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Equations of the interfacial convection and convection-diffusion describing the trans-
port of surfactants, and more general interfacial balance laws, in the context of a
three-dimensional incompressible two-phase flow are considered. Here, the inter-
face is represented implicitly by a zero level set of an appropriate function. All
interfacial quantities and operators are extended from the interface to the three-
dimensional domain. In both convection and convection-diffusion settings, infinite
families of conservation laws that essentially involve surfactant concentration are
derived, using the direct construction method. The obtained results are also applica-
ble to the construction of the general balance laws for other excess surface physical
quantities. The system of governing equations is subsequently rewritten in a fully
conserved form in the three-dimensional domain. The latter is essential for sim-
ulations using modern numerical methods. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4758184]

I. INTRODUCTION

The transport of mass, energy, or momentum on multiphase interfaces is a topic of increasing
importance with a wide range of applications. In particular, the presence of surface active agents,
also known as surfactants, is relevant to various manufacturing and biomedical processes and has
become a focus of research within this context. To outline a few examples, silicone surfactants are
used as stabilizing agents for polyetherane foam by reducing interfacial tension and, consequently,
promoting the formation of a coherent interfacial film.1 Also, surfactants are used to control the
formation of small droplets in industrial emulsification processes by lowering the surface tension,
and hence facilitating the droplet breakup and preventing coalescence.2, 3 The delivery of surfactants
into the lung helps to regulate its surface tension with prematurely born infants with a lung surfactant
deficiency.4, 5

From the numerical point of view, simulating the transport of mass at fluidic interfaces constitutes
a major challenge, since these processes are modeled by equations defined on moving and deforming
submanifolds of the original domain. Commonly, one has to deal with interfacial convection-diffusion
equations, involving differential operators given by tangential parts of the standard differential
operators with respect to the interface. On stationary surfaces, this difficulty is usually overcome by
introducing interfacial grids and determining suitable basis polynomials of the interface that yield
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an adequate basis for tangential operators.6 Alternatively, nodes on the surface may be determined
and used for a suitable discretization. As another approach, each point can be mapped to one of its
closest points on the surface. In this case, the standard differential operators have only tangential
components and replace the surface differential operators.7, 8

In case of moving or deforming interfaces, however, the above approaches are less adequate
since they require an adaptation in every time step and re-meshing after certain periods of time.9–11

A better representation of the interfacial differential operators may then be given extrinsically based
on the Eulerian grid, i.e., by an orthogonal projection of the standard operators onto parts tangential
to the interface where an implicit representation of the interface, for instance, by means of a level
set function, yields the orthogonal projection without any difficulties.12 A weak formulation of a
corresponding Eulerian convection-diffusion equation is provided in Ref. 13. Regarding the extension
approach, all computations can be performed on the fixed Eulerian grid of the three-dimensional
domain. Here, to restrict computational costs and guarantee the regularity of the level set function up
to a certain extent, a small neighborhood of the interface—a narrow band around the interface—is
used as the new computational domain normally consisting of few grid cells in the normal direction
to the interface only.14–17 Usually, the Eulerian approach is combined with a constant extension of
all quantities in normal direction off the interface.14–17 Still, this formulation is a major obstacle for
numerical methods that split up the differential terms by Gaussian product rule and thus, require
equations in divergence form. As an example, Discontinuous Galerkin methods may be considered.
Here, a projection of differential operators onto their tangential parts can only be implemented by
incorporating aggravating source terms.

Nevertheless, conservation laws can be constructed algorithmically using the direct construction
method.18–21 The direct construction method does not require the use of Noether’s theorem, and, in
fact, supersedes it for equations that do not admit a variational formulation.20, 21 The method has been
implemented in the symbolic software package GeM for Maple22 and successfully used to compute
conservation laws of many nonlinear models, such as the equations of magnetohydrodynamics
equilibria23 and the G-equation for premixed combustion.24 Many other examples can be found in
Ref. 21.

In the present paper, we provide a conserved form of both the interfacial convection and the
convection-diffusion equations describing the transport of surfactants in incompressible two-phase
flow based on a level set formulation of the interface. The transport of surfactants is taken only as an
illustrative example of a much wider class of interfacial balance laws. A short introduction to general
interfacial balance laws and, in particular, the modeling of surfactant flow is given in Sec. II. The direct
construction method of conservation laws is briefly outlined in Sec. III. In Sec. IV, we use the direct
construction method to derive infinite families of conservation laws for the considered interfacial
surfactant transport equations, both in the convection and the convection-diffusion settings, as well
as for more general interfacial balance equations. The derived families of conservation laws involve
arbitrary functions. Using the obtained conservation laws for the surfactant transport equation, we
rewrite the corresponding systems of partial differential equations in fully conserved forms, which
is optimal for the application of appropriate numerical methods. Here, the remaining equations of
the system are provided in a conserved form as they stand. In particular, the freedom of choice of an
arbitrary function present in the conservation law for surfactant concentration can be used to select
a form of the conservation law that has desired properties for a given numerical scheme. An outline
how this new formulation might be used in numerical schemes that forgo a discretization of the
interface is discussed in Sec. V. The paper is concluded with Sec. VI containing a brief summary
and discussion.

