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An extended Kovalevskaya form is derived for the two-dimensional incompress-
ible Mooney-Rivlin nonlinear hyperelasticity equations and is used to compute a
complete set of local conservation laws of the model through the direct method.
Conserved densities and fluxes of the conservation laws are derived, and their
physical interpretation is discussed. Since the model admits a variational formulation,
the equations are rewritten in the self-adjoint form. Computation of local conserva-
tion laws through the direct method applied to the self-adjoint form, as well as a
conservation law computation through the local symmetry analysis and the Noether’s
first theorem, is performed. A correspondence between local variational symmetries
and conservation law multipliers is illustrated. It is argued that even though it leads
to more complicated forms of multipliers, the direct conservation law construction
method applied to the Kovalevskaya form of the equations is a preferred systematic
way of conservation law computations for complicated physical models of the type
considered in this work, since it yields complete results, and naturally avoids singular
multipliers. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937756]

I. INTRODUCTION

Conservation laws of differential equations (DE) contain fundamental, coordinate-invariant
information about the properties of the system and are employed in analysis, computations, as well
as exact and numerical solution of DE problems (e.g, Ref. 6 and references therein). For a system of
partial differential equations (PDEs) R: {Rσ[u] = 0}N

σ=1 with independent variables z = {zi}n
i=1 and

dependent variables u = {uk(z)}m
k=1, local conservation laws are given by divergence expressions

DiΦ
i[u] = 0, (1.1)

where differential functions Φi[u] are the conservation law fluxes, and summation in the repeated
index is assumed. If one of the variables is time, the conservation law takes the form

DtΘ[u] + DiΦ
i[u] = 0,

with the conserved density Θ[u]. The operators Di and Dt stand for total derivatives by zi and t,
respectively. If the fluxes Φi vanish on the boundary of the spatial domainD or at infinity, as well as
in the periodic case, a global conserved quantity follows:

J =

D

Θ dV,
dJ
dt
= 0. (1.2)

Characteristic forms of local conservation laws (1.1) and the related direct (multiplier-based)
conservation law construction method are discussed in Section II.

In the current paper, we consider (2+1)-dimensional incompressible dynamic nonlinear hypere-
lasticity equations. After a brief introduction, the PDE system of interest is presented in Section III.
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It consists of two coupled second-order nonlinear wave equations and a first-order nonlinear differ-
ential constraint, the incompressibility condition. Even with the presence of the latter, hyperelas-
ticity equations without viscous/dissipative effects are known to arise from a classical variational
principle.14

In Section IV, we disregard the variational property of the hyperelasticity system and seek its
local conservation laws using the direct method. We show that the equations admit extended Ko-
valevskaya forms with respect to both spatial coordinates, rewrite them in such a form, and derive
all local conservation laws involving second-order multipliers. Conserved densities and fluxes of the
conservation laws are presented, and their physical meaning is identified.

In Section V, we turn to the variational structure of the hyperelasticity equations. We first
compute first-order local symmetries of the system and identify the variational ones. The conserva-
tion law multipliers computed in Section IV through the extended Kovalevskaya form are matched
with multipliers of the system in the self-adjoint writing. Both the PDEs and the multipliers in the
latter case turn out to have much simpler expressions than those for the extended Kovalevskaya
formulation. A correspondence between the variational symmetry components and local conserva-
tion laws following from the Noether’s first theorem is outlined. It is shown for the current example
that for the sake of completeness, it is essential to work with a Kovalevskaya form of a PDE system
when its conservation laws are computed through the direct construction method. Computationally,
the direct method is also superior to Noether’s theorem since it results in simpler determining
equations.

The paper is concluded with a discussion in Section VI.
The symmetry and conservation law computations were performed using GeM software package

for Maple.9

II. SYSTEMATIC COMPUTATION OF LOCAL CONSERVATION LAWS

Consider a PDE system R with independent variables z = {zi}n
i=1 and dependent variables

u = {uk(z)}m
k=1, given by

Rσ[u] ≡ Rσ(z,u, ∂u, . . . , ∂qu) = 0, σ = 1, . . . ,N, (2.1)

where q is the highest derivative order in the system, and ∂u, . . ., ∂qu are sets of partial derivatives
of u of corresponding orders. Let R(k) denote a maximal set of algebraically independent differential
consequences of R of order less than or equal to k. Then equations R(k) correspond to a system
of algebraic equations in the jet space Jk(x |u). PDE system (2.1) is totally nondegenerate, if it is
locally solvable and is of maximal rank in every point of R(k) (for details, see, e.g., Refs. 20 and
22). Most physical systems are totally nondegenerate. For such PDE systems, it follows from the
Hadamard lemma that every local conservation law (1.1) can be written in an equivalent character-
istic form

DiΦ̃
i[u] = Λσ[u]Rσ[u] = 0, (2.2)

where {Λσ[u]}Nσ=1 are the conservation law multipliers (characteristics), and Di(Φi[u] − Φ̃i[u]) = 0
is a trivial conservation law (see, e.g., Refs. 6, 20, and 22).

In practice, one is interested in computing the complete set of independent, nontrivial local
conservation laws of a given PDE system. An addition of a trivial conservation law to a given one
yields a conservation law equivalent to the given one. Conservation law computations are therefore
done modulo trivial conservation laws, i.e., one is interested in obtaining one representative of each
conservation law equivalence class.

