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Abstract The use of the symbolic software package GeM for Maple is illustrated
with examples of computation of nonlocal symmetries and nonlocal conservation
laws of nonlinear partial differential equations. In the considered examples, the
nonlocal symmetries and conservation laws arise as local symmetries and conserva-
tion laws of potential systems. FullMaple codewith detailed comments is presented.
Examples of automated symmetry and conservation law classification are included.

1 Introduction

The majority of contemporary mathematical models involving partial and ordinary
differential equations (PDE, ODE) are essentially nonlinear. The analysis of such
models often proceeds using approximate, numerical, and/or problem-specific meth-
ods. In particular, the efficiency and precision of numerical solutions is commonly
restricted by nonlinear effects, which limit mesh sizes and boost computation times,
aswell as by extra large data structures arising in discretizations ofmulti-dimensional
problems.

Methods based on the framework of symmetry and conservation law analysis can
be systematically applied to wide classes of PDE and ODE models. This research
area, pioneered by Sophus Lie and Emmy Noether, has been recently developed
in various directions, having become a set of interrelated methods that can provide
essential analytical information about the underlying equations. For further details,
an interested reader is referred to [6, 9, 10, 15, 26, 33].

For ODEs, seeking conservation laws is equivalent to seeking integrating
factors; conserved quantities (first integrals) lead to the reduction of order. Conser-
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vation laws (divergence forms) of governing PDEs yield local densities conserved
by the process, as well as global conserved quantities under appropriate boundary
conditions. Local conservation laws of PDEs are also used in existence,
uniqueness and stability analysis (e.g., [4, 27, 31]). An important application area
of local conservation laws of PDE systems is numerical simulation. Many modern
numerical methods, such as finite volume, finite element, discontinuous Galerkin
methods, etc., (see, e.g., [25, 28, 29]) rely on the divergence forms of the given
equations.

Local symmetries of ODEs lead to the reduction of order, and can be used
for the construction of particular symmetry-invariant solutions (see, e.g., [7, 12]).
Depending on the structure of the symmetry Lie algebra, the knowledge of an
r -parameter Lie group of point symmetries of an ODE can lead to the reduction
of order by up to r .

One of the most important applications of local symmetries to nonlinear PDEs
is the construction of exact solutions. This includes obtaining new solutions from
known ones through the symmetry mapping, and the construction of symmetry-
invariant solutions, in particular, physically important travelingwave and self-similar
solutions. Additional exact solutions can be obtained using nonlocal symmetries,
when they are known.Multiple examples can be found in [10] and references therein.

If a PDE system has an infinite set of local symmetries and/or local conservation
laws involving arbitrary functions, it can sometimes be mapped into a linear PDE
system by an invertible transformation [3, 13]. Similarly, infinite families of nonlocal
symmetries and/or nonlocal conservation laws admitted by a PDE system may be
used to construct respective non-invertible mappings [10, 14]. An infinite countable
set of local conservation laws may be associated with integrability.

An important application of local conservation laws is the construction of
potential systems, nonlocally related to a given one, through the introduction of
nonlocal potential variables. Other types of nonlocally related systems, in particular,
nonlocally related subsystems, can also arise. The resulting framework of nonlocally
related PDE systems [8, 10, 11] has been successfully used in multiple applications,
yielding nonlocal symmetries and conservation laws, nonlocal linearizations, and
new classes of exact solutions of various PDE systems (see, e.g., [10] and references
therein).

The systematic computation of symmetries and conservation laws of PDE
systems, especially symmetry and conservation law classifications and case split-
ting for systems involving arbitrary functions or constant parameters, may present a
significant computational challenge. Indeed, systems of symmetry and conservation
law determining equations can involve thousands of linear PDEs. Symbolic com-
putation software is routinely used to carry out such computations. A number of
symbolic software packages have been written for local symmetry and conservation
law computations in various computer algebra systems. In the current paper, the
use of GeM package for Maple, developed by the author, is discussed ([22–24]).
The current version 32.02 of the GeM package has been tested to work with Maple
versions 14–18.
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The present contribution is devoted to practical aspects of computation of
nonlocal symmetries and nonlocal conservation laws of nonlinear PDEs. After
the general introduction and definitions of Sect. 2, in Sect. 3, we present basic
detailed examples of the use of GeM package to compute nonlocal symmetries
and nonlocal conservation laws of nonlinear PDEs through the local symmetry and
conservation law computations applied to potential systems. In particular, a nonlocal
symmetry for a specific nonlinear wave equation is derived; nonlocal symmetries of
a class of nonlinear telegraph equations are classified; nonlocal conservation laws
are sought for a class of diffusion-convection equations.

