ

2
64

3
75; ð4:2Þ

where γ ¼ constA ½0;π=2� is the angle with the direction X1 in the
ðX1;X3Þ-plane. Thus generally, the displacements given by (4.1) do
not have a special orientation with respect to the fiber family.

Since the deformation gradient for motions described by (4.1)
takes the form

F¼
1 0 0
0 1 0

∂G=∂X1 ∂G=∂X2 1

2
64

3
75;

one has J � 1, and the incompressibility condition is identically
satisfied.

Using the ansatz (4.1) in the dynamic equations (2.20), and
denoting constants α¼ 2ðaþbÞ40 and β¼ 4q40, we obtain the
three PDEs

∂2G
∂t2

¼ α
∂2G

∂ X1
� �2 þ ∂2G

∂ X2
� �2

0
B@

1
CA

þβ cos 2ðγÞ 3 cos 2ðγÞ ∂G
∂X1

� �2

þ6 cos ðγÞ sin ðγÞ ∂G
∂X1

 

þ2 sin 2γ
� ∂2G

∂ X1
� �2 ; ð4:3Þ
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0¼ ∂p
∂X1 þ2bρ0

∂G
∂X1

∂2G
∂ðX2Þ2

� ∂G
∂X2

∂2G
∂X1∂X2

 !

�2βρ0 cos
3γ

∂2G
∂ðX1Þ2

cos γ
∂G
∂X1 þ sin γ

� �
; ð4:4Þ

0¼ ∂p
∂X2 þ2bρ0

∂G
∂X2

∂2G
∂ðX1Þ2

� ∂G
∂X1

∂2G
∂X1∂X2

 !
; ð4:5Þ

for the two unknown functions G X1;X2; t
� �

and p X1;X2; t
� �

. The
PDEs (4.3)–(4.5) involve three constant material parameters:
a; b40 (the Mooney–Rivlin parameters) and q40 (the fiber
family parameter). The constant density ρ0 can be eliminated by
rescaling the pressure.

The PDEs (4.4) and (4.5) define the pressure p through its
gradient if and only if the compatibility condition is satisfied:

∂2p
∂X1∂X2 ¼

∂2p
∂X2∂X1;

which takes the form of a differential constraint on the displace-
ment:

b
∂

∂X1

∂G
∂X1

∂2G
∂X1∂X2�

∂G
∂X2

∂2G
∂ðX1Þ2

" #

¼ ∂
∂X2 β cos 3γ

∂2G
∂ðX1Þ2

cos γ
∂G
∂X1 þ sin γ

� �"

þb
∂G
∂X2

∂2G
∂X1∂X2�

∂G
∂X1

∂2G
∂ðX2Þ2

 !#
: ð4:6Þ

The displacement GðX1;X2; tÞ thus must satisfy the overdetermined
system of two PDEs given by (4.3) and (4.6).

Special cases of 1þ1-dimensional non-linear motions in X1-
and X2- directions are considered in Sections 4.2 and 4.3.

Remark 3. Overdetermined PDE systems similar to (4.3) and (4.6)
arise for incompressible anti-plane shear deformations (4.1) for any
form of the strain energy density W. The classification problem of
determining the forms of strain energy density which admit non-
trivial states of anti-plane shear, that is, for which the compatibility
constraint is identically satisfied for every solution GðX1;X2; tÞ, has
been considered from different viewpoints, and in different physical
settings. (See, e.g., [21,25,47] and references therein.) To our knowl-
edge, however, no similar results are available concerning the aniso-
tropic strain energy density forms used in this work (Section 2.2).

4.1. Symmetry classification of the non-linear two-dimensional PDE
system (4.3) and (4.6)

We now seek Lie groups of point transformations admitted by
the PDEs (4.3) and (4.6), in the form

Gn ¼ gðX1;X2; t;G; εÞ ¼ GþεηðX1;X2; t;GÞþOðε2Þ;

ðXnÞi ¼ f iðX1;X2; t;G; εÞ ¼ ziþεξiðX1;X2; t;GÞþOðε2Þ; i¼ 1;2;

tn ¼ hðX1;X2; t;G; εÞ ¼ uμþετðX1;X2; t;GÞþOðε2Þ; ð4:7Þ

involving the group parameter ε: Generalizations of point trans-
formations including higher-order and non-local symmetries are
available but are out of scope of this paper.