For variational PDE systems, that is, when all equations Rσ[u] = 0 arise as Euler-Lagrange
equations of some action functional, the Noether’s first theorem establishes a one-to-one correspon-
dence between conservation law multipliers and variational symmetries of the given system. The
necessary and sufficient conditions (the Helmholtz conditions) for a DE system to be variational
are that its linearization operator (Fréchet derivative) is self-adjoint. (In particular, it follows that
for variational PDE systems, the number of equations equals the number of unknowns, N = m.)
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Relatively few models arising in modern applications turn out to be variational. Moreover, the
property of a PDE system being variational is heavily dependent on the choice of variables and on
the representation of a PDE system (e.g., Ref. 5). Generally, the “inverse problem of the calculus of
variations,” that is, the problem of determining whether or not a given DE system is equivalent to a
system of Euler-Lagrange equations, remains open. For a detailed discussion including a literature
review, see Ref. 20, p. 378.

For many classical, variational and non-variational PDE systems, conservation laws have been
found by ad hoc, or somewhat systematic, methods, including the Noether’s first theorem. An
interesting review devoted to comparison of several methods of computation of conservation laws
is found in Ref. 25. For non-variational systems, it is well-known that sets of local conservation
laws and local symmetries can be quite different. A rich example is provided in Ref. 7, where local
symmetries and conservation laws of a non-variational system of nonlinear telegraph equations
were classified and compared.

A rather general systematic and practically efficient direct construction (multiplier) method of
local conservation law construction, applicable to both variational and non-variational PDE sys-
tems, appears in Ref. 20, p. 330, and in a detailed fashion, in Refs. 2–4. The method consists in the
application of Euler differential operators EUα to seek sets of local multipliers {Λσ[U]}N

σ=1 yielding
divergence expressions

DiΦ̃[U] = Λσ[U]Rσ[U], (2.3)

where U = {Uk(z)}m
k=1 is an arbitrary vector function. Then on solutions Uk(z) = uk(z) of the PDE

system, local conservation law (2.2) holds. Though the properties of Euler operators and conser-
vation law characteristic form (2.2) have been known for a long time, the important aspect of the
method is the consideration of the conservation law multiplier determining equations,

EUα (Λσ[U]Rσ[U]) ≡ 0, α = 1, . . . ,N, (2.4)

off of the solution space.
The direct construction method has been successfully applied to a large number of linear and

nonlinear PDE systems arising in applications (see, e.g., Ref. 6 and references therein). The direct
method and related methods of flux computation have been implemented in the symbolic pack-
age GeM for Maple (see Refs. 9 and 10). Other symbolic software packages for conservation law
computations exist; see, e.g., Refs. 10 and 25.

Within the direct method, one obtains a linear overdetermined system of determining equations
for the unknown multipliers, in many ways similar to symmetry determining equations arising in
local symmetry analysis. Solution of such systems proceeds by usual techniques and software for
differential elimination (see, e.g., Ref. 9 and references therein). In computations using symbolic
software, the multiplier determining equations arising from (2.4) are solved more efficiently than,
for example, determining equations for the unknown fluxes that one would get trying to directly
solve (1.1). Indeed, the solution of the latter would involve arbitrary functions corresponding to
trivial conservation law fluxes.

In computations that use the direct method, singular multipliers that vanish on all solu-
tions of the given system may arise. Such multipliers correspond to no conservation laws of
the original system, and should be excluded. For example, taking Λ1[U] = (DiF i[U])/R1[U] and
Λσ,1[U] = 0 yields a divergence expression Λσ[U]Rσ[U] = DiF i[U] for a arbitrary differential
functions {F i[U]}; yet DiF i[u] = 0 is generally not a conservation law of the given PDE system.

In practical computations with the direct method, the main two related questions are as follows.
(a) How does one compute a full set (or a largest possible set) of conservation laws for a given PDE
system? (b) How does one avoid singular conservation law multipliers?

In order to obtain a larger set of conservation laws, one naturally allows the multipliers
{Λσ[U]} to depend on independent and dependent variables of the system, as well as on derivatives
up to some highest order. (For some classes of PDE systems, the highest possible conservation law
order is known theoretically.) However, in order to exclude singular multipliers that are singular
functions on the solution manifold of R, some set of leading derivatives and their differential
consequences have to be excluded from the multiplier dependence.
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A simultaneous answer to the above two questions is available for PDE systems written in
a general Kovalevskaya form. The latter is a solved form with respect to leading derivatives of
all dependent variables by a given independent variable, say zn, such that the right-hand sides of
the PDEs do not involve leading derivatives, as well as derivatives of orders higher than those
of the leading derivatives. For PDE systems written in a general Kovalevskaya form, every local
conservation law has equivalent characteristic form (2.2) with multipliers independent of the lead-
ing derivatives and their differential consequences.20 (Another important result for systems written
in the general Kovalevskaya form is the local existence and uniqueness of an analytic solution of a
Cauchy problem with analytic initial data, e.g., Refs. 20 and 21).

The existence of a general Kovalevskaya form for a given PDE system is equivalent to the
normality condition, in particular, the existence of a non-characteristic direction.19,20 However,
many examples of non-normal physical systems exist, for example, mechanical systems involving
an incompressibility constraint. An extension of the above result, namely, the existence, for every
local conservation law, of an equivalent conservation law with a characteristic form involving multi-
pliers independent of the leading derivatives, has been proven for a wider class of PDE systems
in Ref. 1 (see also Ref. 22). It is formulated as follows.

Definition 1. PDE system R (2.1) consisting of N = m equations and involving m dependent
variables u = {uk(z)}m

k=1 is in the extended Kovalevskaya form {Rσ[u] = 0}mσ=1 with respect to an
independent variable, say, zn, if each equation of R has the form

Rσ[u] = ∂ rσuσ

∂ (zn)rσ − Hσ[u] = 0, σ = 1, . . . ,m, (2.5)

where the functions Hσ[u] may involve z, u, and derivatives of u with respect to z up to some
maximal order ρ, and moreover, each ub is differentiated with respect to zn at most rb − 1 times,
b = 1, . . . ,m. In (2.5), rσ 6 ρ.

