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Abstract

AMatlab-based finite-difference numerical solver for the Poisson equation for a rectangle and
a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is
optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions,
and allows for full user control of mesh refinement. The solver routines utilize effective and
parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical
stability with respect to mesh size and mesh refinement, and acceptable error values even on
desktop computers.
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1 Introduction

The Laplacian operator is a fundamental component in a large number of multi-dimensional linear
models of mathematical physics; to name a few, the Laplacian arises in description of various

a)Electronic mail: ashton.reimer@usask.ca
b)Electronic mail: cheviakov@math.usask.ca



classical and quantum wave phenomena, as well as models involving diffusion and viscosity effects.
Linear time-independent boundary value problems (BVP) for Laplace and Poisson equations con-

stitute a special class of important problems. The Laplace operator is separable in many classical
and esoteric coordinate systems [7,8]. The corresponding linear problems can be solved analytically
for specific domains which correspond to parallelepipeds in the respective coordinate systems, pro-
vided that boundary conditions are sufficiently simple. For a general BVP, however, one normally
has to rely on numerical methods.
Finite-difference methods are common numerical methods for solution of linear second-order time-

independent partial differential equations. Finite-difference methods involve discretization of the
spatial domain, the differential equation, and boundary conditions, and a subsequent solution of a
large system of linear equations for the approximate solution values in the nodes of the numerical
mesh. Simplest discretizations of second-order differential operators commonly have first or second
order accuracy. The resulting large system of linear equations involves a sparse matrix and are
solved by iterative methods (Jacobi, Gauss-Seigel, etc.) or Gaussian elimination/LU decomposition,
which have been significantly optimized for sparse matrices.
The current work is motivated by BVPs for the Poisson equation where boundary correspond to

so called “patchy surfaces”, i.e., are strongly heterogeneous, involving combination of Neumann and
Dirichlet boundary conditions on different parts of the boundary. Models involving patchy surface
BVPs are found in various fields. For example, models of vacuum tubes with patchy surfaces
in electrostatics were considered in [5, 6]. Cell signalling models in biology are concerned with
motion of ions that seek an open channel located in the cell membrane; the latter is modelled as a
combination of homogeneous reflecting (Neumann) and absorbing (Dirichlet) boundary conditions
(e.g., [1,10]). In particular, the continuum limit, the mean first passage time (MFPT) v(x) required
for a Brownian particle to leave a domain with a reflecting boundary and absorbing traps on the
boundary satisfies the mixed Dirichlet-Neumann problem (cf. [3])

∆v = −
1

D
, x ∈ Ω,

v = 0, x ∈ ∂Ωa =
⋃N

j=1 ∂Ωǫj , j = 1, ..., N ; ∂nv = 0, x ∈ ∂Ωr,

(1.1)

where D is the diffusion coefficient and may be constant or a function of space. Dirichlet boundary
parts Ωǫj correspond to small absorbing traps, and the boundary part Ωr corresponds to reflective
(Neumann) boundary conditions. In order to determine the applicability limits of the approximate
solutions derived in [2] and [9], a numerical solution to the MFPT problem was required for com-
parison. The numerical solver described below was initially developed to solve MFPT problems
(1.1).

The programs presented in the current work are rather general; they provide numerical solutions
of Poisson boundary value problems

∆v = f(x), x ∈ Ω,

v = vD(x), x ∈ ∂ΩD, ∂nv = vN (x), x ∈ ∂ΩN ,
(1.2)

involving the combination of Dirichlet boundary conditions on the part ΩD of the boundary, and
Neumann boundary conditions on the part ΩN of the boundary. The forcing term f(x) is arbitrary;
Ω is either a rectangle or a disk in two dimensions, or a sphere in three dimensions.
All programs were implemented in Matlab, and are respectively optimized to avoid loops and

use vector and matrix operations even at the stage of problem formulation, which allowed for a
significant speedup of computation. The programs are compatible with Octave, the open-source
Matlab equivalent, with the exception that the iterative solving options are unavailable in Octave.
While many general purpose finite-element software packages exist (e.g., ELMER, COMSOL, etc.), such



“black-box” packages require a significant investment of time and/or money, not offering sufficient
insight into the numerical methods used and their implementation. The Matlab-based numerical
solvers described in the current contribution offer a transparent, simple-to-use way to solve Poisson
problems in simple geometries with a finite-difference method.
Normally, a second-order symmetric discretization of the Laplacian operator was used. The

programs allow for mesh refinement through variable step sizes in any direction (in which case the
scheme becomes generally first-order accurate). Mesh refinement allows one to concentrate the
mesh around given point(s) within the computation domain Ω or on its boundary, where higher
resolution is needed. For example, for MFPT problems with small boundary or volume traps, mesh
refinement was used to resolve the trap regions accurately, and have coarser mesh far from traps
where the solution changes slowly. The properties of the finite-difference approximation, including
implications of singularities in curvilinear coordinates, are discussed in Section 2.
In a two- or three-dimensional domain, the discretization of the Poisson BVP (1.2) yields a system

of sparse linear algebraic equations containing N = LM equations for two-dimensional domains,
andN = LMN equations for three-dimensional domains, where L,M,N are the numbers of steps in
the corresponding directions. In order to solve the large sparse system, the programs take advantage
of highly effective Matlab routines: mldivide and bicg. For example, on a system with 8 gigabytes
of memory, for the spherical domain, it was possible to use a total of N ∼ 3.2 · 107 data points,
using the values L = 400,M = N = 200 (in the directions of the polar angle, radius, and azimuthal
angle, respectively). Depending on the number of points used and hardware configurations, the
runtime can vary from fractions of a second to hours.
Run examples for problems in a rectangle, disk, and sphere with homogeneous and nonhomoge-

neous boundary conditions are presented in Sections 3–5. The examples include error plots for trial
solutions which were known exactly. For all computed configurations where exact solutions are not
known, stability of the numerical results with respect to mesh size and mesh refinement functions
was experimentally verified.
The presented programs can be easily generalized to other sets of curvilinear coordinates using

similar considerations and a corresponding different set of scaling (Lamé) factors.

