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We consider a rigid plastic constitutive model with linear kinematic hardening, relying on
the concept of constitutive spin introduced by Dafalias (1985a,b) to describe the evolution
of the orientation of the material texture. A more general writing of the constitutive spin
using representation theorems for second order tensors is proposed, involving arbitrary
functions of the tensor invariants. The computation of continuous symmetries and inte-
grating factors of the resulting system of differential equations leads to a classification of
cases, in terms of the constitutive functions, focusing on simple planar shear. Exact and
numerical solutions for stress versus time are obtained for some objective rates. The com-
parison of the evolution of the integrated stress components allows drawing some conclu-
sion as to the more suitable objective rates. Dynamical invariants computed in terms of the
components of the back stress tensors and of the shear strain allow to directly evaluate the
dynamical response of the material in terms of the phase portrait in the space of indepen-
dent components of the back stress tensor. Fundamental principles of irreversible thermo-
dynamics are used as a filtering mechanism for the constitutive models revealed by
symmetries and invariants, leading to the choice of constitutive models that satisfy all pro-
posed criteria. These models involve a non-linear dependence of the plastic spin on the
back stress.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Hypoelastic models and finite strain plasticity models involve proper objective rates for both the stress and back stress
when kinematic hardening is concerned. The stress is an important field that intervenes together with its rate both in the
elastic part of an elastoplastic model (when a hypoelastic formulation is used), in the definition of a yield criterion in stress
space, and in the evolution laws for the plastic deformation and tensorial like variables such as the back stress in kinematic
hardening models. Anisotropic material behavior (especially in sheet metals and more generally in polycrystalline aggre-
gates) can be traced back to texture and microstructure development (Barlat et al., 2003). Different strategies have been con-
sidered in order to model elastic and plastic anisotropic material behavior, such as structure tensors (Boehler, 2006; Liu,
1982; Zhang and Rychlewski, 1990), the concept of plastic spin (Dafalias, 1998) or deformation-like internal variables asso-
ciated to kinematic hardening (Svendsen, 1998, 2001). The connection between the orientational kinematics of the contin-
uum and its substructure has been given by the plastic spin concept, introduced in Dafalias (1985b) to reflect the difference
of the material and director vectors in the theory initially developed in Mandel (1971). The plastic spin is related to the
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evolution of the orientation of the material microstructure, a rather clear concept, whereas the directors are associated to the
material substructure, which becomes more evasive when using a more macroscopic approach in terms of tensorial internal
variables. As underlined in Dafalias (1998), the plastic spin has to be dissociated from the general kinematics of the defor-
mation, and has to be independently described as a representation of the orientation of the material microstructure as part of
the evolution laws for the other internal variables. Hence, a plasticity model should include a model for the orientational
kinematics in terms of co-rotational rates of microstructure variables via the notion of spin, together with the evolution
of the internal state variables (for instance the back stress). In finite deformation analysis, the constitutive model must in-
volve the corotational rates (Lubarda, 2001) for the material response to be independent of rigid body rotations. Different
spin tensors have been defined associated to different corotational rates. Ghavam and Naghdabadi (2007) proposed a general
method to obtain the spin tensors associated with corotational rates based on deformation. However, plastic deformation
dependent spin tensors are preferred; Ghavam and Naghdabadi (2011) introduce a plastic deformation dependent spin ten-
sor and its associated corotational rate. The proposed governing equations are solved for the simple shear problem. Dafalias
(1985b) makes a distinction between the plastic spin Wp arising as the plastic part of the total spin W and the constitutive
spin x forming the definition of the co-rotational rate of stress. In general, he writes the plastic spin as
Wp ¼ kh iXp r; sð Þ; ð1Þ
where kh i is the positive part of the plastic multiplier, r is the Cauchy stress, and s is an internal state variable such as the
plastic strain rate. In parallel to this, extensive research in the field of plasticity has been devoted to the topic related to plas-
tic spin on how to eliminate spurious stress oscillations appearing in the simulation of fixed-end torsion, with the many
available definitions of objective rates that can be classified as co-rotational or non-corotational, otherwise coined spinning
and non-spinning respectively (Liu, 2004). The same author has shown that about 10 of the most known objective stress
rates can be condensed into a generic format involving the Poisson bracket of a second order kinematic tensor B (taking a
different definition according to the considered model) as
ŝ ¼ _s� 2 Bs½ �; ð2Þ
where s ¼ Jr denotes the Kirchhoff stress, the dot stands for the time derivative, ŝ denotes the objective stress rate of the
Kirchhoff stress, and J � det F is the Jacobian of the tangent mapping. The bracket ½�� in (2) denotes symmetrization of the
enclosed tensor. The rate is said to be co-rotational when the B tensor in (2) is antisymmetrical; co-rotational rates have
the advantage of decoupling the volumetric and deviator constitutive equations, which is not the case for the non co-rota-
tional rates. Note that as shown in Arghavani et al. (2011), the logarithmic strain introduced by Hencky in 1928 has the prop-
erty that its corotational rate is the strain rate tensor. Although the objective Kirchhoff stress rate (2) is linear in the stress, its
formulation in terms of the stress deviator instead leads to a non-linear representation of the adopted constitutive model –
hypoelastic combined with perfect plasticity, as reflected by Eq. (45) in Liu (2004). This is in line with the representation
theorems for tensorial valued functions with a tensorial argument, as exposed next considering the constitutive models
for kinematic hardening: the representation theorem of Wang (1970) leads indeed to a general writing of the functional
dependence of the plastic spin in (1) as
Xp ¼ c1 s;r½ � þ c2 s;r2� �
þ c3 s;r3� �

; ð3Þ
where c1; c2; c3 are arbitrary scalar functions of the invariants TrðrÞ, Trðr2Þ; Tr r3
� �

; Tr srð Þ, Tr sr2
� �

, and A;B½ � � AB� BA is the
Lie bracket (the commutator) of two tensors A;B. Some objective rates lead to oscillatory stress components versus time in
simple shearing when the shear is increasing in a monotonous way (e.g., for a constant imposed shear rate). Such oscillatory
behavior is in contradiction with experimental observations.

The problem of choosing an appropriate form of the objective stress rate in finite strain plasticity model gained some new
insight in recent literature, adopting the point of view of symmetries of the set of constitutive equations. Symmetry structure
proved to be important not only from a theoretical and constitutive viewpoint, but also from the point of view of computa-
tions. Symmetry requirements form a cornerstone in continuum mechanics. One may classify such symmetries as material
symmetries (acting in the reference configuration, they determine what is called the material symmetry group of a given
material), and spatial symmetries, which have to be universally satisfied by any theory of finite deformation, and are usually
referred to as material frame indifference. Following an early work by Adeleke (1980), Ericksen (2000) considered the idea of
general point transformations of both the Lagrangian coordinates and of the fields, thereby extending the concept of material
symmetries described by a mere change of the reference configuration. Those generalized coordinate transformations are
invariance properties in the sense that they are compatible with the Galilean invariance of the strain energy density function,
namely, the material frame indifference is preserved. Going one step further, one may suspect in addition to material frame
indifference (a postulate valid independently of the physical problem) the existence of hidden symmetries in the space of
control and internal variables. Lie groups of such symmetries, in principle, can be computed from the set of governing equa-
tions for a specific problem. The main originality advocated in the present contribution is the use of symmetry analysis as a
methodology to provide the best possible description of the real behavior of materials.