II. INTERFACIAL TRANSPORT EQUATIONS

Starting with the standard postulates of continuum mechanics and the general global balance
statement for an arbitrary physical quantity in a physical domain of three bulk phases including
singular phase interfaces and a three-phase contact line, Wang and Oberlack25 derived, in addition
to the classical local balance equations for each bulk phase, the local balance equations on the phase
interfaces and at the contact line. These additional interface and line balance laws can be specified
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for excess surface and line physical quantities, e.g., excess mass, momentum, angular momentum,
energy, entropy, or surfactant mass, respectively. Another extensive derivation of these interfacial
transport equations may be found in Ref. 26.

The local form of the general balance law on the interface S can be written in the form

δ(s)γ (s)

δt
+ ∇(s) · (

γ (s)u
) + ∇(s) · φ(s) − H (s) (φ(s) · n(s)) − π (s) + [[

φ · n(s)]] = 0 on S, (1)

where γ (s) denotes the surface density of the physical quantity investigated, u is the material
velocity, H (s) = ∇s · n(s) is the total surface curvature, n(s) is the unit normal vector of the inter-
face S, pointing from the domain B(1) into the domain B(2), [[G]] = G(2) − G(1) denotes the jump
of the quantity G over the interface S between the phases B(1) and B(2), φ(i) (i = 1, 2) and φ(s)

are the respective non-convective fluxes in the bulk phases (i = 1, 2) and on the interface S, π (s) is
the surface production/supply rate density, and ∇(s) indicates the surface gradient operator, respec-
tively. For the case of a material interface, assuming that the interfacial non-convective flux φ(s) is
tangential to the interface, an equivalent formulation of (1) is provided in Ref. 26. For a bulk field
that is well-defined and smooth up to the surface from both sides, the surface gradient is simply the
tangential component of the standard gradient, defined by

∇(s) = [
I − n(s) ⊗ n(s)

] · ∇ ≡ I (s) · ∇, (2)

where I (s) ≡ I − n(s) ⊗ n(s) is the surface projection tensor.
Moreover, in (1), δ(s)/δ(s)t is the so-called normal time derivative, denoting the time derivative

for a given point on the surface following the normal trajectory of the surface. It is related to
the material time derivative d/dt and the local time derivative ∂/∂t (if well-defined) by dγ (s)/dt
= δ(s)γ (s)/δ(s)t + u · ∇(s)γ (s) = ∂γ (s)/∂t + u · ∇γ (s). In deriving (1), it has been assumed that the
phase interface is a material surface with a no-slip condition between the interface and the two
adjoining phases.

In the present investigation, we restrict ourselves to the case when the non-convective flux φ(s)

on the interface S is tangential to the surface. This applies to most excess surface physical quantities.
In this case, φ(s) may be expressed as a surface projection of any vector in the form φ(s) = I (s) · g,
where g is a three-dimensional spatial vector. Then, the balance law on the interface (1) can be
rewritten as

dγ (s)

dt
+ γ (s)∇(s) · u + ∇(s) · (

I (s) · g
) = Sγ on S, (3)

where Sγ = π (s) − [[
φ · n(s)

]]
is the sum of the surface production/supply rate density and the flux

from both the adjoining bulks to the interface.
In many applications, one is interested in the transport process of a solute whose concentration

is small and whose influence on the flow field is negligible. Such a solute is considered as a passive
constituent, which is convected by the fluid flow and whose relative motion to the fluid flow is
modeled by a diffusive flux. The mass balance equation of the solute on the interface can be
established by the general local balance Eq. (1) by means of the following identifications:

γ (s) = c, π (s) = 0, φ(s) = −α∇(s)c on S, (4)

where an extended Fick’s first law has been employed to relate the surface diffusive flux to the
concentration field with a constant diffusion coefficient α.

Substituting (4) into (1) yields the conservation law of surfactant mass

dc

dt
+ c∇(s) · u − α∇(s) · ∇(s)c = S on S, (5)

where S denotes the adsorption, or desorption, respectively, from both the adjoining bulks to the
interface. Other derivations of the classical surfactant transport Eq. (5) and its simplified forms may
be found in Refs. 26–33.

Depending on the problem investigated, the differential Eq. (5) must be appended by appropriate
initial and boundary conditions in order to define a well-posed initial-boundary-value problem.
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Regarding initial conditions, an initial concentration distribution on the interface may be specified,

c(x, t = 0) = c0(x) on S. (6)

Boundary conditions are necessary for the interfacial boundary ∂S, which is usually a closed
curve. Generally, there exist the following three cases. For a closed interface ∂S = ∅, no boundary
condition is needed. In case ∂S �= ∅, a value of c at the domain’s boundary may be prescribed, which
corresponds to Dirichlet boundary conditions. For the case when the flux rate of the surfactant at
the interfacial boundary ∂S is known, e.g., zero flux at the solid boundary, the Neumann boundary
conditions can be employed, i.e.,

∇(s)c · s = b on ∂S, (7)

where s denotes the unit vector normal to the boundary curve ∂S but tangent to the interface S,
outward from the system.