2 The Finite-Difference Approximation

Finite-difference methods approximate the derivative of a function at a given point by a finite
difference. In one dimension, a ≤ x ≤ b, consider a function u(x) and a numerical mesh a = x1 <
... < xn = b. Let u(xi) ≡ ui. The mesh step sizes are given by hi = xi+1 − xi. A derivative of u(x)
at x = xi can be approximated by, for example, a forward difference

(
∂u

∂x

)

i

=
ui+1 − ui

hi
(2.1)

or a central difference
(
∂u

∂x

)

i

=
ui+1 − ui−1

hi + hi−1
, (2.2)

and the second derivative by a central difference
(
∂2u

∂x2

)

i

=

(
2

hi + hi−1

)(
ui+1 − ui

hi
−

ui − ui−1

hi−1

)
. (2.3)

Formulas (2.2) and (2.3) have second-order accuracy if all hi = h = const, and are first-order
accurate otherwise.
We now present the discretized versions of the Dirichlet and Neumann boundary conditions and

the Poisson equations operator in Cartesian, polar and spherical coordinates.



2.1 Approximation of Boundary Conditions

For a Dirichlet boundary condition, e.g., u(b) = A, one one simply sets the approximate numerical
solution at a given boundary point to equal the boundary value:

u1 = A.

In order to apply Neumann boundary conditions of the form ∂u
∂x

(a) = A in one dimension, the
simplest choice is to use a first-order approximation given by a backward difference, and hence one
has

u1 = u2 − h1A.

This formula naturally generalizes to multiple dimensions and curvilinear geometries, where a
Neumann boundary condition corresponds to the value of the normal derivative prescribed at a
given boundary point.

As it is well known, solutions to Poisson equation with a mixture of Dirichlet and Neumann bound-
ary conditions can involve mild, square-root-type singularities, such that the solution derivative can
become unbounded at a boundary point where the boundary condition changes from Dirichlet to
Neumann (see, e.g., [4]). This however does not present any additional difficulties. For example,
considering a Poisson problem in a square domain

∆u = 4, 0 ≤ x, y ≤ 1,

ux(0, y) = 0, u(1, y) = 1 + y2,

uy(x ≤ 0.5, 0) = 0, u(x > 0.5, 0) = x2,

uy(x ≤ 0.5, 1) = 2, u(x > 0.5, 1) = x2 + 1

(2.4)

with an exact solution

u(x, y) = x2 + y2,

one observes that near the point of the change from Neumann to Dirichlet boundary conditions at
x = 0.5, the relative error is controlled for various mesh sizes (Fig. 1). [For run examples of the
Poisson solver in rectangular domains, see Section 3.]

2.2 Approximation of the PDE

For the 2D Poisson equation in a rectangle,

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (2.5)

the approximate solution is given by ui,j ≃ u(xi, yj), i = 1, . . . , L, j = 1, . . . ,M . The variable mesh
step sizes in x and y directions are labeled by hyi and hyj , respectively. Using equation (2.3), one
obtains

(
2

hxi + hxi−1

)(
ui+1,j − ui,j

hxi
−

ui,j − ui−1,j

hxi−1

)

+

(
2

hyj + hyj−1

)(
ui,j+1 − ui,j

hyj
−

ui,j − ui,j−1

hyj−1

)
= fij.

(2.6)
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Figure 1: Relative error near the y = 1 boundary for varying grid sizes when there is a change in boundary
condition type at x = 0.5 from Neumann to Dirichlet.

Similarly, for the Poisson equation in polar coordinates (r, φ) given by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
= f(r, φ), (2.7)

the approximate solution is given by ui,j ≃ u(rj, φi), i = 1, . . . , L, j = 1, . . . ,M . The resulting
discretization is given by

(
2r2j

hrj + hrj−1

)(
ui,j+1 − ui,j

hrj
−

ui,j − ui,j−1

hrj−1

)
+ 2rj

(
ui,j+1 − ui,j−1

hrk + hrj−1

)

+

(
2

hφi + hφi−1

)(
ui+1,j − ui,j

hφi
−

ui,j − ui−1,j

hφi−1

)
= r2j fi,j.

(2.8)

Finally, in spherical coordinates (ρ, θ, φ), where θ is azimuthal angle and φ is a polar angle, the
Poisson equation has the form

1

ρ2
∂

∂ρ

(
ρ2

∂u

∂ρ

)
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

ρ2 sin2 θ

∂2u

∂φ2
= f(ρ, θ, φ). (2.9)

the approximate solution is given by ui,j,k ≃ u(ρk, θj , φi), i = 1, . . . , L, j = 1, . . . ,M , k = 1, . . . , N .
The discretized version of PDE (2.9) is given by

(
2ρ2k sin

2 θ

hρk + hρk−1

)(
ui,j,k+1 − ui,j,k

hρk
−

ui,j,k − ui,j,k−1

hρk−1

)

+2ρk sin
2 θ

(
ui,j,k+1 − ui,j,k−1

hρk + hρk−1

)

+

(
2 sin2 θ

hθj + hθj−1

)(
ui,j+1,k − ui,j,k

hθj
−

ui,j,k − ui,j−1,k

hθj−1

)

+sin θ cos θ

(
ui,j+1,k − ui,j−1,k

hθj + hθj−1

)

+

(
2

hφi + hφi−1

)(
ui+1,j,k − ui,j,k

hφi
−

ui,j,k − ui−1,j,k

hφi−1

)
= ρ2k sin

2 θfi,j,k.

(2.10)



2.3 Singularity Points in Polar and Spherical Domains

In polar and spherical domains, the finite difference formulas for the Laplacian cannot be di-
rectly used for internal domain domain points corresponding to zeroes of the Jacobians J2 =
D(x, y)/D(r, φ) = r and J3 = D(x, y, z)/D(ρ, θ, φ) = ρ2 sin θ.
In particular, for the polar and spherical domains, a breakdown occurs at points with r = 0

(ρ = 0). In the spherical domain, another breakdown occurs for points where θ = {0, π}. A
solution to this problem is found by recalling to the definition of the Laplacian as the divergence
of the gradient. Using the fact that the divergence of a vector field q ∈ R

2 or w ∈ R
3 is given by,

respectively,

divq = lim
S→0

1

S

∫

∂S

(q · n) dℓ, divw = lim
V→0

1

V

∫∫

∂V

(w · n) dS, (2.11)

one can derive formulas that correctly approximate the Laplacian for points where the Jacobian is
singular. In particular, in polar coordinates at r = 0 with a variable step-size mesh, (2.11) yields
a finite-difference relation

u1,j

Nφ∑

j=1

hφi + hφi−1

2
=

Nφ∑

j=1

(
u2,j

hφi + hφi−1

4

)
− π

(
hr1
2

)2

f(0, φ) (2.12)

determining the value of u in the center of the disk. Note that conditions

u1,1 = u1,2 = . . . = u1,L (2.13)

must be added because the center value is independent of the polar angle φ. Also, hφi−1 = hφNφ

when i = 1. [Note that
∑Nφ

j=1

h
φ
i
+h

φ
i−1

2 = 2π.]