The Lie symmetries of finite strain perfectly plastic equations were computed in Liu (2004) and numerical schemes pre-
serving group properties were accordingly developed, having the advantage of satisfying the consistency condition exactly.
Numerical schemes which preserve symmetry and utilize some induced conservation laws have long term stability and are
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endowed with improved efficiency and stability. In particular, the enforcement of the consistency condition at each time
step usually requires some iterative method for the stress point to be mapped back to the yield surface (Simo and Hughes,
1998), and this is recognized as a main source of numerical errors.

The current paper is organized as follows. In Section 2, a constitutive model for finite strain rigid plasticity with kinematic
hardening is discussed. It employs a second-order expansion of the plastic spin, and thus involves two constitutive functions.
Subsequently, as a specific example, the case of simple shear is considered. For this case, a coupled system of two nonlinear
ordinary differential equations (ODEs) is derived for back stress components; it involves one constitutive function.

In Section 3, a partial classification of the constitutive models is performed, in terms of the non-specific free functions,
based on the analysis of symmetry properties and integrating factors yielding conserved quantities (constants of motion)
admitted by the underlying ODEs. For models admitting extended symmetry properties and constants of motion, examples
of exact and numerical solutions for back stress components are presented, and their physical applicability is discussed. It
turns out that physical solutions can arise for a number of forms of constitutive functions.

A discussion of the obtained constitutive models is presented in Section 3.5. We end with a conclusion and perspectives in
Section 4.

The notation used in the current paper is as follows. Vectors and second order tensors are denoted with boldface sym-
bols. Lagrangian coordinates of material points of a solid body are denoted by the label y; they are mapped to the Eulerian
coordinates x ¼ x y; tð Þ. The transformation gradient (tangent mapping) is given by F ¼ ryx. The second order identity ten-
sor is denoted by I; Tr �ð Þ is the trace operator; AT is the transpose of A; AD ¼ A� 1

3 Tr Að ÞI represents the deviatoric (traceless)
part of A.

2. Constitutive model for kinematic hardening

2.1. An extended formulation of Dafalias model

There exists vast literature devoted to the kinematics of finite strain elastoplasticity (e.g. Drucker, 1951). In the current
work, we restrict to the rigid plastic case.

Dafalias (1985b) constructed a so-called constitutive spin for a rigid plastic material as the difference between the total
spin and the plastic spin:
x :¼W�Wp: ð4Þ
In Dafalias (1998), the following definition of the plastic spin was proposed for the investigation of the kinematic hardening:
Wp ¼ c XDp � DpXð Þ ¼ c XDDp � DpXD
� �

; ð5Þ
where c is a single material parameter, and XD is the deviatoric part of X. In the specific case of polycrystals, one has
Wp ¼ hkiXp; ð6Þ
where Xp represents the plastic rotation of the lattice. The writing of a specific constitutive relation for the plastic spin is
supported by the idea that the rotation of the texture must be governed by a rule on its own, independently of the kinematics
of deformation, see also Mandel (1971) and Kratochvil (1971).

According to the last equality in (5), for simplicity of notation, one may omit the superscript D for the deviatoric part of X.
The next step is to prescribe a kinematic hardening rule, first written in the general form as
bX ¼ F X;r; Dp; . . .ð Þ; ð7Þ
where bX represents an objective rate of the back stress X. The objective stress rate is given, within the Dafalias model
(Dafalias, 1998), by
bX ¼ _Xþ Xx�xX; ð8Þ
and involves the expression of the constitutive spin itself based on the plastic spin in (5).
The expansion of a general form of the plastic spin (5) can be obtained using the representation theorem for an antisym-

metrical anisotropic tensorial function (Boehler, 2006), as originally proposed in Dafalias (1985a,b), and will be written in a
more open formulation. This is motivated by the fact that the objective rate of the stress deviator has to be a nonlinear
expression of the back stress deviator. We now consider a second-order expansion of the plastic spin, given by
Wp X;Dpð Þ ¼ c1 XDp � DpXð Þ þ c2 X2Dp � DpX2
� �

; ð9Þ
According to the representation theorems for antisymmetric isotropic functions (Boehler, 2006), the scalar coefficients c1; c2

may depend on invariants of the tensors Dp;X:
Tr DpXð Þ; Tr DpX2
� �

; Tr ðDpÞ2X
� �

; Tr ðDpÞ2X2
� �

: ð10Þ
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Coming back to the objective stress rate in (8), using (4) and (9), it can be expressed in terms of the Lie bracket as
bX ¼ _Xþ X;W½ � � c1 X; X;Dp½ �½ � � c2 X; X2;Dp
h ih i

: ð11Þ
It is quite complicated to evaluate the scalar functions of the invariants involved in such an expression (Khan and Huang,
1995), and the question of the right formulation of objective rates remains open. We presently advocate a novel contribution
with respect to this issue, based on Lie symmetries as a tool to discriminate amongst all possible forms of the objective rates
covered by the model (9), (11). Note the replacing the objective rate for the back stress in (11) by another stress measure, e.g.,
the Kirchhoff stress, leads to recovering Liu’s approach (Liu, 2004) for the case of zero values of c1; c2. Classical objective rates
can be recovered this way, such as the Jaumann rate, the Truesdell rate, or the Xiao-Bruhns-Meyers rate. One may therefore
consider (11) with c1; c2 – 0 as an extension of Liu’s model of the objective stress rate. In (11), the term _Xþ X;W½ � linear in X
is recognized as the Jaumann rate of the back stress, and the subsequent terms are quadratic in the back stress.

Since the kinematic hardening is related to the spin of the microstructure, it is quite natural to consider finite simple
shear in the plastic regime as a test model. Simple shear is commonly used to study the properties of corotational rates (Khan
and Huang, 1995). Below we restrict the general model (11) to Prager kinematic hardening.

2.2. The case of a simple shear

For simplicity of the formulation of constitutive equations, from now on, elastic deformations will be neglected, and a
rigid plasticity model is considered. This is a reasonable assumption for the case of metals.