For the convenience of numerical simulation, we extend the differential Eq. (5) defined on the
interface S to the three-dimensional space by the relation (2). As a result, the extended equation is
no longer in a conserved form. Our aim is to construct it in a conserved form, first, in absence of
sinks or sources, S = 0. Then, it is shown how the source/sink term S is considered if it is present.
Furthermore, it will be demonstrated that the obtained conserved form of the surfactant transport
equation may be generalized for more general interfacial balance laws (3).

Let S ⊂ R3 refer to the interface in an incompressible two-phase flow application where
u = (u1, u2, u3) denotes a velocity field. Let x = (x1, x2, x3) be the position vector and � ⊂ R3 the
fluid domain considered, containing the interface S. Numerically, the interface is represented by an
implicit approach using a level set function � : R3 → R, i.e., S = {x ∈ � : �(x) = 0}. The level
set function � is transported by the flow field u according to

�t + u · ∇� = 0 in �, (8)

where the index t indicates the local time derivative ∂/∂t. Incompressibility of the flow yields the
continuity equation

∇ · u = 0 in � (9)

implying that the above equation can simply be given in the conserved form by

�t + ∇ · (u �) = 0 in � (10)

by multiplying (9) by � and adding Eq. (8). We focus on the surface convection-diffusion Eq. (5) of
the form

ct + (u · ∇)c + c∇(s) · u − α	(s)c = 0 on S, (11)

describing the interfacial transport of surfactants at this stage without any desorption or adsorption
from the adjoining bulk phases. Treating surface partial differential equations (PDEs) numerically, the
most convenient approach for dealing with surface differential operators is commonly by an extrinsic
representation where the standard differential operators are projected to their tangential parts. Hence,
the interfacial differential Eq. (11) is extended from the interface S to the three-dimensional domain
�. Correspondingly, the interfacial concentration c must also be suitably extended to c̃ in the domain
such that c̃|S = c. Since the initial condition c0 in (6) is defined only on the interface S, it must also
be extended to the whole computational domain �, for example, as suggested by the authors,15, 16, 34

requiring

∇ c̃0 · ∇� = 0 in � and c̃0 = c0 on S. (12)

This means that we require c̃0 to be constant in the direction transverse to the surface. From here on,
we omit tildes, always assuming that we differentiate quantities defined not only on the surface, but
in the embedding space as well.
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In particular, the above extension for the surface divergence defined on a connected surface
S ⊂ R3 is given by (2), or in index notation as

∇(s) · u = (δi j − ni n j )
∂ui

∂x j
. (13)

The surface Laplacian, usually referred to as the Laplace-Beltrami operator, is given by

	(s)c ≡ ∇(s) · ∇(s)c = (δi j − ni n j )
∂

∂x j

(
(δik − ni nk)

∂c

∂xk

)
, (14)

where n = (n1, n2, n3) denotes the normal vector to the surface. Here, δij is the Kronecker delta
symbol: δij = 1 if i = j and δij = 0 if i �= j. Also note that Einstein summation in repeated indexes is
assumed throughout the paper. As an advantage to the level set formulation, we have that the normal
vector to the interface is simply provided by

n = − ∇�

|∇�| .

In the following, we will always assume that the level set function is regular in the domain considered,
in particular, � is sufficiently smooth, and ∇� �= 0. We will get back to this issue later.

Using the incompressibility condition (9) and rewriting the the surface divergence (13) as

∇(s) · u = −ni n j
∂ui

∂x j

one obtains the extended convection-diffusion surfactant transport equation

ct + ui ∂c

∂xi
− cni n j

∂ui

∂x j
− α(δi j − ni n j )

∂

∂x j

(
(δik − ni nk)

∂c

∂xk

)
= 0 in �, (15)

or more generally, the extended general interfacial balance law (from (3) with Sγ = 0),

γ
(s)
t + ui ∂γ (s)

∂xi
− γ (s)ni n j

∂ui

∂x j
+ (δi j − ni n j )

∂

∂x j

(
(δik − ni nk)gk

) = 0 in � (16)

in the form to be investigated below.

III. CONSTRUCTION OF CONSERVATION LAWS USING THE DIRECT METHOD

For a given system of partial differential equations, it is often important to find its divergence-
type conservation laws, i.e., expressions of the form

∂


∂t
+ ∂� i

∂xi
= 0 (17)

that hold on the solutions of the given system. In (17), the conservation law density 
 and the spatial
fluxes � i, i = 1, 2, 3, can depend on independent and dependent variables of the given equations, as
well as their partial derivatives, and possibly on nonlocal (integral) quantities.

Conservation laws of the form (17) provide the mathematical expression of basic conservation
principles holding for a given model, such as the conservation of mass, energy, momentum, charge,
etc. They are also used for multiple other purposes, such as existence, uniqueness, and global solution
behavior analysis or linearisation mappings. An important application, which is in the focus of the
current contribution, is the formulation of a given system of equations in a fully conserved form,
which makes the application of many modern numerical methods straightforward, as discussed
above.

An algorithmic way to seek local conservation laws (17) of a given system of PDEs is provided
by the direct construction method.18–21 Existence of conservation laws is often associated with
symmetries through the famous Noether’s theorem. However, this only holds for equations that
follow from a variational principle, which is often not the case for equations arising in applications.
Even when equations are variational, it turns out that Noether’s theorem is not the optimal way
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for conservation law computations. On the other hand, the direct construction method is practically
efficient whether or not the given equations are variational.