For spherical coordinates at r = 0, the divergence of the gradient yields,

ui,j,1
hr1

∆A =

L∑

i=1

M−1∑

j=2

(
ui,j,2∆A

hr1

)
+

(ui,1,2 − ui,1,1)∆A′

1 + (ui,M,2 − ui,M,1)∆A′

M

hr1
+−∆V f(0, θ, φ)

(2.14)

where

∆A =

(
hr1
2

)2
(
hθj + hθj−1

2

)(
hφi + hφi−1

2

)
sin θj, ∆A′

1,M = 2π

(
hr1
2

)(
1− cos

(
hθ1,M
2

))
,

∆V =
4

3
π

(
1

2
hr1

)3

,

and the value of u at the origin is θ- and φ-independent:

ui,j,1 = u1,1,1, i = 1, . . . , L; j = 1, . . . ,M. (2.15)

Finally, for spherical coordinates at θ = 0, the divergence of the gradient yields,

ui,1,k

(
Sup

hrk
+

Sdown

hrk−1

)
=

ui,1,k+1Sup

hrk
+

ui,1,k−1Sdown

hrk−1

+

Nφ∑

i=1

(
ui,2,k − ui,1,k

rkh
θ
1

∆̃Ai

)
− ∆̃V f(r, θ, φ)

(2.16)



where

Sup = 2π

(
rk +

hrk
2

)2(
1− cos

(
hθ1
2

))
, Sdown = 2π

(
rk −

hrk−1

2

)2(
1− cos

(
hθ1
2

))
,

∆̃Ai =

(
rk +

hrk − hrk−1

4

)(
hφi + hφi−1

4

)
(
hrk + hrk−1

)
sin

(
hθ1
2

)
,

∆̃V =
2π

3

[(
rk +

hrk
2

)3

−

(
rk −

hrk
2

)3
](

1− cos

(
hθ1
2

))
.

[For θ = π, the expressions are the same, with ui,1,q → ui,M,q, ui,3,q → ui,M−2,q, and hθ1 → hθM .]

2.4 Matrix Structure

We now illustrate the matrix structure arising from an application of finite-difference discretization
of the mixed Poisson BVP (1.2) in Cartesian and polar coordinates in two dimensions, and spherical
coordinates in three dimensions.
In two dimensions, for all points of a rectangular domain or a disk except for the center of the disk,

the discretization of the Poisson equation as well as Dirichlet and Neumann boundary conditions
at any point indexed by (i, j) can be written in a general form

aui,j + bui+1,j + cui−1,j + dui,j+1 + eui,j−1 = Fi,j (2.17)

with the appropriate choice for coefficients a, b, c, d, and e. Here Fi,j = fi,j for internal mesh
points; it also includes terms associated with functions vD(x) or vN (x) at boundary mesh points.

In Cartesian coordinates, the discretization yields a system of linear algebraic equations (LAE)
containing N = LM equations. In order to write equations (2.17) in the matrix form

Au = b, (2.18)

one needs to re-index the matrix of unknown approximate values ui,j into a vector of length N ;
this is done according to the formula

u = [u1,1, . . . , uL,1, u1,2, . . . , uL,2, . . . , u1,M , . . . , uL,M ]T . (2.19)

Similar operations are performed for polar and spherical coordinates in order to bring the linear
system to the form (2.18).
Each one-dimensional discretization yields a tridiagonal matrix A1, the discretization in two di-

mensions yields a block-diagonal matrix A = A2 which consists of matrices A1 on the main diagonal,
with additional layer-interaction elements (two extra nonzero diagonals), illustrated clearly in Fig-
ure 2 (left). [The three matrix structures shown in Figure 2 were observed using the Matlab spy

function.]
For a two-dimensional disk domain in polar coordinates, the matrix structure is rather similar,

with the addition of singularity conditions (2.12), (2.13) which produce extra relations seen as a
horizontal and a vertical bar in the matrix plot in Figure 2 (middle).
Similarly, in three dimensions (spherical coordinates), the corresponding matrix A = A3 is a

block-diagonal matrix with A2-type blocks on the main diagonal and two additional nonzero layer-
interaction diagonals. The matrix structure is shown in Figure 2 (right); it also involves horizontal
and vertical bars corresponding to relations (2.14), (2.15), and (2.16) at singular mesh points.
Since the number of nonzero matrix entries depends on the number of unknowns linearly, and the

matrix size – quadratically, the matrix structures become increasingly more sparse as the number



Figure 2: Left: matrix structure for a 9× 9 Cartesian domain. Middle: matrix structure for a 9× 9 polar
domain. Right: matrix structure for a 6×6×6 spherical domain. [In each caption, nz stands for the number
of nonzero matrix elements.]

of mesh points increases. It is therefore paramount that one utilizes a matrix solver that is efficient
in solving (2.18) with large sparse matrices.