We consider the linear kinematic hardening rule of Prager’s type, given by
X̂ ¼ 2h
3

Dp; ð12Þ
which is a specific case of (7). In (12), h ¼ const is the hardening modulus, defined as the slope of the stress-plastic curve
_re ¼ hDp
e ;
where
Dp
e ¼

2
3

Dp : Dp
� 	1=2

¼ 2
3

Tr DpDpð Þ
� 	1=2

ð13Þ
is the equivalent plastic strain rate, and re is the equivalent stress constructed from the Cauchy stress r.
The simple shear test is challenging due to the occurrence of a strong rotation (Duchene et al. (2008); Johansson (2008)).
Focusing on the case of the simple shear, the kinematics in the reference y1; y2ð Þ�plane is obtained from the point trans-

formation from the Lagrange to the Euler coordinates
x1 ¼ y1 þ cy2; x2 ¼ y2: ð14Þ

Since we presently consider an incompressible model, a straightforward calculation shows that the set of equations for the
back stress components will remain the same in both cases of plane strain and plane stress. One consequently has
F ¼ Iþ ce1 � e2: ð15Þ
Let the shear angle cðtÞ be given as an increasing function of time, dc=dt ¼ 2xðtÞ. It follows that the velocity gradient and its
symmetrical and antisymmetrical parts are given by
L ¼ 2xe1 � e2;

Dp ¼ D :¼ L½ � ¼ 1
2

L þ LT
� �

¼ x e1 � e2 þ e2 � e1ð Þ;

W ¼ D� L½ � ¼ x e1 � e2 � e2 � e1ð Þ:

ð16Þ
The back stress is given by a symmetric matrix
X ¼ X11e1 � e1 þ X12ðe1 � e2 þ e2 � e1Þ þ X22e2 � e2: ð17Þ
A straightforward calculation using (9) leads to the expression for the constitutive spin which is given by
x ¼W�Wp ¼ f W; ð18Þ
where
f ¼ f ðX11;X12;X22Þ ¼ 1� c1 X11 � X22ð Þ � c2 X11ð Þ2 � X22ð Þ2
� �

; ð19Þ
and c1; c2 are, in general, functions of the scalar invariants (10). Dynamic ODEs for the three components of the back stress
tensor are obtained from formulas (8), (12). In the matrix form, they are given by
_X ¼ xX� Xxþ 2h
3

Dp; ð20Þ
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and in the component form, by
dX11

dc
� fX12 ¼ 0;

dX22

dc
þ fX12 ¼ 0;

dX12

dc
þ 1

2
f X11 � X22ð Þ ¼ h

3
: ð21Þ
From now on, we consider the natural case of zero initial conditions: X11ð0Þ ¼ X22ð0Þ ¼ 0. The first two equations of (21) yield
d=dcðX11 þ X22Þ ¼ 0. Hence one has, for all times,
X11 þ X22 � 0: ð22Þ
It immediately follows that in (19), the term involving c2 vanishes, and one has
f ¼ f ðX11;X12Þ ¼ 1� 2c1X11: ð23Þ
Finally, the components of the back stress are found by solving the equations
dX11

dc
� ð1� 2c1X11ÞX12 ¼ 0;

dX12

dc
þ ð1� 2c1X11ÞX11 ¼

h
3
;

X22 ¼ �X11:

ð24Þ
Due to (24), the invariants (10) reduce to
Tr DpXð Þ ¼ 2xX12 ¼: I1; Tr ðDpÞ2X2
� �

¼ 2x2ðX2
11 þ X2

12Þ ¼: I2;

Tr DpX2
� �

¼ Tr ðDpÞ2X
� �

¼ 0;
ð25Þ
and one has
c1 ¼ c1ðI1; I2Þ: ð26Þ
A plastic flow condition of Von Mises type is introduced as
q r;Xð Þ ¼ 0! Tr ðS� XÞ2
n o

� 2
3
r2

Y ¼ 0; ð27Þ
where rY is the initial yield strength. The stress is computed from the back stress and using the plastic flow rule and the
given strain rate tensor D as
D ¼ _k S� Xð Þ;
and hence one has
S11 ¼ X11; S22 ¼ �S11; S12 ¼ X12 þ
x
_k
; ð28Þ
where _k the plastic multiplier, which can be determined versus the imposed strain rate _c ¼ 2x using the plastic flow con-
dition (27), and the normality condition:
_k ¼
ffiffiffi
3
p x

rY
: ð29Þ
Note that _k P 0, since D12 must be of the same sign as x.
The Cauchy stress is finally obtained as
r ¼ 1
3

Tr rð Þ þ S; ð30Þ
hence one has
r11 ¼ S22 þ 2S11; r22 ¼ S11 þ 2S22; r12 ¼ S12; ð31Þ
Using (28) and (31), the Cauchy stress components are related to the back stress components by
r11 ¼ X11; r22 ¼ X22; r12 ¼ X12 þ
1ffiffiffi
3
p rY : ð32Þ
Below we analyze the system of ODEs (24) for the back stress tensor components X11;X12, taking into account the fact that
this system involves a priori arbitrary function c1ðI1; I2Þ.



52 A.F. Cheviakov et al. / International Journal of Plasticity 44 (2013) 47–67
2.3. A general autonomous ODE for simple shear

Using some algebra, the ODEs in the system (24) can be rewritten in the following compact way. We use the notation (23).
Multiplying the first equation by X11ðcÞ and the second equation by X12ðcÞ, and adding equations, one gets
1
2

d
dc

X2
11 þ X2

12

� �
¼ 1

2
d

dc
I1 ¼

h
3

X12: ð33Þ
Further, denoting
ZðcÞ ¼
Z c

0
X12ðsÞds
and assuming initial conditions X11ð0Þ ¼ X12ð0Þ ¼ 0 and X11ðcÞP 0, one has Zð0Þ ¼ 0, and
X11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3

hxZ � dZ
dc

� 	2
s

; X12 ¼
dZ
dc
: ð34Þ
Denote the right-hand side of the second equation of (24) by
Q Z;
dZ
dc

� 	
:¼ h

3
� f ðX11;X12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
3

Z � dZ
dc

� 	2
s

: ð35Þ
Then the second equation of (24) yields a general second-order autonomous nonlinear ODE
d2Z
dc2 ¼ Q Z;

dZ
dc

� 	
; ð36Þ
which is equivalent to the system (24), provided that the form of the function Q is chosen in a way that corresponds to a
physically relevant form of f ðX11;X12Þ in (24).

In particular, it follows that if ZðcÞ is a solution of the problem
d2Z
dc2 ¼ Q Z;

dZ
dc

� 	
;

Zð0Þ ¼ Z0ð0Þ ¼ 0
ð37Þ
for a given form of Q Z; dZ
dc

� �
, then (34) is a solution of the ODE problem
dX11

dc
� fX12 ¼ 0;

dX12

dc
þ fX11 ¼

h
3
;

X11ð0Þ ¼ X12ð0Þ ¼ 0

ð38Þ
with the corresponding f found from (35), and the related constitutive coefficient c1 determined by (23).

Remark 1. Though simple-looking, the ODE problem (37) is perhaps less practically useful for classifications below than the
original system (38), due to the technical difficulty of tracking physical feasibility of forms of the function Q compared to
f ðX11;X12Þ. In particular, one needs to choose forms of Q corresponding to real-valued X11 in (34).
Remark 2. As it is well-known, since the ODE (36) is invariant with respect to translations c! cþ const, therefore one can
use canonical variables
ZðcÞ ¼ Z;
dZ
dc
¼ NðZÞ; d2Z

dc2 ¼ NðZÞdNðZÞ
dZ

;

to further reduce the ODE (36) to a first-order equation
dNðZÞ
dZ

¼ 1
NðZÞQ Z;NðZÞð Þ: ð39Þ
Remark 3. Another possible representation of the system (24) in the form of a single ODE is the straightforward phase-plane
representation
dX12

dX11
¼ �X11

X12
þ h

3X12f ðX11;X12Þ
: ð40Þ
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3. Symmetries and Integrating Factors for the Case of Simple Shear

