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AN ASYMPTOTIC ANALYSIS OF THE MEAN FIRST PASSAGE
TIME FOR NARROW ESCAPE PROBLEMS: PART II: THE SPHERE∗

ALEXEI F. CHEVIAKOV† , MICHAEL J. WARD‡ , AND RONNY STRAUBE§

Abstract. The mean first passage time (MFPT) is calculated for a Brownian particle in a
spherical domain in R

3 that contains N small nonoverlapping absorbing windows, or traps, on its
boundary. For the unit sphere, the method of matched asymptotic expansions is used to derive
an explicit three-term asymptotic expansion for the MFPT for the case of N small locally circular
absorbing windows. The third term in this expansion, not previously calculated, depends explicitly
on the spatial configuration of the absorbing windows on the boundary of the sphere. The three-
term asymptotic expansion for the average MFPT is shown to be in very close agreement with full
numerical results. The average MFPT is shown to be minimized for trap configurations that minimize
a certain discrete variational problem. This variational problem is closely related to the well-known
optimization problem of determining the minimum energy configuration for N repelling point charges
on the unit sphere. Numerical results, based on global optimization methods, are given for both the
optimum discrete energy and the arrangements of the centers {x1, . . . , xN} of N circular traps on
the boundary of the sphere. A scaling law for the optimum discrete energy, valid for N � 1, is also
derived.
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1. Introduction. The narrow escape problem concerns the motion of a Brown-
ian particle confined in a bounded domain Ω ∈ R

d (d = 2, 3) whose boundary
∂Ω = ∂Ωr ∪ ∂Ωa is almost entirely reflecting (∂Ωr), except for small absorbing win-
dows, or traps, labeled collectively by ∂Ωa, through which the particle can escape.
Denoting the trajectory of the Brownian particle by X(t), the mean first passage time
(MFPT) v(x) is defined as the expectation value of the time τ taken for the Brownian
particle to become absorbed somewhere in ∂Ωa starting initially from X(0) = x ∈ Ω,
so that v(x) = E[τ | X(0) = x]. The calculation of v(x) becomes a narrow es-
cape problem in the limit when the measure of the absorbing set |∂Ωa| = O(εd−1)
is asymptotically small, where 0 < ε � 1 measures the dimensionless radius of an
absorbing window. Since the MFPT diverges as ε → 0, the calculation of the MFPT
v(x) constitutes a singular perturbation problem.

The narrow escape problem has many applications in biophysical modeling (see
[2], [16], [19], [39] and the references therein). For the case of a two-dimensional
domain, the narrow escape problem has been studied with a variety of analytical
methods in [19], [42], [43], [20], and Part I of this paper [30]. In this paper, we use
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NARROW ESCAPE FROM A SPHERE 837

the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃
j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi−xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫
Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R
3 with absorbing windows on

the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the
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case of one small elliptical-shaped absorbing window on the boundary of a sphere. For
an arbitrary three-dimensional bounded domain with one locally circular absorbing
window of radius ε on its smooth boundary, it was shown in [44] that

(1.4) v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
,

where H denotes the mean curvature of the domain boundary at the center of the ab-
sorbing window. In [20] an approximate analytical theory was developed to determine
the average MFPT for the case of two circular absorbing windows on the boundary
of the unit sphere, with arbitrary window separation. For this two-window case, the
average MFPT was determined in terms of an integral and an unspecified O(1) term,
which was estimated from Brownian particle simulations.

The primary goal of this paper is to extend the previous work by calculating
a three-term asymptotic expansion for the MFPT for the case of N small locally
circular absorbing windows, or traps, on the boundary of the unit sphere. This three-
term asymptotic expansion for the MFPT will show explicitly the significant effects
of both the fragmentation of the trap set and the spatial arrangement of the traps on
the boundary of the sphere. For the special case where the N traps have a common
radius ε � 1 and are centered at xj with |xj | = 1 for j = 1, . . . , N and |xi−xj | = O(1)
for i �= j, our results in section 2 show that the average MFPT has the three-term
asymptotic expansion

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+

ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)

+O(ε2 log ε)

]
,

(1.5a)

where the discrete energy-like function H(x1, . . . , xN ) is defined by
(1.5b)

H(x1, . . . , xN ) =

N∑
i=1

N∑
j=i+1

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
.

Results from (1.5) are shown in section 2 to agree very closely with full numeri-
cal results computed with the finite element package COMSOL [6]. In section 2 a
corresponding three-term result is then given for the case of N arbitrarily shaped,
well-separated windows on the boundary of the unit sphere.

The asymptotic analysis in section 2 leading to (1.5), and related results, relies on
two essential ingredients. First, it requires detailed properties of the surface Neumann
Green’s function for the unit sphere and, in particular, the determination of both
the subdominant logarithmic singularity and the regular part of this function. This
calculation is done in Appendix A. The identification of a weak logarithmic singularity
for this Green’s function was first made in [23] for the unit sphere and for a general
three-dimensional domain in [32], [40], and [44]. Second, the analysis in section 2
requires the introduction of certain logarithmic switchback terms that commonly occur
in the asymptotic analysis of certain problems in fluid mechanics (see [27] and [28] for
a discussion of logarithmic switchback terms).

In section 3 we use the method of matched asymptotic expansions to derive a
three-term asymptotic expansion for the principal eigenvalue λ(ε) of the Laplacian in
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the unit sphere for the case where the boundary of the sphere has N locally circular
well-separated traps of small radii. This analysis extends the leading-order asymp-
totic calculation of [47]. Our results show that, to within the three-term asymptotic
approximation, the principal eigenvalue λ(ε) is related to the average MFPT v̄ by
λ ∼ 1/(Dv̄). Related eigenvalue perturbation and optimization problems for the
Laplacian in two-dimensional domains with localized interior traps, or with traps on
the domain boundary, are studied in [4], [7], [8], [9], and [24] (see also the references
therein).