The computation of the Lie group of admissible transforma-
tions (4.7) is equivalent to finding the Lie algebra infinitesimal

Fig. 1. (a) Fiber direction. (b) The reference (Lagrangian) mesh with fibers. (c) A sample deformed mesh (Eulerian configuration) for the ansatz (4.1).
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generators (tangent vector fields)

Y¼ ξiðX1;X2; t;GÞ ∂
∂Xi

þτðX1;X2; t;GÞ ∂
∂t
þηðX1;X2; t;GÞ ∂

∂G
: ð4:8Þ

The application of Lie algorithm to the PDEs (4.3) and (4.6), and
a classification of symmetries according to the constitutive para-
meters, yields the following result.

Theorem 2. The classification of point symmetries of the PDE system
(4.3) and (4.6) of motions of a non-linear two-dimensional elastic
material perpendicular to a plane is given in Table 1.

The symmetries Y1 to Y4 correspond to space and time
translations; Y5 is the Galilean group in the direction of displace-
ment; Y6 is a homogeneous space–time scaling.

The special case arises in the symmetry classification when
q cos γ ¼ 0, i.e., fibers are absent, or the fiber bundle is perpendi-
cular to the X1 X2-plane, which turns out to be equivalent to the
isotropic Mooney–Rivlin model with no fibers present. This is in
agreement with Theorem 1. The symmetries Y7 (rotation) and Y8

(scaling of G) arise in this special case due to its extra geometrical
symmetry. In particular, the PDEs (4.3) and (4.6) become

∂2G
∂t2

¼ α
∂2G

∂ X1
� �2 þ ∂2G

∂ X2
� �2

0
B@

1
CA; b

∂
∂X1

∂G
∂X2

∂2G
∂ðX1Þ2

þ ∂2G
∂ðX2Þ2

 !" #(

þ ∂
∂X2

∂G
∂X1

∂2G
∂ðX1Þ2

þ ∂2G
∂ðX2Þ2

 !" #)
¼ 0;

i.e., a linear wave equation appended by a symmetric non-linear
differential constraint. Due to the non-linear constraint, the
system does not admit infinite symmetries natural to linear PDEs,
unless b¼0.

4.2. One-dimensional wave propagation (vertical displacement)
independent of the fiber direction

Consider a special case of the general PDE system (4.3) and
(4.6), when the displacement only depends on the direction X2,
and the fiber direction γ is arbitrary. The motion in the vertical
direction is then described by

x¼
X1

X2

X3þQ X2; t
� �

2
664

3
775: ð4:9Þ

Here the displacements project non-trivially on the fiber direction,
in particular, the angle between the displacement direction and
the fibers equals π=2�γ. The hydrostatic pressure is assumed to
have the form p¼ pðX1;X2; tÞ. The following result holds.

Theorem 3. For the fully non-linear anisotropic model of a hyper-
elastic fiber-reinforced material the constitutive law (2.22), equations
governing finite one-dimensional displacements of the form (4.9) are

linear; they are given by

∂2Q
∂t2

¼ α
∂2Q
∂ðX2Þ

;
∂P
∂X1 ¼ ∂P

∂X2 ¼ 0: ð4:10Þ

In this case, for any fiber direction given by the angle γ in the
ðX1;X3Þ-plane, the displacement is independent of the fiber direc-
tion. Consequently, Theorem 1 holds, and the motion will not be
influenced by the fibers.

Remark 4. Generally one might assume a more general depen-
dence of the hydrostatic pressure, p¼ pðX1;X2;X3; tÞ. One can show
that in such a case, the pressure is at most linear in X3:

p¼ p1ðtÞðX3þQ ðX2; tÞÞþp2ðtÞ;

and the PDE (4.10) has an extra forcing term �p1ðtÞ on the
right-hand side.

4.3. One-dimensional S-wave propagation dependent on the fiber
direction

We now consider the second one-dimensional reduction of
(4.1), where the displacement GðX1; tÞ of the solid from equilibrium
along the X3-axis is described by

X¼
X1

X2

X3þG X1; t
� �

2
664

3
775; ð4:11Þ

this corresponds to motions in the fiber plane of X1 X3, perpendi-
cular to the X1 X2-plane. The hydrostatic pressure is given by
p¼ pðX1; tÞ. The incompressibility condition is identically satisfied.

For simplicity of notation, within this subsection, we denote
X1 ¼ x and use the subscript notation for derivatives. Accordingly,
the equations of motion (4.3)–(4.5) simplify to

Gtt ¼ αþβ cos 2γ ð3 cos 2γÞ Gxð Þ2þð6 sin γ cos γÞGxþ2 sin 2γ
h i� �

Gxx;

ð4:12Þ

0¼ px�2βρ0 cos
3γ cos γGxþ sin γ
� �

Gxx; ð4:13Þ

where G¼ Gðx; tÞ and p¼ pðx; tÞ. The second PDE (4.13) yields an
explicit form of the pressure

p¼ βρ0 cos
3γ cos γGxþ2 sin γ
� �

Gxþ f ðtÞ; ð4:14Þ

in terms of the displacement G, for an arbitrary f(t).
It is clear that since the Mooney–Rivlin parameter b does not

appear in the PDEs (4.12) and (4.13) independently of the neo-
Hookean parameter a, the model is equivalent to a purely neo-
Hookean model depending on the parameter α.