Continuous symmetries have proven to be useful in applied mathematics and mechanics (e.g. Olver, 2000; Ibragimov,
2002; Bluman et al., 2010). The importance of the continuous symmetries inherent to the constitutive mechanical laws of
dissipative materials has been underlined in many contributions since the foundations of continuum mechanics. Symmetries
play a major role in the construction of the constitutive laws of materials, given from a fundamental viewpoint by tensorial
functionals that have to be objective (traducing the invariance of the material’s response under the group of rotations in the
three-dimensional Euclidean space) and invariant under the action of the material symmetry group (a group of discrete sym-
metries) of the material (Weyl, 1997; Fulton and Harris, 1991). The thermodynamics of irreversible processes is the natural
framework for handling the dissipative behavior of materials, involving the use of thermodynamic potentials (basically the
free energy and a dissipation potential); those potentials should reflect the symmetry properties of the material or structure
being analyzed. Considering for instance a general internal variable formulation of inelasticity for generalized standard
materials, some of those symmetries are implicitly reflected in the form of the thermodynamic potential and the dissipation
function. This thermodynamical framework for the writing of the constitutive laws of dissipative materials has its roots in
the works by Biot (1965), Ziegler (1963), Germain (1973) and Halphen et al. (1975), and has proven its ability to cover a
broad spectrum of models in viscoelasticity, viscoplasticity, plasticity and also continuum damage mechanics. The ideal plas-
ticity equations were analyzed within this spirit in Senashov (1980), Annin et al. (1985), Mielke, 2002 related finite elasto-
plasticity to Lie groups and geodesics. Recently, Rajagopal and Srinivasa (1998) extended the classical notion of material
symmetry, within the framework of multiple natural configurations, accounting for a change of the material symmetry group
due to microstructural changes.

3.1. Computation of point symmetries

Symmetries of a system of differential equations (DEs) are defined as transformations that leave invariant the solution
manifold of the system, i.e, any solution of the system is mapped into a solution of the same system. One can use Lie’s algo-
rithm to systematically find Lie groups of point (more generally, local) symmetries of differential equations (see, e.g. Olver,
2000; Bluman et al., 2010).

Consider a DE system Efx;uðxÞg ¼ 0, where Efx;uðxÞg ¼ ðE1fx;uðxÞg; . . . ; ENfx;uðxÞgÞ are N expressions involving inde-
pendent variables x ¼ ðx1; . . . ; xnÞ and dependent variables uðxÞ ¼ ðu1ðxÞ; . . . ;umðxÞÞ and derivatives of uðxÞ up to some given
order. For such a system, a Lie group of point symmetries has the form
ðx�Þi ¼ f iðx;u; eÞ ¼ xi þ eniðx;uÞ þ Oðe2Þ; i ¼ 1; . . . ;n;

ðu�Þl ¼ glðx;u; eÞ ¼ ul þ eglðx; uÞ þ Oðe2Þ; l ¼ 1; . . . ;m;
ð41Þ
where e is a group parameter. The transformations (41) are symmetries of a given DE system if
Efx�;u�ðx�Þg ¼ 0 when Efx;uðxÞg ¼ 0:
The knowledge of infinitesimal components fni;glg is equivalent to the knowledge of the global group action ff i; glg by the
first Lie’s theorem. Symmetries are found from solving linear determining equations for the unknown symmetry components
fni;glg. Instead of the global form in (41), symmetries are often given in terms of infinitesimal generators
Y ¼ ni @

@xi
þ gl @

@ul ; ð42Þ
where summation in repeated indices is assumed.
In the current paper, we concentrate our attention on the ODE system in the case of simple shear
dX11

dc
� fX12 ¼ 0;

dX12

dc
þ fX11 ¼

h
3
;

ð43Þ
given by the first two equations of (24), with the only independent variable c, and two dependent variables X11ðcÞ;X12ðcÞ;
hence its point symmetries are sought in the form
Y ¼ n
@

@c
þ g1 @

@X11
þ g2 @

@X12
; ð44Þ
where the symmetry components n;g1;g2 depend, in general, on c;X11;X12. An important feature of the system (43) is that it
involves an arbitrary function f ðX11;X12Þ that defines the spin matrix (18), and hence the objective stress rate through (7).
Below, we classify point symmetries of the system (43) to isolate specific forms of f ðX11;X12Þ that lead to extended symmetry
structure.
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3.2. Computation of integrating factors

Again, for generality, consider a system Efx;uðxÞg ¼ 0 of N differential equations with independent variables
x ¼ ðx1; . . . ; xnÞ and dependent variables uðxÞ ¼ ðu1ðxÞ; . . . ;umðxÞÞ. Conservation laws given by nontrivial divergence
expressions
@Wifx;uðxÞg
@xi

¼ 0 ð45Þ
that vanish on solutions of a given system Efx;uðxÞg ¼ 0 can be found systematically using the direct construction method
(Anco and Bluman, 2002; Bluman et al., 2010). The method proceeds by finding N conservation law multipliers
Kqfx;uðxÞg; q ¼ 1; . . . ;N, such that a linear combination of given equations with these multipliers yields a conservation law:
Kqfx;uðxÞgEqfx;uðxÞg � @W
ifx;uðxÞg
@xi

¼ 0: ð46Þ
The multipliers Kqfx;uðxÞg are found from determining equations involving Euler differential operators (Anco and Bluman,
2002).

For ODEs with a single independent variable c, a conservation law expression (46) becomes simply an expression
Kqfc;uðcÞgEqfc;uðcÞg � @Wfc;uðcÞg
@c

¼ 0 ð47Þ
relating integrating factors Kqfc;uðcÞg and a first integral (constant of motion) Wfc;uðcÞg. Determining equations for admitted
sets of integrating factors are obtained by, first, specifying an ansatz (dependence of the integrating factors), and second,
applying Euler operators with respect to each dependent variable uj:
Euj Kqfc;uðcÞgEqfc;uðcÞg
� �

¼ 0; j ¼ 1; . . . ;m: ð48Þ
Eqs. (48) are subsequently solved off of the solution space of the given system Efc;uðcÞg ¼ 0. First integral are subsequently
computed through (47). For the ODE system (43) describing the simple shear, we denote its two equations by
E1 ¼ E1fc;X11ðcÞ;X12ðcÞg ¼ 0 and E2fc;X11ðcÞ;X12ðcÞg ¼ 0, and obtain two determining equations
EX11 K1E1 þK2E2
� �

¼ 0;

EX12 K1E1 þK2E2
� �

¼ 0;
ð49Þ
for the unknown integrating factors K1 ¼ K1fc;X11ðcÞ;X12ðcÞg, K2 ¼ K2fc;X11ðcÞ;X12ðcÞg. In (49), the Euler operators are gi-
ven by
EX11 ¼
@

@X11
� Dc

@

@ _X11

þ D2
c

@

@€X11

þ � � � ;

EX12 ¼
@

@X12
� Dc

@

@ _X12

þ D2
c

@

@€X12

þ � � � ;
where dots denote time derivatives, and the total time derivative is given by
Dc ¼
@

@c
þ _X11

@

@X11
þ _X12

@

@X12
þ €X11

@

@ _X11

þ €X12
@

@ _X12

þ � � � :
Below, we solve determining Eqs. (49) for some specific forms of multipliers, and isolate cases of the arbitrary function
f ðX11;X12Þ which correspond to the appearance of additional first integrals within the chosen forms of multipliers.

