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Partial differential equations of the form div N = 0, N t + curl M = 0 involving two
vector functions in R3 depending on t, x, y, z appear in different physical contexts, in-
cluding the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD)
equations, and Maxwell’s equations. It is shown that these equations possess an
infinite family of local divergence-type conservation laws involving arbitrary func-
tions of space and time. Moreover, it is demonstrated that the equations of interest
have a rather special structure of a lower-degree (degree two) conservation law in
R4(t, x, y, z). The corresponding potential system has a clear physical meaning. For
the Maxwell’s equations, it gives rise to the scalar electric and the vector magnetic
potentials; for the vorticity equations of fluid dynamics, the potentialization inverts
the curl operator to yield the fluid dynamics equations in primitive variables; for MHD
equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij
potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree
conservation law is further shown to yield curl-type conservation laws and determined
potential equations in certain lower-dimensional settings. Examples of new nonlo-
cal conservation laws, including an infinite family of nonlocal material conservation
laws of ideal time-dependent MHD equations in 2 + 1 dimensions, are presented.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868218]

I. INTRODUCTION

Conservation laws admitted by a system of partial differential equations (PDE) provide important
analytical information about the model, and have multiple practical applications. In particular, local
divergence-type conservation laws given by divergence expressions

�t + div � = 0 (1.1)

are important in both analysis and numerical modeling. [Throughout the paper, subscripts denote
partial derivatives, e.g., ut = ∂u/∂t. Boldface is used for vectors. By default, all vector quantities are
assumed to have three spatial components, e.g., � = (�1,�2,�3), and vector calculus operations
grad, div, and curl are taken with respect to the Cartesian spatial coordinates x, y, z.]

From the theoretical point of view, expressions (1.1) provide local quantities � conserved by
the model, such as mass, momentum, or energy density, as well as global conserved quantities under
appropriate boundary conditions. Local conservation laws are also used for the analysis of existence,
uniqueness, and global solution behavior (e.g., Refs. 8, 23, and 25). Divergence-type conservation
laws can be used to introduce nonlocal variables, such as potentials or stream functions. The
corresponding nonlocally related (potential) systems of equations can yield nonlocal linearizations,
additional (nonlocal) symmetries, conservation laws, and exact solutions.9 From the point of view
of numerical simulation, modern finite-element methods, such as discontinuous Galerkin methods,
are based on divergence forms of the given equations.
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Curl-type conservation laws in time-independent three-dimensional settings reflect geometrical
properties of vector fields and yield the corresponding scalar potentials, such as the velocity potential
for irrotational flows, and magnetic flux function in ideal magnetohydrodynamics (MHD).

The existence of local conservation laws is traditionally associated with local symmetries
through the Noether’s theorem, which, however, only holds for variational PDE systems. For a
general PDE system, the algorithmic and computationally efficient direct method3 is available; it is
applicable to variational and non-variational models. We briefly review the method and its software
implementation in Sec. II.

For models involving more than two independent variables, potential variables following from
divergence-type conservation laws are underdetermined, that is, subject to gauge freedom.4, 9, 19 In
that context, lower-degree conservation laws that yield less underdetermined or determined potentials
are of importance. Lower-degree conservation laws are known to arise in models less frequently
than divergence-type conservation laws; their existence is usually associated with special geometrical
structure of the problem.

The current paper is devoted to the study of conservation properties of the system of equations
given by

div N = 0,

N t + curl M = 0,
(1.2)

where N, M are vector fields depending on t, x, y, z. We call the PDEs (1.2) vorticity-type equa-
tions. These equations arise as a part of several important nonlinear and linear physical models,
including the vorticity formulation of viscous and inviscid fluid dynamics, Maxwell’s equations,
and MHD equations (for the latter, both in the ideal case and in the case of nonzero resistivity/finite
conductivity).

The rest of the paper is organized as follows. In Sec. II, we review the notion of divergence-type
conservation laws, their direct construction, and resulting potential systems. In Sec. III, we show that
PDE systems that contain Eqs. (1.2) have an infinite family of divergence-type local conservation
laws, and discuss their specific forms for the three physical models of interest.

Section IV discusses lower-degree conservation laws and the corresponding potential systems. It
is shown that the four equations (1.2) are the components of a lower-degree (degree two) conservation
law. The form of this conservation law and the corresponding potential equations are discussed for
the considered physical models. For the system of incompressible fluid dynamics equations, the
potentialization of the lower-degree conservation law integrates the vorticity formulation, recovering
the Navier-Stokes equations in primitive variables. In particular, the fluid velocity and pressure arise
as potential variables. For the MHD system, the potential equations provide a direct generalization of
the well-known Galas-Bogoyavlenskij potential14, 22 onto time-dependent and/or non-ideal plasma
flows.

Section V is devoted to reduced forms of Eqs. (1.2) in three and 2 + 1 dimensions. In such
a setting, the degree two conservation law yields a curl-type conservation law and a determined
potential system. The latter is used to derive new nonlocal conservation laws for the nonlinear
magnetohydrodynamics equations, in both the ideal case and the case of finite conductivity.

Finally, Sec. VI contains a brief discussion of results and open problems.

II. CONSERVATION LAWS AND POTENTIAL SYSTEMS

A. Divergence-type conservation laws

Consider a system R{x ; u} of N partial differential equations of order k, with n ≥ 2 independent
variables x = (x1, . . . , xn) and m ≥ 1 dependent variables u = (u1(x), . . . , um(x)), given by

Rσ [u] ≡ Rσ (x, u, ∂u, . . . , ∂k u) = 0, σ = 1, . . . , N . (2.1)

Here ∂u denotes the set of all first order partial derivatives, and ∂ pu denotes all pth-order partial
derivatives. In addition, we denote partial derivatives by uμ

i = uμ

xi = ∂uμ/∂xi , and assume summa-
tion in all repeated indices.
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Definition 2.1. A divergence-type conservation law of a PDE system (2.1) is a divergence
expression of the form

div �[u] ≡ Di�
i (x, u, ∂u, . . . , ∂r u) = 0, (2.2)

in terms of total derivative operators

Di = ∂

∂xi
+ uμ

i

∂

∂uμ
+ uμ

i i1

∂

∂uμ

i1

+ uμ

i i1i2

∂

∂uμ

i1i2

+ · · · , (2.3)

holding on solutions of a given PDE system R{x ; u}.