Symmetry classification of the non-linear one-dimensional PDE
(4.12), and its applications to finding exact solutions, is considered
in the following section.

Table 1
Lie point symmetry classification for Theorem 2.

Parameters Symmetries

Arbitrary Y1 ¼ ∂
∂t

;Y2 ¼ ∂
∂X1 ; Y

3 ¼ ∂
∂X2 ; Y

4 ¼ ∂
∂G

; Y5 ¼ t
∂
∂G

; Y6 ¼ X1 ∂
∂X1 þX2 ∂

∂X2 þt
∂
∂t

þG
∂
∂G

γ ¼ π=2 or β� 4q¼ 0 Y1 ; Y2 ; Y3 ; Y4; Y5 ; Y6 ; Y7 ¼ �X2 ∂
∂X1 þX1 ∂

∂X2 ; Y
8 ¼ G

∂
∂G
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4.3.1. The hyperbolicity condition
We now consider the possibility of the loss of hyperbolicity in

the PDE (4.12), which may lead to singular solution behavior. This
can happen when the coefficient of Gxx vanishes and/or changes
sign. This coefficient

C¼ αþβ cos 2γ 3 cos 2γ Gxð Þ2þ6 sin γ cos γGxþ2 sin 2γ
� �

¼ 0;

ð4:15Þ
is a quadratic expression in Gx, and has real roots when the
discriminant is non-negative, i.e.,

�3βðα�β sin 2γ cos 2γÞÞZ0;

or

sin 2ð2γÞZ4α
β

: ð4:16Þ

The following result is established.

Lemma 1. The one-dimensional PDE (4.12) is hyperbolic for any fiber
orientation angle γ for all times, provided that

4α4β: ð4:17Þ
A necessary condition of the loss of hyperbolicity is that 4αoβ, and
that the fiber orientation angle γ satisfies (4.16).

In particular, if the fiber effects encoded by the material
parameter β are small, equation (4.17) is always satisfied.

When the fiber effects are small, the sufficient condition of
hyperbolicity (4.17) is always satisfied. Considering, for example,
experimentally determined values of the constitutive parameters
a; b; q can be adapted from [22] for the model (2.15) of the rabbit
artery, one would have a� 1:5 kPa, q� 1:18 kPa for the artery
media layer, and a� 0:15 kPa, q� 0:28 kPa for the adventitia layer.
(In that model, b� 0.) In both of the listed cases, 4α=β41, and the
additional symmetry does not arise for any fiber orientation.

4.4. Symmetry classification and exact solutions of the one-
dimensional wave propagation model (4.12)

We now classify Lie point symmetries in the local form

Z¼ ξðx; t;GÞ ∂
∂x

þτðx; t;GÞ ∂
∂t
þηðx; t;GÞ ∂

∂G
ð4:18Þ

of one-dimensional equation (4.12) for an arbitrary fiber direction
γa0;π=2, assuming the non-triviality of material parameters:
α;β40. The following theorem is proven by direct computation.

Theorem 4. The classification of point symmetries of the non-linear
PDE (4.12) with respect to the parameters γa0;π=2, α40, β40 is
given in Table 2.

A special “shear” symmetry group given by the generator Z6 arises
in the case of the special fiber orientation (4.16).

Symmetries Z1;Z2;Z3 correspond to time and space transla-
tions; Z4 is the Galilean group in the direction of displacement; Z5

is the space–time scaling.

The global form of point transformations corresponding to the
special group Z6 has the form

tn ¼ e2ε t; xn ¼ eε x; Gn ¼ Gþ tan γð1�eεÞx: ð4:19Þ
In particular, transformations (4.19) map the equilibrium solution
G¼0 corresponding to the unperturbed medium with x1;2;3 ¼
X1;2;3, p¼ const into shear equilibrium solutions

x1 ¼ X1; x2 ¼ X2; x3 ¼ X3þAX1; A¼ const:

Remark 5. We note that the angle γ between the fiber orientation
and the wave propagation direction giving rise to the special
symmetry group given by Z6 satisfies the necessary (but not
sufficient!) condition of the loss of hyperbolicity (4.16):

sin 22γ ¼ 4α
β
: ð4:20Þ

For specific solutions, the coefficient (4.15) may or may not
actually vanish. An example of an exact solution in a situation
when (4.20) is satisfied but the wave equation remains hyperbolic
for all times is given in Section 4.4.2.