The obtained first integrals represent invariance relations between variables and parameters of the present finite strain
constitutive model. Those invariants are useful to condense the response of inelastic materials and to predict changes of
behaviors when some loading or material parameters do change. In an empirically-based work, Ferry, 1980 developed the
so-called WLF time temperature equivalence principle. Recent works in this line of thoughts evidence the interest of the
Lie symmetries as a predictive method to obtain invariance properties for materials with nonlinear viscoelastic behavior
(Magnenet et al., 2003), which can be written under the umbrella of a thermodynamical framework of relaxation (Magnenet
et al., 2007). The shift factor allowing to map the responses obtained for a continuous range of variation of the parameters
into a reference curve (the so-called master curve) is there directly calculated in terms of the constitutive model parameters,
thus allowing constructing the master curve. This master curve is nothing but the graphical expression of the invariance rela-
tions obtained from the group analysis.

3.3. Some classes of constitutive functions that yield symmetries and integrating factors for the case of simple shear

Since Eqs. (43) are both first-order equations, it follows that for each fixed form of f ðX11;X12Þ, these equations have an
infinite number of point symmetries and an infinite number of zeroth-order integrating factors. The problem of computation
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of point symmetries and zeroth-order integrating factors is often at least of the same complexity as the solution of Eqs. (43)
themselves. Therefore a complete classification is not feasible.

It is straightforward, however, to determine point symmetries and integrating factors that hold for all forms of f ðX11;X12Þ.
Here one finds only one point symmetry (time translation) given by
Y ¼ @

@c
;

and no zeroth-order integrating factors.
We now perform a partial classification of point symmetries and zeroth-order integrating factors of equations (43) with

respect to forms of f ðX11;X12Þ. We use specific ansätze for symmetry components and integrating factors, and aim at finding
forms of f ðX11;X12Þ that lead to richer symmetry/first integral structure within the chosen ansätze. Several cases of f ðX11;X12Þ
for which additional point symmetries and/or first integrals are found are presented below.

Experimental results indicate the following main properties that the response of the material should satisfy in terms of
the evolution of the stress components versus shear strain, under an imposed monotonous shear.

(a) An oscillatory behavior should be avoided for all stress components.
(b) The shear stress should have the same sign as the shear strain.

This argumentation provides a guideline for the selection of the stress evolutions having a physical meaning. It accord-
ingly filters the constitutive models obtained in the classification.

Case 1
f ðX11;X12Þ ¼
K

X11
; K ¼ const: ð50Þ
Here one has a first integral
J1;1 ¼ X12 �
h
3
� K

� 	
c ¼ C1;

J1;2 ¼ K
h
3
� K

� 	
c2 � 2KcX12 þ X2

11 ¼ C2;

C1; C2 ¼ const;

and the general solution reads
X11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

h
3
� K

� 	
c2 þ C2c

� �
þ C1

s
; X12 ¼

h
3
� K

� 	
cþ C2: ð51Þ
This corresponds to a linear form of the shear stress component X12, and an asymptotically linear X11, and requires K < h=3
for the global existence of solution for c > 0.

In the case of zero initial conditions X11ð0Þ ¼ X12ð0Þ ¼ 0, the solution (51) formally exists, and is given by linear functions
of time:
X11 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

h
3
� K

� 	s
; X12 ¼

h
3
� K

� 	
c: ð52Þ
Case 2
f ðX11;X12Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AX2

11 þ B
q

X11
; C1;C2 ¼ const: ð53Þ
For this case, Eqs. (43) can be shown to admit a first integral given by
J2;1 ¼ 3C1ðX2
11 þ X2

12Þ � 2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1X2

11 þ C2

q
:

Through the consideration of integrating factors depending on c;X11, one finds two additional first integrals, which are better
presented in specific subcases.

Subcase 2a:
f ðX11;X12Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2X2

11

q
X11

; M;N ¼ const: ð54Þ



56 A.F. Cheviakov et al. / International Journal of Plasticity 44 (2013) 47–67
Here the two additional invariants are given by
J2;2 ¼ 3MX12 sinðMcÞ þ ðh� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2X2

11 þ N2
q

Þ cosðMcÞ;

J2;3 ¼ 3MX12 cosðMcÞ � ðh� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2X2

11 þ N2
q

Þ sinðMcÞ:
Using the constants of motion J2;2; J2;3, one readily computes the general solution for the back stress components. They are
given by
X11 ¼
1

3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� 2Q cosðMcþ /ÞÞ2 � 9N2

q
; X12 ¼

Q
3M

sinðMcþ /Þ; ð55Þ
where Q ;/ are constants of integration given in terms of the invariants by
J2;2 ¼ Q cos /; J2;3 ¼ Q sin /:
The back stress components (55) are oscillatory and thus do not correspond to a physically desirable objective rate.
Subcase 2b:
f ðX11;X12Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �M2X2

11

q
X11

; M;N ¼ const: ð56Þ
Here the two additional invariants are given by
J2;2 ¼ eMcð3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �M2X2

11

q
þ 3MX12 � hÞ;

J2;3 ¼ e�Mcð3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �M2X2

11

q
� 3MX12 � hÞ:
For the case of zero initial conditions for the back stress components, the exact solution is given by
X11 ¼
1

6M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� 3NÞ 8h coshðMcÞ � 6ðN þ hÞ½ � � 2ðh� 3NÞ2 coshð2McÞ

q
;

X12 ¼
1

3M
ðh� 3NÞ sinhðMcÞ:

ð57Þ
Due to the exponential growth of the coshð2McÞ term, the component X11 evidently fails to exist for all shear values. An
exception is the case when h ¼ 3N, which yields a trivial solution.

Case 3
f ðX11;X12Þ ¼
Q 3ðX12Þ

X11
; ð58Þ
where Q 3ðX12Þ is an arbitrary function. For this case, one has a first integral given by
J3;1 ¼ M3ðX12Þ þ
c
3
;

where the function M3ðX12Þ is related to Q 3ðX12Þ by
Q3ðX12Þ ¼
1

3ðM0
3ðX12Þ þ hÞ

:

Moreover, for Case 3, there exists an infinite number of point symmetries in a special ansatz where the dependence of sym-
metry components n;g1;g2 is restricted to c;X12.

Subcase 3a: In the subcase when
f ðX11;X12Þ ¼
1

X11ðAX12 þ BÞ ; A; B ¼ const; ð59Þ
the back stress Eqs. (43) admits an additional symmetry in an ansatz where n;g1;g2 depend on c and X11 only, and moreover,
an additional conserved quantity. The two conserved quantities are given by
J3a;1 ¼ 3AX2
11 � 6X12Bþ 2ðBh� 3Þc;

J3a;2 ¼ A2hX2
11 � 2Ahcþ 6B ln½AhX12 þ Bh� 3�:
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Consequently, the solution X11;X12 satisfying X11ð0Þ ¼ X12ð0Þ ¼ 0 is given implicitly by
Fig. 1.
are: A
rY 	 10
3AX2
11 � 6X12Bþ 2ðBh� 3Þc ¼ 0;

A2hX2
11 � 2Ahcþ 6B ln½AhX12 þ Bh� 3� ¼ 6B lnðBh� 3Þ:

ð60Þ
Sample plots of solutions (60) satisfying physical requirements are given in Fig. 1.