In particular, when x = (t, x1, . . . , xn), where t is time and x1, . . . , xn are spatial variables, the
conservation law (2.2) has the form

Dt� + Di�
i = 0, (2.4)

where the density � and the spatial fluxes � i can depend on independent and dependent variables
of the given equations, as well as on their partial derivatives. On solutions of the given PDE system,
the forms (2.4) and (1.1) of the conservation law are equivalent.

Definitions and properties of divergence-type conservation laws are discussed in further detail,
for example, in Refs. 9, 19, and 26. For a given PDE system, one is interested in finding sets of
non-trivial, non-equivalent, linearly independent conservation laws. A trivial conservation law of
a normal PDE system26 is a divergence expression that is zero due to vector calculus identities, or
if its density and fluxes vanish on solutions of the given PDE system. Two conservation laws are
equivalent if they differ by a trivial conservation law. A set of conservation laws is linearly dependent
if their nontrivial linear combination is a trivial conservation law.

Local divergence-type conservation laws (2.4) are systematically sought by applying the direct
method reviewed below.

When the density and/or fluxes in (2.4) involve nonlocal (integral) quantities, the corresponding
conservation law is nonlocal. Nonlocal conservation laws can be found through the application of
the direct method to potential systems (see, e.g., Refs. 9–11, 19 and references therein).

B. Direct construction of divergence-type conservation laws

The direct conservation law construction method1, 3, 9 consists in finding sets of multipliers
{�σ [U]}N

σ=1 = {�σ (x, U, ∂U, . . . , ∂�U)}N
σ=1, depending on some prescribed independent and de-

pendent variables and possibly their derivatives to some finite order �, which, taken in linear
combinations with the given PDEs, yield a divergence expression

�σ [U]Rσ [U] ≡ Di�
i [U] (2.5)

holding for an arbitrary set of functions U. Then on solutions U = u(x) of the PDE system (2.1),
one has a local conservation law (2.2):

�σ [u]Rσ [u] = Di�
i [u] = 0. (2.6)

In order to find multipliers that yield divergence-type conservation laws through the formula (2.6),
one uses the well-known fact that an expression F(U) is annihilated by all Euler operators

EU j = ∂

∂U j
− Di

∂

∂U j
i

+ · · · + (−1)sDi1 . . . Dis

∂

∂U j
i1...is

+ · · · , i, iq=1, . . . , n, j = 1, . . . , m,

(2.7)
if and only if F(U) is a divergence expression (e.g., Refs. 9 and 26). It follows that the multiplier
determining equations are given by

EU j

(
�σ [U]Rσ [U]

) = 0, j = 1, . . . , m. (2.8)

After the linear equations (2.8) are solved and multipliers �σ are found, one computes the conser-
vation law fluxes and/or density using (2.5) (see, e.g., Ref. 16).
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The majority of PDE systems that arise in applications can be written in a solved form with
respect to some leading derivatives. For such systems that have no lower-order differential con-
sequences, the direct construction method is complete, i.e., all local divergence-type conservation
law (2.2) arise through linear combinations (2.6) for corresponding sets of multipliers {�σ [U]}.
Moreover, for Cauchy-Kovalevskaya PDE systems, there is a one-to-one correspondence between
sets of multipliers and equivalence classes of local divergence-type conservation laws.2, 9

The direct construction method has been implemented in several software packages, including
the GeM package for Maple,15 which is used in the current paper.

C. Potential systems following from divergence-type conservation laws

Let R{x, t ; u} be a PDE system with two independent variables (x, t):

Rσ [u] = Rσ (x, t, u, ∂u, . . . , ∂k u) = 0, σ = 1, . . . , N . (2.9)

Divergence-type conservation laws of such systems have the form

Dt� + Dx� = 0. (2.10)

Such conservation laws have been derived for a variety of mathematical models.

Definition 2.2. A potential system S{x, t ; u, v} is the union of the equations of given system
(2.9) and the potential equations following from the conservation law (2.10):

Rσ [u] = Rσ (x, t, u, ∂u, . . . , ∂k u) = 0, σ = 1, . . . , N ,

vx = �[u], vt = −�[u].
(2.11)

In particular, local symmetries of the potential system S{x, t ; u, v} (2.11) whose x- and/or
t- and/or u-components involve the potential variables v, yield nonlocal symmetries of the given
system (2.9). Similarly, local conservation laws of the potential system S{x, t ; u, v} not equivalent
to any conservation law of the given system R{x, t ; u} yield nonlocal conservation laws of the given
PDE system. For details on the systematic construction of nonlocally related PDE systems and their
applications, see, e.g., Refs. 9–11.

In the case of PDE systems involving n ≥ 3 independent variables, the application of divergence-
type conservation laws to the construction of potential systems is less straightforward. Indeed, in the
case of three independent variables (x, y, z), each divergence-type conservation law

div � = Dx�
1 + Dy�

2 + Dz�
3 = 0 (2.12)

leads to the three scalar potential equations

� = curl A, (2.13)

where the vector potential A = (A1, A2, A3) is subject to gauge freedom

A → A + grad φ(x, y, z), (2.14)

and the corresponding potential system is under-determined.
In general, for PDE systems involving n ≥ 3 independent variables, it is known that any local

symmetry of an under-determined potential system projects on a local symmetry of the given PDE
system.4 In order to obtain nonlocal symmetries, an under-determined potential system must be
appended with additional gauge constraint(s) eliminating the gauge freedom. Finding an “optimal”
gauge constraint for a specific potential system still remains an open problem.