We now briefly overview the direct construction method in application to a general PDE system

Rσ = 0, σ = 1, . . . , N (18)

of N partial differential equations, with independent variables z = (z1, . . . , zn), one of which can be
time, and m dependent variables u = (u1, . . . , um). We wish to find conservation laws

∂� i

∂zi
= 0 (19)

of the PDE system (18). Expressions (19) coincide with (17) when one of the independent variables
is time and others are spatial variables xi.

Consider an Euler operator with respect to each dependent variable u j, written as

Eu j = ∂

∂u j
− Di

∂

∂u j
i

+ · · · + (−1)sDi1 . . . Dis

∂

∂u j
i1...is

+ · · · (20)

in terms of the total derivative operators

Di = ∂

∂zi
+ u j

i

∂

∂u j
+ u j

ii1

∂

∂u j
i1

+ u j
ii1i2

∂

∂u j
i1i2

+ · · · , (21)

where u j
i1...is

≡ ∂su j/∂zi1 . . . ∂zis and u j
ii1...is

≡ ∂s+1u j/∂zi∂zi1 . . . ∂zis are partial derivatives of order
s and s + 1, respectively.

The idea of the direct construction method is based on the fact that any divergence expression
is annihilated by an Euler operator with respect to each u j:

Eu j

(
∂� i

∂zi

)
≡ 0, j = 1, . . . , m. (22)

Vice versa, if an expression is annihilated by all Euler operators, then it is a divergence
expression (19).

Let us seek conservation laws as linear combinations of given equations Rσ with unknown
multipliers σ :

σ Rσ ≡ ∂� i

∂zi
= 0. (23)

The unknown multipliers may be chosen by a user to depend on independent and dependent variables
and perhaps partial derivatives of dependent variables up to some prescribed order. Due to (22), the
multipliers σ are found from the determining equations

Eu j (σ Rσ ) = 0, j = 1, . . . , m. (24)

After the linear determining equations (24) are solved and multipliers σ are found, one proceeds
to finding conservation law density and fluxes by means of (23). Methods of flux computation are
reviewed in Ref. 35. In particular, one of these methods requires the knowledge of point symmetries21

of a given system of equations. For completeness, point symmetries of the Eqs. (8), (9), and (11)
considered in the current paper are given in the Appendix.

The direct construction method is implemented in the symbolic software package GeM for
Maple22 which has been used for the computations in the present paper.

In Sec. IV below, the direct construction method is used to discover infinite families of conser-
vation laws of the system of Eqs. (9), (10), and (15) and in particular, to write all those equations in
the conserved form. This is done for the cases of both zero and nonzero diffusion coefficient α.

It is important to note that the majority of PDE systems arising in applications can be written in
a solved form with respect to some leading derivatives. It has been proven that for such systems, all
of their local conservation laws follow from some multipliers through linear combinations (23) see,
e.g., Ref. 21. The equations considered below, in both convection and convection-diffusion settings,
can be written in a solved form.
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In seeking conservation laws, one naturally avoids trivial conservation laws like div curl(·) ≡ 0,
or those whose fluxes and density vanish on solutions of the given system. For details, see Ref. 21.

IV. CONSERVED FORM OF THE EQUATIONS

In this section, we assume that sets of initial values and boundary conditions are provided
where necessary; they will not be stated explicitly. These conditions will neither influence, nor be
influenced by the construction of the conserved form of the considered differential equations.

A. The convection case

In the case of no surface diffusion (α = 0), the governing Eqs. (9), (10) and (15) in the index
notation can be written as

R1 = ∂ui

∂xi
= 0 in �, (25a)

R2 = �t + ∂(ui�)

∂xi
= 0 in �, (25b)

R3 = ct + ui ∂c

∂xi
− cni n j

∂ui

∂x j
= 0 in �. (25c)

Equations (25a) and (25b) are in the conserved form as they stand. We now seek multipliers 1,
2, 3 of conservation laws for the Eqs. (25) such that the linear combination

i Ri = ∂


∂t
+ ∂� i

∂xi
= 0 (26)

yields a conservation law and the conserved density 
 involves the surfactant concentration c.
Consequently, one must take 3 �= 0.

The first step is to choose the dependence of the multipliers i for the direct construction
method.

It can be shown that choosing multipliers independent of second-order derivatives does not yield
any solution of the equations determining the multipliers (24). Hence, to construct any conservation
form (26) with 3 �= 0, a dependence of the multipliers on the second-order spatial derivatives of
physical quantities is necessary.21

One is successful when using the multiplier ansatz

i = i (t, x,�, c, u, ∂�, ∂c, ∂u, ∂2�, ∂2c, ∂2u), (27)

where

∂� ≡
{

∂�

∂xk
, k = 1, 2, 3

}
, ∂2� ≡

{
∂2�

∂x j∂xk
, j, k = 1, 2, 3

}
are sets of first-order and second-order derivatives of �, or c and components of u, respectively.
In (27), one may additionally include time derivatives of components of u but does not need to
include time derivatives of � and c, since the latter are defined by spatial derivatives through the
Eqs. (25b) and (25c).