Case 4
f ðX11;X12Þ ¼
Q 4ðX11Þ

X12
; ð61Þ
where Q4ðX11Þ is an arbitrary function. For this case, from the first ODE of (43), one obtains a first integral given by
J4;1 ¼ M4ðX11Þ � c;
where Q4ðX11Þ ¼ 1=M0
4ðX11Þ. To obtain a sample solution, consider
f ðX11;X12Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2X2

11

q
X12

; M;N ¼ const: ð62Þ
Here one has
J4;1 ¼ Mc� lnðMX11 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2X2

11 þ N2
q

Þ;
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which leads to an expression for X11. The solution satisfying X11ð0Þ ¼ 0 is given by
Fig. 2.
are: M
X11 ¼
N
M

sinhðMcÞ; ð63Þ
and X12 is the solution of the problem
dX12

dc
¼ h

3
þ N2

2MX12
sinhð2McÞ; X12ð0Þ ¼ 0: ð64Þ
Solutions (63), (64) exhibit exponential growth; sample plots are shown in Fig. 2.
Case 5
f ðX11;X12Þ ¼ Q 5ðX11Þ; ð65Þ
where Q 5ðX11Þ is an arbitrary function. For this case, for any form of the arbitrary function Q 5ðX11Þ, one has a first integral
given by
J5;1 ¼
X2

11

2
þ X2

12

2
� h

3

Z
1

Q 5ðX11Þ
dX11:
As a first example, in Fig. 3, we produce plots for
f ðX11;X12Þ ¼
Me�NX11

X11 þ A
; A;M;N ¼ const: ð66Þ
0 2 4 6 8 10
0

1

2

3

4

5

6

X 1
1/

σ Y

γ
0 2 4 6 8 10
0

2

4

6

8

10

X 1
2/

σ Y

γ

0 1 2 3 4 5 6
0

2

4

6

8

10

X 1
2/

σ Y

X11/σY

Plots of back stress components X11=rY (a) and X12=rY (b) as functions of c, and a phase diagram (c), for the case (62). The parameters used in plots
¼ 0:3;N=rY ¼ 0:2; c 2 ½0;10�; h=rY ¼ 1;1:05;1:25;1:5;1:75;2 (bottom to top). [The results are independent of rY . Typically, rY 	 106 Pa].



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

X 1
1/

σ Y

γ
0 2 4 6 8 10

−0.5

0

0.5

1

1.5

2

X 1
2/

σ Y

γ

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

X 1
2/

σ Y

X11/σY

1

1.2

1.4

1.5

1.565

1.7

1.85
2
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For unstable states, the range of the ratio h=rY has to be bounded below in order to maintain nonnegative values of the back
stress X12, as it is seen in Fig. 3(c).

As a second example, we consider forms of the constitutive function (65) which lead to the asymptotic behaviour
limc!1
dX12

dc
¼ 0: ð67Þ
From the second equation of (43), one has
dX12

dc
¼ h

3
� X11Q5ðX11ÞP 0; limc!1

h
3
� X11Q5ðX11Þ

� 	
¼ 0:
This is evidently satisfied when
Q 5ðX11Þ ¼
1

X11

h
3
� qðX11Þ

� 	

with
0 6 qðX11Þ 6
h
3
; lim

c!1
qðX11Þ ¼ 0:
Taking, for example,
f ðX11;X12Þ ¼ Q 5ðX11Þ ¼
1

X11

h
3
� A

3
expð�MðX11ÞNÞ

� 	
; A;M;N ¼ const; ð68Þ
one can obtain solutions satisfying the condition (67), with behaviour shown in Fig. 4.
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Case 6
f ðX11;X12Þ ¼
Q 6ðX12Þ
X11 þ A

; ð69Þ
where Q 6ðX11Þ is an arbitrary function, and A ¼ const – 0. In the case (69), it is straightforward to compute a first integral in
the special case
Q6ðX12Þ ¼ M þ N
X12

; ð70Þ
the first integral is given by
J6;1 ¼ 3MðX2
11 þ X2

12Þ � hX2
11 þ 2hðcN � AX11Þ:
For the form (69), (70) of the constitutive function, depending on parameters A;M;N, one can have various types of behaviour
of the stress components. For example, for the parameters used in Fig. 5, one has increasing stress components with an ulti-
mate behaviour
limc!1
dX11

dc
¼ const; limc!1

dX12

dc
¼ const:
Using different sets of parameters in the constitutive function (69), (70), an unstable behaviour according to Drucker’s pos-
tulate ( _X12 < 0, see Section 3.5) can be obtained for lower values of h. Sample curves for back stress components are given in
Fig. 6.
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3.4. Cases admitting particular classes of symmetries

We now seek forms of the constitutive function f ðX11;X12Þ in the ODE system (38) for which the equations admit partic-
ular classes of point symmetries.

A. Translation symmetries.


 Y ¼ @
@c admitted for all f ðX11;X12Þ.


 Y ¼ A @
@X11
þ B @

@X12
;A2 þ B2 > 0, admitted only for f ðX11;X12Þ ¼ 0.

B. Rotational- or boost-type symmetries. Such symmetries do not arise for any form of f ðX11;X12Þ.
C. Scaling symmetries. A general scaling symmetry
Y ¼ Pc
@

@c
þ QX11

@

@X11
þ RX12

@

@X12
; P2 þ Q 2 þ R2 > 0;
is admitted only in the case P ¼ Q ¼ R, when
f ðX11;X12Þ ¼
1

X11
S

X11

X12

� 	
; ð71Þ
where SðzÞ is an arbitrary function. For a special case when
SðzÞ ¼ z
Azþ B

; f ðX11;X12Þ ¼
1

AX11 þ BX12
; A;B ¼ const;
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a simple constant of motion can be obtained:
J ¼ 3ðAX12 � BX11Þ þ ð3� hAÞc:
In this case, however, the initial value problem (38) is degenerate, and admits an infinite number of linear solutions
X11 ¼ ac; X12ðtÞ ¼ bc; a ¼ 1
B

Abþ 1� hA
3

� 	
; b ¼ const:
D. Projective-type symmetries. The ODE system (38) admits projective-type symmetries in a number of cases, including
the following two cases.

Case (D1):
f ðX11;X12Þ ¼
X11

AðX2
11 þ X2

12Þ � 1
2 BX2

12 þ CX�2B=A
11

; A;B;C ¼ const: ð72Þ
In this case, the system (38) admits a projective symmetry
YD1 ¼ 2hðBþ 2AÞc2 � 48ðAþ BÞcX12 þ
18
h
ð2AX2

11 þ 3ðAþ BÞX2
12Þ

� 	
@

@c
þ hAc

3
� X12

� 	
X11

@

@X11

þ AX2
11 þ BX2

12 �
hBc

3
X12

� 	
@

@X12
;

and a constant of motion
JD1 ¼ ð2A2 � BðA� 2ÞÞ 2ðA� 1ÞX2
11 þ ð2A� B� 2ÞX2

12

� �
þ 2ACð2A� B� 2ÞX�2B=A

11

h i
X�2AþB

11 :
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For constitutive functions of the form (72) with B=A > 0, for initial conditions X11ð0Þ ¼ X12ð0Þ ¼ 0, the ODE system (38) evi-
dently yields
Fig. 7.
used ar
X11 � 0; X12 ¼
h
3
c;
which does not correspond to a solution of physical interest. However, when B=A < 0, there exist physically acceptable solu-
tions; an example is given in Fig. 7.