Under-determined potential systems, however, can yield nonlocal conservation laws (e.g.,
Refs. 6 and 20). In order to seek nonlocal conservation laws of a given PDE system arising as
local conservation laws of its potential system, it is necessary to consider conservation law multipli-
ers that essentially depend on the nonlocal variable(s).9, 24 All divergence-type conservation laws of
an under-determined potential system are invariant under the gauge symmetry.6 For further details,
see, e.g., Ref. 9.
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Section III is devoted to the computation of local conservation laws of the PDEs (1.2) arising
from zeroth-order multipliers.

A more general framework that includes lower-degree conservation laws and resulting potential
systems is considered in Sec. IV A below. In particular, lower-degree conservation laws can lead to
potential systems requiring fewer or no gauge constraints.

III. A FAMILY OF DIVERGENCE-TYPE CONSERVATION LAWS OF THE SYSTEM (1.2)

A. The conservation laws

Consider the problem of seeking divergence-type conservation laws for the four scalar equations
(1.2). The following theorem holds.

Theorem 3.1 (Principal Result 1). Consider a PDE system R{t, x, y, z ; u} involving indepen-
dent variables t, x, y, z, which includes equations in the form (1.2). Then such a system admits an
infinite family of divergence-type conservation laws given by

(N · ∇F)t + div(M × ∇F − Ft N) = 0, (3.1)

depending on an arbitrary function F = F(t, x, y, z).

Proof. Applying the direct method with multipliers depending on t, x, y, z, one finds an admissible
set of multipliers

�1 = −Ft , �2 = Fx , �3 = Fy, �4 = Fz,

where F(t, x, y, z) is an arbitrary function. The conserved form (3.1) follows directly. Conservation
laws (3.1) are nontrivial and are not equivalent to the given PDEs (4.18) through an addition of a
trivial conservation law. �

The conservation laws (3.7) express the rate of change of a linear combination of the components
of the field N taken with weights that are components of a gradient of an arbitrary function. The
local conservation laws (3.7) can be written in the global form

d

dt

∫
V

(N · ∇F) dV +
∮

∂V
(M × ∇F − Ft N) · d S = 0, (3.2)

which corresponds to the conserved quantity

d R

dt
= 0, R =

∫
V

(N · ∇F) dV, (3.3)

when the spatial fluxes vanish on the boundary ∂V of the physical domain V , or at infinity if the
domain is unbounded.

Examples specific to three applications are now presented in a unified way.

B. Examples

1. Vorticity conservation laws in viscous and inviscid fluid dynamics

The Navier-Stokes equations of incompressible constant-density viscous fluid flow without
external forcing in three spatial dimensions, in primitive variables, are given by

div V = 0, (3.4a)

V t + (V · ∇)V + grad p = ν ∇2u, (3.4b)

where the fluid velocity vector V = (V 1, V 2, V 3) and the fluid pressure p are functions of t, x, y, z,
and ν = const. is the kinematic viscosity. The Euler equations are obtained from [(3.4a) and (3.4b)]
in the inviscid limit ν → 0.
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The vorticity formulation of the Navier-Stokes equations [(3.4a) and (3.4b)] follows from
defining the fluid vorticity as w = curl V . The vorticity dynamic equation is obtained by taking
the curl of the momentum equation (3.4b). Hence, the vorticity formulation of the Navier-Stokes
equations is

div V = 0, (3.5a)

w = curl V , (3.5b)

div w = 0, wt + curl (w × V − ν ∇2V ) = 0. (3.5c)

The PDEs (3.5c) evidently have the form (1.2), with vector fields N = Nw, M = Mw given by

Nw = w, Mw = w × V − ν ∇2V . (3.6)

From Theorem 3.1, it follows that the equations of incompressible fluid flow, both in viscous and
inviscid setting, have an infinite family of vorticity conservation laws

(w · ∇F)t + div
(
[w × V − ν ∇2V ] × ∇F − Ft w

) = 0, (3.7)

for an arbitrary choice of F(t, x, y, z), holding both for viscous and inviscid flows.

2. Magnetic conservation laws in general magnetohydrodynamics

The system of isotropic MHD equations in 3+1 dimensions has the form

ρt + div ρV = 0, (3.8a)

ρV t + ρ(V · ∇)V = − 1

μ
B × curl B − grad P + μ1 ∇2V , (3.8b)

Bt = curl(V × B) + η ∇2 B, (3.8c)

div B = 0, (3.8d)

where the plasma velocity V = (V 1, V 2, V 3), the magnetic field B = (B1, B2, B3), the plasma
density ρ and the pressure P are functions of t, x, y, z; μ = const. is the magnetic permeability of
free space; μ1 = const. is the plasma viscosity coefficient; η = 1/(σμ) is the resistivity coefficient;
σ = const. is the conductivity coefficient. A commonly chosen limit of ideal MHD equations is
obtained when η = μ1 = 0. [The system [(3.8a)–(3.8d)] must be closed with an additional equation
of state, which is not important at this point.]

Since (3.8d) holds, the magnetic vector potential can be introduced by B = curl A(t, x, y, z).
Consequently, the PDEs (3.8c), (3.8d) have the form (1.2), with N = Nm , M = Mm :

Nm = B, Mm = B × V − η ∇2 A. (3.9)

Note that due to the gauge freedom A → A + grad φ, one may choose a vector potential satisfying
div A = 0. In that case,

curl B = curl(curl A) = grad(div A) − ∇2 A = −∇2 A.