The paper is concluded with Sect. 4 containing a discussion and further remarks.

2 Nonlocal Symmetries and Nonlocal Conservation Laws

Consider a system R{x; u} of N differential equations of order k, with n independent
variables x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)),
given by

Rσ[u] ≡ Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (1)

Here and below, the notation f [u] denotes a differential function depending on x , u
and the derivatives of u up to some finite order,

∂u ≡ ∂1u =
(

u1
1(x), . . . , u1

n(x), . . . , um
1 (x), . . . , um

n (x)
)

denotes the set of all first-order partial derivatives, and

∂ pu =
{

uμ
i1...i p

; μ = 1, . . . , m; i1, . . . , i p = 1, . . . , n
}

=
{

∂ puμ(x)

∂xi1 . . . ∂xi p
; μ = 1, . . . , m; i1, . . . , i p = 1, . . . , n

}

denote higher-order derivatives. Summation in anypair of repeated indices is assumed
below. Subscripts are used to denote partial derivatives: ux ≡ ∂u/∂x , etc.

2.1 Lie Point Symmetries

Consider a one-parameter Lie group of point transformations

(x∗)i = f i (x, u; ε) = xi + εξi (x, u) + O(ε2), i = 1, . . . , n

(u∗)μ = gμ(x, u; ε) = uμ + εημ(x, u) + O(ε2), μ = 1, . . . , m
(2)
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with the corresponding infinitesimal generator

X = ξi (x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
· (3)

Definition 1 The one-parameter Lie group of point transformations (2) leaves the
DE system (1) invariant if it maps any family of solution surfaces u = u(x) of the
DE system (1) into another family of solution surfaces u∗ = u∗(x∗) of DE system
(1). In this case, the transformation (2) are referred to as a point symmetry of the DE
system (1).

The Lie’s algorithm for finding the point symmetries of a DE system (1) written
in a solved form in terms of a set of leading derivatives is based on the following
theorem (for details, see, e.g., [10, 15, 33]).

Theorem 1 Let (3) be the infinitesimal generator of a one-parameter Lie group of
point transformations (2), and X(k) its kth extension. Then the transformation (2) is
a point symmetry of the DE system (1) if and only if for each α = 1, . . . , N

X(k) Rα(x, u, ∂u, . . . , ∂ku) = 0 (4)

when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (5)

In (4), it is assumed that (5) and the differential consequences of (5) are taken into
account.

Other types of local symmetries, including contact and higher-order symmetries,
can be computed in a similar manner, when they exist. For such extensions, the
symmetry components may depend on derivatives (e.g., [10, 15, 33]).

Remark 1 It is important to mention that some PDE systems have an infinite number
of local symmetries, with symmetry components involving arbitrary functions of one
or more variables. In particular, linear PDEs always admit “trivial” symmetries

X∞ = σμ ∂

∂uμ

where a set of functions σ(x) = (σ1(x), . . . ,σm(x)) is an arbitrary solution of the
homogeneous version of the given linear equations.

Conversely, if a given PDE system has a sufficiently large infinite set of local
symmetries, it can be mapped into a linear system with a point transformation. For
details on necessary and sufficient conditions for the existence of such mappings,
see [5, 10, 13].

In practical symmetry computations for linear PDEs, the presence of the
“trivial” infinite-dimensional symmetry groups poses certain difficulties; for details
and techniques of such computations, see [24].
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2.2 Local Conservation Laws

Definition 2 A local divergence-type conservation law of a PDE system (1) is a
divergence expression of the form

DiΦ
i (x, u, ∂u, . . . , ∂r u) = 0 (6)

in terms of total derivative operators

Di = ∂

∂xi
+ uμ

i
∂

∂uμ
+ uμ

i i1

∂

∂uμ
i1

+ uμ
i i1i2

∂

∂uμ
i1i2

+ · · · (7)

holding on solutions of (1).

In the 1+1-dimensional situation, with x = (x, t), the conservation law (6) has the
form

DtΘ + DxΨ = 0 (8)

where the densityΘ and the spatial fluxΨ can depend on independent and dependent
variables of the given equations, as well as their derivatives.

Remark 2 In practice, one is interested in finding sets of non-trivial, non-equivalent,
linearly independent conservation laws. A trivial conservation law of a normal PDE
system is a divergence expression that vanishes identically, or if its density and fluxes
vanish on solutions of the given PDE system. For further details, see, e.g., [10, 33].