Case (D2):
f ðX11;X12Þ ¼
h
3

1
X11 þ X3

12gðX11Þ
; ð73Þ
where gðX11Þ is an arbitrary function.
In this case, the system (38) admits a projective symmetry
YD2 ¼
3

2h
X2

11 � 2X2
12

� � @

@c
� X2

12
@

@X12
;

and a constant of motion
JD2 ¼
1

X12
þ
Z

gðX11ÞdX11:
Under the initial conditions X11ð0Þ ¼ X12ð0Þ ¼ 0, the conserved quantity JD2 requires singular behaviour of gðX11Þ at X11 ¼ 0.
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3.5. Discussion

The classification of the constitutive function c1ðX11;X12Þ according to the symmetries and integrating factors inherent to
the BVP of simple shear has provided several cases of interest that do exhibit responses a priori satisfying the expected mate-
rial’s response. As previous results have shown, there are nevertheless still many possibilities to formulate the objective rate
of the back stress in Dafalias model according to the expression of the coefficient c1 versus the strain invariants, so one can
try to further reduce those cases according to an adequate argumentation extending the few criteria listed in the beginning
of Section 3.3.

The fundamental principles at the root of plasticity theories will be recalled, in order to provide more criteria for the
selection of the objective rates. Two main issues of concern are stability of the material behavior and non-equilibrium
thermodynamics.

Amongst the fundamental principles of thermodynamics, the second principle states a condition to be satisfied for the
evolution of irreversible processes, in terms of a state function called entropy, which shall tend to a maximum (along a
non-equilibrium path of the system) for isolated systems at equilibrium. A wider statement for non-isolated systems relies
on the entropy production, which is the true measure of irreversibility and shall accordingly be nonnegative.

The internal entropy production is the product of the affinity with the associated flux, as exposed in Prigogine and Chanu
(1968); in the present model, it reduces to rS ¼ ðr� XÞ : Dp, due to the fact that the flux variable _a dual to the back stress is
given from the normality condition _a ¼ _k@q=@X. Since the yield function only depends on r;X through their difference, we
obtain
_a ¼ _k
@qðr� XÞ

@X
¼ � _k

@qðr� XÞ
@r

¼ Dp:
When applied to the present situation of simple shear with imposed constant shear strain rate, the internal entropy produc-
tion writes
rS ¼ r12 � X12ð ÞDp
12 ¼ j _cj

rYffiffiffi
3
p P 0:
This condition is evidently satisfied.
Drucker proposed to classify materials by his well-known postulate (Drucker, 1951; Wu, 2005). Materials obeying Druc-

ker’s postulate can then be studied by a theory of plasticity that can be built up based on that postulate. Three classes of
materials may be considered: the strain-hardening material, the perfectly plastic material, and the strain-softening material.
Generally, strain-hardening materials satisfy the Drucker’s stability postulate (Drucker, 1951; Wu, 2005), which consists of
two parts: the stability in the small and the stability in the large, as described by the following statements:


 The stability in the small: The work done by an external agency, which slowly applies an additional set of forces to the
already stressed material, over the displacement it produces, is positive. This condition is expressed as _r : Dp P 0.

 The stability in the large: The net work performed by the external agency over the cycle of application and removal is posi-

tive, if plastic deformation has occurred in the cycle. This condition is expressed by the formula r� r�ð Þ : Dp P 0, where
r� is a stress state within or on the yield surface at a given time, and r the stress state on the yield surface at subsequent
time (this is usually recognized as Hill’s principle).

Drucker’s postulate implies as a corollary that the yield surface is convex and that the plastic strain increment is normal
to the yield surface. Without the use of this postulate, these two effects would have been two separate assumptions. Druc-
ker’s stability postulate in the small, for simple shear, has the form
_r : Dp P 0;
which implies that _X12 and _c have the same sign. In the present case of positive _c; _X12 shall be positive for all times, i.e., the
shear component X12 should be an increasing function of time for the material behavior to be stable. However, one shall al-
low for unstable behaviors, as well as for transitions from stable to unstable responses which may occur when some material
parameters or parameters related to the constitutive function f ðX11;X12Þ change. Accordingly, one may be able to tune the
response from stable to unstable by changing those parameters.

In almost all the cases considered above, the shear component X12 was an increasing function of time. In cases 5 and 6, a
transition from a stable to an unstable regime occurred when the ratio h=rY was decreased. In case 5, the unstable behavior
corresponds to a part of a center in the phase portrait of the dynamical system (Fig. 3(c)); complete centers whereby the
system evolves along a closed loop in the ðX11;X12Þ- plane would be observed if a positive initial value of X12 is chosen. Stable
regimes correspond to open phase trajectories.

In the following Table 1, we classify the obtained responses according to the above-discussed criteria. The following re-
marks are related to this table. The subcase 2a leads to an oscillatory behavior of X12ðcÞ, which is non-physical. In case 2b,
X11ðcÞ fails to exist for all shear values. Cases 1, 5, 6 satisfy all listed criteria. For case 5, the Drucker’s stability criterion gives a
further constraint on the arbitrary function Q5ðX11Þ, according to whether one has a stable or unstable behavior. In particular,
from the second equation of (43), one has



Table 1
Classification of the form of constitutive function f ðX11;X12Þ according to the fundamental principles of TIP. Specific case Dp

12 ¼ _c=2 P 0.

Case Form of
f ðX11;X12Þ

Strength of plastic
spin c1

Possibility of transition from stable ( _X12 P 0Þ to unstable

states ( _X12 6 0Þ
Availability of solutions with
physical behavior

1 K
X11

X11 � K

2X2
11

No Yes

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2X2

11

q
X11

X11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þM2X2

11

q
2X2

11

Yes No: oscillations in X12

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �M2X2

11

q
X11

X11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �M2X2

11

q
2X2

11

Yes, when changing parameter 1
M

h
3N � 1
� �

No: X11ðcÞ fails to exist for large
shear values

3a 1
X11ðAX12 þ BÞ

X11ðAX12 þ BÞ � 1

2X2
11ðAX12 þ BÞ

No Yes

4 Q4ðX11Þ
X12

X12 � Q4ðX11Þ
2X11X12

No Yes

5 Q5ðX11Þ 1� Q5ðX11Þ
2X11

Yes, when changing material parameter h=rY and
constitutive parameters

Yes

6 Q6ðX12Þ
X11 þ A

X11 þ A� Q6ðX12Þ
2X11ðX11 þ AÞ

Yes Yes

(D2) 1
3

h

X11 þ X3
12gðX11Þ

3ðX11 þ X3
12gðX11ÞÞ � h

6X11ðX11 þ X3
12gðX11ÞÞ

Yes Yes
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dX12

dc
¼ h

3
� X11Q5ðX11Þ;
which requires that the right-hand side X11Q5ðX11Þ < h=3 for stable configurations with X11;X12; dX12=dc P 0. The reverse
inequality holds in the unstable regime.