In other words, a PDE system in extended Kovalevskaya form is solved for the leading deriva-
tives

∂ rσuσ

∂ (zn)rσ , σ = 1, . . . ,m, (2.6)

and the right-hand sides Hσ[u] of the equations involve neither the leading derivatives nor their
differential consequences. The form of PDE system (2.5) is broader than the general Kovalevskaya
form, since the derivative orders in right-hand sides Hσ[u] of the equations in (2.5) are not restricted
by the orders rσ of leading derivatives (2.6). The following theorem holds.1

Theorem 1. Suppose R (2.1) is a locally solvable system of differential equations written in
extended Kovalevskaya form (2.5). Then the divergence expression of every local conservation law
(1.1) of R has an equivalent form

Di
Φi[U] =

m
σ=1

Λσ[U]
(
∂ rσUσ

∂ (zn)rσ − Hσ[U]
)
,

where the multipliers {Λσ[U]}mσ=1 are independent of the leading derivatives (2.6) and their differ-
ential consequences.

Said differently, this means that every conservation law of a PDE system satisfying the require-
ments of Theorem 1 can be obtained (up to conservation law equivalence) through the direct
construction method, and singular multipliers will not arise.

In a practical conservation law computation, if the PDE system of interest admits an extended
Kovalevskaya form (2.5), one would normally use that form for the sake of completeness. On the
other hand, for an initially complicated PDE system, its extended Kovalevskaya form can turn out
significantly more complicated. This can result in more involved expressions for the multipliers
{Λσ[u]}mσ=1 compared to those for the original form of the equations.
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We note that for a PDE system to admit a general or extended Kovalevskaya form, it is
necessary that the number of dependent variables and the number of equations coincide. A num-
ber of physical models, such as Maxwell’s equations, admit neither a general nor an extended
Kovalevskaya form. A discussion of the nature of such examples can be found in Refs. 19 and 20.

III. THE INCOMPRESSIBLE DYNAMIC MOONEY-RIVLIN HYPERELASTICITY MODELS

Consider a spatial region Ω0 ⊂ R3 in the reference (Lagrange) configuration, Ω0 being an
open bounded connected set having a Lipschitz boundary.12 The actual (Eulerian) domain occupied
by that body is Ω = φ(Ω0) ⊂ R3. The position x ∈ Ω of a material point depends on Lagrangian
coordinates (initial conditions) X = (X1,X2,X3) ∈ Ω0 at time t according to

xi = φi (X, t) , i = 1,2,3.

Sufficient smoothness of the mapping φ is assumed. The deformation gradient is given by

F(X, t) = ∇φ, F i
j =

∂φi

∂X j
= Fi j, (3.1)

and the Jacobian determinant satisfies the orientation-preserving condition

J = det F > 0.

In the current work, we restrict our attention to incompressible materials with J = 1, encompassing
a wide class of models.

The stress in the reference configuration is described by the first Piola-Kirchhoff tensor P. For
hyperelastic materials, a scalar volumetric strain energy function W = W (X,F) in the reference
configuration is prescribed, defining the material behavior. For incompressible models, the first
Piola-Kirchhoff tensor is given by

P = −p F−T + ρ0
∂W
∂F

, Pi j = −p (F−1) j i + ρ0
∂W
∂Fi j

, (3.2)

where p = p (X, t) is the hydrostatic pressure,12,18 and ρ0 = ρ0(X) is the (time-independent) body
density in the reference configuration. The actual density in Eulerian coordinates,

ρ = ρ(X, t) = ρ0(X)/J = ρ0(X),
is also time-independent for incompressible materials.

A constitutive relation for an isotropic homogeneous hyperelastic material is an expression for
the strain energy function W stated in terms of invariants of the (left and right) Cauchy-Green strain
tensors

B = FFT , C = FTF. (3.3)

The three principal invariants of the Cauchy-Green tensors are given by

I1 = TrB = F i
kF i

k, I2 =
1
2
[(TrB)2 − Tr(B2)] = 1

2
(I2

1 − BikBki), I3 = det B = J2, (3.4)

where I3 is constant for incompressible motions. The strain energy density function therefore has
the form W = W (I1, I2). In the current paper, we restrict our attention to the Mooney-Rivlin mate-
rials, a subclass of Hadamard materials,13,18 for which the constitutive relation is commonly written
as

W = a(I1 − 3) + b(I2 − 3), (3.5)

with W = 0 corresponding to the unperturbed equilibrium x = X . Model (3.5) with b = 0 is referred
to as the neo-Hookean model. The Mooney-Rivlin model (3.5) is being successfully used for the
description of a large number of materials in practical applications. The constants a,b > 0 are
experimentally determined material-dependent constitutive parameters.
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The full system of equations of motion of an incompressible hyperelastic material in three
dimensions is given by

ρ0xi
t t =

∂Pi j

∂X j
+ ρ0Gi, i = 1,2,3; J = det F = 1. (3.6)

The first equation expresses the balance of momentum for an infinitesimal volume in the reference
configuration; G = G(X, t) is the total body force per unit mass.