Another important characteristic of the A matrix that needs to be discussed is the condition
number

κ(A) = ‖A‖ · ‖A−1‖,

where ‖A‖ is some matrix norm. The condition number is commonly viewed as an upper bound of
the error amplification coefficient for the problem (2.18), according to the formula

‖δx‖

‖x‖
≤ κ(A)

(
‖δA‖

‖A‖
+

‖δb‖

‖b‖

)
,

where δA and δb are errors (resulting from roundoff and/or truncation errors) in the matrix and
the right-hand side, and δx is the resulting error in the solution.
For matrices of the structure described above, condition numbers computed using the 1-norm

can reach the order of 105 − 1010, growing with the number of mesh points. An example of a
computation of relative errors and condition numbers for a Cauchy problem in a unit square with
exact solution u(x, y) = exp[−300((x − 0.45)2 + (y − 0.61)2) is given in Fig. 3, where calculations
have been performed for increasing numbers of points N in each direction, with no mesh refinement.
The condition numbers were computed using Matlab condest 1-norm condition number estimate.
The high matrix condition numbers do not provide limitations for the numbers of mesh points in

the computations, since a significantly more severe limitation is provided by memory constraints.
Matrix condition numbers cannot be improved by preconditioners for the main mldivide routine
since it is based Gaussian elimination; for the iterative solver, the LU-decomposition is used as a
preconditioner.

2.5 Matlab and Matrix Optimized Code

With Matlab’s optimized routines for handling and solving linear matrix equations (2.18), including
very large sparse matrices, it was an obvious choice to minimize the amount of programming effort
required to develop this solver. By building a finite difference algorithm that avoids for-loops and
takes advantage of processor-specific fast vector operations implemented in Matlab, computation
time was dramatically decreased.



200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

N

M
ax

. R
el

at
iv

e 
E

rr
or

 

 

Max. Relative Error
Conditon number

200 400 600 800 1000
10

5

10
6

10
7

10
8

10
9

10
10

κ
(A

)

Figure 3: Condition number and maximum relative error values versus the number N of mesh points in
each direction, for the Cauchy problem for a Possion equation in a unit square, with a known analytical
solution. Black curves correspond to data obtained using mldivide; red dots indicate cases when an iterative
solver was used. Computations were performed for increasing values of N until memory limits were reached
for the Matlab condest routine.

With multi-core processor computers becoming the norm, Matlab has developed its vector-
handling routines to be parallelized across multiple cores, thus further decreasing the computational
time required to obtain a solution. In particular, run examples discussed in the current paper were
tested on a quad-core Intel processor, and in the course of the solution, the computational load
was approximately equally distributed between the four cores.

2.6 Mesh Refinement

For some problems of the type (1.2), it may be necessary to employ mesh refinement. In particular,
MFPT problems (1.1) involved small boundary traps (Dirichlet domains) that needed to be ade-
quately resolved, with at least 100 mesh points per trap. At the same time, with common desktop
hardware limitations of standard laboratory computers, it was only possible to employ N ∼ 106

data points, depending on the domain geometry. For example, for a unit square, computations
were performed with L = M = 1300; for a unit sphere, values around L = 250,M = N = 100 were
used.
Within the routines presented in the current paper, the refinement is done by applying a non-

linear scaling to the numerical mesh in any or every chosen direction, such that mesh points are
concentrated around expected regions of interest.

An advantage gained by using the above mesh refinement procedure in terms of computing time
and accuracy can be illustrated by the following example. Consider an exact sharp-spike type
solution

u(x, y) = e−105[(x−0.5)2+(y−0.5)2] (2.20)

and its corresponding Dirichlet problem for the Poisson equation in the unit square. Since the spike
is located at the square center, a cubic refinement curve

x̃ = 4(x− 0.5)3 + 0.5

is used in both spatial directions. Fig. 4 shows the maximum relative error for the numerical solution
with mesh refinement with a mesh size of 100×100 and the maximum error for the solution without
mesh refinement on an N ×N mesh, as well as the the amount of time required to compute each
solution. The error level of the solution using a mesh with N = 100 and mesh refinement is reached
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Figure 4: Left: the mesh refinement curve used for both x- and y-directions. Right: comparison of maximum
relative error (dashed curves) and computational time required (solid curves) for solution with a 100×100
mesh with mesh refinement (horizontal lines) and solutions using an N ×N mesh without mesh refinement,
100 ≤ N ≤ 550.

by a solution without mesh refinement only for N ∼ 520; the latter also requires significantly more
memory and time.

The requirement of mesh refinement is especially critical in the three-dimensional domain of the
unit sphere. For example, for the MFPT problem with boundary conditions involving three traps
(Dirichlet regions) centered at polar angles φ = π/3, π, 5π/3 on the equator, the refinement curves
are shown in Fig. 5. Places of almost-zero slopes correspond to multiple points of a homogeneous
mesh being concentrated near regions of interest. For the above spherical example, with L = 250
points in the polar φ-direction and M = N = 100 in ρ- and θ-directions, small Dirichlet (trap)
boundary regions we resolved at 9 points per trap when no mesh refinement was used, and at 799
points per trap when mesh refinement shown in Fig. 5 was applied.
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Figure 5: Mesh refinement for a sphere with regions of interest centered at polar angles φ = π/3, π, 5π/3 on
the equator. The horizontal axis corresponds to input (homogeneous) mesh and the vertical axis corresponds
to output (refined) mesh.

Several run examples using mesh refinement in two and three dimensions are presented in the
sections below.

It is important to note that the mesh refinement algorithm used in the current work is not a local
refinement; in fact, the refinement propagates through the domain, which yields extra points, or
points that appear to have no function (see, e.g., left plot in Fig. 7, and upper left plot in Fig.
10). Variants of finite-difference methods that used only local mesh refinement were considered by



the authors. It was however found that even though the number of points in local mesh refinement
algorithms is smaller, computations in fact take significantly longer, due to the fact that a local
finite-difference refinement patch destroys the block matrix structure discussed in Section 2.4.
Hence the current (somewhat nonlocal) mesh refinement algorithm was adopted as an efficient one
from the practical point of view.

3 Rectangular Domain in Two Dimension

Consider a mixed Poisson problem (1.2) for the rectangular domain Ω = {(x, y) | 0 ≤ x ≤ Lx, 0 ≤
y ≤ Ly}. Denote the numbers of mesh points in x- and y-directions by L and M , respectively.

3.1 Program Sequence

In order to numerically solve the problem (1.2) for a rectangle in cartesian coordinates, one needs
to perform the following steps.

1. Create a new folder and copy all files of some example that solves the Poisson equation in a
rectangle into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j)=Q where Q(xi, yj) is the desired
forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed, and change the
lines diriBC(i,j)=Q so that Q = vD(xi, yj) specifies the desired Dirichlet boundary condition
of the problem (1.2).