4.4.1. Contact symmetries and linearization
Similar to Lie point symmetries, one may seek contact symme-

tries (e.g., [4])

Ẑ ¼ ζðx; t;G; ∂GÞ ∂
∂G

: ð4:21Þ

As it is well-known, PDEs for uðx; tÞ of the form

Aðux;utÞuttþBðux;utÞuxtþCðux;utÞuxx ¼ 0 ð4:22Þ
admit an infinite number of contact symmetries. The one-
dimensional wave propagation model (4.12) has contact symme-
tries (4.21) with components ζðGx;GtÞ satisfying a linear PDE

ζGx ;Gx
¼ αþβ cos 2γ ð3 cos 2γÞG2

x þð6 sin γ cos γÞGxþ2 sin 2γ
h ih i

ζGt ;Gt

ð4:23Þ
It follows (see, for example, [4]) that the non-linear wave equation
(4.12) can be invertibly mapped into a linear wave equation by a
Legendre contact transformation

u¼ Gx; v¼ Gt ; Wðu; vÞ ¼ Gðx; tÞ�xGx�tGt :

The corresponding linear wave equation is given by

Wuu ¼ αþβ cos 2γ ð3 cos 2γÞu2þð6 sin γ cos γÞuþ2 sin 2γ
h ih i

Wvv:

We also note that the non-linear wave equation (4.12) can be
linearized by a non-local hodograph transformation (cf. [4]).

4.4.2. An example of an exact invariant solution
We now study the invariant reduction of the PDE (4.12) under

the special symmetry Z6, in the case of the special fiber orientation
satisfying (4.20). The two invariants of the symmetry Z6 can be
chosen, for example, to be

y¼ xffiffi
t

p ; MðyÞ ¼
ffiffiffiffiffiffiffiffiffi
12β

q
cos 2γðGðx; tÞþx tan γÞ: ð4:24Þ

In terms of the invariants (4.24), the reduced equation is a second-
order ODE

M″ðyÞ ¼ 3M0ðyÞ
ðM0ðyÞÞ2�y2

; ð4:25Þ

which is further reducible to a first-order ODE, but does not admit a
general solution in terms of elementary functions. The ODE (4.25) is
invariant under reflections y-�y and under translations M-Mþ
const. Sample solutions of Eq. (4.25) can be obtained numerically. As
an example, we compute the dimensionless solution of the ODE

Table 2
Lie point symmetry classification for Theorem 4.

Parameters Symmetries

Arbitrary Z1 ¼ ∂
∂x

; Z2 ¼ ∂
∂t

; Z3 ¼ ∂
∂G

; Z4 ¼ t
∂
∂G

; Z5 ¼ x
∂
∂x

þt
∂
∂t

þG
∂
∂G

4αrβ, Z1 ; Z2 ; Z3; Z4 ; Z5,

sin 22γ ¼ 4α
β

Z6 ¼ 2t cos γ
∂
∂t

þx cos γ
∂
∂x

�x sin γ
∂
∂G
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(4.25) with initial conditions

Mð0Þ ¼ 0; M0ð0Þ ¼m0:

Asymptotically, for any m040, M-yjyj as jyj-1. We choose
m0 ¼ 1. Using the time-translation symmetry Z2, the corresponding
physical solution found from (4.24) can be written as

Gðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
12β

p
cos 2γ

M
xffiffiffiffiffiffiffiffiffiffiffi
tþt0

p
� �

�x tan γ; t0 ¼ const: ð4:26Þ

The solutions (4.26) represent the degeneration of the para-
bolic shear to the simple linear shear solution G¼ �x tan γ
as t-1.

In Fig. 2, sample dimensionless solutions (4.26) are plotted as
functions of x for γ ¼ 7π=4, α¼ 1=12, β¼ 1=3, m0 ¼ 1, and times
t ¼ 0;2;5;20. The coefficient C (4.15) are also shown as functions of
x; t; it is clear that they remain positive, and the loss of hyperbo-
licity of the non-linear wave equation does not occur for this

solution. In general, for solutions (4.26), one has

Cðx; tÞ ¼ 1
4ðtþ1ÞM

0 xffiffiffiffiffiffiffiffiffiffiffi
tþt0

p
� �

; min
x

Cðx; tÞ ¼ Cð0; tÞ ¼ m0

4ðtþt0Þ
;

ð4:27Þ
the latter being strictly positive for the indicated parameters,
independently of the sign of γ ¼ 7π=4.

4.5. Special fiber orientations

We now consider specific cases of Eq. (4.12) for special fiber
orientations.