Requiring that the conservation law (26) holds and solving the multiplier determining Eqs. (22),
one obtains an infinite set of admitted conservation law multipliers 1, 2, 3. Importantly, the
multiplier 3 can be nonzero. It has a general form

3 = |∇�| K(�, c|∇�|), (28)

where K is an arbitrary sufficiently smooth function of its arguments. The form of the multipliers
1, 2 is highly complicated; however, a rather simple explicit form of an equivalent conservation
law can be found. The following statement holds.
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Principal Result 1:

(a) The system of surfactant transport equations in the absence of surface diffusion (25a)–(25c)
admits an infinite family of conservation laws given by

∂

∂t
G(�, c|∇�|) + ∂

∂xi

(
uiG(�, c|∇�|)) = 0 in �, (29)

where G is an arbitrary sufficiently smooth function of its arguments.
(b) Each of the conservation laws (29) with G �= 0 is a conserved form of the dynamic equation

(25c) for the surfactant concentration.
(c) The conservation laws (29) can be written in the material form as

d

dt
G(�, c|∇�|) = 0, (30)

where

d

dt
= ∂

∂t
+ u · ∇

denotes the material derivative. This means that the quantity G is invariant to a fixed particle.
(d) The arbitrary functions K and G are related by

K(�, c|∇�|) = ∂G
∂ξ

(�, ξ )|ξ=c|∇�|. (31)

Remark 1: To preserve the number of independent equations in the rewritten system, as compared
to the equation system (25), G has to be chosen as an invertible function in its second argument.
With this restriction, the surfactant transport equation without diffusion, (25c), can be replaced by
the conserved form (29).

Statement (b) follows from the observation that, since 3 given by (28) is generally nonzero,
the linear combination (26) essentially involves the surfactant transport Eq. (25c). Statement (c) is a
direct consequence of the incompressibility condition (9). This indicates that in the pure convection
case, G(�, c|∇�|) is a material conservation quantity.

The statement (a) follows from the direct construction method. A straightforward way to verify
that (29) holds on solutions of (25) is as follows. Denote the differential consequences of equation
R2 = 0 (25b) with respect to spatial coordinates x j by

R2
j = ∂

∂x j
�t + ∂

∂x j

(
ui ∂�

∂xi

)
= 0, j = 1, 2, 3, (32)

and denote G(�, c|∇�|) = G̃(�, c2|∇�|2) = G̃ for the simplicity of notation. Then a direct compu-
tation yields

∂

∂t
(G(�, c|∇�|)) + ∂

∂xi

(
uiG(�, c|∇�|)) ≡ ∂

∂t
G̃ + ∂

∂xi

(
ui G̃

)
= {G̃ − �D1G̃ − 2c2|∇�|2 D2G̃} R1 + {D1G̃} R2 + {2c|∇�|2 D2G̃} R3 +

{
2c2 D2G̃

∂�

∂x j

}
R2

j ,

where D1G̃, D2G̃ denote the partial derivatives of G̃ by its first and second argument, respectively.
Consequently, the divergence expression (29) is indeed a linear combination of the equations R1 = 0,
R2 = 0, R3 = 0 (25) and the differential consequences R2

j = 0 (32) with multipliers given in the
curly brackets, and the Principal Result 1 is fully established.

Remark 2: In the case G(�, c|∇�|) = 1, formula (29) reduces to the incompressibility condition
(25a). Simplest concentration-dependent conservation laws in the family (29) can be obtained, for
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example, by setting G(�, c|∇�|) = (c|∇�|)p, p ∈ N, and are given by

∂

∂t
[(c|∇�|)p] + ∂

∂xi
[ui (c|∇�|)p] = 0. (33)

In particular, when p is an even number, the density and the fluxes in (33) do not involve square
roots, which are due to |∇�|.

Another possible case of interest for applications is the separated form G(�, c|∇�|)
= F1(�)F2(c|∇�|), where F1 and F2 are suitable arbitrary functions.

B. The convection-diffusion case

In the presence of diffusion, the extended surfactant dynamic equations take the form

R̃1 = ∂ui

∂xi
= 0 in �, (34a)

R̃2 = �t + ∂(ui�)

∂xi
= 0 in �, (34b)

R̃3 = ct + ui ∂c

∂xi
− cni n j

∂ui

∂x j
− α(δi j − ni n j )

∂

∂x j

(
(δik − ni nk)

∂c

∂xk

)
= 0 in �. (34c)

Similar to the purely convective case, for the system (34), there exist no conservation laws where
the multipliers depend only on independent and dependent variables as well as first order derivatives
of the dependent variables. Hence, no c-dependent conservation law can be constructed.22

If the multiplier dependence is further generalized to include second order derivatives of �, then
one finds an infinite family of sets of local conservation law multipliers corresponding to c-dependent
conservation laws. Such multipliers are given by

1 = �F(�) |∇�|−1

(
∂

∂x j

(
c

∂�

∂x j

)
− cni n j

∂2�

∂xi∂x j

)
,

2 = −F(�) |∇�|−1

(
∂

∂x j

(
c

∂�

∂x j

)
− cni n j

∂2�

∂xi∂x j

)
,

3 = F(�)|∇�|,

(35)

where F is an arbitrary sufficiently smooth function. The conservation law density 
 and the fluxes
� i are again found directly using the flux determining Eq. (26). The following result holds.