4. Modify the file neumann_boundary.m: change the if-conditions as needed, and change the
lines neuBC(i,j)=Q so that Q = vN (xi, yj) specifies the desired Neumann boundary condition
of the problem (1.2).

5. Modify the files x_refine_function.m and y_refine_function.m to introduce necessary
mesh refinement. The input parameter in is a vector that will contain homogeneous mesh
points; the output parameter out has to either equal in (no mesh refinement) or a function
that acts on in to concentrate/rarify mesh where needed. Each refinement function must be
a monotone increasing function. It is the user’s responsibility to satisfy the conditions

in(1)=out(1), in(end)=out(end) (3.1)

in order to preserve the square side lengths.

[Often it is useful to plot out as a function of in using Matlab plot(in, out), to obtain a
curve similar to those in Fig. 5.]

6. Run the solver routine:

[xs ys v relres iter resvec] = rectangle_2d_poisson(

x_max,y_max,num_xs,num_ys,’x_refine_function’,’y_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)

where x_max and y_max are the domain sizes Lx, Ly in the x-and y-directions respectively;
num_xs and num_ys are the numbers of mesh points L,M in the corresponding directions;
x_refine_function.m and y_refine_function.m are the filenames of external Matlab func-
tions for mesh refinement; dirichlet_boundary.m and neumann_boundary.m are the file-
names of external Matlab functions that generate the Dirichlet and Neumann boundary con-
ditions; forcing.m is the name of an external Matlab function that generates the forcing



term at every point of the domain; useiter is an optional parameter (default value 0) which,
if set to a nonzero value, forces the solver to use an iterative method to solve the sparse linear
system.

Details about the parameters passed to the rectangle_2d_poisson solver, in particular,
formats of the external functions, are discussed below within the run examples (Section 3.2).

The normal output of the solver consists of a matrix of approximate solutions v of the problem
(1.2) at mesh points stored in matrices xs and ys. The solution is ready for plotting using
the routine

surf(xs,ys,v);

When the parameter useiter is set to a nonzero value, an iterative solver for a linear sparse
system is used, and the output values relres, iter and resvec are the final residual, the
number of iterations used, and a vector of the history of the residuals, respectively.

Remark 3.1. The solver applies the following rules to determine which boundary condition to use
at each boundary point.

• If at a given boundary point, a Dirichlet boundary condition is specified, then it is used, and
the Neumann boundary condition is ignored (if specified at all).

• If at a given boundary point, a Neumann boundary condition needs to be specified, the value
provided for diriBC for that point in the file dirichlet_boundary.m must be set to NaN.

The above rules let the user avoid duplicating if-conditions when the problem involves a mixture
of Dirichlet and Neumann boundary parts.

3.2 Run Examples

3.2.1 Example R1

As a first run example for the mixed Poisson problem (1.2) for a rectangular domain, we let
Lx = 1, Ly = 2, with L = M = 100 mesh points in each direction, and no mesh refinement.
We define the solution v(x, y) to be a known “chair-shaped” function given by

v(x, y) =
[
3 exp{−100(x − 0.95)2 − 10(y − 1)2}+ 1

]
cos [2π(y − 1)(x − 0.5)] . (3.2)

Suppose the function (3.2) solves the problem (1.2) with Neumann boundary conditions at x = 0
and y = 0, and Dirichlet boundary conditions at x = 1 and y = 1. The boundary conditions vN and
vD and forcing f(x, y) are computed by substituting the expression (3.2) into the problem (1.2).
The Matlab files for the boundary conditions, forcing, and mesh refinement functions are given

in Appendix A.
The solver is run by the command

[xs ys v relres iter resvec] = rectangle_2d_poisson(

1, 2, 100, 100, ’x_refine_function’,’y_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’)

and the solution is plotted using the command surf(xs,ys,v,’EdgeColor’,’none’);

The obtained numerical solution vij and the error (absolute difference between the exact solution
(3.2) and the numerical solution) are shown in Fig. 6.
[Note that though the solution v(x, y) (3.2) is symmetric with respect to the plane y = 1, the

numerical solution and error plot is not, due to the asymmetry of the boundary conditions.]
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Figure 6: Left: numerical solution for the mixed Poisson problem in the rectangular domain (Section 3.2.1).
Right: error plot [absolute difference between the exact and the numerical solution].

3.2.2 Example R2

The second run example corresponds to the narrow escape problem (1.1) for a square domain with
Lx = Ly = 1, D = 1, and almost completely Neumann boundary, except for the two Dirichlet traps
of length 0.02 on the side x = 0, centered at y = 0.25 and y = 0.75.
For the numerical solution, L = M = 100 mesh points in each direction were taken, with mesh

refinement in order to resolve the small traps. The mesh refinement functions are given in Appendix
B; the mesh and the numerical solution are shown in Fig. 7.
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Figure 7: Left: the refined mesh. Right: the numerical solution of the narrow escape problem for the
square with two traps (Section 3.2.2).

4 Disk Domain in Two Dimensions

In order to numerically solve the problem (1.2) for a disk of radius R in polar coordinates, the
following steps need to be taken.



4.1 Program Sequence

1. Create a new folder and copy all files of some example that solves the Poisson equation in a
disk into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j)=Q where Q(rj , φi) is the desired
forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed, and change the
lines diriBC(i)=Q so that Q = vD(φi) specifies the desired Dirichlet boundary condition of
the problem (1.2). [See also Remark 3.1.]

4. Modify the file neumann_boundary.m: change the if-conditions as needed, and change the
lines neuBC(i)=Q so that Q = vN (φi) specifies the desired Neumann boundary condition of
the problem (1.2). [See also Remark 3.1.]

5. Modify the files r_refine_function.m and phi_refine_function.m, similarly to the case
of the rectangle. Each refinement function must be a monotone increasing function. It is
the user’s responsibility to satisfy the conditions (3.1) to preserve the domain sizes for both
variables. Note that for the function phi_refine_function.m, one must have

in(1)=out(1)=0, in(end)=out(end)=2π.