4.5.1. Case 1: γ ¼ π=2
When the fibers are directed along X3, i.e., γ ¼ π=2, the

displacement Gðx; tÞ is independent of the fiber direction. As a
result, according to Theorem 1, the fiber-dependent terms in the
dynamic equation vanish. Indeed, PDEs (4.12) and (4.13) yield a

Fig. 2. (a) Sample dimensionless solutions (4.26) as functions of x for α¼ 1=12, β¼ 1=3, m0 ¼ 1, γ ¼ π=4, at times t ¼ 0;2;5;20. (b) The same plots for γ ¼ �π=4. (c) The
corresponding plots of the wave equation coefficient C (4.15) and (4.27).
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linear wave equation

Gtt ¼ αGxx; px ¼ 0:

4.5.2. Case 2: γ ¼ 0
In an opposite case, when the fibers are directed along X1, the

displacement Gðx; tÞ is orthogonal to fibers but propagates in the
fiber direction. The dynamic equation (4.12) reduces to a non-
linear wave equation

Gtt ¼ αþ3β Gxð Þ2
� �

Gxx: ð4:28Þ

We are not aware of physically non-trivial closed-form solutions of
the PDE (4.28); in particular, it does not admit traveling wave
solutions of physical interest. We numerically compute a d'Alem-
bert-type numerical solution for the initial value problem consist-
ing of the PDE (4.28) with the initial conditions

Gðx;0Þ ¼ u0ðxÞ; Gtðx;0Þ ¼ 0; xAR; ð4:29Þ
and the asymptotic requirement Gðx; tÞ-0 as j xj-1. Without
loss of generality, if α;βa1, Eqs. (4.14) and (4.28) can be re-scaled
into a dimensionless form with α¼ 3β¼ ρ0 ¼ 1. For a specific
initial condition

u0ðxÞ ¼ expð�x2Þ;
the evolution of the wave form for Gðx; tÞ and pðx; tÞ ¼ ð1=3ÞGx is
shown in Fig. 3. The evolution is symmetric under the reflection x-x
since this symmetry of the equation is respected by the initial
conditions. Unlike the classical d'Alembert solution for the linear
wave equation, in the non-linear situation, the shape of the moving
waves is not time-invariant, which may lead to wave breaking.
Indeed, for the wave speed, one has c2 ¼ α3βGx2, i.e., the points on
the solution curve corresponding to higher values of the curve slope
jGxj move faster, which results in a shock formation. Such non-
physical behavior is a result of exceeding the physical applicability
limits of the incompressible non-dissipative model. A similar phe-
nomenon of shock formation has been observed in [39], where a
generalization of Carroll's circularly polarized wave solutions [8] is
developed.

5. Motions transverse to an axis

5.1. The non-linear equations for general and specific fiber
orientations

We now study another class of displacements for which the
incompressibility condition is identically satisfied: the motions
transverse to the axis of X1, given by

X¼

X1

X2þH X1; t
� �

X3þG X1; t
� �

2
6664

3
7775: ð5:1Þ

The hydrostatic pressure p is assumed to have the form p¼ pðX1; tÞ.
The fibers are oriented along the unit vector (4.2) in the same

manner as earlier, without a loss of generality. We again denote
X1 ¼ x for simplicity of notation, and use the subscript notation for
derivatives.

Combining the ansatz (5.1) with the dynamic equations (2.20),
one arrives at the three PDEs

0¼ px�2βρ0 cos
3γ½ð cos γGxþ sin γÞGxxþ cos γHxHxx�; ð5:2Þ

Htt ¼ αHxxþβ cos 3γ cos γð½G2
x þH2

x �Hxxþ2GxHxGxxÞþ2 sin γ
∂
∂x
ðGxHxÞ

	 

;

ð5:3Þ

Gtt ¼ αGxxþβ cos 2γ 2 sin 2γ Gxxþ cos 2γ 2GxHxHxxþ H2
x þ3G2

x

� �
Gxx

� �h
þ sin 2γ 3GxGxxþHxHxxð Þ�; ð5:4Þ

where again α¼ 2ðaþbÞ40, and β¼ 4q40.
It is clear that the model (5.2)–(5.4) reduces directly to the one-

dimensional PDE system (4.12)–(4.13) when H¼0.
Eq. (5.2) again yields an exact general solution for the pressure

as

p¼ βρ0 cos
3γ cos γ ðG2

x þH2
x Þþ2 sin γ Gx

h i
þ f ðtÞ; ð5:5Þ

and the two PDEs (5.3) and (5.4) are pressure-independent.
We note that the PDEs (5.3) and (5.4) can be written in the

conserved form

Htt ¼
∂
∂x

αþβ cos 3γ ðG2
x þH2

x Þ cos γþ2Gx sin γ
n oh i

Hx

� �
; ð5:6Þ

Gtt ¼ ∂
∂x

αGxþβ cos 2γ 2 sin 2γ Gx þ cos 2γðG2
x þH2

x ÞGx

h�
þ sin γ cos γð3G2

x þH2
x Þ
i
Þ: ð5:7Þ

We now consider the simplifications of these PDEs for specific
fiber orientations.