Principal Result 2:

(a) The system of surfactant transport Eqs. (34a)–(34c) in the case of a nonzero surface diffusion
(α �= 0) admits an infinite family of conservation laws given by

∂

∂t
(cF(�) |∇�|) + ∂

∂xi

(
Ai F(�) |∇�|) = 0 in �, (36)

where

Ai = cui − α

(
(δik − ni nk)

∂c

∂xk

)
, i = 1, 2, 3, (37)

and F is an arbitrary sufficiently smooth function of its argument, cf. (35).
(b) Each of the conservation laws (36) with F �= 0 is a conserved form of the dynamic Eq. (34c)

for the surfactant concentration. In this case, (34c) can be replaced by (36).
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The simplest concentration-dependent conservation law of the family (36) is obtained by setting
F(�) = 1, and has the form

∂

∂t
(c |∇�|) + ∂

∂xi

(
ui c |∇�|) = α

∂

∂xi

(
|∇�| (δik − ni nk)

∂c

∂xk

)
in �. (38)

Remark 3: As it is expected, one can observe that when α = 0, formulas (36) collapse to a
subfamily of conservation laws (29) for the no-diffusion case, with G(�, c|∇�|) = cF(�)|∇�|.

Remark 4: Conservation laws (36), as well as conservation laws (29) for the no-diffusion case,
are dimensionally consistent for any choice of dimension units for the arbitrary functions F and G.

C. Conservation forms for general interfacial balance laws

Conserved forms of the surfactant transport Eq. (15) in the convection-diffusion setting were
constructed in Sec. IV A above. The Eq. (15) follows from a surface extension of the Fick’s law, i.e.,
the third identity in (4). However, it is easy to see that neither the obtained multipliers (35), nor the
conservation laws (36) themselves depend on the choice of the surface diffusion law. This allows
for the following generalization.

Let γ (s) be some excess surface physical quantity on the surface S whose non-convective flux
can be expressed as the surface projection of an arbitrary vector in the form φ(s) = Is · g. The
balance law for γ (s) in the absence of the source term is given by (16), which is almost identical to
the surfactant transport Eqs. (15) and (34c). It follows that the analysis of Sec. IV B can be carried
over to a system of Eqs. (16), (34a) and (34b), to obtain an infinite family of conservation laws

∂

∂t

(
γ (s) Fγ (�) |∇�|) + ∂

∂xi

(
Ai,γ Fγ (�) |∇�|) = 0, (39)

where

Ai,γ = γ (s)ui + φ
(s)
i = γ (s)ui + (

δi j − ni n j
)

g j , i = 1, 2, 3, (40)

for any excess surface physical quantity γ (s). In (39), Fγ is an arbitrary sufficiently smooth function.

D. Interfacial transport equations in the presence of source terms

So far, we have only considered surfactant transport equations and balance laws that do not
involve source terms. In many cases, the source terms may occur, e.g., for the surfactant transport
equation when adsorption or desorption from both the adjoining bulk phases to the interface or
chemical production on the interface take place.

Generally, when a transport equation contains a source term, it may not be written in a fully
conserved form, except for some special cases. However, using the previously derived conserved
forms for the no-source case, one can rewrite a transport equation with sources in a more compact
form. As an example, consider a surfactant transport equation with sources. It can be written in the
form

R3∗ = R̃3 − S(c, x, t),

= ct + ui ∂c

∂xi
− cni n j

∂ui

∂x j
− α(δi j − ni n j )

∂

∂x j

(
(δik − ni nk)

∂c

∂xk

)
−S(c, x, t) = 0 in �. (41)

A linear combination of (34a) and (34b) and the above Eq. (41) by the multipliers (35) yields

1 R̃1 + 2 R̃2 + 3 R3∗

= 1 R̃1 + 2 R̃2 + 3 R̃3 − 3S(c, x, t),

= ∂

∂t
(cF(�) |∇�|) + ∂

∂xi

(
Ai F(�) |∇�|) − 3S(c, x, t) = 0. (42)
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Consequently, the interfacial convection-diffusion equation with sources can be rewritten as

∂

∂t
(cF(�) |∇�|) + ∂

∂xi

(
AiF(�) |∇�|) = F(�)|∇�|S(c, x, t) in �. (43)

Similarly, the purely convective surfactant dynamics equation can be rewritten as

∂

∂t
G(�, c|∇�|) + ∂

∂xi

(
uiG(�, c|∇�|)) = |∇�| ∂G

∂ξ
(�, ξ )|ξ=c|∇�|(�, c|∇�|)S(c, x, t) in �.

(44)

V. PERSPECTIVES FOR NUMERICAL TREATMENT

Evolving interfacial physical quantities, such as surfactant concentration, along a moving de-
formable surface is a highly challenging task, and depending on the method applied, tracking or
capturing an interface also requires great expertise. In most research works, a Lagrangian grid is
used to track the phase interface and employed to discretize interfacial equations implying that these
equations are only solved on the interface, see e.g., Refs. 36–42.