Local conservation laws (6), (8) are systematically sought by applying the direct
conservation law construction method [2]. The method consists in finding sets
of multipliers {Λσ[U ]}N

σ=1 = {Λσ(x, U, ∂U, . . . , ∂�U )}N
σ=1, depending on some

prescribed independent and dependent variables and possibly their derivatives to
some finite order �, which, taken in linear combinations with the given PDEs, yield
a divergence expression

Λσ[U ]Rσ[U ] ≡ DiΦ
i [U ] (9)

holding for arbitrary functions U . Then on solutions U = u(x) of the PDE system
(1), one has a local conservation law

�σ[u]Rσ[u] = DiΦ
i [u] = 0. (10)

Determining equations for the multipliers are obtained from the fact that an
expression F(U ) is annihilated by Euler operators

EU j = ∂
∂U j − Di

∂

∂U j
i

+ · · · + (−1)sDi1 . . .Dis
∂

∂U j
i1 ...is

+ · · ·
i, iq = 1, . . . , n, j = 1, . . . , m

(11)
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if and only if F(U ) is a divergence expression (e.g., [10, 33]). Hence the local
conservation law multiplier determining equations are given by

EU j

(
�σ[U ]Rσ[U ]) = 0, j = 1, . . . , m. (12)

After the linear equations (12) are solved for the multipliers {�σ[U ]}N
σ=1, the

conservation law fluxes and/or density is calculated using (9) (see, e.g., [23]).

Remark 3 Some PDE systems admit an infinite number of independent local con-
servation laws. In such cases, multipliers may involve arbitrary functions of one or
several variables. This happens for both nonlinear and linear PDEs. In particular, lin-
ear PDEs always admit an infinite number of conservation laws; the corresponding
conservation law multipliers are solutions of a linear system of PDEs adjoint to the
given linear system (see, e.g., [5, 10]).

When a given PDE system admits a sufficiently large infinite set of local conser-
vation laws, it can be mapped into a linear system with a point transformation, see
[3, 10].

Remark 4 Local variational symmetries and local conservation laws of self-adjoint
(variational) PDEs are related through the Noether’s theorem. For non-variational
PDE systems, this relation generally does not hold. The direct conservation law con-
structionmethoddescribed above is applicable to both variational and non-variational
PDE systems [9, 10, 17, 33].

2.3 Nonlocally Related PDE Systems

Consider a PDE system R{x, t; u} with two independent variables (x, t) and m
dependent variables u = (u1, . . . , um) given by

Rσ[u] = Rσ(x, t, u, ∂u, ∂2u, . . . , ∂lu) = 0, σ = 1, . . . , s. (13)

Suppose that the PDE system (13) has one or more nontrivial conservation laws
(8). For each such conservation law, one can introduce a potential variable v satisfying

vx = �[u], vt = −	[u]. (14)

The potential variable v is a nonlocal variable of the PDE system (13), i.e., v cannot
be expressed as a local function of the variables in the PDE system (13) and their
derivatives [10].

Apotential system is obtainedby appendingoneormore sets of potential equations
(14) to the given PDE system (13).We denote a potential system involving q potential
variables by S{x, t; u, v}, v = (v1, ..., vq).
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Remark 5 In the case of PDE systems involving n ≥ 3 independent variables,
the application of divergence-type local conservation laws to the construction of
potential systems is less straightforward. In particular, the corresponding potential
system is underdetermined. Overdetermined potential systems cannot yield nonlocal
symmetries [1], but can yield nonlocal conservation laws [1, 21]. The gauge freedom
may be eliminated using a gauge constraint, however, finding an“optimal” gauge for
a specific PDE system—conservation law pair remains an open problem.

2.4 Nonlocal Symmetries and Nonlocal Conservation Laws

Consider a given PDE system R{x, t; u} (13) and its potential system S{x, t; u, v}
involving a single potential variable: (13), (14). Point symmetries of the potential
system S{x, t; u, v} are given by infinitesimal generators

X = ξx (x, t, u, v)
∂

∂x
+ξt (x, t, u, v)

∂

∂t
+

m∑
i=1

ηui
(x, t, u, v)

∂

∂ui
+ηv(x, t, u, v)

∂

∂v
·

(15)

Definition 3 A generator (15) corresponds to a nonlocal symmetry of the given PDE
system R{x, t; u} (13) if it does not yield a local symmetry of (13) when projected
on the space of its variables.

The criterion for the symmetry (15) to be a nonlocal symmetry of the system
R{x, t; u} (13) is provided by the following theorem (e.g, [10, 15, 16]).