5.1.1. Special case 1: γ ¼ π=2
When the fibers are directed along X3, both displacements

Hðx; tÞ, Gðx; tÞ are independent of the fiber direction. In agreement
with Theorem 1, such motions are described by independent
linear PDEs

Htt ¼ αHxx; Gtt ¼ αGxx; ð5:8Þ
with multiple exact solutions available through standard methods.

5.1.2. Special case 2: γ ¼ 0
When the fibers are directed along X1 ¼ x, the displacement is

orthogonal to fibers and propagates in the fiber direction. The
dynamic equations describing such motions are symmetric, and
are given by

Htt ¼
∂
∂x

αþβ G2
x þH2

x

� �
Hx

� �
; Gtt ¼

∂
∂x

αþβ G2
x þH2

x

� �
Gx

� �
; ð5:9Þ

with the non-linear terms describing the effect of fibers.

Fig. 3. Plot of numerical solution of the PDEs (4.14) and (4.28) for α¼ 1, β¼ 1=3, ρ0 ¼ 1, with initial conditions (4.29). The colors red, magenta, and blue correspond to the
solution at times t ¼ 0;2;4, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5.2. Point symmetry analysis

We now classify the Lie point symmetries

W¼ ξðx; t;H;GÞ ∂
∂x

þτðx; t;H;GÞ ∂
∂t
þηðx; t;H;GÞ ∂

∂H
þζðx; t;H;GÞ ∂

∂G

of the PDEs (5.3)–(5.4) in the fully non-linear case.

Theorem 5. The Lie point symmetry classification of the system
(5.3)–(5.4) for material parameters α40, β40, and the fiber angle
γA ½0;π=2Þ is given in Table 3.

The proof follows from the application of Lie's algorithm.
Similar to the case of one-dimensional perturbations studied in

Table 2, a special symmetry W9 arises when the angle γ between
the fiber bundle and the wave propagation direction satisfies (4.20).

The other symmetries additional to the one-dimensional case
of Table 2, holding for an arbitrary set of material parameters, are
the Galilean group W5 in the x2-direction, and the fiber-dependent
rotation group W8. The latter has the global form

tn ¼ t; xn ¼ x;

Hn ¼H cosϕþG sinϕþx tan γ sinϕ;

Gn ¼ �H sinϕþG cosϕ�x tan γð1� cosϕÞ; ð5:10Þ
where ϕ is the group parameter. The transformations (5.10) reduce
to a usual rotation group when γ¼0, and to the shear transforma-
tion

tn ¼ t; xn ¼ x; Hn ¼Hþϕx; Gn ¼ G

when γ ¼ π=2.

5.3. Exact solutions in the traveling wave ansatz

We are now interested in using the traveling wave ansatz to
seek exact solutions of Eqs. (5.3) and (5.4). Traveling wave
solutions will exist due to the presence of the traveling wave
symmetry

Wtw ¼ c
∂
∂x

þ ∂
∂t
;

holding for an arbitrary constant c. The invariants of Wtw are given
by

r¼ x�ct; Hðx; tÞ ¼ hðrÞ; Gðx; tÞ ¼ gðrÞ:
Using the specified ansatz, we obtain the balance of momentum
equations in the form of two ODEs

α�c2þβ cos 4γð3ðh0Þ2þðg0Þ2Þþ2β sin γg0
h i

h″þ2β cos 3γ½ cos γ g0

þ sin γ�h0g″ ¼ 0; 2β cos 3γ½ cos γ g0 þ sin γ�h0h″þ α�c2þβ cos 2γ
�

� cos 2γ ½ðh0Þ2þ3ðg0Þ2�þ3 sin 2γ g0 þ2 sin 2γ
� �i

g″ ¼ 0; ð5:11Þ

where the prime denotes differentiation d=dr.

Exact solutions can be constructed for the ODEs (5.11). We give
an example of such solutions when the fibers are directed along
the axis of x, i.e., γ¼0. Eq. (5.11) simplifies to a symmetric form

α�c2þβð3ðh0Þ2þðg0Þ2Þ
h i

h″þ2βg0h0g″ ¼ 0;

2βg0h0h″þ α�c2þβððh0Þ2þ3ðg0Þ2Þ
h i

g″ ¼ 0: ð5:12Þ

The following theorem is proven by a direct computation.