In the current work, we assume a two-dimensional setup with zero body forces and constant
mass density in the Lagrangian frame,

x1,2 = x1,2 �X1,X2, t
�
, x3 = X3, G1,2,3 = 0, ρ0 = const. (3.7)

Without loss of generality, by re-scaling the pressure, one may take ρ0 = 1, which is done below.
For the brevity and simplicity of notation, we will denote partial derivatives that appear in PDE
system (3.8a)–(3.8c) and related computations with subscript symbols, e.g.,

∂2x1

∂t2 ≡ x1
t t,

∂x1

∂X2 ≡ x1
2,

∂2x2

∂X1∂X2 ≡ x2
12,

∂2p
∂X2∂t

≡ p2 t,

and so on. In the above assumptions and notation, the two-dimensional equations of motion (3.6) of
an isotropic, homogeneous, incompressible hyperelastic solid are given by

R1[x,p] = 1 − J = 1 −
�
x1

1x2
2 − x1

2x2
1

�
= 0, (3.8a)

R2[x,p] = x1
t t −

�
α
�
x1

11 + x1
22

�
− p1x2

2 + p2x2
1

�
= 0, (3.8b)

R3[x,p] = x2
t t −

�
α
�
x2

11 + x2
22

�
− p2x1

1 + p1x1
2

�
= 0, (3.8c)

where α = 2(a + b) = const > 0 is a material parameter. Model (3.8) includes two semi-linear wave
equations with nonlinear first order coupling in p, and the incompressibility condition J = 1 in the
form of first-order PDE (3.8a) representing a differential constraint.

PDE system (3.8) is a variational system arising from a classical variational principle, with the
Lagrangian density having the form

L = −K +W − p(J − 1), (3.9)

where

K =
1
2
�(x1

t )2 + (x2
t )2

�
(3.10)

is the kinetic energy density, and

W =
α

2

(�
x1

1

�2
+
�
x1

2

�2
+
�
x2

1

�2
+
�
x2

2

�2)
(3.11)

is the potential (strain) energy density (3.5). It follows that PDEs (3.8) are self-adjoint as written. A
Lagrangian density equivalent to (3.9) up to a total divergence can be obtained from the homotopy
formula

L =
 1

0
u · R[λu] dλ,

where, in the notation of Section I, the variables of PDE system (3.8) are denoted by u(z) =
(p, x1, x2); z = (t,X1,X2).

Mooney-Rivlin equations (3.8) arise as Euler-Lagrange equations under the action of the corre-
sponding Euler operators, as follows:

Ep L = R1[x,p], Ex1L = R2[x,p], Ex2L = R3[x,p]. (3.12)
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Equations (3.8a)–(3.8c) admit extended Kovalevskaya form (2.5), which is derived in Sec. IV
and is used in the direct construction of conservation laws.

IV. THE EXTENDED KOVALEVSKAYA FORM AND THE DIRECT CONSERVATION LAW
CONSTRUCTION

PDE system (3.8) consists of equations of different orders and therefore does not admit
a classical or a general Kovalevskaya form.20 However, they can be shown to admit extended
Kovalevskaya form (2.5). Assume ∂x2/∂X2 , 0. The PDE R1 can be solved for the derivative
∂x1/∂X1, which is substituted into R2 and R3. The PDE R2 is subsequently solved for ∂2x2/∂(X1)2,
which is substituted into R3. Finally, one obtains a PDE system

R1[x,p] = x1
1 −

�
x2

2

�−1
S[x1, x2] = 0, (4.1a)

R 2[x,p] = x2
11 −

(
−x2

22 + α−1

x2
t t − p1x1

2 + p2
�
x2

2

�−1
S[x1, x2]

)
= 0, (4.1b)

R 3[x,p] = p1 − M[x1, x2] �x2
2

�2 �
x1

2x2
t t − x2

2x1
t t

�
+
�
x2

1N[x1, x2] + x1
2

�
x2

2p2

+α
�
x2

2x1
22N[x1, x2] − x2

2x2
12 −

�
x1

2N[x1, x2] + x2
1

�
x2

22

� 
= 0,

(4.1c)

where

N[x1, x2] = �
x1

2

�2
+
�
x2

2

�2
, M[x1, x2] = N[x1, x2]−1�x2

2

�−2
, S[x1, x2] = �

1 + x1
2x2

1

�
.

PDE system (4.1) is equivalent to the original PDEs (3.8) when ∂x2/∂X2 , 0. The leading deriva-
tives are given by

{x1
1, x2

11, p1}. (4.2)

As required, neither these derivatives nor their differential consequences are present in the right-
hand sides when the PDEs (4.1) are solved for the leading derivatives.

From Theorem 1 it follows that every local conservation law of Mooney-Rivlin equations (3.8)
and (4.1) has a characteristic form

3
σ=1

Λσ[x,p] Rσ[x,p] =
3

σ=1

Λσ[x,p] Rσ[x,p] = Dt
Ψ + DX1Φ1 + DX1Φ2 = 0, (4.3)

where the multipliers {Λσ[x,p]}3
σ=1 of the system in the extended Kovalevskaya form involve

neither leading derivatives (4.2) nor their differential consequences.

A. Local conservation law multipliers

For the system (4.1) in the extended Kovalevskaya form, we use the direct method to seek
local conservation laws (4.3). We find all conservation laws involving second-order multipliers
{Λσ[x,p]}3

σ=1 which may depend on t,X i, xi,p, and all derivatives of xi,p up to second order,
excluding leading derivatives (4.2) and their differential consequences, i.e., on the 24 variables,

t,X i, xi,p,pt,p2, xi
t, x

1
2, x

2
i ,pt t,p22,p2t, xi

2t, x
2
12, x

2
1t, x

i
t t, x

i
22, i = 1,2.