Theorem 2 The point symmetry (15) of the potential system S{x, t; u, v} yields
a nonlocal symmetry (potential symmetry) of the given PDE system (13) if and
only if one or more of the infinitesimals (ξx (x, t, u, v), ξt (x, t, u, v), ηu1(x, t, u, v),

. . . , ηum
(x, t, u, v)) depend explicitly on the potential variable v, i.e.,

(
∂ξx

∂v

)2

+
(

∂ξt

∂v

)2

+
m∑

i=1

(
∂ηui

∂v

)2

> 0.

Remark 6 Nonlocal symmetries can also arise from nonlocally related subsystems
obtained by differential exclusions of dependent variables, and from other PDE sys-
tems in the trees of nonlocally related PDE systems. For details, examples, and
applications, see [10] and references therein.

Now consider a local conservation law

Dt�[u, v] + Dx	[u, v] = 0 (16)

of the potential system S{x, t; u, v}.
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Definition 4 A nontrivial local conservation law (16) of the potential system
S{x, t; u, v} is called a nonlocal conservation law of the given PDE system R{x, t; u}
if it is not equivalent to any linear combination of local conservation laws ofR{x, t; u}
and trivial conservation laws, i.e., the flux and/or density in (16) have an essential
dependence on the components of the potential variable v.

The following fundamental theorem [11, 32] holds.

Theorem 3 Each conservation law of any potential system S{x, t; u, v}, arising
from multipliers that do not essentially depend on the potential variable v, is equiv-
alent to a local conservation law of the given system R{x, t; u} (13).
It follows that in order to construct nonlocal conservation laws of the original system
using the direct method, one must consider multipliers that essentially involve poten-
tial variable(s). A similar theorem holds for equationswith three ormore independent
variables [10].

The procedure of construction of an extended tree of nonlocally related PDE
systems, starting from a given PDE system (13), is presented in [8, 10, 11]. It is based
on the systematic construction, or a given system (13) on local conservation laws,
potential systems, further local and nonlocal conservation laws, further potential
systems, subsystems, and so on. Similar constructs inmulti-dimensions are discussed
in [10, 20, 21].

Remark 7 It is important to note that in practice, nonlocal symmetries and nonlocal
conservation laws usually arise in classifications when given systems involve arbi-
trary (constitutive) functions or constant parameters, for special cases of those con-
stitutive functions/parameters. Many examples of such classifications can be found
in [10].

Remark 8 Similarly to local symmetries and conservation laws, infinite sets of non-
local symmetries and conservation laws can lead to a linearization by a nonlocal
transformation (e.g., [10, 14]). For example, this is the case for all 1+1-dimensional
nonlinear wave equations utt = (c2(u)ux )x , whose basic potential system is lineariz-
able by a hodograph transformation, and for the specific instances of the nonlinear
telegraph equation considered in Sect. 3.2 below.

3 Symbolic Computations of Nonlocal Symmetries
and Nonlocal Conservation Laws

3.1 Example 1: Local and Nonlocal Symmetry Analysis
of a Nonlinear Wave Equation

Consider a nonlinear wave equation on u = u(x, t), denoted by R{x, t; u}

utt = (c2(u)ux )x . (17)
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For simplicity, we restrict to a specific case

c2(u) = 1

u2 + 1
· (18)

for which nonlocal symmetries are known to arise (see, e.g., [10], Sec. 4.2.2).
(A) Point symmetries. We start from point symmetry analysis of the wave equation
(17) with (18). The command sequence for the GeM package, version 32.02, and the
output proceeds as follows.

All variables are cleared GeM package is initialized with the command

restart; read("d:/gem32_02.mpl"):

Independent and dependent variables are put together, for convenience, by commands

ind:=x,t; all_dep:=U(ind);

In the absence of arbitrary constants and/or functions in the given equation, the
variables are declared as follows:

gem_decl_vars(indeps=[ind], deps=[all_dep]);

The wave speed is defined by

c(U(ind)):=1/(U(ind)̂ 2+1);

and the given PDE is further defined, in the solved form, as follows:

gem_decl_eqs([diff(U(ind),t,t)=diff(c(U(ind))̂ 2*diff(U(ind),x),x)],

solve_for=[diff(U(ind),t,t)]);

The split system of linear symmetry determining equations, where the symmetry
components depend on all independent and dependent variables, is generated by the
function

det_eqs:=gem_symm_det_eqs([ind, all_dep]):

yielding 16 determining equations. A variable containing the unknown symmetry

components will be needed for the further computations. It is initialized using the
function

sym_components:=gem_symm_components();

The output value is

sym_components := [xi_t(x, t, U), xi_x(x, t, U), eta_U(x, t, U)]

where the three quantities correspond to the symmetry components for t, x, u
respectively.