Up to now, considerably fewer works on numerical simulations of interfacial equations are
based on an Eulerian approach. Several limited examples may be found in Refs. 13–17 for various
interfacial differential equations, but not for surfactant transport. Xu et al.34 presented a level-
set/immersed interface method for two dimensional interfacial flows with insoluble surfactant. The
evolution of the surfactant concentration was performed by solving a convection-diffusion equation
using an Eulerian approach, first presented in Ref. 43.

In the Eulerian approach considered in the current work, the surface differential operators
are expressed in terms of global derivatives, and the interfacial physical quantities, such as the
surfactant concentration, which are supposed to be only defined along the interface, are extended off
the interface into a higher dimensional domain. To reduce the amount of computational cost caused
by the additional dimension, computations are typically restricted to a tube around the interface
consisting of few grid cells only. The extended physical quantities are then evolved in this narrow
band. The interface is captured by the level set method. By suitably choosing this narrow band, the
sufficient regularity of the level set function (∇� �= 0) is assured. Thus, the evolution of the physical
quantity investigated, for instance of the surfactant concentration, along the interface (zero level-set
contour) is embedded in the evolution of the extended quantity in the narrow band. An advantage
of this method is that the evolution of the extended physical quantity can be easily performed using
standard numerical methods on the same Eulerian grid as used for the representation of the flow field,
avoiding an explicit discretization of the interface. A disadvantage is that the possible conserved
form of the interfacial balance law may be destroyed by the extension of the interfacial differential
equation to the three-dimensional domain, as shown before for the surfactant transport equation.
From the viewpoint of numerical accuracy, the conserved form of a differential equation is always
favorable to reduce numerical errors and preserve the quantity numerically. The conserved form
of Eqs. (25) and (34) offers new perspectives to the numerical treatment of interfacial convection-
diffusion equations that attempt to forgo the discretization of fluidic interfaces and maintain the
high-order numerical accuracy.

Numerical computing in this domain requires choosing conditions at the boundary of the
narrow band. The correct boundary conditions remain unclear, or to some extent they can be chosen
arbitrarily, since for the interfacial differential equation, any transport process occurs only along the
interface. This implies that no information is shared between level sets and any analytic solution
on the interface is unaffected by these additional boundary conditions. However, in numerical
simulation, the computational domain is discretized, and the numerical solution will depend on the
choice of the boundary conditions, though this dependence should decrease as spatial and temporal
resolutions increase. Previous works have used either homogeneous Neumann, or Dirichlet boundary
conditions at the boundary of the computational domain.13–17, 34, 43, 44

As we have pointed out in Sec. II, in order to solve the interfacial differential equation in a
neighborhood of the surface, initial data must be extended from the surface into the larger Eulerian
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domain. Many authors suggested to extend the surface data by requiring the initial condition to
be constant normal to the surface, thus minimizing variations in the solution off the interface and
hopefully limiting numerical errors due to discretization. On this account, a natural condition at the
boundary of the narrow band may be

∂c

∂xi

∂�

∂xi
= 0, (45)

which is automatically satisfied if the solution normal to the surface is constant. Unfortunately,
the numerical solution of the extended differential equation does not retain this property at later
times. As a result, long-time calculations may often require intermittent re-extension of data off the
surface16, 43 and the above boundary condition may be a suitable limitation to reduce numerical errors.
Furthermore, taking into account that the domain boundaries may not correspond to isocontours of
the level set function, a slightly modified convenient boundary condition may be used in the form

∂c

∂xi
nb

i = 0, (46)

where nb represents the outer normal of the narrow band. The suitability of a boundary condition
must be examined numerically. A further way to reduce the influence of the conditions at the
boundary of the narrow band on the numerical solution of the interface is to take the advantage
of arbitrary functions G in (29) and F in (36) by requiring them to decay exponentially with the
distance to the interface, e.g., in the form ∼exp (−λ �2) with λ > 0. As a result, the differential
equation and its corresponding solution are restricted to a very narrow region around the interface.

We do not require the level set function to maintain the signed distance property throughout
the entire computation. Our test computations have also shown that with sufficiently high-order
numerical methods, e.g., the Discontinuous Galerkin (DG) method, a re-initialization of the level
set function may be often not necessary. However, in some cases in order to assure the numerical
convergence, a re-initialization may be unavoidable. Indeed, the conserved form of the surfactant
transport equation obtained before, e.g., (36), or its modified form

∂�

∂t
+ ∂

∂xi

(
ui�

) = α
∂

∂xi

(
F(�)|∇�| (δik − ni nk)

∂

∂xk

(
�

F(�)|∇�|
))

(47)

rewritten for the new conserved quantity � = cF(�) |∇�|, is based on the convection equation of
the level set function (34b) without the re-initialization. When the obtained conserved form (47)
is employed to simulate the evolution of the conserved quantity � (or the concentration c), the
possible necessity of re-initialization forces the respective time stepping scheme to be interrupted,
and re-started with the new level set function after re-initialization and the previous value of the
surfactant concentration both of which yield a new initial value for �, as displayed in the diagram
below:

Φ0 Φ1 . . . Φk ΦReinit Φk+1 . . .

Γ0 Γ1 . . . Γk ΓReinit Γk+1 . . .

c0 c1 . . . ck cReinit = ck ck+1 . . .