Theorem 6. An infinite-dimensional family of solutions of the system
(5.12) arises from an arbitrary pair of functions gðrÞ;hðrÞ satisfying an
ODE

ðg0Þ2þðh0Þ2 ¼ R2; ð5:13Þ
where

R2 ¼ c2�α
B

is a dimensionless constant.

Thus any two functions whose slopes satisfy the equation of a
circle (5.13) yield a traveling wave solution of the elasticity model
(5.3) and (5.4). For the solution to be non-trivial, the speed c at
which the deformation propagates must satisfy

c4c0 ¼
ffiffiffiffi
α

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþbÞ

p
:

The deformations thus propagate at speeds greater than the wave
speed c0 of the linearized model. From the relation (5.13) it is
evident that the slopes of the traveling perturbations must stay
bounded.

We note that the relation (5.13) is the same as the one obtained
by Carroll in [8] in a different context.

Example 1 (A traveling shear wave). Consider a Gaussian-shaped
perturbation in the direction of X3, given by

gðrÞ ¼ ℓexpð�r2=ℓ2Þ; ℓ40: ð5:14Þ
For the perturbation in the direction of X2, one obtains from (5.13),

hðrÞ ¼
Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�4s2

ℓ2 expð�2s2=ℓ2Þ
s

ds: ð5:15Þ

It is straightforward to show that for any ℓ, as j rj-1, the
function h(r) has an oblique asymptote

hðrÞ-Rr:

The resulting solution of the elasticity equations, in the common
notation of formula (5.1), has the form

Gðx; tÞ ¼ gðx�ctÞ ¼ ℓexpð�ðx�ctÞ2=ℓ2Þ: ð5:16Þ
For the perturbation in the direction of X2, one obtains from (5.13),

Hðx; tÞ ¼ hðx�ctÞ ¼
Z x� ct

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�4s2

ℓ2 expð�2s2=ℓ2Þ
s

ds: ð5:17Þ

The latter has the asymptotics Hðx; tÞ � Rðx�ctÞ as j x�ct j-1.
Using the symmetry W5 ¼ t∂=∂H admitted by the model, one can
remove the time-dependent part of the asymptotic behavior,
taking

~Hðx; tÞ ¼Hðx; tÞþRct:

The latter, for any t, has a time-independent asymptotics of a
simple shear as jxj-1:

~Hðx; tÞ -
j xj-1

Rx: ð5:18Þ

As such, this can be written as

~Hðx; tÞ ¼ Q ðx; tÞþRx; ð5:19Þ

Table 3
Lie point symmetry classification for Theorem 5.

Parameters Symmetries

Arbitrary W1 ¼ ∂
∂x

; W2 ¼ ∂
∂t

; W3 ¼ ∂
∂H

; W4 ¼ ∂
∂G

; W5 ¼ t
∂
∂H

;

W6 ¼ t
∂

∂W
; W7 ¼ x

∂
∂x

þt
∂
∂t

þH
∂
∂H

þG
∂
∂G

,

W8 ¼ cos γ H
∂
∂G

�G
∂
∂H

� �
�x sin γ

∂
∂H

4αrβ, W1; W2 ; W3 ; W4 ; W5; W6; W7 ; W8,

sin 22γ ¼ 4α
β

W9 ¼ 2t cos γ
∂
∂t

þx cos γ
∂
∂x

�x sin γ
∂
∂G
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where

Q ðx; tÞ ¼
Z x� ct

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�4s2

ℓ2 expð�2s2=ℓ2Þ
s

ds�Rðx�ctÞ ¼ qðrÞ ð5:20Þ

is bounded for all x; t.

Fig. 4 shows the underlying pre-strained configuration

X0 ¼
X1

X2þRX1

X3

2
64

3
75 ð5:21Þ

and its traveling bounded perturbation

x¼ϕ X; tð Þ ¼X0þ
0

qðX1�ctÞ
gðX1�ctÞ

2
64

3
75 ð5:22Þ

for a specific choice of parameters R¼
ffiffiffiffiffiffi
10

p
, ℓ¼ 1.

Example 2 (A traveling periodic wave). Another obvious solution
of (5.13) is given by harmonic functions

hðrÞ ¼ A cos ðkrþϕ0Þ; gðrÞ ¼ A sin ðkrþϕ0Þ; A¼ R=k: ð5:23Þ

This describes a time-periodic perturbation of the stress-free
steady state, given by

x¼ϕ X; tð Þ ¼
X1

X2

X3

2
64

3
75þA

0
cos ðk½X1�ct�þϕ0Þ
sin ðk½X1�ct�þϕ0Þ

2
64

3
75: ð5:24Þ

In this solution, every material point follows a circle. Material lines
along the X1 direction, given by X2 ¼ const and X3 ¼ const, become
helices parameterized by X1 (Fig. 5). The solution therefore can be
viewed as a traveling helical shear wave.

