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Local conservation laws are systematically constructed for three-dimensional time-
dependent viscous and inviscid incompressible fluid flows, in primitive variables and
vorticity formulation, using the direct construction method. Complete sets of local
conservation laws in primitive variables are derived for the case of conservation
law multipliers depending on derivatives up to the second order. In the vorticity
formulation, there exists an infinite family of vorticity-dependent conservation laws
involving an arbitrary differentiable function of space and time, holding for both
viscous and inviscid cases. The infinite conservation law family is used to generate
further independent hierarchies of conservation laws that essentially involve vorticity
and arbitrary flow parameters, which are determined by known evolution equations
such as those for momentum, energy or helicity, though not necessarily in the form
of a conservation law. The new conservation laws are not restricted to any reduced
flow geometry such as planar or axisymmetric limits. Examples are considered.
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1. Introduction

Conservation laws holding for a system of partial differential equations (PDEs)
that describe a mathematical model provide critically important information about the
model and the underlying physical system. Local divergence-type conservation laws
have the form

∂Θ

∂t
+∇ ·Φ = 0, (1.1)

where Θ is the conservation law density, the components of Φ are spatial fluxes,
and ∇= (∂/∂x, ∂/∂y, ∂/∂z) is the divergence operator. If the fluxes Φ vanish on the
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boundary of the fluid domain D or at infinity, as well as in the periodic case, Gauss’s
theorem provides a global conserved quantity given by

J =

∫∫∫
D

ΘdV,
dJ

dt
= 0. (1.2)

(For solutions periodic in one or more dimensions, the domain D can be restricted
to one such period.) Moreover, knowledge of local conservation laws (1.1) admitted
by a given model is important from the point of view of numerical simulation, since
modern finite-element methods, such as discontinuous Galerkin methods, require
the PDEs in divergence form. Conservation laws are also useful in PDE analysis,
including existence, uniqueness and global solution behaviour of nonlinear PDEs
(e.g. Lax 1968; Benjamin 1972; Holm et al. 1985; Anco, Bluman & Wolf 2008). An
important feature of local conservation laws is their coordinate invariance; in particular,
a zero-divergence expression (1.1) is mapped into a zero-divergence expression under
non-degenerate coordinate transformations.

A related important concept in fluid dynamics is the notion of material conservation
laws, sometimes called Lagrange invariants, given by vanishing material derivatives,

dΘ
dt
≡
∂Θ

∂t
+ u · ∇Θ = 0, (1.3)

where u is the flow velocity vector. The material conservation law (1.3) expresses
the conservation of the total amount of the quantity Θ initially contained in a
moving fluid parcel. For an incompressible flow with the mass conservation constraint
∇ · u = 0, each material conservation law (1.3) is equivalent to a local conservation
law (1.1) with Φ =Θu. Material conservation laws are well known and widely used
in the literature (e.g. Moiseev et al. 1982; Bowman 2009; Kelbin, Cheviakov &
Oberlack 2013).

The current work is devoted to the study of conservation laws of the equations of
incompressible constant-density fluid dynamics, in both the constant-viscosity and the
inviscid settings. With this, the Navier–Stokes equations in three dimensions, in the
absence of external forces, are given by

∇ · u= 0, ut + (u · ∇)u+∇p− ν∇2u= 0, (1.4a,b)

where the fluid velocity vector u = u1ex
+ u2ey

+ u3ez and the fluid pressure p are
functions of x, y, z, t. (Where appropriate, throughout the paper, we use subscripts to
denote partial derivatives.) Further, the inviscid case ν = 0 yields the Euler equations

∇ · u= 0, ut + (u · ∇)u+∇p= 0. (1.5a,b)
We generally consider systems (1.4) and (1.5) in the fully three-dimensional time-
dependent situation, with all three velocity components non-zero. A set of important
conserved quantities involves the fluid vorticity ω = ∇ × u. The vorticity dynamics
equation obtained by taking the curl of the momentum equation in (1.4) is given by

ωt +∇× (ω× u)− ν∇2ω= 0, (1.6)
with ν = 0 corresponding to the inviscid case.

The well-known conservation laws of the Euler system (1.5) in three dimensions,
with no forcing, include the local conservation of kinetic energy, linear and angular
momenta, generalized momenta in primitive variables, and the local conservation of
vorticity and helicity in the vorticity formulation (e.g. Moffatt 1969; Batchelor 2000;
Kelbin et al. 2013). The conservation of mass is obviously satisfied, since the density
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is constant; the divergence-free condition ∇ · u = 0 is commonly referred to as the
mass conservation equation for constant-density incompressible flows.

For the Navier–Stokes equations, the kinetic energy and helicity are not locally
conserved; linear and angular momenta are still locally conserved in the sense of
satisfying a local divergence-type conservation law (1.1).

In the case of physical settings involving flow symmetry that leads to reduction
in the number of physical dimensions, such as translational, axial, or helical
symmetry, respectively, resulting in plane, axisymmetric and helically symmetric flows,
additional conservation laws are known to arise, including the famous vorticity-related
conservation laws for plane flows (e.g. Batchelor 2000; Bowman 2009). A rather
complete set of conservation laws for the above three settings including many new
conservation laws for all the cases was published in Kelbin et al. (2013).

A classical result involving material conservation laws is Ertel’s theorem for
the Euler equations (1.5) (Truesdell 1954), establishing the existence of a set of
vorticity-related material conservation laws based on one special material conservation
law (see also Salmon 1982). The connections between Ertel’s theorem with the
relabelling symmetry for Euler flows and Noether’s second theorem are discussed in
Newcomb (1967) and Padhye & Morrison (1996a,b).

A natural question that can be posed is whether or not it is possible to describe
the full set of conservation laws for a certain class of fluid models. No conclusive
answer is available in the literature; many textbooks only contain subsets of the above-
mentioned basic conservation laws. The main direction of the current contribution is
the systematic construction of conservation laws for constant-density incompressible
flows in primitive variables and the vorticity formulation, using the direct construction
method (Anco & Bluman 1997).