Dafalias (1985a) used a model for the constitutive spin with a constant c1 parameter,
x ¼W�Wp ¼W� g X;D½ �;
where g is a parameter describing the strength of plastic spin. This case appears as a specific subcase of Case 5, corresponding
to f ðX11Þ ¼ Q 5ðX11Þ ¼ 1� 2gX11, resulting in a constant strength of plastic spin.

Since the constitutive model for kinematic hardening considered in the current work is a rate-independent model, and
thus does not explicitly involve time, the simple shear process being analyzed is an equilibrium path. It follows that the prin-
ciple of maximum entropy production (Ziegler’s principle, see Ziegler, 1963; Ziegler, 1983; Martyushev and Seleznev, 2006)
does not apply. An extension of the current framework to the consideration of rate-dependent constitutive laws would make
the Ziegler’s principle applicable. In particular, this principle would pose constraints on the form of any rate dependent con-
stitutive model for kinematic hardening, and could help shed more light onto the fundamental principles of irreversible
thermodynamics.

4. Conclusions

In the present work, we have extended the model of the constitutive spin introduced by Dafalias (1985b) to describe the
evolution of the orientation of the material texture, considering a rigid plastic constitutive model with linear kinematic hard-
ening. The constitutive spin is an essential ingredient necessary to express the objective rate of the back stress. A more gen-
eral form of the constitutive spin using representation theorems for second order tensors has been proposed in Eqs. (9) and
(10), involving a priori arbitrary functions of the tensor invariants. Since substantial freedom of choice exists for these con-
stitutive functions, a rational methodology based on the structure of the underlying equations (symmetries and integrating
factors) is proposed to make appropriate choices. Independently from their aesthetic attraction, symmetries and conserved
quantities intrinsically contained in physical systems allow for a concise description their invariance properties (geometrical,
temporal, or under a given transformation of a set of relevant variables), and provide ways of systematic prediction of the
various phenomena that may occur in these systems.

Focusing on planar simple shear, the constitutive functions were classified according to continuous symmetry groups and
integrating factors admitted by the system of differential Eqs. (24) for the back stress components. Each form of the consti-
tutive function corresponds to an the objective rate of the back stress given by (11). Exact and/or numerical solutions for
stress versus time were obtained for some objective rates of the back stress. The classification of the constitutive function
of the model according to the symmetries and first integrals inherent to the BVP of simple shear resulted in isolating six main
cases of interest, for which the temporal evolution of the normal and shear stresses exhibits a physically sound behavior, in
particular, no oscillatory behavior for the shear component (these cases are listed in Table 1). The presented approach relying
on the internal ODE structure provides a powerful and rational methodology for the classification of the material behavior.
The partial symmetry/integrating factor classification performed in the current work might not reveal all cases of interest,
however it was indeed successful in revealing several cases with additional mathematical structure. In the present case,
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the calculation of dynamical invariants in terms of the components of the back stress tensors and of the shear strain allowed
to directly evaluate the dynamical response of the material, in terms of the phase portrait drawn in the space of the two inde-
pendent components of the back stress tensor. This is one of the principal novel aspects of this work. Despite its apparent
simplicity, the simple shear test proves to be rich enough in terms of the diversity of material responses obtained from
the symmetry analysis.

The application of the fundamental principles of irreversible thermodynamics, namely the positivity of the internal en-
tropy production and material stability in the sense of Drucker, provides a filtering mechanism for the constitutive models
revealed by additional symmetries and integrating factors. Constitutive models given by cases 5, 6 and (D2) in Table 1 appear
to be most physically relevant. In particular, the model corresponding to case 5 is a generalization of Dafalias spin model (5),
in the sense that the material parameter within the expression for the plastic spin now depends on the back stress. The con-
stitutive models suggested in the current paper need to be validated experimentally in future work.

The analysis presented in the current paper can be extended to include more general kinematic hardening rules, such as,
for example, the Armstrong–Frederick rule (Appendix A), for which the system of Eqs. (23), (24) is appended by terms linear
in the back stress components on the right hand side, see (A.5). The analysis of this more complex system is under way. As
briefly outlined in the Discussion section, the principle of maximum entropy production could bring further constraints on
the form of the constitutive functions when more general and physically more realistic constitutive models for kinematic
hardening, including rate-dependent ones, are considered.

We note that the case of simple shear considered in the current work leads to a nil coefficient c2 in (9), which will not be
the case for more complex loadings, including cyclic loading paths. Such extensions will be addressed in the future work. In
more general settings, the argumentation based on irreversible thermodynamics will lead to different criteria to be satisfied
by the back stress tensor.

The predictive methodology based on the internal mathematical structure of the model shall be extended in future to
treat more complex situations of inelastic material behaviors. As the present work suggests, it is further believed that sym-
metry methods can be helpful to discriminate amongst the existing objective rates, and possibly lead to the construction of
new objective rates in elastoplasticity. Those considerations open new promising avenues in the analysis of plasticity models
based on a combination of the thermodynamics of irreversible processes and the symmetry framework.

Appendix A. Dynamic ODEs for the back stress tensor components in the case of the Armstrong–Frederick hardening
rule

Instead of the linear Prager’s type kinematic hardening rule (12), one may adopt a more general Armstrong–Frederick
hardening rule (Frederick and Armstrong, 2007) given by
X̂ ¼ 2h
3

Dp � ~hXDp
e : ðA:1Þ
In (A.1), the equivalent plastic strain rate Dp
e is given by (13), and h; ~h ¼ const. For the case of the simple shear considered in

Section 2.2, from (16), one has
Dp
e ¼

2ffiffiffi
3
p x;
where x ¼ xðtÞ is related to the shear rate by dc=dt ¼ 2xðtÞ. The analog of the tensor ODE (20) for the Armstrong-Frederick
hardening rule therefore writes as
_X ¼ xX� Xxþ 2h
3

Dp � 2ffiffiffi
3
p ~hxX: ðA:2Þ
The corresponding equations for the components of the back stress tensor are given by
dX11

dc
� fX12 ¼

1ffiffiffi
3
p ~hX11;

dX22

dc
þ fX12 ¼

1ffiffiffi
3
p ~hX22;

dX12

dc
þ 1

2
f X11 � X22ð Þ ¼ h

3
þ 1ffiffiffi

3
p ~hX12:

ðA:3Þ
Adding the first two equations of (A.3), one obtains
d
dc
ðX11 þ X22Þ ¼

1ffiffiffi
3
p ~hðX11 þ X12Þ; ðA:4Þ
which together with the initial condition X11ð0Þ ¼ X22ð0Þ ¼ 0 yields a unique solution X11 þ X12 � 0. Finally, the equations for
the back stress tensor components for the case of Armstrong-Frederick hardening rule become
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dX11

dc
� fX12 ¼

1ffiffiffi
3
p ~hX11;

dX12

dc
þ fX11 ¼

h
3
þ 1ffiffiffi

3
p ~hX12;

X22 ¼ �X11:

ðA:5Þ
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