Further, the plasma electric current density and the conductivity coefficient are given, respectively,
by

J = 1

μ
curl B, σ = 1

μη
.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.233.4.254 On: Mon, 24 Mar 2014 18:16:47



033508-7 Alexei F. Cheviakov J. Math. Phys. 55, 033508 (2014)

Consequently, by Theorem 3.1, we observe that the general MHD system has an infinite family of
local divergence-type magnetic conservation laws

(B · ∇F)t + div

([
B × V + 1

σ
J
]

× ∇F − Ft B
)

= 0, (3.10)

holding for an arbitrary F = F(t, x, y, z).
For ideal plasmas where σ → + ∞, the conservation laws (3.10) do not involve the current

density.

3. Conservation laws of general and vacuum Maxwell’s equations

The dimensionless PDE system of Maxwell’s equations is given by

div B = 0, Bt = − curl E, (3.11a)

Et = curl B − J, div E = ρ, (3.11b)

where the charge density ρ, the magnetic field, the electric field and the current density B, E, J ∈ R3

are functions of t, x, y, z.
Equations (3.11a) are in the form (1.2) as they stand, with N = B, M = E. From Theorem 3.1

it follows that the Maxwell’s equations [(3.11a) and (3.11b)] have an infinite set of local divergence-
type “magnetic” conservation laws

(B · ∇F)t + div (E × ∇F − Ft B) = 0 (3.12)

depending on an arbitrary function F = F(t, x, y, z).
For vacuum Maxwell’s equations given by [(3.11a) and (3.11b)] with J = ρ = 0, the second

pair of equations (3.11b) is also in the required form (1.2), with N = E and M = −B. Here one
has an additional family of “electric” conservation laws

(E · ∇G)t − div (B × ∇G − Gt E) = 0 (3.13)

holding for an arbitrary function G = G(t, x, y, z).
The conservation laws (3.12), (3.13) for the vacuum Maxwell’s equations were listed and

referred to as “adjoint gauge symmetries” in Ref. 5.

IV. THE DEGREE TWO CONSERVATION LAW STRUCTURE OF EQs. (1.2)

A. General and lower-degree conservation laws

In n ≥ 3 dimensions, in addition to divergence expressions (2.2), PDE systems can have con-
servation laws of other types. For example, in three-dimensional space, a PDE system R{x, y, z ; u}
can have a vector curl-type conservation law given by

curl �[u] = 0, (4.1)

with some flux vector � = (�1, �2, �3). Conservation laws like (4.1) and their generalizations are
referred to as lower-degree conservation laws.7, 19, 20

The framework including both divergence-type and lower-degree conservation laws is most
naturally presented in differential-geometric notation. We now outline the notation and definitions
for the case of a PDE system R{x ; u} (2.1) with n ≥ 2 independent variables given by the components
of the vector x. For details, see Ref. 19.

A differential r-form is given by

ω(r ) = 1

r !
ωμ1...μr dxμ1 ∧ . . . ∧ dxμr , (4.2)

where ωμ1μ2...μr are the components of a totally antisymmetric tensor of type (0, r). From now on, we
assume that ωμ1...μr = ωμ1...μr [U] depend on independent variables x, vector functions U = U(x),
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and derivatives of U. Where necessary, differentiations by xi are replaced by total derivative operators
Di.

Definition 4.1. A conservation law of degree r (1 ≤ r ≤ n − 1) of the PDE system R{x ; u}
(2.1) is given by an r-form ω(r )[U] (4.2), such that its exterior derivative

�(r+1)[u] = dω(r )[u] = 0 (4.3)

on all solutions U = u(x) of a given PDE system R{x ; u}:
�νμ1...μr [u]dxν ∧ dxμ1 ∧ . . . ∧ dxμr ≡ (

Dν ωμ1...μr [u]
)

dxν ∧ dxμ1 ∧ . . . ∧ dxμr = 0. (4.4)

Each conservation law of degree r (4.4) is thus given by
( n

r + 1

)
scalar equations

∑
(ν,μ1,...,μr )⊂Si

sgn(ν, μ1, . . . , μr ) Dν ωμ1...μr [u] = 0, i = 1, . . . ,
( n

r + 1

)
, (4.5)

where sgn(ν, μ1, . . . , μr) is the sign of the permutation (ν, μ1, . . . , μr), and Si is the set of
permutations of an ordered set of r + 1 subindices of {1, . . . , n}.

The conservation law (4.4) has
( n

r

)
fluxes given by the components of the differential form

ω(r )[u].
For PDE systems with n ≥ 2 independent variables, conservation laws of degrees 1, . . . , n −

1, may exist. Conservation laws of degree n − 1 correspond to divergence-type conservation laws
(2.2), whereas conservation laws of degree r = 1, . . . , n − 2 are lower-degree conservation laws.

For n = 2, only divergence-type conservation laws are possible. For n = 3, both divergence-type
conservation laws (2.12) and curl-type conservation laws (4.1) can occur. For n > 3, additional types
of conservation laws may arise.

Lower-degree conservation laws can be systematically sought through a direct construction
algorithm based on differential-geometric versions of vector calculus identities.19 Any lower-degree

conservation law (4.4) is equivalent to a set of
( n

r + 1

)
interdependent divergence-type conservation

laws (4.5). For an arbitrary function U(x), one seeks multipliers {�(i)
σ [U]} such that each independent

component of �(r+1)[U] is a linear combination

�μ1...μr+1 [U] = �(i)
σ [U]Rσ [U], i = 1, . . . ,

( n
r + 1

)
. (4.6)

The determining equations for the multipliers follow from Definition 4.1. For (4.3) to hold, it is
necessary and sufficient that d�(r+1)[U] = d2ω(r )[U] = 0 for an arbitrary function U(x). Thus, the

multiplier determining equations are given by the
( n

r + 2

)
vanishing expressions

(
Dλ (�(i)

σ [U]Rσ [U])
)

dxλ ∧ dxμ1 ∧ . . . ∧ dxμr+1 ≡ 0. (4.7)

B. Potential equations following from lower-degree conservation laws

Each conservation law of degree r, 1 ≤ r ≤ n − 1, yields a set of potential equations, which,
combined with the given PDE system, compose a potential system.