Suppose that a mathematical model involves N PDEs denoted

Rσ = 0, σ = 1, . . . ,N, (1.7)

with m dependent variables v(x) and n independent variables x, one of which can be
time. The direct construction method seeks linear combinations of the given equations
with a set of multipliers Λσ [v], σ = 1, . . . ,N, that yield divergence expressions

ΛσRσ ≡
∂Φ i

∂xi
, (1.8)

for some functions Φ i, i = 1, . . . , n (summation over repeated indices is assumed
throughout the paper). The multipliers Λσ [v]≡Λσ (x, v, . . .) may be chosen to depend
on independent variables x, dependent variables v and partial derivatives of v up to a
certain order. It follows that, on solutions of the given equation (1.7), one has a local
divergence expression

∂Φ i

∂xi
= 0, (1.9)

equivalent to the local conservation law (1.1) when one of the variables is time.
Sets of multipliers {Λσ [v]} yielding divergence expressions arise as solutions of
overdetermined systems of linear determining equations. The latter are obtained
through the action of Euler differential operators Evi with respect to each scalar
dependent variable vi, i = 1, . . . , m, applied to (1.8) (for details, see e.g. Bluman,
Cheviakov & Anco 2010). The key idea behind this is that an Euler operator
identically annihilates an expression if and only if it is a divergence expression.
Hence applying Evi to (1.8) leads to an identically vanishing right-hand side, and the
set of linear PDEs determining the multipliers {Λσ [v]} is given by

Evi[ΛσRσ ] = 0, i= 1, . . . ,m. (1.10)
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Importantly, the determining equations (1.10) have to be solved off of the solution
space of (1.7), i.e. without assuming that the vector function v is the solution of the
given system (1.7) (see Bluman et al. 2010).

Unlike Noether’s theorem, the direct construction method is applicable to a wide
class of models, including dissipative ones. For the majority of physical systems, in
particular, for equations that can be solved for some set of derivatives, the direct
construction method is complete: all local divergence-type conservation laws (1.1)
arise through linear combinations of the given equations with corresponding sets of
multipliers {Λσ [v]}. Since all fluid dynamics models considered in the current paper
are in the solved form, the direct construction method is a natural method of choice
to seek conservation laws of such systems.

In practice, the direct construction method requires an a priori specification of
the multiplier dependence. If multipliers depend on derivatives up to an order `> 0
(`th-order multipliers), taking higher ` can generally yield additional (higher-order)
conservation laws. However, the size of the system of multiplier determining equations
grows drastically with `, and can easily reach the numbers of hundreds, thousands
and more determining equations. Specialized symbolic software can be used in
such situations (e.g. Cheviakov 2007). It is important to note that, for equations
of fluid dynamics, no upper bound for the differential order of the conservation
law has been established to date. Partial results establishing the highest possible
conservation law order have been derived for certain types of scalar equations; for
others, like the Korteweg–de Vries, there exist infinite hierarchies of conservation
laws of increasing order (for details and examples, see e.g. Bluman et al. (2010),
and references therein). For a class of vorticity-related conservation laws considered
in this paper, the conserved densities can contain derivatives of flow variables up to
an arbitrary order.

In seeking local conservation laws of normal PDE systems, trivial conservation laws
are avoided since they carry no physical meaning. Two types of trivial conservation
laws are distinguished (Bluman et al. 2010). A conservation law (1.1) is a trivial
conservation law of the first type when its density and fluxes vanish on solutions.
Trivial conservation laws of the second type are expressions (1.1) that vanish
identically, e.g. div(curl(·)) ≡ 0. The direct construction method with non-trivial
multipliers, applied to a PDE system in a solved form, which is possible for (1.4)
and (1.5), yields its non-trivial conservation laws up to a prescribed differential
order (Anco & Bluman 1997; Bluman et al. 2010). For abnormal PDE systems, the
situation with trivial conservation laws is less transparent, as discussed in appendix A.

It is straightforward to apply the direct construction method to compute all
local conservation laws of the Navier–Stokes and Euler equations (1.4) and (1.5)
arising from, for example, zeroth-order multipliers. In § 2 of the current contribution,
we find a complete set of conservation laws admitted by these two models, in
the full time-dependent three-dimensional setting, involving up to second-order
multipliers, i.e. multipliers that contain only derivatives of the dependent variables
up to the second order. This ansatz includes all first-order and some second-order
conservation law densities and fluxes. The resulting systems of multiplier determining
equations consist of 31 918 and 58 273 equations, respectively, for the Euler and
the Navier–Stokes model, presenting a significant computational challenge. The
determining equations are reduced and solved using a combination of iterative and
Gröbner basis techniques. Full sets of conservation laws are derived and listed. It is
shown that no second-order conservation laws arise for either of these models; the
analysis, though negative, establishes an important completeness result.



372 A. F. Cheviakov and M. Oberlack

Finally, in § 3, we analyse local conservation laws of the full three-dimensional
vorticity system (1.6), in both viscous and inviscid settings. It is shown that, in
both settings, the vorticity dynamics equation can be written in a generic form,
which admits an infinite family of vorticity-dependent conservation laws involving
arbitrary differentiable functions of space, time, flow parameters, and spatial and
temporal derivatives of the latter. Any physical field pertaining to the fluid flow can
be used in the place of the arbitrary function. Moreover, operations that preserve
the generic vorticity system structure can be used to generate further hierarchies of
vorticity-related conservation laws of increasing differential orders. Specific forms
of the infinite conservation law family for axially and helically symmetric flows in
cylindrical and helical coordinates are presented.

Importantly, the new infinite families of conservation laws presented in the current
contribution hold for both Navier–Stokes and Euler equations. These conservation laws
are physically non-trivial, and are not equivalent to any conservation law families that
have previously occurred in the literature. In particular, they are not equivalent to the
Cauchy invariants of the Euler equations (see e.g. Salmon 1988; Kuznetsov 2008),
and do not present a re-definition of the Lagrangian coordinates (initial positions
of particles). Unlike the family of Cauchy invariants, the new vorticity-dependent
conserved quantities hold for both the viscous and the inviscid case, and involve an
arbitrary differentiable function that does not have to be a conserved quantity itself.
Unlike Lagrangian coordinates and other Lagrange invariants, the new conservation
laws are not material conservation laws of the form (1.3).