http://dx.doi.org/10.1007/978-3-319-08296-7_4
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The simplification and differential elimination of redundant determining
equations is obtained by calling the Maple rifsimp routine, as follows

symm_det_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

The mindim=1 option will force rifsimp to output the dimension of the solution
space, i.e., the number of independent point symmetries of the PDE (17). In this case,
the returned dimension is three. The system of 16 determining equations is reduced
to seven equations and is stored in symm_det_eqs[Solved]. The final solution
is performed using the standard Maple pdsolve routine,

symm_sol:=pdsolve(symm_det_eqs[Solved],sym_components);

returning

symm_sol :=eta_U(x, t, U) = 0, xi_t(x, t, U) = _C1*t+_C3, xi_x(x, t, U)=_C1*x+_C2

This final solution involves three arbitrary constants _C1, _C2, _C3, which agrees
with the dimension of the solution space returned by rifsimp.

Finally, the three independent symmetry generators are output using the command

gem_output_symm(symm_sol);

which yields the canonical forms of the point symmetries of the PDE (17) with the
wave speed (18)

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
·

The equation is thus invariant under t− and x− translations and a scaling.
(B) A nonlocal symmetry computation. For an arbitrary c(u), the PDE (17) has
four zeroth-order conservation lawswithmultipliers� = 1, t, xt, x . In this example,
we use the second one. The conservation law is given by

Dt (tut − u) − Dx (tc
2(u)ux ) = 0

and the resulting potential system S{x, t; u, w} is

wx = tut − u, wt = tc2(u)ux . (19)

We study local symmetries of (19) to seek nonlocal symmetries of the PDE (17)
with the wave speed (18). The program proceeds in a fashion similar to the above
example.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),W(ind);
gem_decl_vars(indeps=[ind], deps=[all_dep]);

c(U(ind)):=1/(U(ind)̂ 2+1);
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gem_decl_eqs([diff(W(ind),x)=t*diff(U(ind),t)-U(ind),
diff(W(ind),t)=t*c(U(ind))̂ 2*diff(U(ind),x)],
solve_for=[diff(W(ind),x),diff(W(ind),t)]);

det_eqs:=gem_symm_det_eqs([ind, all_dep]):

sym_components:=gem_symm_components();
symm_det_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

symm_sol:=pdsolve(symm_det_eqs[Solved],sym_components);
gem_output_symm(symm_sol);

Here the dimension of the solution space is four and the output contains four sym-
metry generators

Y1 = ∂

∂w
, Y2 = ∂

∂x
, Y3 = t

∂

∂t
+ x

∂

∂x
+ w

∂

∂w

Y4 = tu
∂

∂t
+ w

∂

∂x
+ (u2 + 1)

∂

∂w
− x

∂

∂w
·

The symmetry Y4 yields a nonlocal symmetry of the given nonlinear wave equation
(17), since the component ξx = w involves the potential variable (cf. Definition 3).

3.2 Example 2: A Potential Symmetry Classification for the
Nonlinear Telegraph Equation

Let R{x, t; u} denote the nonlinear telegraph equation with the unknown function
u = u(x, t), given by

utt = (F(u)ux )x + (G(u))x . (20)

The complete point symmetry classification of the PDE (20) with respect to the
constitutive functions F(u) and G(u) can be found in Ref. [30].

The PDE (20) is a conservation law as it stands, hence one can introduce a potential
v(x, t) to obtain a potential system

ut = vx , vt = F(u)ux + G(u). (21)

The point symmetry classification of the PDE system (21) has been performed in [18].
In particular, it has been shown that in the cases F(u) = u−2, G(u) = u−1, and F(u)

arbitrary, G(u) = const, the potential system (21) has an infinite number of point
symmetries (nonlocal symmetries of the PDE (20)), and moreover, is linearizable by
a point transformation. (Thus the corresponding NLT equations (20) are linearizable
by a nonlocal transformation).
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The first equation of the system (21) is also a conservation law. Introducing a
second potential w accordingly, one has a potential system S{x, t; u, v, w} for three
dependent variables u(x, t), v(x, t), w(x, t), given by three PDEs

wt = v, wx = u, vt = F(u)ux + G(u). (22)

In our computations, for the simplicity of presentation, we will be avoiding detailed
calculations for the linearization cases, since they yield infinite sets of symmetries.