The following theorem holds.
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Theorem 2. The complete set of second-order conservation law multipliers admitted by
Mooney-Rivlin system (4.1) is given by

Λ1 = C1


2X1


∂

∂X2

(�
x2

2

�−1
x1

2x2
1

)
−
�
x2

2

�−2
x2

22



+X2

x1

22 − α−1x1
t t −

∂

∂X2

(�
x2

2

�−2
x2

1S[x1, x2]
)
+ x1

2 −
�
x2

2

�−2
x2

1S[x1, x2]


+C2


α−1x1p2 − 2x2

1 + x2 ∂

∂X2

(�
x2

2

�−1
x2

1

)
+C3

�
x2

2

�−2
x2

1

�
x1

2x2
2t + x1

t x
2
22 − 2x1

2tx
2
2

�
−
�
x2

2

�−1 �
x1
t x

2
12 + x1

2x2
1t

�
− ∂

∂t
�
x2

2

�−1


+C4


x1

22 − α−1x1
t t −

∂

∂X2

(�
x2

2

�−2
x2

1S[x1, x2]
)
− C5

∂

∂X2

(�
x2

2

�−1 �
1 + 2x1

2x2
1

�)
+ f1(t) ∂

∂X2

(�
x2

2

�−1
x2

1

)
+ f ′′1 (t) α−1x1x2

2

+ f2(t)p2 + f ′′2 (t) x2x2
2 + f3(t)x2

2, (4.4)

Λ2 = C1 α
−1�x2

2

�−2
N[x1, x2] �X1x1

2x2
2 − X2S[x1, x2]� − C2 α

−1x2�x2
2

�−1
N[x1, x2]

−C3 α
−1x1

t

�
x2

2

�−1
N[x1, x2] − C4 α

−1�x2
2

�−2
N[x1, x2]S[x1, x2]

−C5 α
−1 ∂x1

∂X2

�
x2

2

�−1
N[x1, x2]

+ f1(t) α−1�x2
2

�−1
N[x1, x2],

(4.5)

Λ3 = C1


−X1�x2

2

�−1
N[x1, x2] + X2�x2

2

�−2 �
x2

1N[x1, x2] + x1
2

�
−C2

�
x2

2

�−1 �
x1x2

2 − x2x1
2

�
+ C3

�
x2

2

�−1 �
x1
t x

1
2 + x2

t x
2
2

�

+C4
�
x2

2

�−2 �
x2

1N[x1, x2] + x1
2

�
+ C5

�
x2

2

�−1
N[x1, x2]

+ f1(t) �x2
2

�−1
x1

2 − f2(t) α.

(4.6)

In (4.4)–(4.6), {Ck}5
k=1 are arbitrary constants, and { f i(t)}3

i=1 are arbitrary functions of t.

Theorem 2 is proven by direct computation, which involves a solution of a linear overdeter-
mined system of 2869 determining equations. The computations are performed in Maple software
(version 17) using the GeM symbolic package (version 32.02)9 for the conservation law analysis
(for details, see Ref. 8). In particular, multiplier determining equations (2.4) are generated and
split using the GeM routine gem_conslaw_det_eqs, and simplified using the Maple differential
elimination routine rifsimp.23

B. The conserved forms and the physical meaning

The corresponding conserved densities and fluxes can be computed from multipliers (4.4)–(4.6)
through formula (4.3) via the direct flux computation method,10 to yield the following conservation
laws.

(1) Conservation of generalized momentum in the x1 direction. For arbitrary f1(t), we obtain the
conservation of generalized momentum in x1,

Dt

�
f1(t)x1

t − f ′1(t)x1�

−DX1

(
α f1(t)x1

1 − p f1(t)x2
2 −

1
2

f ′′1 (t)
�
x1�2x2

2

)
(4.7)

−DX2

(
α f1(t)x1

2 + p f1(t)x2
1 +

1
2

f ′′1 (t)
�
x1�2x2

1

)
= 0.
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(2) Conservation of generalized momentum in the x2 direction. For arbitrary f2(t), we obtain the
conservation of generalized momentum in x2,

Dt

�
f2(t)x2

t − f ′2(t)x2�

−DX1

(
α f2(t)x2

1 + p f2(t)x1
2 + f ′′2 (t)

�
x2�2x1

2

)
(4.8)

−DX2

(
α f2(t)x2

2 − p f2(t)x1
1 −

1
2

f ′′2 (t)
�
x2�2x1

1

)
= 0.

Note that one has the conservation of regular linear momentum in x1 and x2 direction for
f1,2(t) = const, respectively.

(3) Conservation of angular momentum in the x3 direction. From the multiplier set with coeffi-
cient C2, we obtain the conservation of angular momentum in the direction of x3, transverse to the
motions,

Dt

�
x1x2

t − x1
t x

2�

+DX1
�
α
�
x1

1x2 − x1x2
1

�
− px1x1

2 − px2x2
2

�

+DX2
�
α
�
x1

2x2 − x1x2
2

�
+ px1x1

1 + px2x2
1

�
= 0. (4.9)

(4) Conservation of energy. For the multiplier set corresponding to the coefficient C3, we obtain the
conservation of energy. A simplified form of this conservation law (modulo an equivalence relation)
can be written as follows:

Dt

(
α

2

(�
x1

1

�2
+
�
x1

2

�2
+
�
x2

1

�2
+
�
x2

2

�2)
+

1
2
�
x1
t

�2
+

1
2
�
x2
t

�2
)

−DX1
�
α
�
x1
t x

1
1 + x2

t x
2
1

�
− px1

t x
2
2 + px1

2x2
t

�

−DX2
�
α
�
x1
t x

1
2 + x2

t x
2
2

�
+ px1

t x
2
1 − px1

1x2
t

�
= 0. (4.10)

Here the kinetic energy and the potential energy are given by (3.10) and (3.11), respectively.

(5) Generalized incompressibility condition. The multiplier set with the function f3(t) corre-
sponds to a generalized version of the incompressibility condition, which has divergence conserva-
tion law form

Dt

(
f3(t) dt

)
− DX1

�
f3(t)x1x2

2

�
+ DX2

�
f3(t)x1x2

1

�
= 0. (4.11)

Expansion and simplification of the above expression, assuming f 3(t) , 0, yields the usual incom-
pressibility condition (3.8a).