The presented infinite families of vorticity conservation laws involve the time
derivative of the arbitrary function appearing as a part of the flux vector. If the
arbitrary function is chosen to represent a flow parameter satisfying an evolution
equation (not necessarily a conservation law), the time derivative in the spatial
flux can be replaced accordingly, leading to conservation law forms common in
fluid dynamics, where a time derivative acts on the conserved density, and the
spatial fluxes only contain spatial derivatives. Examples are considered, including
kinetic-energy-dependent vorticity conservation laws.

The paper is concluded with a discussion of results and open problems in § 4.

2. Direct construction of conservation laws for inviscid and viscous incompressible
flows using second-order multipliers
We now apply the direct construction method to equations of fluid dynamics in

primitive variables.

2.1. Conservation laws of the Euler equations
In order to seek the conservation laws, the four scalar equations (1.5) are multiplied
by multipliers Λσ , σ = 1, 2, 3, 4, and a linear combination is formed. The Euler
equations (1.5) can be solved for the first derivatives,

u1
x, ui

t, i= 1, 2, 3, (2.1)

while the second derivatives,

u1
xx, u1

xy, u1
xz, ui

tt, ui
tx, ui

ty, ui
tz, i= 1, 2, 3, (2.2)

are subsequently computed from the differential consequences of the Euler equations.
To avoid trivial multipliers vanishing on solutions of equations, the dependence of the
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multipliers on the variables (2.1) and (2.2) must be avoided. Finally, each of the four
unknown second-order multipliers in Λσ is a function of 45 variables, given by

t, x, y, z, u1, u2, u3, p, u1
y, u1

z , u2
x, u2

y, u2
z , u3

x, u3
y, u3

z , pt, px, py, pz,

u1
yy, u1

yz, u1
zz, u2

xx, u2
xy, u2

xz, u2
yy, u2

yz, u2
zz, u3

xx, u3
xy, u3

xz, u3
yy, u3

yz, u3
zz,

ptt, ptx, pty, ptz, pxx, pxy, pxz, pyy, pyz, pzz.

 (2.3)

The determining equations are obtained by applying four Euler operators,
corresponding to the dependent variables u1, u2, u3, p of the system, to the linear
combination of the four equations (1.5) with multipliers {Λσ }, and splitting of the
resulting equations. (For the details of the application of the direct construction
method, the interested reader is referred to Bluman et al. (2010).) As a result, one
obtains a system of 31 918 linear homogeneous PDEs for the unknown multipliers.

The determining equation system is essentially overdetermined, i.e. it contains a
large number of redundant equations. It was first simplified iteratively by removing
multiples of existing equations and substituting simpler equations of the form
‘monomial = 0’ into more complicated equations. As a result, the number of
equations was reduced by a factor of two. A powerful Maple function rifsimp
based on a differential Gröbner basis reduction method was subsequently used
to reduce the number of determining equations to 189, the majority being in the
form ‘partial derivative = 0’. The rifsimp operation took approximately 24 h on a
workstation with a 3.6 GHz Xeon processor and 128 Gb RAM, running Maple 17.

The resulting determining equations were solved directly to yield the following
multipliers and local conservation laws. The list below is an exhaustive list of
conservation law multipliers admitted by the Euler equations, when the multiplier
dependence can involve derivatives of at most second order. In particular, it
follows that no conservation laws with second-order multipliers are admitted for
the incompressible Euler system (1.5).

2.1.1. Conservation of generalized momentum
The local conservation of the generalized linear momentum in the x direction is

given by a conservation law

∂

∂t
( f (t)u1)+

∂

∂x
((u1f (t)− x f ′(t))u1

+ f (t)p)

+
∂

∂y
((u1f (t)− x f ′(t))u2)+

∂

∂z
((u1f (t)− x f ′(t))u3)= 0, (2.4)

with two analogous expressions holding for the projections on the y and z directions.
In (2.4), f (t) is an arbitrary differentiable function of time. Multipliers corresponding
to (2.4) are given by Λ1 = f (t)u1

− x f ′(t), Λ2 = f (t) and Λ3 =Λ4 = 0.

2.1.2. Conservation of angular momentum
The angular momentum vector is locally conserved for Euler flows. The x projection

of the conservation law is given by the divergence expression

∂

∂t
(zu2
− yu3)+

∂

∂x
((zu2

− yu3)u1)

+
∂

∂y
((zu2

− yu3)u2
+ zp)+

∂

∂z
((zu2

− yu3)u3
− yp)= 0. (2.5)
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The corresponding multipliers are given by Λ1 = u2
z − u3

y , Λ2 = 0, Λ3 = z and
Λ4 =−y. Two additional scalar conservation laws for the y and z projections of the
angular momentum are given by similar expressions, obtained by simultaneous cyclic
permutations of the variables (x, y, z) and indices (1, 2, 3).

2.1.3. Conservation of kinetic energy
This scalar conservation law is given by

∂

∂t
K +∇ · ((K + p)u)= 0, (2.6)

where K = |u|2/2 is the kinetic energy density; it arises from the multipliers Λ1 =

K + p and Λi+1 = ui, i= 1, 2, 3.

2.1.4. Conservation of helicity
The helicity density is given by h= u ·ω. The local conservation law has the form

∂

∂t
h+∇ · (u×∇E+ (ω× u)× u)= 0, (2.7)

where E = K + p is the total energy density. This conservation law is the only one
that involves first-order multipliers, namely, Λ1 = 0 and Λi+1 =ω

i, i= 1, 2, 3.

2.1.5. Generalized continuity equation
The time-independent vanishing divergence

∇ · (k(t)u)= 0, (2.8)

holding for an arbitrary differentiable function of time k(t), is an obvious consequence
of the continuity equation. It corresponds to conservation law multipliers Λ1= k(t) and
Λ2 =Λ3 =Λ4 = 0.

In total, for the incompressible Euler equations, there exist nine sets of second-order
multipliers yielding nine scalar conservation laws, four of them being families
involving arbitrary functions of time.