For the current example, we are interested in finding point symmetries of the
potential system S{x, t; u, v, w} (22) that correspond to nonlocal symmetries of
the original PDE (20). For brevity, we will restrict ourselves to the case of power
nonlinearities,

F(u) = uα, G(u) = uβ . (23)

The classification will thus be performed with respect to two constitutive parameters
α �= 0, β �= 0. (For the complete classification, see [10], Sect. 4.2.)

Point symmetry generators of the potential system S{x, t; u, v, w} (22) are of
the form

Z = ξ(x, t, u, v, w)
∂

∂x
+ τ (x, t, u, v, w)

∂

∂t
+ ηu(x, t, u, v, w)

∂

∂u

+ ηv(x, t, u, v, w)
∂

∂v
+ ηw(x, t, u, v, w)

∂

∂w
·

(24)

In order to find symmetries (24) that correspond to nonlocal symmetries of the given
PDE (20), one requires that at least one of the following six conditions is satisfied

∂ξt

∂v
�= 0,

∂ξt

∂w
�= 0,

∂ξx

∂v
�= 0

∂ξx

∂w
�= 0,

∂ηu

∂v
�= 0,

∂ηu

∂w
�= 0.

(25)

The Maple code for the symmetry classification proceeds as follows.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),V(ind),W(ind);

gem_decl_vars(indeps=[ind], deps=[all_dep],

freeconst=[],freefunc=[F(U(ind)),G(U(ind))]);

Here F(u) and G(u) are defined as arbitrary functions. It is important to do so even
thoughwe are going to consider only power nonlinearities. The reason is that in order
to do the case splitting and simplification of the determining equations, the Maple

http://dx.doi.org/10.1007/978-3-319-08296-7_4
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function rifsimp is used; the latter can only handle polynomial nonlinearities.
Hence the code will proceed as follows

• Generate symmetry determining equations treating the nonlinear functions as
arbitrary (free) at the initial stage.

• In order to use the desired form of the “arbitrary functions”, employ the Maple
dpolyform function. This function converts a specified condition into the differ-
ential polynomial form. An analogous operation can be performed by hand. E.g.,
if we need to have H(u) = Aeku , A, k = const, the linear ODE and conditions
on H(u) can be

dH(u)

du
= k H(u), k �= 0, H(u) �= 0.

• When case splitting with rifsimp is performed, the system of determining
equations should be appended with the conditions defining the arbitrary functions.

The same approach should be used for any nonlinearities, including logarithms,
exponents, trigonometric functions, etc.

In our case, the conditions of F(u) and G(u) being power nonlinearities (23) can
be generated as follows. (Wenote that in the determining equations inGeM, dependent
variables of the given equations are treated as simple variables, not functions; hence
in the determining equations, F(U) not F(U(ind)) should be used.)

cond_FG_powers:={F(U)=Uˆn, G(U)=Uˆm};
cond_F_G:=PDEtools[dpolyform](cond_FG_powers,no_Fn);

cond_F_G_full:=convert(cond_F_G,list)[1][], F(U)<>0, G(U)<>0,

m<>0, n<>0;

The resulting set of conditions is given by a Maple set-type variable

cond_F_G_full := {diff(F(U), U) = F(U)*n/U, diff(G(U), U) = G(U)*m/U,

m<>0, n<>0, F(U) <> 0, G(U) <> 0 }

The equations are declared as follows.

gem_decl_eqs([diff(W(x,t),t)=V(x,t),

diff(W(x,t),x)=U(x,t),

diff(V(x,t),t)=F(U(x,t))*diff(U(x,t),x) +G(U(x,t))],

solve_for=[diff(W(x,t),t), diff(W(x,t),x),

diff(V(x,t),t)]);

Then the symmetry determining equations are generated and a variable of
symmetry components is initialized

det_eqs:=gem_symm_det_eqs([ind, all_dep]):
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sym_components:=gem_symm_components();

The next step is to unite the determining equations and the conditions
cond_F_G_full on the functions F(u) and G(u) to be power nonlinearities.
A set union is used:

det_eqs:=det_eqs union cond_F_G_full:

We now perform six rounds the symmetry classification and case splitting, using,
one by one, the conditions (25) for the symmetry to be essentially nonlocal. For the
classification, it is essential to use the casesplit option in the call to rifsimp.

Round 1: ∂ξt/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union diff{xi_t(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

The result contains only one case, with m = −1, n = −2, with the solution space
of dimension = ∞. As remarked above, we will not go into detailed computations
for this linearization case.

Round 2: ∂ξt/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_t(x, t, U, V, W),W)<>0},

sym_components, mindim=1, casesplit);

This computation yields two cases: the linearization case m = −1, n = −2 and
another case m = 3, n = 2. (A case tree with pivots may be plotted using the
command DEtools[caseplot](symm_det_eqs,pivots);).