Momenta in the material frame. There are three additional conservation laws for the two compo-
nents of linear momentum, and one component of the angular momentum, in the Lagrangian frame,
corresponding to the multiplier sets with coefficient C1, C4, and C5.

The vectors for the linear momentum p and the angular momentum m in the Lagrangian frame
are defined as follows:18

p ≡ ρ0FT xt, m ≡ X × p. (4.12)

These momenta are also referred to as material momenta.18 In our notation, they have the form

p = (x1
t x

1
1 + x2

t x
2
1)î + (x1

t x
1
2 + x2

t x
2
2) ĵ, (4.13)

m = (X1(x1
t x

1
2 + x2

t x
2
2) − X2(x1

t x
1
1 + x2

t x
2
1))k̂, (4.14)

where î, ĵ, and k̂ are the standard Cartesian basis vectors in the Lagrangian frame. The specific
forms of local conservation laws of the material momenta are given below.
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(6) Conservation of the material momentum in the X1 direction. This conservation law corre-
sponds to the constant C4 in the multipliers (4.4)–(4.6) and has the form

Dt

�
x1
t x

1
1 + x2

t x
2
1

�

+DX1

(
α

(�
x1

2

�2
+
�
x2

2

�2 −
�
x1

1

�2 −
�
x2

1

�2)
+ p − 1

2
�
x1
t

�2 − 1
2
�
x2
t

�2
)

−DX2
�
α
�
x1

1x1
2 + x2

1x2
2

��
= 0. (4.15)

(7) Conservation of the material momentum in the X2 direction. This conservation law corre-
sponds to the constant C5, and is given by

Dt

(
x1
t x

1
2 + x2

t x
2
2

)
− DX1

�
α
�
x1

1x1
2 + x2

1x2
2

��

+DX2

(
α

(�
x1

1

�2
+
�
x2

1

�2 −
�
x1

2

�2 −
�
x2

2

�2)
+ p − 1

2
�
x1
t

�2 − 1
2
�
x2
t

�2
)
= 0. (4.16)

(8) Conservation of the material angular momentum in the X3 direction. The density of conser-
vation law corresponding to the constant C1 in (4.4)–(4.6) is the k̂-component of (4.14). The local
conservation law is given by

Dt

(
X2(x1

t x
1
1 + x2

t x
2
1) − X1(x1

t x
1
2 + x2

t x
2
2)
)

+DX1

(α
2

X2
(
−
�
x1

1

�2 −
�
x2

1

�2
+
�
x1

2

�2
+
�
x2

2

�2)
+αX1 �x1

1x1
2 + x2

1x2
2

�
+ X2p − 1

2
X2�x1

t

�2 − 1
2

X2�x2
t

�2)
+DX2

(α
2

X1
(
−
�
x1

1

�2 −
�
x2

1

�2
+
�
x1

2

�2
+
�
x2

2

�2)
−αX2 �x1

1x1
2 + x2

1x2
2

�
− X1p +

1
2

X1�x1
t

�2
+

1
2

X1�x2
t

�2)
= 0. (4.17)

V. LOCAL SYMMETRIES OF THE MOONEY-RIVLIN EQUATIONS AND THEIR
RELATIONSHIP WITH LOCAL CONSERVATION LAWS

Since 2D Mooney-Rivlin equations (3.8) are self-adjoint as written, the Noether’s first theorem
holds, establishing a one-to-one relationship between the local variational symmetries and local
conservation laws of the model.

We now compute local symmetries, identify the variational ones, and relate the symmetry
generators with local conservation law multipliers of the PDEs (3.8).

A. First-order local symmetries

Local symmetries of the two-dimensional Mooney-Rivlin model can be computed using any
suitable representation of the governing equations (3.8). We apply the Lie’s algorithm to extended
Kovalevskaya form (4.1), seeking symmetry generators in the evolutionary form

X = ζ k(z,u, ∂u) ∂

∂uk
, (5.1)

with z = (t,X1,X2), u = (p, x1, x2), and ∂u representing all first-order partial derivatives of u. First-
order symmetries (5.1) include point symmetries

Y = ξ i(z,u) ∂

∂zi
+ ηk(z,u) ∂

∂uk
, (5.2)

in particular,

ζ k = ηk − uk
i ξ

i.
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On solutions of the model, leading derivatives (4.2) are represented by the right-hand sides of the
PDEs (4.1). Therefore, instead of these leading derivatives, symmetry generators (5.1) are sought
as functions of other derivatives appearing in the right-hand sides of PDEs (4.1). The following
result is obtained by a direct Maple-based computation using the GeM symbolic software package.8,9

Symmetry determining equations are generated and split using the GeM routine gem_symm_det_eqs
(see also Ref. 24).

Theorem 3. Two-dimensional Mooney-Rivlin equations (3.8) and (4.1) are invariant under an
infinite-dimensional group of Lie point transformations given by the infinitesimal generators,

Y1 =
∂

∂t
, Y2 =

∂

∂X1 , Y3 =
∂

∂X2 ,

Y4 = X2 ∂

∂X1 − X1 ∂

∂ X2 , Y5 = x2 ∂

∂x1 − x1 ∂

∂x2 , (5.3)

Y6 = F1(t) ∂

∂x1 − F ′′1 (t) x1 ∂

∂p
, Y7 = F2(t) ∂

∂x2 − F ′′2 (t) x2 ∂

∂p
,

Y8 = F3(t) ∂

∂p
, Y9 = t

∂

∂t
+ X1 ∂

∂X1 + X2 ∂

∂X2 + x1 ∂

∂x1 + x2 ∂

∂x2 ,

where F1(t), F2(t), and F3(t) are arbitrary functions of time. No additional first-order symmetries
(5.1) arise.