Certainly, this constitutes additional computational cost and a loss in efficiency. However, choice
of a suitable method can make a frequent re-initialization redundant, as that indicated by numerical
experiments in case of Discontinuous Galerkin methods.45

VI. SUMMARY AND CONCLUSIONS

In the present paper, the interfacial convection equations (25) and convection-diffusion equa-
tions (34) describing the transport of surfactants on a two-phase interface in a three-dimensional
incompressible flow were studied. The formulation considered is based on an implicit representation
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of the interface by a level set function and an extrinsic formulation of differential operators acting
on the interface.

Infinite sets of conservation laws essentially involving the surfactant concentration c have been
discovered for both convection and convection-diffusion formulations using the direct construction
method involving local conservation law multipliers. The results obtained can be generalized further
to interfacial balance laws where the non-convective flux is tangential to the surface.

For the purely convective case, conserved densities and fluxes of the new conservation laws (29)
generally depend on the level set function �, the norm of its gradient |∇�|, the flow velocity u, and
the surfactant concentration c itself. Conservation laws depend on an arbitrary functionG(�, c|∇�|),
and hold for all sufficiently smooth globally or locally defined level set functions � = �(t, x, y, z).
For the convection-diffusion setting, the fluxes (36) additionally involve the diffusion coefficient α

as well as the surface gradient of c as compared to the fluxes (29). In fact, the set of conservation
laws is larger in the case of zero diffusion.

The obtained families of conservation laws yield a fully conserved form of each respective
system of equations, in cases with and without diffusion. In particular, each equation becomes a
divergence-type conservation law.

The conserved forms obtained for surfactant transport dynamics equations were further gener-
alized in Sec. IV C to provide conserved forms of the source-free transport equation (16) of any
excess surface physical quantity, satisfying an arbitrary appropriate surface diffusion law.

From a numerical point of view, the fully conserved form is desirable for any solver that is based
on Riemann solvers and offers much better perspectives than, for example, treating the extrinsic
operator formulation by the product rule or the introduction of artificial variables. Derivatives present
in the fluxes require numerical treatment. Hence, the fully conserved form obtained in the present
paper seems to be particularly suitable for Discontinuous Galerkin methods.

As an important aspect, arbitrary functions that appear in the new conservation laws admit a lot
of freedom regarding the dependence of density and fluxes on the level set function itself. On one
hand, one should, of course, be careful to avoid degenerate formulations of the problem, keeping in
mind that by definition � vanishes exactly on the interface. On the other hand, the functions G in
(29) and F in (36) provide means to approximate the equation in a variety of ways, for example, to
localize it to a narrow region around the interface.

ACKNOWLEDGMENTS

The authors are grateful for research support through the priority program SPP 1506 [Transport
processes at fluid interfaces] of the German Science Foundation (M.O. and C.K.), through the
Graduate School of Computational Engineering at the Technische Universität Darmstadt (C.K.) and
through an the NSERC Discovery grant (A.C.).

APPENDIX: POINT SYMMETRIES OF THE SURFACTANT TRANSPORT EQUATIONS

In the current section, standard notation is used to denote symmetries. For details, see Ref. 21
or any text on symmetries of differential equations.

1. The case of no diffusion, α = 0.
In this case, the surfactant transport equations (25) have an infinite set of point symmetries

spanned by the following families of infinitesimal generators.

� Translations in space and time:

X j = ∂

∂x j
, j = 1, 2, 3; X4 = ∂

∂t
.

� Dilations

X5 = t
∂

∂t
+ xi ∂

∂xi
.
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� Generalized scalings

X6 = h1(�)
∂

∂�
, X7 = h2(�)c

∂

∂c
, X8 = f (t)

∂

∂t
− f ′(t)ui ∂

∂ui
.

� The Galilean group

X9 = g1(t)
∂

∂x1
+ g′

1(t)
∂

∂u1
, X10 = g2(t)

∂

∂x2
+ g′

2(t)
∂

∂u2
, X11 = g3(t)

∂

∂x3
+ g′

3(t)
∂

∂u3
.

� The generalized rotation around the x3 axis, given by

X12 = k1(t)

(
x2 ∂

∂x1
− x1 ∂

∂x2
+ u2 ∂

∂u1
− u1 ∂

∂u2

)
+ k ′

1(t)

(
x2 ∂

∂u1
− x1 ∂

∂u2

)
,

and the corresponding generalized rotations around the axes of x1, x2 given by X13, X14

involving arbitrary functions k2(t), k3(t) and cyclic index permutations 1 → 2 → 3 → 1. [The
generalized rotations X12, X13, X14 include usual rotations when the corresponding ki(t) = 1, i
= 1, 2, 3.]

In the above generators, f(t), gi(t), hi(t), ki(t) are arbitrary functions.

2. The case of nonzero diffusion, α �= 0.
In the case when the surface diffusion is present, α �= 0, the surfactant transport equations (34)

also have an infinite set of point symmetries, spanned by the following infinitesimal generators:

X1, X2, X3, X4, X6, X7, X9, X10, X11, X12, X13, X14

from above, and an additional scaling symmetry

X15 = 2t
∂

∂t
+ xi ∂

∂xi
− ui ∂

∂ui
.

[Note that symmetries X5 and X8 hold when α = 0 but do not hold when α �= 0.]
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