By Poincaré’s lemma, since dω(r )[u] = 0 on solutions of R{x ; u}, one locally has ω(r )[u] =
dω̃(r−1)[u], for some (r − 1)-form ω̃(r−1)[u]. As a result, one has

( n
r

)
potential equations

ωμ1...μr [u] =
r∑

i=1

(−1)i−1 ∂

∂xμi
ω̃μ1...μi ...μr [u], (4.8)
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for
( n

r − 1

)
potential variables given by the independent components of ω̃(r−1)[u].

The following examples will be relevant to the analysis of the PDEs (1.2).

1. Three independent variables

Consider a PDE system R{x, y, z ; u}, with n = 3 independent variables x = (x, y, z).
a. Divergence-type conservation laws. A divergence-type (degree n − 1 = 2) conservation law

is given by

div �[u] = �1
x [u] + �2

y[u] + �3
z [u] = 0, (4.9)

The expression (4.9) can be viewed as the only component of the three-form

�[U] = (�1
x [U] + �2

y[U] + �3
z [U]) dx ∧ dy ∧ dz,

with �[u] = 0 by (4.9). It is evident that �[U] = dω[U], where the components of the two-form

ω[u] = �1[u] dy ∧ dz + �2[u] dz ∧ dx + �3[u] dx ∧ dy

provide the fluxes of the conservation law (4.9). The corresponding potential equations are given by

ω[u] = dω̃[u], (4.10)

the three potential variables are the components Ai of the one-form

ω̃[u] = A1[u] dx + A2[u] dy + A3[u] dz. (4.11)

In the scalar form, the potential equations (4.10) are given by three PDEs (cf. (2.13)):

�1[u] = Dy A3 − Dz A2, �2[u] = Dz A1 − Dx A3, �3[u] = Dx A2 − Dy A1. (4.12)

The potential variables Ai are subject to the gauge freedom (cf. (2.14)); indeed, the potential equations
(4.10) are invariant with respect to the transformation

ω̃[u] → ω̃[u] + dφ,

where φ = φ(x, y, z) is an arbitrary function of all independent variables.
b. Curl-type conservation laws. The PDE system R{x, y, z ; u} can have curl-type conservation

laws (degree n − 2 = 1), given by (4.1). The three scalar components of the conservation law (4.1)
can be viewed as components of the differential (n − 1)-form

�[U] = (�3
y [U] − �2

z [U]) dy ∧ dz + (�1
z [U] − �3

x [U]) dz ∧ dx + (�2
x [U] − �1

y [U]) dx ∧ dy,

which vanish on all solutions U = u(x) of the given PDE system. On solutions, �[u] = dω[u],
where ω[u] is the flux one-form:

ω[u] = �1[u] dx + �2[u] dy + �3[u] dz.

The potential equations (4.10) following from the conservation law (4.1) involve a zero-form
ω̃[u] = β[u], i.e., a single potential variable; they can be written as

�[u] = grad β[u]. (4.13)

It is important to observe that the potential equations (4.13) have no gauge freedom, since the
only possible general transformation β[u] → β[u] + C does not involve arbitrary functions of
all independent variables. Consequently, in three dimensions, curl-type conservation laws may be
preferred to divergence-type conservation laws for the purposes of construction of potential systems,
in particular, for the problem of seeking nonlocal symmetries.

2. Four independent variables

Now consider PDE systems involving n = 4 independent variables. In addition to divergence-
type conservation laws of degree r = n − 1 = 3 and curl-type conservation laws of degree r =
n − 3 = 1, here one can additionally have lower-degree conservation laws of degree r = n −
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2 = 2, involving
( n

r + 1

)
= 4 scalar components (divergence expressions). By using (4.8), each

such conservation law can be used to introduce
( n

r − 1

)
= 4 potential variables satisfying

( n
r

)
= 6

potential equations.
Below we demonstrate that Eqs. (1.2) indeed correspond to a lower-degree conservation law of

degree two in the four-dimensional space of independent variables (t, x, y, z).

C. The system (1.2) as a conservation law of degree two. Resulting potential equations

Theorem 4.1. The four PDEs (1.2) are equivalent to a lower-degree (degree two) conservation
law in the four-dimensional space of variables t, x, y, z.

Proof. Denote the four scalar PDEs (1.2) by

E1 = N 1
x + N 2

y + N 3
z , E2 = N 1

t + M3
y − M2

z ,

E3 = N 2
t + M1

z − M3
x , E4 = N 3

t + M2
x − M1

y .
(4.14)

Consider a differential two-form

ω = −M1 dt ∧ dx − M2 dt ∧ dy − M3[U] dt ∧ dz

+N 3 dx ∧ dy + N 2 dz ∧ dx + N 1 dy ∧ dz.
(4.15)

A direct computation yields that the exterior derivative �[U] = dω[U] is a differential three-form
given by

�[U] = E1[U] dx ∧ dy ∧ dz + E2[U] dy ∧ dz ∧ dt−E3[U] dz ∧ dt ∧ dx+E4[U] dt ∧ dx ∧ dy,

(4.16)
whose components are Eqs. (4.14), which vanish when Eqs. (4.14) hold. Hence, the differential form
(4.16) provides a lower-degree (degree two) conservation law �[u] = 0, with fluxes given by the
components of the two-form (4.15). �

Remark 4.1. By a direct analogy with the electromagnetic tensor, one may write the flux form
ω = ωμν dxμ∧dxν as a tensor in the four-dimensional Minkowski spacetime (x0, x1, x2, x3) = (t, x,
y, z), given by

ωμν =

⎛
⎜⎜⎝

0 −M1 −M2 −M3

M1 0 N 3 −N 2

M2 −B3 0 N 1

M3 N 2 −N 1 0

⎞
⎟⎟⎠ . (4.17)

As per Sec. IV B above, the lower-degree conservation law �[u] = 0 (4.16) can be used to
construct potential equations.