The symmetries Y1,Y2,Y3 correspond to time translations and space translations in the
Lagrangian frame; Y4 and Y5 correspond to rotations in the material and the actual frames; Y6 and
Y7 are generalized Galilei transformations, which include translations in x1 and x2 and the usual
Galilei transformations; Y8 is the translation of the pressure by an arbitrary function of time; Y9

is a generator of a scaling group. The basis of the Lie algebra of point symmetries (5.3) is in the
agreement with Ref. 17, where the commutator table of generators (5.3) is also computed, and
invariant solutions are considered.

B. The form of local conservation law multipliers for the variational formulation

Consider a local conservation law of a PDE system of maximal rank. A characteristic repre-
sentation (2.2) of this conservation law, and therefore the form of multipliers, clearly depends on
the writing of the PDE system. One can employ the formula (4.3) to derive multipliers {Λσ}3

σ=1 for
the variational formulation (3.8) of the governing equations, using the known multipliers {Λσ}3

σ=1
(4.4)–(4.6) for extended Kovalevskaya form (4.1). It is straightforward to show that the multipliers
{Λσ}3

σ=1 have a rather simple form,

Λ1 = C1(X1p2 − X2p1) + C3pt + C4p1 + C5p2 + f ′′1 (t)x1 + f ′′2 (t)x2 + f3(t),
Λ2 = C1(X2x1

1 − X1x1
2) + C2x2 − C3x1

t − C4x1
1 − C5x1

2 + f1(t),
Λ3 = C1(X2x2

1 − X1x2
2) − C2x1 − C3x2

t − C4x2
1 − C5x2

2 + f2(t).
(5.4)

Remark 1. It is important that for completeness of the conservation law computation, one has
to use extended Kovalevskaya form (4.1) of the Mooney-Rivlin model. The form of the multipliers
(5.4) for original equations of motion (3.8) is determined post factum, after having performed the
computation on the extended Kovalevskaya system. The normal application of the direct method
to original equations (3.8) would fail to produce the full set of conservation laws. Indeed, in order
to avoid multipliers singular on solutions of first PDE (3.8a), one would need to exclude from
{Λσ}3

σ=1 at least one derivative appearing in the PDE (3.8a). Yet doing so would clearly lead to the
loss of the conservation law corresponding to the multipliers with C1 , 0.

Remark 2. In the direct conservation law computation for extended Kovalevskaya system
(4.1a)–(4.1c), one gets a linear overdetermined system of 2869 linear determining PDEs for the
multipliers {Λσ}3

σ=1 (4.4)–(4.6). In a similar computation for the original equations of motion (3.8),
one has 5711 multiplier determining PDEs for the multipliers {Λσ}3

σ=1 (5.4). The simplification
times using Maple rifsimp routine are comparable in both cases.
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C. Comparison of symmetries and conservation laws

According to Noether’s first theorem, for the variational formulation (3.8) of the incompress-
ible Mooney-Rivlin equations, there is a one-to-one correspondence between local symmetries in
evolutionary form (5.1) and local conservation law multipliers. Rewriting point symmetries’ (5.3) in
the evolutionary form and comparing them with multipliers (5.4), one arrives at the correspondence
presented in Table I. Clearly, all symmetries (5.3) except for the scaling symmetry Y9 are variational
symmetries. In particular, symmetry components for the hydrostatic pressure correspond to the
multiplier Λ1; symmetry components for x1, x2 correspond to the multipliers Λ2, Λ3.

VI. DISCUSSION

In the current paper, the nonlinear PDE system of equations of motion of incompressible hy-
perelastic Mooney-Rivlin material (3.6) was considered in a two-dimensional Cartesian framework.
The system involves a coupled set of semi-linear wave equations, and a first-order differential
constraint, corresponding to the incompressibility condition. The model involves three independent
variables X1,X2, t and three dependent variables x1, x2,p and admits a classical variational formula-
tion with the Lagrangian given by (3.9). The equations of motion can be represented in a variational
form (3.8) arising as Euler-Lagrange equations (3.12).

The main goal of this paper is to illustrate the optimal procedure for systematic construction of
local conservation laws on an example of a highly nontrivial physical PDE system that admits an
extended Kovalevskaya form. As per Theorem 1, all local conservation laws of such systems arise
from nonsingular multipliers independent of leading derivatives and their differential consequences.

In Section IV, the governing equations were rewritten in extended Kovalevskaya form (2.5)
with respect to X1, and the direct method was applied to seek second-order conservation law

TABLE I. Comparison of Lie point symmetries (5.3) in the evolutionary form and local conservation law multipliers (5.4)
of the variational form of incompressible Mooney-Rivlin equations (3.8).

Symmetry generator Conservation law multipliers

Y1= pt
∂
∂p + x

1
t

∂
∂x1 + x

2
t

∂
∂x2

[time translation]

Λ1= pt, Λ2= x
1
t, Λ3= x

2
t

[conservation of energy]

Y2= p1
∂
∂p + x

1
1

∂
∂x1 + x

2
1

∂
∂x2

[translation in X1]

Λ1= p1, Λ2= x
1
1, Λ3= x

2
1

[conservation of momentum in X1]

Y3= p2
∂
∂p + x

1
2

∂
∂x1 + x

2
2

∂
∂x2

[translation in X2]

Λ1= p2, Λ2= x
1
2, Λ3= x

2
2

[conservation of momentum in X2]

Y4=
�
X1p2−X2p1

�
∂
∂p

+
�
X1x1

2−X
2x1

1

�
∂

∂x1 +
�
X1x2

2−X
2x2

1

�
∂

∂x2

[rotations in X1-X2 plane]

Λ1= X1p2−X2p1,
Λ2= X1x1

2−X
2x1

1,
Λ3= X1x2

2−X
2x2

1
[angular momentum in Lagrangian frame]