2.2. Conservation laws of the Navier–Stokes equations
Now consider the incompressible Navier–Stokes system (1.4). Since it is dissipative,
it is expected to have fewer conservation laws than the Euler equations, which indeed
turns out to be the case.

The Navier–Stokes equations can be solved, for example, for the derivatives

u2
y, ui

xx, i= 1, 2, 3, (2.9)

and the second-order differential consequences u2
ty, u2

xy, u2
yy, u1

yz. Excluding them, one
finds that the four second-order multipliers Λσ for the Navier–Stokes equations are
functions of 56 variables, given by

t, x, y, z, u1, u2, u3, p, u1
t , u1

x, u1
y, u1

z , u2
t , u2

x, u2
z , u3

t , u3
x, u3

y, u3
z , pt, px, py, pz,

u1
tt, u1

tx, u1
ty, u1

tz, u1
xy, u1

xz, u1
yy, u1

yz, u1
zz, u2

tt, u2
tx, u2

tz, u2
xz, u2

zz,

u3
tt, u3

tx, u3
ty, u3

tz, u3
xy, u3

xz, u3
yy, u3

yz, u3
zz, ptt, ptx, pty, ptz, pxx, pxy, pxz, pyy, pyz, pzz.


(2.10)
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Application of the four Euler operators and splitting yields a linear homogeneous
overdetermined system of 58 273 PDEs on the unknown Λσ . Using the above-
described iterative reduction procedure, the system was reduced to 9644 linear PDEs,
which were subsequently reduced to 227 simple equations through rifsimp. The
latter operation took approximately 24 h of computation time.

Similarly to the Euler case, it follows that no conservation laws with second-order
multipliers are admitted by the incompressible Navier–Stokes system (1.4). The
admissible conservation laws are listed below.

2.2.1. Conservation of generalized momentum
The local conservation of the generalized linear momentum in the x direction is

given by the conservation law

∂

∂t
( f (t)u1)+

∂

∂x
((u1f (t)− x f ′(t))u1

+ f (t)( p− νu1
x))

+
∂

∂y
((u1f (t)− x f ′(t))u2

− νf (t)u1
y)+

∂

∂z
((u1f (t)− x f ′(t))u3

− νf (t)u1
z )= 0,

(2.11)

with two analogous expressions holding for the projections on the y and z directions,
obtained by cyclically permuting (x, y, z).

2.2.2. Conservation of angular momentum
The local conservation of the angular momentum is expressed by three scalar

conservation laws. The x projection is given by the divergence expression

∂

∂t
(zu2
− yu3)+

∂

∂x
((zu2

− yu3)u1
+ ν(yu3

x − zu2
x))

+
∂

∂y
((zu2

− yu3)u2
+ zp+ ν(yu3

y − zu2
y − u3))

+
∂

∂z
((zu2

− yu3)u3
− yp+ ν(yu3

z − zu2
z + u2))= 0. (2.12)

The y and z projections are given by expressions obtained by simultaneous cyclic
permutations of the variables (x, y, z) and indices (1, 2, 3) in (2.12).

The multipliers corresponding to the sets of conservation laws given by (2.11) and
(2.12) are the same as for the Euler system. Neither the kinetic energy nor helicity
conservation holds for viscous flow. The generalized continuity equation (2.8) carries
over without change.

3. An infinite family of vorticity conservation laws for viscous and inviscid flows
3.1. The vorticity system and trivial conservation laws

We now consider the systematic construction of local conservation laws of fluid
dynamics equations in the vorticity formulation. Since the Laplacian ∇2 and the curl
operator commute, the vorticity equations can be written as

∇ ·ω= 0, ωt +∇× (ω× u− ν∇2u)= 0, (3.1a,b)

or, letting β =ω× u− ν∇2u, in the form

∇ ·ω= 0, ωt +∇× β = 0. (3.2a,b)
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Further, (3.1) may be rewritten in the usual local conservation form

ωt +∇ · (u⊗ω−ω⊗ u− ν∇ω)= 0, (3.3)

known as the Helmholtz vorticity transport equation, with ⊗ denoting the dyadic
product.

From the point of view of local conservation law construction, the vorticity system
(3.1) is unusual in two important ways. Firstly, being the differential consequences of
the Navier–Stokes equations, the vorticity dynamics equations (3.1) are themselves,
by definition, trivial conservation laws of the first type on solutions of Navier–Stokes
equations (see appendix A). Hence neither the vorticity equation itself, nor its
local conservation laws arise from applying the direct construction method to the
Navier–Stokes equations in primitive variables. It follows that, in order to seek
additional vorticity conservation laws, one must apply the direct construction method
to the vorticity system (3.1) itself. Secondly, the fact that the vorticity system is
abnormal must be taken into account (for details, see appendix A).

3.2. An infinite family of vorticity conservation laws
With zeroth-order multipliers Λi = Λi(t, x, y, z), the application of the direct
construction method to the vorticity system (3.2) yields an infinite family of
admissible multipliers,

Λ1 =−Ft, Λ2 = Fx, Λ2 = Fy, Λ2 = Fz, (3.4a−d)

where F = F(t, x, y, z) is an arbitrary sufficiently smooth function. Moreover,
using higher-order (first-, second-, etc.) conservation law multipliers, one obtains
higher-order admissible multipliers

Λ1 =−DtF, Λ2 =DxF, Λ2 =DyF, Λ2 =DzF, (3.5a−d)

where
Di =

∂

∂xi
+ q j

i
∂

∂q j
+ q j

ik
∂

∂q j
k

+ · · · (3.6)

denote total derivatives (the chain rule), xi (i = 1, 2, 3, 4) denote all independent
variables (x, y, z, t), q j ( j = 1, . . . , 7) denote all flow parameters (u1, u2, u3, p,
ω1, ω2, ω3), q j

i ≡ ∂q j/∂xi denote first derivatives, etc. The arbitrary function

F= F(t, x, y, z, u, p,ω, . . .) (3.7)

in (3.5) may depend on any combination of t, x, y, z, any flow parameters, and their
derivatives. The multipliers (3.5) yield the local conservation laws of equations (3.2)
given by

(ω · ∇F)t +∇ · (β ×∇F− Ft ω)= 0. (3.8)

In the notation of the vorticity equations (3.1), one has an infinite family of
conservation laws

(ω · ∇F)t +∇ · ([ω× u− ν ∇2u] ×∇F− Ft ω)= 0, (3.9)

with the local conserved density

QF =ω · ∇F (3.10)
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involving vorticity and an arbitrary combination of variables and flow parameters
incorporated within the free function (3.7).