Corollary 1. Suppose a given PDE system R{t, x, y, z ; u}
Rσ [u] ≡ Rσ (t, x, y, z, u, ∂u, . . . , ∂k u) = 0, σ = 1, . . . , N (4.18)

contains Eqs. (1.2). Then the PDE system (4.18) has a nonlocally related system involving four
scalar potential variables.

Proof. The statement follows from the fact that on solutions of the given PDE system, ω[u] =
d�[u] = 0. Hence locally, ω[u] = dθ [u], where θ [u] is a one-form

θ = θ t (t, x, y, z) dt + θ x (t, x, y, z) dx + θ y(t, x, y, z) dy + θ z(t, x, y, z) dz, (4.19)
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whose four components provide the potential variables. The six potential equations are given by
components of ω[u] = dθ [u] and read

−M1[u] = θ x
t − θ t

x , −M2[u] = θ
y
t − θ t

y, −M3[u] = θ z
t − θ t

z ,

N 1[u] = θ z
y − θ

y
z , N 2[u] = θ x

z − θ z
x , N 3[u] = θ

y
x − θ x

y .
(4.20)

�
Remark 4.2. From (4.15) and (4.16), one has d�[U] = d2ω[U] ≡ 0, i.e., the given PDE system

(1.2) has a trivial differential consequence, and hence is abnormal. For abnormal variational PDE
systems, the Noether’s second theorem guarantees an existence of an infinite set of conservation laws
similar to (3.1) (see, e.g., Ref. 26). The vorticity-type PDE system (1.2) considered in the current
paper is clearly not variational, however, as it was shown above, a Noether-type result still holds.

Remark 4.3. The potential equations (4.20) are underdetermined, since the potential variables
(4.19) are subject to a gauge symmetry

θ → θ + d f

for an arbitrary scalar function f(t, x, y, z).

Remark 4.4. The four potential variables θ t, θ x, θ y, θ z and the potential equations (4.20) can
be alternatively constructed from vector calculus theorems for Eqs. (1.2). Indeed, since div N = 0,
there locally exists a vector potential A(t, x, y, z) such that

N = curl A, (4.21)

this yields the last three potential equations (4.20) upon denoting A = (θ x , θ y, θ z). Further, using
(4.21) in the second equation of (1.2) and integrating, one gets, locally,

At + M = grad �(t, x, y, z), (4.22)

which is equivalent to first three potential equations (4.20) upon denoting � = θ t.
The potential equations (4.20) and the lower-degree conservation law (4.16) clearly provide a

deeper geometrical connection between the four potential variables (4.19) in the four-dimensional
space than the vector calculus identities (4.21) and (4.22). In particular, the advantage of the
differential-geometric framework is used below for to produce curl-type conservation laws in 3- and
(2 + 1)-dimensional reductions of (3+1)-dimensional physical systems.

We now consider some specific examples.

D. Physical applications

1. Equations of incompressible fluid dynamics

The vorticity formulation of the Euler and Navier-Stokes equations of incompressible fluid
dynamics is given by [(3.5a)–(3.5c)]. In particular, the fluid vorticity satisfies Eqs. (3.5c) which are
of the form (1.2), with N, M given by (3.6). As per Theorem 4.1, the vorticity equations yield a
conservation law of degree two, in terms of the skew-symmetric velocity-vorticity tensor:

(ω f luid )μν =

⎛
⎜⎜⎜⎝

0 −M1
w −M2

w −M3
w

M1
w 0 N 3

w −N 2
w

M2
w −B3

w 0 N 1
w

M3
w N 2

w −N 1
w 0

⎞
⎟⎟⎟⎠ . (4.23)

The corresponding potential equations are given by (4.20). Denoting the potential variables
(θ x , θ y, θ z) = q, one obtains curl q = w. From (3.5b) it follows that q = u + grad χ for some χ (t,
x, y, z). Denoting further θ t = − p + χ t, one observes that the first three potential equations (4.20)
become

ut + grad p = −(w × u − ν∇2u), (4.24)
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and are equivalent to the Navier-Stokes momentum equation (3.4b) in primitive variables. Thus,
the potentialization of the degree two conservation law given by the vorticity equations (3.5c) is
equivalent to an inversion of the spatial curl operator, i.e., the vorticity equations are effectively
integrated to recover the Navier-Stokes or Euler momentum equation in primitive variables.

2. Equations of isotropic magnetohydrodynamics. Generalization
of the Galas-Bogoyavlenskij potential

Consider the system of isotropic MHD equations given by [(3.8a)–(3.8d)]. As shown in
Sec. III B, the magnetic field equations (3.8c), (3.8d) can be written in the form (1.2) with

Nm = B, Mm = B × V + η curl B, (4.25)

from Theorem 4.1 it follows that the PDEs (3.8c), (3.8d) are the components of a conservation law
of degree two. The latter can be written as an exterior derivative dωm = 0 of ωm = (ωm)μν dxμ ∧ dxν ,
where (ωm)μν is the MHD tensor given by (4.17) in terms of the scalar components of the quantities
(4.25).