Let us compute all symmetries for the case m = 3, n = 2. The solution space
dimension (number of linearly independent symmetries) is equal to six. To obtain a
general symmetry generator, one uses the following commands.

symm_sol:=pdsolve(

subs({m=3,n=2,F(U)=A*Uˆ2,G(U)=B*Uˆ3}
symm_det_eqs[1][Solved]), sym_components);

The six symmetries can be output separately using

gem_output_symm(symm_sol);

The resulting set of symmetries is given by

Z1 = ∂

∂x
, Z2 = ∂

∂t
, Z3 = ∂

∂w
, Z4 = t

∂

∂w
+ ∂

∂v
+ w

∂

∂w
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Z5 = t
∂

∂t
− u

∂

∂u
− 2v

∂

∂v
− w

∂

∂w

Z6 = (Au + Bw)
∂

∂t
+ Av

∂

∂x
− Buv

∂

∂u
− Bv2

∂

∂v
+ Auv

∂

∂w
·

The symmetry Z6 yields the nonlocal symmetry of the original NLT equation (20).
Round 3: ∂ξx/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_x(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

This computation results in the same two cases: m = −1, n = −2 and m = 3,
n = 2, no new symmetries arise.
Round 4: ∂ξx/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_x(x, t, U,V,W),W)<>0},

sym_components, mindim=1, casesplit);

The output of the above command is

symm_det_eqs := table([status = "system is inconsistent"])

which means that there are no point symmetries (24) of the potential system
S{x, t; u, v, w} (22) that satisfy ∂ξx/∂w �= 0.
Round 5: ∂ηu/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(eta_U(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

The computation again yields the same two cases: m = −1, n = −2 and m = 3,
n = 2.
Round 6: ∂ηu/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(eta_U(x, t, U, V, W),W)<>0},

sym_components, mindim=1, casesplit);

The result of this computations is the same as for Round 4 above: no point symmetries
of the potential system S{x, t; u, v, w} (22) satisfying ∂ηu/∂w �= 0 exist.
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3.3 Example 3: A Nonlocal Conservation Law Classification
for the Nonlinear Telegraph Equation

Consider a class of diffusion-convection equations R{x, t; u} of the form

ut = (A(u)ux )x + (B(u))x (26)

where A(u) and B(u) are arbitrary constitutive functions, and A(u) �= 0. The break
linear case A = 1, B = const is excluded. The complete classification of linearly
independent local conservation laws for (26) yields the following results [34].

1. For arbitrary A(u), B(u), the only local conservation law of (26) is given by

Dt (u) − Dx

(
A(u)ux + B(u)

)
= 0. (27)

2. For arbitrary A(u), and B(u) = 0, there are two local conservation laws of (26).
3. For arbitrary A(u), and B(u) = A(u), the PDE (26) has four local conservation

laws.

Weemploy the conservation law (27) to construct the potential systemS{x, t; u, v}

vx = u, vt = A(u)ux + B(u). (28)

We wish to perform the local conservation law classification of the potential
system (28) and find conservation laws that yield nonlocal conservation laws of the
given PDE (26).

Herewe restrict to zeroth-ordermultipliers�1(x, t, U, V ),�2(x, t, U, V ).More-
over, for simplicity of computation, we specify

A(u) := u4

andperform thenonlocal conservation lawclassificationwith respect to the remaining
arbitrary function B(u). The full Maple program for the computation is given below.

First, the package is initialized, and variables and the free function B(u) are
declared.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),V(ind);

gem_decl_vars(indeps=[ind], deps=[all_dep],freefunc=[B(U(ind))]);

Second, the function A(u) is specialized, and the PDEs (28) are declared.

A(U(ind)):= (U(ind)̂ 4);
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gem_decl_eqs([diff(V(ind),x)=U(ind),

diff(V(ind),t)=A(U(ind))*diff(U(ind),x) + B(U(ind))],

solve_for=[diff(V(ind),x),diff(V(ind),t)]);

The conservation law determining equations are obtained, in the split form, by
calling the functon

det_eqs:=gem_conslaw_det_eqs([ind, all_dep]):

where the list in [...] determines the dependence of the multipliers. This yields 6
determining equations.