We note that the conservation law family (3.9) does not include helicity conservation,
since, in general, the velocity vector u may not be written as a gradient of a
scalar. Further, it is important to mention that, in principle, the family (3.9) is not
limited to scalar conservation laws but may represent local conservation of vector- or
tensor-valued flow parameters.

Conservation laws involving arbitrary functions of all variables are known to exist
for abnormal PDE systems that follow from a variational principle (Noether’s second
theorem, e.g. Olver 2000). The above computations demonstrate that the same holds
for the Euler and Navier–Stokes vorticity equations, even though the system (3.1) is
not variational.

3.3. Preliminary discussion
The infinite set of conservation laws (3.9) does not overlap with any basic vorticity-
related conservation laws holding for inviscid or viscous flows, such as helicity or
enstrophy; in other words, independent functions F generate physically independent
conservation laws. For an arbitrary F, the conservation laws (3.9) are essentially non-
material. Geometrically, the conservation laws (3.9) describe the local rate of change
(and the global conservation, under appropriate boundary conditions) of the amount
of local alignment between the flow vorticity and the gradient of the flow parameter
F. For instance, in the simplest case of a linear time-independent F = αx+ βy+ γ z,
with α, β, γ = const., the conservation law (3.9) reads

∂

∂t
(αω1

+ βω2
+ γω3)+∇ · ([ω× u− ν ∇2u] × [α, β, γ ])= 0, (3.11)

expressing the local conservation of an arbitrary linear combination of vorticity
components.

Though unusual in mechanics, the time derivative Ft in the spatial fluxes of (3.9)
does not present an irregularity. Let F be a mechanical or thermodynamic parameter
of the model (either a scalar parameter, or a component of a vector- or tensor-valued
function), satisfying an evolutionary differential equation

Ft =M (t, x, y, z, u, p,ω, F, . . .) (3.12)

for some right-hand side M , which may involve spatial derivatives. Then (3.12)
can be substituted into the conservation law (3.9) to yield a canonical conservation
expression

∂

∂t
QF +∇ · ([ω× u− ν ∇2u] ×∇F−ωM )= 0, (3.13)

providing the rate of change of the amount of local alignment between the flow
vorticity and the gradient of the flow parameter F.

As initial candidates for the flow parameters F, one may consider, for instance,
functions that obey transport equations common in fluid dynamics, heat transfer and
thermodynamics, i.e.

Ft +∇ · (F u)= ΓF. (3.14)

Here ΓF may comprise the sum of various physical processes modelled as diffusive or
sink/source terms, i.e. ΓF=∇ · (λ∇F)+H(F). Employing this in (3.9) and rearranging
terms, we obtain

(ω · ∇F)t +∇ · ((ω · ∇F)u)+∇ · (ν (∇×ω)×∇F− ΓF ω)= 0, (3.15)
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where the viscous term has been rewritten in vorticity notation. If we limit (3.14)
to a material conservation law (ΓF = 0) and neglect viscosity, (3.15) collapses to the
generalized Euler–Ertel theorem (3.19) below, where ω · ∇F is materially conserved.

This property may still be retained in the limit of vanishing viscosity and if ΓF is
in sink/source term form. In this case, ΓF =H(F), and the quantity

C=
∫

dF
Γ (F)

− t

satisfies a material conservation law Ct + u · ∇C = 0. One consequently obtains a
materially conserved quantity ω · ∇C.

Further, the flow parameter F may be identified by any of the densities listed in
§ 2. For example, one may choose the fluid kinetic energy density F = K = |u|2/2.
The dynamic equation for K is obtained by multiplying the momentum equation by
u, and reads

Kt =−∇ · ((K + p)u)+ ν u ·∇2u, (3.16)

with the dissipation term vanishing for inviscid flows, as per (2.6). Using (3.16) in
(3.9) or alternatively in (3.15), one obtains a conservation law

∂

∂t
QK +∇ ·ΦK = 0, (3.17a)

ΦK = (ω · ∇K)u+ ν (∇×ω)×∇K + ν ω (∇×ω) · u+ω∇ · ( p u), (3.17b)

reflecting the local conservation of QK = ω · ∇K, the alignment between the flow
vorticity and the kinetic energy gradient. We further observe that QK is a pseudo-
scalar, which changes sign under reflections. This very specific property is shared with
helicity h in (2.7), though h is only conserved for ideal fluids. Further implications of
this are discussed below. We may note that other dynamic flow quantities of arbitrary
tensor order can be used in the same manner.

3.4. The Euler–Ertel theorem, its generalization, the Cauchy invariants and the
potential vorticity

The generalized Euler–Ertel conservation theorem pertaining to vorticity-related
conserved quantities of the inviscid Euler model (1.5) can be stated as follows
(Truesdell 1954).

THEOREM 1. Let Θ be a material conserved quantity satisfying (1.3) and an
additional condition

(∇Θ) · (∇× a)= 0, a≡ ut + (u · ∇)u. (3.18)

Then ω · ∇Θ is also a material conserved quantity:

d
dt
(ω · ∇Θ)= 0. (3.19)

The above statement is a consequence of the formula

d
dt
(ω · ∇Θ)=ω · ∇

(
dΘ
dt

)
+ (∇× a) · ∇Θ, (3.20)

where the right-hand side vanishes when dΘ/dt= 0 and (3.18) is satisfied.
For inviscid flows only, a similar result holds with fewer restrictions on Θ .
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THEOREM 2. Let Θ be a material conserved quantity satisfying (1.3) for an Euler
flow (1.5). Then ω · ∇Θ is also a material conserved quantity satisfying (3.19).