6. Run the solver routine:

[xs ys v rs phis relres iter resvec] = polar_2d_poisson(

R_max,num_rs,num_phis,’r_refine_function’,’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)

where R_max is the disk radius R, num_rs and num_phis are the numbers of mesh points L,M
in the radial and angular polar directions; r_refine_function.m and phi_refine_function.m
are the filenames of external Matlab functions for mesh refinement. For the output values
v of the numerical solution, the routine outputs both the matrices of corresponding polar
coordinates rs, phis and the corresponding Cartesian coordinates xs, ys. The rest of input
and output parameters is identical to those listed in Section 3.1.

4.2 Run Examples

4.2.1 Example D1

As a first run example, we take a known exact solution

v(r, φ) = r3 sin2 φ. (4.1)

of a purely Neumann problem in the unit disk (R = 1):

∆v(r, φ) = −r(5 cos2 φ− 7), 0 ≤ r < 1, 0 ≤ φ < 2π,

∂rv(1, φ) = 3 sin2 φ, 0 ≤ φ < 2π.
(4.2)

The solution of the purely Neumann problem (4.2) is not unique, since an arbitrary constant can
be added to it. For such problems, the numerical solver finds a numerical solution whose minimum
value is zero.
For the numerical solution, we take a rather coarse mesh with L = 50 mesh points in the radial

direction and M = 100 points in the polar direction, with no mesh refinement in the angle, and
radial mesh refinement according to the law r′ = r(2− r) that concentrates points at the boundary
r = R = 1. The resulting numerical mesh, numerical solution, and the absolute error are shown in
Fig. 8.
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Figure 8: Left to right: numerical mesh, numerical solution, and absolute error for the Neumann Poisson
problem in a disk (Section 4.2.1).

4.2.2 Example D2

As a second example, consider a narrow escape problem (1.1) in a unit disk (0 ≤ r ≤ R = 1) in
polar coordinates, with mean first passage time for a particle starting at r, φ given by v(r, φ). Let
D = 1, and let the absorbing boundary portion ∂Ωa consist of a union of seven arcs of lengths
ℓ = 0.1 centered at

φ = 0,
3π

7
,

25π

42
,

3π

4
, π,

3π

2
, and

13π

8
.

On the remaining (reflective) part of the boundary, ∂Ωr = {(r = 1, φ)} \ ∂Ωa, the homogeneous
Neumann boundary condition is prescribed: ∂rv(1, φ) = 0.
The current example uses no mesh refinement in the polar angle, and radial mesh refinement

according to the law r′ = r(2−r). The Matlab functions corresponding to the boundary conditions,
mesh refinement, and forcing, are given in Appendix C.
A numerical solution generated by the command

[xs ys v rs phis relres iter resvec] = polar_2d_poisson(

1,200,400,’r_refine_function’,’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’)

using L = 200 points in the radial direction and M = 400 points in the polar direction is shown in
Fig. 9.



Figure 9: Numerical solution of a narrow escape problem in a disk, with seven absorbing traps of equal
lengths ℓ = 0.1 (Section 4.2.2).

5 Spherical Domain in Three Dimensions

Finally, in order to numerically solve the problem (1.2) for a sphere of radius R in spherical
coordinates (ρ, θ, φ), one needs to perform the following steps.

5.1 Program Sequence

1. Create a new folder and copy all files of some example that solves the Poisson equation in a
sphere into that new folder.

2. Modify the file forcing.m: change the line f_mat(i,j,k)=Q where Q(ρk, θj , φi) is the desired
forcing function.

3. Modify the file dirichlet_boundary.m: change the if-conditions as needed, and change the
lines diriBC(i,j)=Q so that Q = vD(θj , φi) specifies the desired Dirichlet boundary condition
of the problem (1.2). [See also Remark 3.1.]

4. Modify the file neumann_boundary.m: change the if-conditions as needed, and change the
lines neuBC(i,j)=Q so that Q = vN (θj, φi) specifies the desired Neumann boundary condition
of the problem (1.2). [See also Remark 3.1.]

5. Modify the files r_refine_function.m, phi_refine_function.m, and theta_refine_function.m,
similarly to the case of the rectangle. It remains the user’s responsibility to satisfy the con-
ditions (3.1) for each refinement function to preserve the domain sizes for all three variables.
Note that for the function theta_refine_function.m, one must have

in(1)=out(1)=0, in(end)=out(end)=π,

and for the function phi_refine_function.m, one must have

in(1)=out(1)=0, in(end)=out(end)=2π.

6. Run the spherical solver:

[rs thetas phis v xs ys zs relres iter resvec] = sphere_3d_poisson(

R_max,num_rs,num_thetas,num_phis,

’r_refine_function’,’theta_refine_function.m’, ’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’,useiter)



where R_max is the sphere radius R. The numerical solution v is output in the form of a
three-dimensional array, together with the corresponding values of spherical coordinates rs,
thetas, phis, and Cartesian coordinates xs, ys, zs, and is ready for plotting. The rest of the
input and output parameters is analogous to parameters described in Sections 3.1 and 4.1.

Unlike the two-dimensional solvers, for the spherical solver, the default value of useiter=1
is used, i.e., an iterative sparse matrix solver is employed by default.

5.2 Run Example

As a run example, we let ε = 0.1, and consider the following mixed Dirichlet-Neumann Poisson
problem for v(x) in a unit sphere in spherical coordinates x = (ρ, θ, φ).

∆v = 0, ρ < 1,

v = 1, ρ = 1, θ ∈
[
π
2 − ε, π2 + ε

]
, φ ∈

[
π
3 − ε, π3 + ε

]
,

v = −10, ρ = 1, θ ∈
[
π
2 − ε, π2 + ε

]
, φ ∈ [π − ε, π + ε] ,

∂ρv = 0, ρ = 1, all other (θ, φ).

(5.1)

In this example, the problem (5.1) is solved numerically with L = 50 mesh points in the radial
direction, M = 50 points in the azimuthal direction, and N = 100 points in the polar direction,
using the command

[rs thetas phis u xs ys zs] = sphere_3d_poisson(

1,50,50,100,

’r_refine_function’,’theta_refine_function.m’, ’phi_refine_function’,

’dirichlet_boundary’,’neumann_boundary’,’forcing’)

involving simple mesh refinement functions. Boundary condition and mesh refinement function
code is listed in Appendix D.
Solution plots and the numerical mesh for the current example are shown in Fig. 8.