Y5= x2 ∂
∂x1 − x1 ∂

∂x2

[rotations in x1-x2 plane]

Λ1= 0, Λ2= x
2, Λ3=−x1

[angular momentum in Eulerian frame]

Y6=−F′′1 (t) x1 ∂
∂p +F1(t) ∂

∂x1

[translation (F2= const)/generalized Galilean boost in x1]

Λ1=− f ′′1 (t)x1,Λ2= f1(t),Λ3= 0
[momentum ( f1= const)/generalized momentum in x1]

Y7=−F′′2 (t) x2 ∂
∂p +F2(t) ∂

∂x2

[translation (F2= const)/generalized Galilean boost in x2]

Λ1=− f ′′2 (t)x2,Λ2= 0,Λ3= f2(t)
[momentum ( f2= const)/generalized momentum in x2]

Y8= F3(t) ∂
∂p

[time dependent translation in p]

Λ1= f 3(t), Λ2= 0, Λ3= 0
[generalized incompressibility condition]

Y9=
�
x1−X1x1

1−X
2x1

2− t x
1
t

�
∂

∂x1 +�
x2−X1x2

1−X
2x2

2− t x
2
t

�
∂

∂x2 +
�
−X1p1−X2p2− t pt

�
∂
∂p

[scaling]

[No corresponding conservation law]
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multipliers. The conserved densities and fluxes were consequently derived in Section IV B. The
set of conservation laws includes classical ones such as energy, momenta, and angular momenta
in material (Lagrangian) and actual (Eulerian) configurations, as well as extended conservation
law families involving arbitrary functions of time: the generalized momenta and the generalized
incompressibility condition. Interestingly, to the infinite families of generalized linear momentum
conservation laws (4.7) and (4.8) in the Eulerian frame, there correspond single conservation laws
(4.15) and (4.16) in the Lagrangian frame. This latter result seems somewhat counterintuitive, given
the formal equivalence of the two frames, and the invariance of conservation laws with respect to
local coordinate transformations (e.g., Ref. 6). It would be of interest to investigate this question
further, rewriting incompressible Mooney-Rivlin equations (3.8) by interchanging dependent and
independent spatial variables and studying the resulting PDE system.

Mechanical models of compressible and incompressible elastic solids without dissipation are
known to admit classical variational principles (e.g., Ref. 14). Due to the presence of the special
property, namely, the variational structure, of the equations at hand, it was of interest to attempt
the conservation law construction with the help of the Noether’s first theorem. It is normally done
through the computation of local symmetries, identification of the variational ones, and the use of
the evolutionary forms of the latter as conservation law multipliers (e.g., Ref. 5). A complete set
of first-order symmetries (5.3) was computed in Section V A (only point symmetries were found).
All symmetries but the scaling symmetry Y9 are variational symmetries. The correspondence be-
tween these symmetries and the conservation law multipliers of the Mooney-Rivlin equations in
variational form (3.8) was established and listed in Table I.

We now turn to the question most important from the practical point of view: for a given
PDE system, what is the preferred way of local conservation law computations? For a PDE sys-
tem without a variational structure, admitting a Kovalevskaya form, the conservation laws can be
computed using the following approaches:

(a) Direct construction method applied to the system as it stands, or in some other preferred form.
(b) Direct construction method applied to the system in the Kovalevskaya form (standard, general,

or extended).
(c) “Brute force” computation of conservation law fluxes/density from the local form (1.1).

If a given PDE system has a variational formulation, there is an additional approach:

(d) Computation of local variational symmetries and application of the Noether’s first theorem.

For the example of the Mooney-Rivlin equations considered in this paper, the analysis presented
above clearly hints that (b) is the method of choice.

• On comparing (a) and (b), one observes that even though multipliers {Λσ}3
σ=1 (5.4) have a

much simpler writing than the multipliers {Λσ}3
σ=1 (4.4)–(4.6) for the Kovalevskaya form of

the system, one would not be able to compute the former without an a priori knowledge of
their structure (see Remark 1).
• On comparing the approaches (b) and (c), we note that (b) is clearly preferred for symbolic

computations. It is so because generic unknown fluxes/density following from (1.1) are defined
up to arbitrary dependence on trivial divergence expressions; this freedom leads to a substan-
tially increased complexity of, and freedom in, the flux/density determining equations.
• Finally, we compare the approaches (b) and (d). In order to use Noether’s theorem, one needs

to compute the variational symmetries. Symmetry generators arise as solutions of symmetry
determining equations on the solution manifold of the given PDE system. To compute a com-
plete set of point or local symmetries, one needs to use the Kovalevskaya form of the given
equations. On the solution space, leading derivatives present in symmetry generators must be
replaced by the corresponding derivatives from the right-hand sides of the equations, leading
potentially to complicated forms of symmetry generators, which can be simplified on the
solution space. After the computation of the local symmetries, non-variational ones need to be
excluded. The variational symmetries subsequently yield conservation law multipliers. None
of these complications arises when one computes conservation law multipliers through the
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direct method. Indeed, the multiplier determining equations are solved off the solution space of
the given PDEs.

In practical conservation law computations for PDE systems that admit a standard, a general,
or an extended Kovalevskaya form, it is important to use such a form for the computations, even
though it might lead to more complicated multiplier forms. The use of the Kovalevskaya form
ensures that no conservation laws are missed when one poses a general form of non-singular
multipliers depending on derivatives up to some fixed order.

When a given PDE system does not have a Kovalevskaya form, or when the completeness
of conservation law computations is not a requirement, the direct method can be applied to any
preferred form of the equations at hand. Numerous examples of such computations exist in the
literature, including Refs. 11, 15, and 16, where rather complicated dynamical models arising in
fluid and solid mechanics are considered.
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