The result follows since the given material conservation law (1.3) and the vorticity
equation (1.6) with ν = 0 yield the commutator relation[

d
dt
,ω ·

]
= 0. (3.21)

In this case, quantities (ω · ∇)nΘ , n = 1, 2, 3, . . . , are referred to as the Cauchy
invariants. As remarked in Kuznetsov (2008), these invariants characterize the
‘frozenness’ of the vorticity into the fluid, which is only the case for inviscid flows.

A different result, which goes far beyond the Euler–Ertel formula, but which is still
sometimes referred to as ‘Ertel’s theorem’, states that, if Θ is any flow parameter,
not necessarily a material conserved quantity, then ω · ∇Θ is still locally conserved
as a density of a conservation law (1.1) (Haynes & McIntyre 1990; see also Müller
1995). In the atmospheric sciences community, the set of conserved quantities ω · ∇Θ
is referred to as the ‘potential vorticity’. The local conservation law form for the
‘potential vorticity’ is equivalent to the formula (3.9) derived using a direct method,
with Θ ≡ F. The potential vorticity was used to study quasi-conservation laws for
compressible Navier–Stokes equations in Gibbon & Holm (2012a), with the mass
density ρ used in the place of the arbitrary function F. From the physical point
of view, it is interesting to note that, in the latter paper, it was observed that, in
the resulting conservation law, the pressure and other thermodynamic terms cancel
completely, without any further simplification, such as the barotropic approximation.
The dynamics of the gradient of the potential vorticity was considered in Gibbon
& Holm (2010, 2012b); possible applications to atmospheric analysed data at the
tropopause were discussed.

It is important to note that, unlike ‘Ertel’s theorem’ known to hold for the vorticity
equations (3.1), the conservation law family (3.9) has been derived for a more
general PDE system of the form (3.2). This fact is used in § 3.6 below to generate
additional sets of vorticity-related conservation laws, different from the ‘potential
vorticity’ (3.10).

The new locally conserved quantities (3.9) hold for both viscous and inviscid flows,
and do not represent material conservation laws (Lagrange invariants) (1.3). They are
therefore clearly different from the Cauchy invariants, or the Lagrangian coordinates
of fluid, or any other geometric quantities known in the literature.

3.5. An infinite family of vorticity conservation laws for axially and helically
symmetric flows

We now specify the forms of the conservation laws (3.9) for axially and helically
symmetric flows, which are of special interest due to their wide appearance in
applications (cf. Kelbin et al. 2013).

In cylindrical coordinates (r, ϕ, z), the velocity and vorticity vectors are given by

u= urer
+ uφeφ + u3ez, ω=ωrer

+ωφeφ +ω3ez, (3.22)

where the vector components of an axially symmetric flow are functions of (r, z, t).
A local axially symmetric conservation law (1.1) can be written as

∂Θ

∂t
+∇ ·Φ ≡ ∂Θ

∂t
+

1
r
∂

∂r
(rΦr)+

∂Φ3

∂z
= 0. (3.23)
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The density and the fluxes of the infinite family of conservation laws (3.9) involving
an arbitrary differentiable function F= F(t, r, z) are given by

Θ = Fr ω
r
+ Fzω

3, (3.24a)

Φr
= Fz(urω3

− u3ωr)− Ft ω
r
− νFz

[
1
r
(ruφ)r + (uφ)zz

]
, (3.24b)

Φξ
=−Fr(urω3

− u3ωr)− Ftω
3
+ νFr

[
1
r
(ruφ)r + (uφ)zz

]
. (3.24c)

The helical coordinates (r, η, ξ) are given by ξ = az + bϕ, η = aϕ − bz/r2, in
terms of cylindrical coordinates; the velocity and vorticity vectors can be written in
components as

u= urer
+ uηe⊥η + uξeξ , ω=ωrer

+ωηe⊥η +ωξeξ , (3.25)

with the orthogonal basis vectors

er
=
∇r
|∇r|

, eξ =
∇ξ
|∇ξ | , e⊥η =

∇⊥η
|∇⊥η| = eξ × er. (3.26)

The helically invariant setting corresponds to the η independence of all flow
parameters (for details, see Kelbin et al. 2013). Local conservation laws (1.1) of
helically invariant flows have the form

∂Θ

∂t
+∇ ·Φ ≡ ∂Θ

∂t
+

1
r
∂

∂r
(rΦr)+

1
B
∂Φξ

∂ξ
= 0, (3.27)

where B = r/
√

a2r2 + b2. Let F = F(t, r, ξ , . . .) represent an arbitrary differentiable
function of time, coordinates and flow parameters. Then the vorticity conservation
laws (3.9) have the form (3.27), with density and fluxes given by

Θ = Fr ω
r
+

Fξ
B
ωξ , (3.28a)

Φr
=

Fξ
B
(urωξ − uξωr)− Ft ω

r
+ ν

[
−

Fξξ
B2
ωr
−

Fr

r
(rωr)r −

2abBFξ
r2

ωη

+

(
a2BFξ

r
+

Frξ

B

)
ωξ −

Fξ
rB
(rωξ )r

]
, (3.28b)

Φξ
= −Fr(urωξ − uξωr)− Ft ω

ξ
+ ν

[(
2a2B

r
−

2
rB

)
Fξωr
+

Frξ

B
ωr
−

Fr

B
(ωr)ξ

+
2abB2Fr

r2
ωη −

(
2a2B2Fr

r
+ r
(

Fr

r

)
r

)
ωξ −

Fξ
B2
(ωξ )ξ

]
. (3.28c)

The conservation laws (3.28) have not been listed in Kelbin et al. (2013) since they
have been formally identified with trivial conservation laws of the first type. However,
physically, the conservation laws (3.28) are non-trivial. This discrepancy between
mathematical and physical definitions of triviality is due to the fact that the vorticity
system is an abnormal system (see appendix A).
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3.6. Generalizations of Ertel-type conservation laws. Infinite hierarchies of
higher-order conserved quantities