6 Conclusions

The presented Matlab-based set of functions provides an effective numerical solution of linear Pois-
son boundary value problems (1.2) involving an arbitrary combination of homogeneous and/or
non-homogeneous Dirichlet and Neumann boundary conditions, for a rectangle and a disk in two
dimensions, and a spherical domain in three dimensions. Computations exhibit high speeds, nu-
merical stability with respect to mesh size and mesh refinement, and low values of error tolerance
even on desktop computers.
The finite-difference numerical method used in the algorithm allows for mesh refinement, position-

dependent forcing, and also for effective switching between Dirichlet and Neumann boundary con-
ditions at various portions of the boundary. The numerical method is second-order accurate for
homogeneous meshes and first-order accurate for variable-step meshes. Mesh refinement procedures
are fully user-controlled.
Within the routines discussed in the current paper, a large sparse linear system for the unknown

approximate solution values at mesh points is set up, using Matlab specialized processor-effective
sparse vector and matrix operations. The use of such vector operations as opposed to nested
for-loops lead to an increase in performance by a factor sometimes as large as several thousands.
The large sparse system of linear algebraic equations is subsequently solved using the effective

Matlab backslash (mldivide) function, or an iterative bicg routine, in cases when mldivide runs
out of memory.
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Figure 10: Top: plot of the numerical solution v(ρi, θ, φ) of the problem (5.1) at radii ρ1 = 1, ρ2 = 0.8, ρ3 =
0.5 [with the numerical mesh shown in the left plot). Bottom: the numerical solution v(ρ, π/2, φ) (equatorial
cross-section) and the equatorial cross-section of the numerical mesh. (Section 5.2).

The routines presented are also compatible with Octave, an open-source Matlab-like program,
except when the iterative solving options (bicg, etc.) are used. An Octave/Matlab comparison for
the example of Section 3.2.1 in terms of running time is given in Fig. 11.
The Matlab-based solvers offer a simple, transparent, and easily adaptable method to solving Pois-

son problems. The presented routines can be generalized to other systems of curvilinear coordinates
using similar considerations and a corresponding set of Lamé factors. It is also straightforward to
modify the routines to use Robin boundary conditions if needed.
On multi-processor and/or multi-core systems, programs run in parallel using Matlab internal

parallelization mechanisms.
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A Function Code for the Run Example of Section 3.2.1

function [FRONT, BACK, LEFT, RIGHT]= d i r i ch l e t b ounda ry ( xs , ys )
N=length ( xs ) ;
M=length ( ys ) ;
LEFT=zeros (1 ,M) ;
RIGHT=zeros (1 ,M) ;
FRONT=zeros (1 ,N) ;
BACK=zeros (1 ,N) ;

%FRONT DIRICHLET BOUNDARY (y=0)
for i =1:1 :N

x=xs ( i ) ;
FRONT( i )=NaN;

end

%BACK DIRICHLET BOUNDARY (y=Ly)



for i =1:1 :N
x=xs ( i ) ;
BACK( i )=cos (2∗ (x− .5) ∗pi ) ∗(3∗exp(−100∗( x− .95) ˆ2−10)+1) ;

end

%LEFT DIRICHLET BOUNDARY ( x=0)
for j =1:1 :M

y=ys ( j ) ;
LEFT( j )=NaN;

end

%RIGHT DIRICHLET BOUNDARY ( x=Lx)
for j =1:1 :M

y=ys ( j ) ;
RIGHT( j )=cos ( 1 . 0∗ ( y−1)∗pi ) ∗(3∗exp(−.2500−10∗(y−1)ˆ2)+1) ;

end

end

function [FRONT, BACK, LEFT, RIGHT]=neumann boundary ( xs , ys )
N=length ( xs ) ;
M=length ( ys ) ;
LEFT=zeros (1 ,M) ;
RIGHT=zeros (1 ,M) ;
FRONT=zeros (1 ,N) ;
BACK=zeros (1 ,N) ;

%FRONT NEUMANN BOUNDARY (y=0)
for i =1:1 :N

x=xs ( i ) ;
FRONT( i )=−2∗sin (−2∗(x− .5)∗pi ) ∗(x− .5)∗pi ∗(3∗exp(−100∗( x− .95) ˆ2−10)+1)+60∗

cos (−2∗(x− .5)∗pi )∗exp(−100∗( x− .95) ˆ2−10) ;
end

%BACK NEUMANN BOUNDARY (y=Ly)
for i =1:1 :N

x=xs ( i ) ;
BACK( i )=0;

end

%LEFT NEUMANN BOUNDARY ( x=0)
for j =1:1 :M

y=ys ( j ) ;
LEFT( j )=−2∗sin (−1.0∗( y−1)∗pi ) ∗(y−1)∗pi ∗(3∗exp(−90.2500−10∗(y−1)ˆ2)+1)

+570.00∗ cos (−1.0∗( y−1)∗pi ) ∗exp(−90.2500−10∗(y−1)ˆ2) ;
end

%RIGHT NEUMANN BOUNDARY ( x=Lx)
for j =1:1 :M

y=ys ( j ) ;
RIGHT( j )=0;

end

end

function [ fmat ]= f o r c i n g ( xs , ys )
N=length ( xs ) ;
M=length ( ys ) ;
fmat=zeros (N,M) ;
for j =1:1 :M

y=ys ( j ) ;
for i =1:1 :N

x=xs ( i ) ;