The corresponding potential equations are given by (4.20). Upon renaming the potentials to
(θ x , θ y, θ z) = A, θ t = −�, one has

B = curl A, grad � = V × B − At − η curl B. (4.26)

The function �(t, x, y, z) can be called the generalized flux function. The potential equations (4.26)
are underdetermined, since the vector potential A has gauge freedom

A → A + grad r

for an arbitrary scalar field r(t, x, y, z).

Remark 4.5. The potential equations (4.26) are a direct generalization of the well-known Galas-
Bogoyavlenskij potential equations14, 22 which arise for time-independent ideal MHD equations for
η = ∂/∂t ≡ 0, given by

div ρV = 0, div V = 0, (4.27a)

ρV × curlV − 1

μ
B × curlB − grad P − ρ grad

V 2

2
= 0, (4.27b)

div B = 0, curl(V × B) = 0. (4.27c)

For (4.27c), similarly to (4.26), one has

grad � = V × B. (4.28)

The level surfaces of the flux function �(x, y, z) correspond to the magnetic surfaces of the plasma
equilibrium configuration. The usage of the potential equation (4.28) instead of the original PDE
curl(V × B) = 0 in the ideal MHD equilibrium equations [(4.27a)–(4.27c)] has lead to the discovery
of an extensive group of nonlocal symmetries of the MHD equilibrium equations, multiple exact
solutions in three dimensions, and various generalizations.12–14, 17, 18, 21, 22

3. General and vacuum Maxwell’s equations

The general dimensionless Maxwell’s equations are given by [(3.11a) and (3.11b)]. Since the
PDEs (3.11a) are in the form (4.1), with N = B, M = E, one arrives at the well-known lower-degree
conservation law given by dF = 0, where F = Fμν dxμ ∧ dxν is the electromagnetic field tensor in
the four-dimensional Minkowski spacetime (x0, x1, x2, x3) = (t, x, y, z), given by

Fμν =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎠ . (4.29)
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The four components of the three-form dF = 0 yield the four equations (3.11a). The corresponding
potential equations F = dθ (4.20) are given by

B = curl A, grad �(t, x, y, z) = At + E, (4.30)

where θ is a one-form (4.19) with components (θ t , θ x , θ y, θ z) = (�, A), A is the magnetic vector
potential, and � is related to the electric potential.

For the Maxwell’s equations in a vacuum given by [(3.11a) and (3.11b)] with J = ρ = 0,
the second pair of equations (3.11b) similarly corresponds to a lower-degree conservation law

d ∗F = 0, where ∗Fμν = 1

2
εμναβηαγ ηβδ Fγ δ is the dual electromagnetic field tensor. [Here, ημν =

diag(−1, 1, 1, 1) is the 4 × 4 Minkowski metric tensor.] Consequently, the vacuum Maxwell’s
equations are symmetrically written as two conservation laws of degree two:

dF = 0, d ∗F = 0. (4.31)

The symmetric conserved form and the corresponding simultaneous potentialization (4.20) of both
conservation laws (4.31) has led to the discovery of multiple nonlocal symmetries and nonlocal
conservation laws for the vacuum Maxwell’s equations.4, 6, 20

V. APPLICATIONS TO SYSTEMS IN LOWER DIMENSIONS

In the four-dimensional space-time, the degree two conservation law (4.16) yields underdeter-
mined potential equations (4.20). This gauge freedom can be eliminated and the potential equations
become determined in special symmetric settings arising from dimensional reduction. In particu-
lar, this happens when Eqs. (4.20) become the components of a zero curl-type expression in three
dimensions, in the following cases.

(a) The time-independent reduction. By setting ∂/∂t = 0 in the given PDEs (1.2), or equivalently,
θ x = θ y = θ z = 0 and ∂/∂t = 0 in the last three equations of (4.20), one has the zero curl-type
expression

curl N = 0, (5.1)

and the determined potential equations

N = grad θ t (x, y, z), (5.2)

where curl and grad are taken with respect to the spatial coordinates x, y, z.
(b) The (2 + 1)-dimensional reduction. One can set N3 = M1 = M2 = ∂/∂z = 0 in the given PDEs

(1.2), assuming the dependence of N1, 2 and M3 on (t, x, y). Without loss of generality, choose
θ t = θ x = θ y = 0 and ∂/∂z = 0 in the potential equations (4.20). Consequently one has the
space-time zero curl expression

curl
(t,x,y)

(−M3,−N 2, N 1) = 0, (5.3)

and the determined potential equations

(−M3,−N 2, N 1) = grad
(t,x,y)

θ z(t, x, y), (5.4)

where curl and grad are taken with respect to the space-time coordinates t, x, y.

Examples are now considered.

A. Potential system for vacuum Maxwell’s equations in 2 + 1 dimensions

Consider the system of Maxwell’s equations in a vacuum, given by [(3.11a) and (3.11b)] with
J = ρ = 0, and its degree two conservation law d ∗F = 0 (4.31). In the (2 + 1)-dimensional
situation, with the magnetic field B = (0, 0, B(t, x, y)) ≡ −M parallel to z − axis, and the electric
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field E = (E1(t, x, y), E2(t, x, y), 0) ≡ N in the (x, y)-plane, the equations become

E1
x + E2

y = 0, E1
t − By = 0,

E2
t + Bx = 0, Bt + E2

x − E1
y = 0.

(5.5)

As shown in Ref. 4, PDEs (5.5), or equivalently, Eqs. (4.31) can be written, respectively, as

curl
(t,x,y)

(B,−E2, E1) = 0, div
(t,x,y)

(B, E2,−E1) = 0, (5.6)

where the curl and the divergence are taken with respect to the space-time coordinates (t, x, y). The
curl-type conservation law in (5.6) has a corresponding determined potential system (5.4). Denoting
the potential θ z = W , it reads

Wt = B, Wx = −E2,

Wy = E1, Bt + E2
x − E1

y = 0.
(5.7)

Examples of nonlocal symmetries and nonlocal conservation laws of the (2 + 1)-dimensional vacuum
Maxwell’s equations (5.5) that arise as local symmetries and conservation laws of the potential system
(5.7) and other potential systems are listed in Refs. 4, 19, and 20.