3.6.1. Higher-order hierarchies of vorticity conservation laws. Type I: iterative
For an arbitrary flow parameter F, the corresponding ‘potential vorticity’ density is

given by QF=ω ·∇F (3.10). Assume that the function F and the flow are sufficiently
smooth, and that F involves spatial derivatives of flow parameters up to the order
k > 0. Then QF has the differential order k+ 1. To obtain a higher-order conservation
law, one can substitute QF instead of F in (3.9). The corresponding conserved density
given by

Q(1)
F =I [QF] =ω · ∇ (ω · ∇F) (3.29)

has a spatial differential order k+ 2. Sequential application of the recursion operator
I [·] =ω · ∇(·) yields a countable family of local scalar conserved quantities,

QF ≡Q(0)
F =I [F], Q(1)

F =I 2
[F], . . . , Q(n+1)

F =I n
[F], . . . , (3.30)

where the power of the operator denotes the number of its repeated applications.
By construction, for a general flow, the conserved quantities (3.30) are linearly
independent.

As an example, consider the kinetic energy density F = K = |u|2/2, and the
corresponding conservation law (3.17). The sequence of iterated conserved densities
of the corresponding higher-order conservation laws is given by

Q(0)
K =ω · ∇K, Q(1)

K =ω · ∇ (ω · ∇K), Q(2)
K =ω · ∇ (ω · ∇ (ω · ∇K)), . . . . (3.31)

The respective local conservation laws and spatial fluxes have the form

∂

∂t
Q( j)

K +∇ ·Φ( j)
K = 0, (3.32)

Φ
( j)
K = [ω× u− ν ∇2u] ×∇ (I j

[F])− (I j
[F])t ω, j= 0, 1, 2, . . . . (3.33)

3.6.2. Higher-order hierarchies of vorticity conservation laws. Type II: repeated
differentiations of vorticity equations

It is essential that the conservation laws (3.8) hold for PDEs of the form (3.2),
where ω and β are arbitrary vector fields; in particular, ω is not constrained to have
the meaning of the fluid vorticity. It follows that any transformation that preserves
the form of the equations (3.2), leading to another (ω, β) pair, will yield a different
conservation law family (3.8). In particular, any operation applied to (3.2) that
commutes with spatial and temporal differentiation will preserve the form of these
PDEs.

As specific examples, we consider the curl operation and temporal differentiations.
Again, we start with a smooth flow and a flow parameter F of choice. Using the

form (3.2) of the vorticity equations, by taking a curl, one obtains the differential
consequences,

ω̃(1) ≡∇×ω, β̃(1) ≡∇× β, (3.34)

∇ · ω̃(1) = 0, ω̃(1)t +∇× β̃(1) = 0. (3.35)

Equation (3.35) is of the form (3.2). Hence for the flow parameter F, one has a new
conserved density

Q̃(1)
F = ω̃

(1) · ∇F≡ (∇×ω) · ∇F, (3.36)
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satisfying an appropriate conservation law (3.8)

∂

∂t
(Q̃(1)

F )+∇ · (β̃(1) ×∇F− Ft ω̃
(1))= 0. (3.37)

Iterating the curl operation on (3.34) and (3.35), one obtains a sequence of conserved
quantities

Q̃( j)
F = ω̃

( j) · ∇F, j= 1, 2, . . . , (3.38)

involving vorticity derivatives of increasing spatial orders,

ω̃(1) =∇×ω, ω̃(2) =∇×∇×ω, . . . . (3.39)

It is evident that the form (3.2) of the vorticity equations is also invariant with
respect to the temporal differentiations. Hence one may similarly introduce a sequence
of temporal vorticity derivatives

ω̂(k) =
∂k

∂tk
ω, β̂(k) =

∂k

∂tk
β, k= 1, 2, . . . , (3.40)

satisfying the same PDEs (3.2),

∇ · ω̂(k) = 0, ω̂(k)t +∇× β̂(k) = 0. (3.41)

For an arbitrary differentiable function F, equations (3.41) yield additional conserved
quantities,

Q̂(k)
F = ω̂

(k) · ∇F, k= 1, 2, . . . . (3.42)

The families of ‘spatial’ conserved quantities Q̃( j)
F (3.38) and the ‘temporal’ ones

Q̂(k)
F (3.42) are independent when k is odd. Using the PDE (3.1), it is straightforward

to show that, when j = 2k, Q̃( j)
F and Q̂(k)

F are linearly dependent. The conserved
quantities Q̃( j)

F (3.38) and Q̂(k)
F (3.42) are also independent of the iterated conserved

quantities Q( j)
F (3.30). Moreover, it is clear that the three iterative techniques suggested

above can be used in various combinations (that generally do not commute), to yield
further conserved quantities.

4. Summary and conclusions

Local conservation laws provide essential information necessary for analysis and
numerical simulation of nonlinear mathematical models. Full three-dimensional time-
dependent incompressible viscous and inviscid fluid flow models were considered in
this work.

In § 2, the direct method was applied to derive all local conservation laws of these
models involving up to second-order conservation law multipliers. The full lists of
conserved quantities were given. For the Euler flows, linear and generalized momenta,
angular momentum, kinetic energy and helicity are conserved. For the Navier–Stokes
flows, only the generalized momenta and the angular momentum are locally conserved.
Importantly, it was demonstrated that no second-order conservation law multipliers
arise.
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It remains an open problem to prove or disprove the existence of further
higher-order conservation laws for Euler and Navier–Stokes equations. We note that it
is currently beyond reach to perform computations involving third- and higher-order
multipliers, corresponding to second-order densities and fluxes. Indeed, a function
of n variables has

(n+k−1
k

)
derivatives of order k. Each of the four flow parameters

ui, p depends on n = 4 variables (t, x, y, z), and thus has 10 second and 20 third
derivatives. In total, third-order conservation law multipliers would have to depend
on approximately 4 × (1 + 1 + 10 + 20) = 128 quantities, making the symbolic
computations inaccessible for current platforms. Instead, analytic methods may be
necessary, similar to the one used in Khor’kova & Verbovetsky (1996), where an upper
bound was established for the conservation law orders in the k–ε turbulence model.