fmat ( i , j )=−4∗cos (2∗ ( y−1)∗(x− .5)∗pi ) ∗(y−1)ˆ2∗pi ˆ2∗(3∗exp(−100∗( x− .95)
ˆ2−10∗(y−1)ˆ2)+1)−12∗sin (2∗ (y−1)∗(x− .5)∗pi ) ∗(y−1)∗pi∗(−200∗x+190.00) ∗
exp(−100∗( x− .95) ˆ2−10∗(y−1)ˆ2)−660∗cos (2∗ (y−1)∗(x− .5)∗pi ) ∗exp(−100∗(x
− .95) ˆ2−10∗(y−1)ˆ2)+3∗cos (2∗ (y−1)∗(x− .5)∗pi ) ∗(−200∗x+190.00) ˆ2∗exp
(−100∗( x− .95) ˆ2−10∗(y−1)ˆ2)−4∗cos (2∗ ( y−1)∗(x− .5)∗pi ) ∗(x− .5) ˆ2∗pi
ˆ2∗(3∗exp(−100∗( x− .95) ˆ2−10∗(y−1)ˆ2)+1)−12∗sin (2∗ ( y−1)∗(x− .5)∗pi ) ∗(x
− .5)∗pi∗(−20∗y+20)∗exp(−100∗( x− .95) ˆ2−10∗(y−1)ˆ2)+3∗cos (2∗ ( y−1)∗(x
− .5)∗pi ) ∗(−20∗y+20)ˆ2∗exp(−100∗( x− .95) ˆ2−10∗(y−1)ˆ2) ;

end

end

end

function [ out ] = x r e f i n e f u n c t i o n ( in )
out=in ;

end

function [ out ] = y r e f i n e f u n c t i o n ( in )
out=in ;

end

B Mesh Refinement Functions for the Run Example of Section

3.2.2

function [ out ] = x r e f i n e f u n c t i o n ( in )
out=in ;
A=in (1) ;
B=in (end) ;
out=in .ˆ2/B;

end

function [ out ] = y r e f i n e f u n c t i o n ( in )
h a l f=f loor ( length ( in ) /2)+1;
out=in ;
A=in (1) ;
B=in ( h a l f ) ;
out ( 1 : h a l f ) =(4/(B−A) ˆ3) ∗ ( ( in ( 1 : h a l f )−(B+A) /2) .ˆ3+((B−A) /2) ˆ3) /2 ;
A=in ( h a l f ) ;
B=in (end) ;
out ( h a l f : end)=(4/(B−A) ˆ3) ∗ ( ( in ( h a l f :end)−(B+A) /2) .ˆ3+((B−A) /2) ˆ3) /2+0.5;

end

C Function Code for the Run Example of Section 4.2.2

function [ out ]= d i r i c h l e t b ounda ry ( in )

ep s i l on =0.05;
out=zeros (1 , length ( in ) ) ;

for i =1:1 : length ( in )
i f ( ( ( in ( i ) < 0+ep s i l on ) | | ( in ( i ) > 2∗pi−ep s i l on ) ) | |

( ( in ( i ) < 3/7∗pi+ep s i l on )&&(in ( i ) > 3/7∗pi−ep s i l on ) ) | |
( ( in ( i ) < 25/42∗pi+ep s i l on )&&(in ( i ) > 25/42∗pi−ep s i l on ) ) | |
( ( in ( i ) < 3/4∗pi+ep s i l on )&&(in ( i ) > 3/4∗pi−ep s i l on ) ) | |
( ( in ( i ) < pi+ep s i l on )&&(in ( i ) > pi−ep s i l on ) ) | |
( ( in ( i ) < 3/2∗pi+ep s i l on )&&(in ( i ) > 3/2∗pi−ep s i l on ) ) | |
( ( in ( i ) < 13/8∗ pi+ep s i l on )&&(in ( i ) > 13/8∗pi−ep s i l on ) ) )



out ( i )=0;
else

out ( i )=NaN;
end

end

end

function [ out ]=neumann boundary ( in )
for k=1:1 : length ( in )

out (k )=0;
end

end

function [ out ] = r r e f i n e f u n c t i o n ( in )
B=in (end) ;
out=−2∗(0.5/B∗ in .ˆ2− in ) ;

end

function [ out ] = p h i r e f i n e f u n c t i o n ( in )
A=in (1) ;
B=in (end) ;
out=in ;

end

function [ f mat ]= f o r c i n g ( phis , r s )
l r=length ( r s ) ;
l p h i=length ( ph is ) ;
f mat=zeros ( l ph i , l r ) ;
for k=1:1 : l r

r=r s ( k ) ;
for i =1:1 : l p h i

phi=phis ( i ) ;
f mat ( i , k )=−1;

end

end

end

D Function Code for the Run Example of Section 5.2

function [ diriBC ]= d i r i c h l e t b ounda ry ( phi , theta )
N=length ( phi ) ;
M=length ( theta ) ;
diriBC=zeros (N,M) ;

root1=pi /3 ; root2=pi ;
e p s i l on =0.1 ;
for j =1:1 :M

for i =1:1 :N

i f ( ( theta ( j )<pi/2+ ep s i l on )&&(theta ( j )>pi/2− ep s i l on )&&((phi ( i )<root1+
ep s i l on )&&(phi ( i )>root1−ep s i l on ) ) )
diriBC ( i , j ) =1;

e l s e i f ( ( theta ( j )<pi/2+ ep s i l on )&&(theta ( j )>pi/2− ep s i l on )&&((phi ( i )<root2
+ep s i l on )&&(phi ( i )>root2−ep s i l on ) ) )
diriBC ( i , j )=−10;

else

diriBC ( i , j )=NaN;
end



end

end

end

function [ neuBC]=neumann boundary ( phi , theta )
N=length ( phi ) ;
M=length ( theta ) ;
neuBC=zeros (N,M) ;

for j =1:1 :M
for i =1:1 :N

neuBC( i , j ) =0;

end

end

end

function [ out ] = r r e f i n e f u n c t i o n ( in )
B=in (end) ;
out=−2∗(0.5/B∗ in .ˆ2− in ) ;

end

function [ out ] = t h e t a r e f i n e f u n c t i o n ( in )
A=in (1) ;
B=in (end) ;
out=pi ∗(4/(B−A) ˆ3) ∗ ( ( in−(B+A) /2) .ˆ3+((B−A) /2) ˆ3) ;

end

function [ out ] = p h i r e f i n e f u n c t i o n ( in )
out=1/3∗ sin (3∗ in )+in ;

end

function [ f mat ]= f o r c i n g ( phi , theta , r )
l r=length ( r ) ;
l t h e t a=length ( theta ) ;
l p h i=length ( phi ) ;
f mat=zeros ( l ph i , l t h e t a , l r ) ;

for k=1:1 : l r
for j =1:1 : l t h e t a

for i =1:1 : l p h i
f mat ( i , j , k )=0;

end

end

end

end