6. Conclusions

Anisotropy effects arising in various elastic materials due to the
presence of a fibrous microstructure constitute an active research
topic. Multiple models have been developed to account for the fiber
effects; some of such models have been reviewed in Section 2. Due to
the mathematical complexity of the underlying equations, a substan-
tial part of the modern literature concerned with analysis and solution
of anisotropic non-linear hyperelasticity models relies on the incre-
mental analysis and the linearization of the governing equations. In
this work, non-linear finite-amplitude displacement and wave propa-
gation models in anisotropic hyperelastic Mooney–Rivlin-type materi-
als were studied, assuming the presence of a single unidirectional

Fig. 4. Planes in the material frame (a), and a corresponding simple shear pre-strained configuration (5.21) in the actual frame (b). Traveling wave displacements (5.22) of
the prestressed configuration (5.21) in the case of the fiber family oriented along the direction of X1. Plots for R¼

ffiffiffiffiffiffi
10

p
, ℓ¼ 1 (c).
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family of fibers in the material configuration, following the standard
reinforcing model (2.14).

For a general displacement pattern (3.3), a theorem proven in
Section 4 states that for models involving the fiber contribution
through the invariant I4, displacements independent of the fiber
direction do not depend on fiber effects. As such, a the well-known
result from the incremental analysis framework has been general-
ized to the fully non-linear setting.

Section 4 considered anti-plane shear motions (4.1) for a general
fiber orientation (4.2). A 2þ1-dimensional PDE system (4.3)–(4.5)
describing the displacement and the hydrostatic pressure was
derived. In particular, the displacement for such motions has been
shown to satisfy a non-linear wave equation (4.3). The pressure
compatibility condition led to Eq. (4.6), which effectively is a
differential constraint on the displacement function, yielding an
overdetermined PDE system. Lie point symmetries are classified
with respect to constitutive parameters and fiber orientations. It
was shown that displacements independent of the fiber direction,
in the form (4.9), satisfy a linear wave equation (4.10), whereas the
one-dimensional problem for the wave propagation with displace-
ments dependent on the fiber direction yields a non-linear wave
equation (4.12), essentially involving the fiber contribution. Even in
the case of the fibers being orthogonal to the displacement, i.e.,
γ¼0, one still has a non-linear wave equation (4.28). Sample
numerical solutions of the latter were computed. The condition
for the loss of hyperbolicity of the PDE (4.12) was derived. It was
shown that when the fiber contribution is relatively small, the
equation remains hyperbolic for all fiber orientations.

A special Lie point symmetry has been shown to exist for the
considered model, in the one-dimensional setting (Section 4.4),
and in the more general ansatz (5.1) in Section 5. The extra
symmetry has the global form (4.19), and arises only in models
with sufficiently strong fiber contribution, for specific mutual
orientations of the wave vector and the fiber direction. For the
one-dimensional model, the condition for the existence of the
extra symmetry lies on the boundary of the domain of model
parameters for which the loss of hyperbolicity of the PDE may
occur. Exact solutions (4.26) invariant with respect to the special
symmetry (4.19) describe the degeneration of a parabolic pertur-
bation of a linearly pre-stressed two-dimensional configuration.

Traveling shear waves were considered in Section 5.3. From the
motions of the form (5.1), general ordinary differential equations
(5.11) for the displacements have been derived. In the computa-
tionally simpler case of perturbations propagating in the fiber
direction, two families of exact solutions have been derived. The

solution family (5.22) represents a bounded perturbation traveling
along a pre-strained configuration. The second exact solution
(5.24) describes a traveling helical shear wave. The solutions
presented in Section 5.3 generalize Carrol's circularly polarized
transverse waves for isotropic media [8].

The wave propagation equations and exact solutions derived in
the current contribution for pre-strained and free elastic media are
relevant to the description of waves in rubber-like fiber-reinforced
materials, in both free and pre-stressed/pre-strained settings. In
the future, it is planned to consider the more general situation of
two families of fibers, which is necessary, for example, for an
accurate description of soft biological tissues [22].

Other important directions of future work should include various
realistic extensions of the considered constitutive model, such as
models involving the fiber-dependent invariant I5. For such models,
motions with displacements independent of the fiber direction will
generally be affected by fibers. Compressible models are also of
interest; however, in multiple dimensions, such models are signifi-
cantly more complicated due to the form of the barred invariants I k,
k¼ 1;2;3…, which involve the non-constant Jacobian (see, e.g., [9]).
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