B. Potential equations and nonlocal conservation laws of MHD equations in three
and 2 + 1 dimensions

As a first example, we refer to Sec. IV D 2 above, where the ideal time-independent reduction
[(4.27a)–(4.27c)] of the system of isotropic incompressible MHD equations given by [(3.8a)–(3.8d)].
After the reduction, the lower-degree conservation law in the four-dimensional space-time described
in Sec. IV D 2 yields a curl-type conservation law (4.27c) in the three-dimensional space, which
is subsequently used to introduce a potential variable (4.28) subject to no gauge freedom. The
corresponding potential system yields nonlocal symmetries of the MHD equilibrium equations.

As a second example, consider the system of ideal isotropic incompressible MHD equations
given by

ρt + div ρV = 0, div V = 0, (5.8a)

ρV t = ρV × curlV − 1

μ
B × curlB − grad P − ρ grad

V 2

2
, (5.8b)

div B = 0, Bt = curl(V × B), (5.8c)

where the plasma velocity V = (V 1, V 2, 0), magnetic field B = (B1, B2, 0), density ρ and pressure
P are functions of t, x, y.

Equations (5.8c) correspond to the PDEs (1.2) with N = (B1, B2, 0), M = (0, 0, B1V 2 −
B2V 1). The potential equations (5.4) read

(B2V 1 − B1V 2,−B2, B1) = (Wt , Wx , Wy), (5.9)

where W (t, x, y) is the potential (nonlocal) variable.
We now consider the potential system given by the PDEs (5.8a), (5.8b), (5.9), and seek local

conservation laws of this potential system that yield nonlocal conservation laws of the original
(2 + 1)-dimensional MHD equations [(5.8a)–(5.8c)]. For that purpose, the direct construction method
with zeroth-order multipliers is used. The following theorem is established by a direct computation.

Theorem 5.1. The MHD equations [(5.8a)–(5.8c)] in (2 + 1) dimensions admit an infinite family
of nonlocal conservation laws

Dt F(ρ, W ) + Dx (V 1 F(ρ, W )) + Dy(V 2 F(ρ, W )) = 0, (5.10)

where F(ρ, W ) is an arbitrary function, and W is the nonlocal variable satisfying (5.9).
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The conservation laws (5.12) essentially involve the magnetic field through the nonlocal relation
(5.9).

We also note that the results of Theorem 5.1 can be extended to compressible adiabatic plasmas.

Remark 5.1. Since Eqs. [(5.8a)–(5.8c)] are incompressible, in particular, V 1
x + V 2

y = 0, the
conservation laws (5.12) correspond to material conservation laws

d

dt
F(ρ, W ) ≡

(
Dt + V · ∇

(x,y)

)
F(ρ, W ) = 0,

which imply the conservation of the amount of the quantity F(ρ, W ) in each moving plasma parcel.

Remark 5.2. The results of Theorem 5.1 can be partly generalized onto the case of finitely
conducting plasmas, η �= 0. In this case, the second equation of (5.8b) is replaced by (3.8c), and the
potential equations (5.9) are modified to

(B2V 1 − B1V 2 − η(B2
x − B1

y ),−B2, B1) = (Wt , Wx , Wy). (5.11)

Seeking local conservation laws of the potential system given by (5.8a), (5.8b), (5.11), one obtains
a new nonlocal conservation law given by

Dt W + Dx (V 1W + ηB2) + Dy(V 2W − ηB1) = 0, (5.12)

which does not yield a material conservation law unless η = 0.

VI. SUMMARY AND DISCUSSION

The four PDEs (1.1) are a part of a number of linear and nonlinear physical systems, including
the linear Maxwell’s equations, and nonlinear fluid, gas, and plasma dynamics equations in the
four-dimensional space-time.

In the current work, conservation laws of the PDEs (1.1) were studied. In Sec. III, it was
shown that the PDEs (1.2) yield an infinite family (3.1) of divergence-type local conservation laws.
Specific forms of these conservation laws for Maxwell’s, fluid dynamics, and MHD equations were
presented.

In Sec. IV, it was demonstrated that the PDEs (1.2) have the structure of a lower-degree (degree
two) conservation law. The system (1.2) can be subsequently rewritten as a zero divergence of
an antisymmetric tensor, known as the electromagnetic field tensor for the Maxwell’s equations.
Remarkably, completely different physical models including fluid and plasma dynamics equations
possess the same tensorial structure. The corresponding potential equations were introduced, and the
physical meaning of the potential equations and the potential variables was discussed. For the MHD
equations, these potential equations provide a generalization of the Galas-Bogoyavlenskij potential-
ization onto the cases of time-dependent non-ideal (finite conductivity) magnetohydrodynamics.

In Sec. V, it was shown that the lower-degree conservation law structure of the PDEs (1.2) can
be used to yield a curl-type conservation law, and hence a determined potential system, in a lower-
dimensional setting. As a result, new nonlocal conservation laws for the nonlinear 2 + 1-dimensional
MHD equations were derived, in the ideal case and the case of finite plasma conductivity.

The following related questions remain open for future research.

• Existence of other nonlinear DE models that possess lower-degree conservation law structure,
through involving the PDEs of the form (1.2) or otherwise.

• Applicability of the infinite family (3.1) of divergence-type local conservation laws to the
analysis and exact, approximate, and/or numerical solution of the corresponding physical
systems.

• Construction of further examples of nonlocal conservation laws of nonlinear models, in partic-
ular, nonlocal conservation laws arising from underdetermined potential systems.
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