The multiplier variables are accessed by calling

CL_multipliers:=gem_conslaw_multipliers();

Further, we perform the case splitting, assuming that B(u) �= 0, and seeking
conservation laws where at least one multiplier essentially involves the potential v

(cf. Theorem 3).
Round 1: ∂�1/∂V �= 0. Here one has

simplified_eqs:=DEtools[rifsimp]( {det_eqs[]} union {B(U)<>0}

union {diff(Lambda1(x, t, U, V),V)<>0},

CL_multipliers, casesplit, mindim=1);

The only nontrivial case returned has dimension one, i.e., it yields a single con-
servation law of the required type. The condition on the function B(u) within
simplified_eqs[Solved] is

diff(B(U), U, U, U, U) = (6*(diff(B(U), U, U, U))*U−12*(diff(B(U), U, U)))/Uˆ 2

Using dsolve, one readily finds that B(U ) must have the form

B(U ) = M1U 6 + M2U 5 + M3U + M4, M1, . . . , M4 = const.

For the subsequent computations, it is more straightforward to initialize the func-
tion B(U ) to the above expression, and then again perform the simplification of
determining equations

B(U):=M1*Uˆ6+M2*Uˆ5+M3*U+M4;

simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);

One then solves for the multipliers

multipliers_sol:=pdsolve(simplified_eqs[Solved], CL_multipliers);

to obtain
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multipliers_sol :=

{Lambda1(x, t, U, V) = -_C1*exp(−(5*(M1*M4-M2*M3))*t)*exp(5*M1*V)

*exp(5*M2*x)*(M1*Uˆ5+M3)

Lambda2(x, t, U, V) =_C1*exp(-(5*(M1*M4-M2*M3))*t)

*exp(5*M1*V)*exp(5*M2*x)}

Here _C1 is the only arbitrary constant, so indeed, one conservation law is obtained.
In the regular form

�1(x, t, U, V ) = −C1(M1U 5 + M3)e5(M2x+M1V +(M2M3−M1M4)t)

�2(x, t, U, V ) = C1e5(M2x+M1V +(M2M3−M1M4)t).
(29)

Finally, the conservation law density and flux are computed using the function

gem_get_CL_fluxes(multipliers_sol);

(Other flux computation methods are available; see [10, 23].)
The newly computed conservation law is given by

Dte5(M2x+M1v+(M2M3−M1M4)t)

−Dx
(
(M1u5 + M3)e5(M2x+M1v+(M2M3−M1M4)t)

) = 0.
(30)

This is a nonlocal conservation law of the diffusion-convection PDE (26) since it
is not equivalent to any of its local conservation laws [10, 34].

Round 2: ∂�2/∂V �= 0. For this case, one obtains exactly the same result, i.e.,
a single pair of potential-dependent multipliers (29). Indeed, both multipliers there
have a similar exponential dependence on v.

4 Discussion

The symbolic software package GeM for Maple, in conjunction with standard
Maple routines like rifsimp and dsolve/pdsolve, offers convenient ways
to compute symmetries and conservation laws of systems of differential equations,
and importantly, perform symmetry and conservation law classifications with respect
to arbitrary functions and parameters.

Such computations can be applied to potential systems, as shown in Sect. 3.1
where local symmetry analysis of a potential system for a nonlinear wave equation
was used to compute a nonlocal symmetry of that equation.

It is rather straightforward, by appending extra conditions, to restrict the compu-
tations to seek specifically nonlocal symmetries or new (local or nonlocal) conser-
vation laws arising as local ones for the potential system. In Sect. 3.2, the nonlinear
telegraph equation (20) and its potential system (22) involving two potential variables
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were considered. By using the conditions (25) in symbolic symmetry computations
for the potential system, the two cases of power nonlinearities m = −1, n = −2 and
m = 3, n = 2 were isolated, for which nonlocal symmetries of the original equation
arise.

In symmetry and conservation law computations in Maple that use rifsimp,
nonlinearities have to be restricted to differential polynomial ones. Hence if a given
DE system contains nonlinearities of other types, one has to recast the nonlinear
functions into “arbitrary” functions that satisfy additional linear or differential poly-
nomial equations. An example for power nonlinearities was presented in Sect. 3.2.

In cases when a PDE system under consideration has an infinite set of symmetries
and/or conservation laws, the rifsimp routine returns dimension = ∞ for each
such case. It is important to exercise care in the analysis of determining equations in
the rifsimp output in such situations. In particular, Maple pdsolvemay return
incomplete results.

For PDE systems involving n ≥ 3 independent variables, computations generally
proceed the same way. Many specific aspects of construction of nonlocally related
systems and nonlocal symmetry and conservation law computations were discussed
in [10, 20, 21].

In terms of the further development of symbolic software for nonlocal and local
symmetry/conservation law analysis and classification, the future research directions
will naturally include the detailed development ofmore examples, and the automation
of case-by-case consideration in the classifications.
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