Unlike the fluid dynamics equations in primitive variables, the vorticity formulation
yields an abnormal PDE system of the form (3.2) for both Euler and Navier–Stokes
models. This gives rise to an infinite family of generalized Euler–Ertel local
conservation laws (3.9), which have been derived using the direct multiplier approach
in § 3. The Euler–Ertel family was generalized using iteration ideas and the invariance
of the form of PDEs (3.2) with respect to differentiations. In particular, for any given
flow parameter F, it was shown that, in addition to the conserved ‘potential vorticity’
QF = ω · ∇F, one can construct families of independent conservation laws involving
various differential orders of F and/or the vorticity field ω (§ 3.6). The iterative
procedures generally do not commute, and thus can be used in combination to yield
additional locally conserved quantities. In general, any transformation that preserves
the form of the PDEs (3.2) can be incorporated in the presented framework.

It is worth emphasizing that the new infinite hierarchies of vorticity-related
conserved quantities constructed in §§ 3.2 and 3.6, holding for the general Navier–
Stokes flows, are different from previously known conservation law families for Euler
and Navier–Stokes models. In particular, the difference lies in the following aspects.

(a) The new conserved quantities are not of the material (Lagrange-invariant)
type (1.3).

(b) They do not depend on the condition of the vorticity being ‘frozen-in’, and hold
for both viscous and inviscid flows.

(c) The arbitrary function F involved does not have to be a conserved quantity itself,
as it does in the original Ertel’s theorem and in the Cauchy invariant construction
for Euler equations (see § 3.4).

Importantly, the new local vorticity-related conserved quantities hold for a general
PDE system of the form (3.2).

The presented vorticity-related conservation laws that hold for non-ideal fluids,
and can incorporate both viscous/diffusive effects and sink/source terms, significantly
extend Ertel’s classical theorem. They may be used to expand classical results based
on potential vorticity, which were limited to ideal fluids, for example, in the fields
of meteorology and acoustics, where potential vorticity has been extensively used
(see e.g. Haynes & McIntyre 1990; Chagelishvili 1997) and where non-ideal fluid
properties have so far had to be excluded. In particular, in the field of meteorology, the
potential vorticity has been considered in conjunction with thermodynamic quantities,
such as the temperature. With the present extension, the analysis may be generalized
to include not only diffusive effects but also sink and source terms, to account, for
example, for the atmospheric chemistry.

The vorticity-related conservation laws may also give rise to a renewed discussion
on pseudo-scalars, which so far has occurred primarily in the context of helicity
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h = ω · u, which is a conserved quantity only for ideal fluids. Pseudo-scalars are
quantities that change sign under a reflection symmetry, i.e. ũ=−u when x̃=−x. Real
scalars, such as pressure, do not change their sign under reflections. An immediate
consequence is that, for systems admitting a mirror symmetry, any pseudo-scalar
vanishes. A well-known example is isotropic turbulence, which is by definition a
mirror-symmetric system, and hence any pseudo-scalar vanishes in a statistical sense.
Interestingly, both real scalars and pseudo-scalars may be constructed from the
infinite set of conservation laws (3.13). Associating F with the kinetic energy K, for
example, leads to the pseudo-scalar ω · ∇K, while using the helicity leads to a proper
scalar ω · ∇(ω · u). The latter, for example, does not statistically vanish in isotropic
turbulence.

Future work will continue in the following important directions: (1) work towards
a complete description of local conservation laws of fluid dynamics equations in
primitive variables; (2) the physical interpretation of the ‘potential vorticity’ and
higher-order hierarchies of the vorticity-dependent local conserved quantities; and
(3) the application of local fluid dynamics conservation laws, in particular, infinite
families of vorticity conservation laws studied in the current paper, to the development
and testing of novel numerical methods.
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Appendix A. Abnormality of the vorticity system and trivial conservation laws
We recall the notion of a trivial conservation law of a normal PDE system (Bluman

et al. 2010). A conservation law (1.1) is called trivial in two cases:

(a) each of its fluxes vanishes identically on the solutions of the given PDE system;
(b) the conservation law vanishes identically off solutions of the given PDE system,

as a differential identity, such as div(curl(·))≡ 0.

Two conservation laws (1.1) are equivalent if their difference is a trivial conservation
law. An equivalence class of conservation laws consists of all conservation laws
equivalent to some given non-trivial conservation law. A set of conservation laws is
linearly dependent if their non-trivial linear combination is a trivial conservation law.
In practice, one is interested in seeking linearly independent non-trivial conservation
laws of a given PDE system.

The direct conservation law construction method with non-trivial multipliers, applied
to a PDE normal system in the solved form, yields its non-trivial conservation laws
up to a prescribed differential order (Anco & Bluman 1997; Bluman et al. 2010).

The situation is different if the given PDE system is abnormal (e.g. Olver 2000). In
particular, a PDE system is abnormal if there exists a non-trivial linear combination
of its differential consequences that vanishes identically. This is the case with the
vorticity system (3.1) (for brevity, we will use its form (3.2)). Indeed, denoting the
four PDEs (3.2) by E1, . . . , E4, it can be readily verified that the linear combination
of differential consequences given by

∂

∂t
E1
−∇× (E2, E3, E4)≡ 0 (A 1)

identically, which proves the abnormality of the vorticity equations.
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For abnormal PDE systems, the notion of a trivial conservation law of the first type
may not be well defined. Consider, for example, the first vorticity equation, i.e. the
vorticity definition ∇ ·ω= 0. It can be rewritten as an equivalent conservation law

∇ ·ω≡ ∂

∂t
(t∇ ·ω)−∇ · [t(ωt +∇× β)] = 0. (A 2)

Clearly, the density and the fluxes of the equivalent conservation law in (A 2) are
proportional to equations of the system (3.2) itself, and hence vanish on solutions.
It follows that the vorticity definition is a trivial conservation law of the first type.
However physically, this equation is an essential part of the vorticity PDE system,
and is not trivial. Similarly, other conservation laws of the abnormal vorticity system
(3.1) that are equivalent to trivial conservation laws of the first type should not be
automatically dismissed.
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