For the case of N locally circular windows of a common radius, the discrete energy
H(x1, . . . , xN ) in (1.5) shows explicitly the dependence of the spatial arrangement of
the absorbing windows on the MFPT. From (1.5), the average MFPT v̄ is minimized,
and the corresponding principal eigenvalue of the Laplacian maximized, at the trap
configuration {x1, . . . , xN} that minimizes H(x1, . . . , xN ). This discrete variational
problem is an extension of the well-known problem of finding the minimum energy
configuration of N repelling point charges on the surface of the unit sphere (see [33],
[34] and the references therein). In section 4 global optimization methods are used to
obtain numerical results for the trap configurations {x1, . . . , xN} that minimize v̄, and
the results are compared with corresponding optimal configurations for two classical
discrete energy functions: the logarithmic energy and the Coulomb energy. Moreover,
a scaling law, with coefficients fitted to the numerical data, is derived to predict the
minimum of the discrete energy H(x1, . . . , xN ) in the limit N → ∞. Finally, some
open problems are suggested in section 5.

2. Narrow escape from a spherical domain. In this section we asymptoti-
cally calculate the MFPT for escape from the unit sphere when there are N small well-
separated windows on the boundary of the sphere centered at xj with j = 1, . . . , N ,
where |xj | = 1. Each window is assumed to have a circular projection onto the tan-
gent plane to the sphere at xj and has a radius of εaj , where ε � 1. The problem for
the MFPT v = v(x), written in spherical coordinates, is

�v ≡ vrr +
2

r
vr +

1

r2 sin2 θ
vφφ +

cot θ

r2
vθ +

1

r2
vθθ = − 1

D
, r = |x| ≤ 1 ,(2.1a)

v = 0 , x ∈ ∂Ωa =
N⋃
j=1

∂Ωεj , j = 1, . . . , N ; ∂rv = 0 , x ∈ ∂Ω\∂Ωa .

(2.1b)

Here each ∂Ωεj for j = 1, . . . , N is a small “circular” cap centered at (θj , φj) defined
by

(2.1c) ∂Ωεj ≡ {(θ, φ) | (θ − θj)
2 + sin2(θj)(φ− φj)

2 ≤ ε2a2j} .

The area of ∂Ωεj is |∂Ωεj | ∼ πε2a2j . In (2.1a), 0 ≤ φ ≤ 2π is the longitude, 0 ≤ θ ≤ π
is the latitude, and the center of the jth window is at xj ∈ ∂Ω, where |xj | = 1 for
j = 1, . . . , N .

To solve (2.1) asymptotically, we first must calculate the surface Neumann Green’s
function. For the unit sphere Ω with volume |Ω| = 4π/3, the surface Neumann Green’s
function Gs(x;xj) satisfies

�Gs =
1

|Ω| , x ∈ Ω ; ∂rGs = δ(cos θ − cos θj)δ(φ− φj) , x ∈ ∂Ω ;∫
Ω

Gs dx = 0 .

(2.2)
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In terms of spherical coordinates, the points x ∈ ∂Ω, xj ∈ ∂Ω and the dot product
x · xj are given by

x = (cosφ sin θ, sinφ sin θ, cos θ) , xj = (cosφj sin θj , sinφj sin θj, cos θj) ,

cos γ = x · xj ,

(2.3)

γ denoting the angle between x and xj given by cos γ = cos θ cos θj+sin θ sin θj cos(φ−
φj). The following result for Gs(x;xj) is derived in Appendix A.

Lemma 2.1. For the unit sphere, the surface Neumann Green’s function satisfying
(2.2) is given explicitly by
(2.4)

Gs(x;xj) =
1

2π |x− xj |
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj |

)
− 7

10π
.

The calculations below for the MFPT require the limiting behavior of Gs in (2.4)
as x → xj ∈ ∂Ω when expressed in terms of a local coordinate system (η, s1, s2) whose
origin is at the center of the jth absorbing window. We define the local Cartesian
coordinate, y, together with the local curvilinear coordinates η, s1, and s2, by
(2.5)
y ≡ ε−1(x− xj) , η ≡ ε−1(1− r) , s1 ≡ ε−1 sin(θj) (φ − φj) , s2 ≡ ε−1(θ − θj) .

From the law of cosines we calculate that
(2.6)

1− |x| cos γ =
1

2

[
|x− xj |2 −

(
|x|2 − 1

)]
∼ 1

2

[
O(ε2)−

(
(1− εη)2 − 1

)]
∼ εη +O(ε2) .

Therefore, upon substituting (2.6) and (2.5) into (2.4), we obtain as x → xj that

(2.7) Gs(x;xj) =
1

2πε |y| −
1

4π
log

(ε

2

)
− 1

4π
log (|y|+ η)− 9

20π
+O(ε) .

The weak logarithmic singularity in (2.7) on η = 0 was observed previously for the
sphere in [23] (see page 247 of [23]) and for general domains in [40], [32], and [44]. Our
calculation in Appendix A has identified the regular part of the singularity structure
for Gs in (2.7), which is needed below to obtain a three-term expansion for the MFPT.

By retaining linear and quadratic terms for the mapping x − xj �→ (η, s1, s2), a
lengthy but straightforward calculation, which we omit, shows that for x → xj

(2.8)
1

|y| =
1

ρ
+

ε

2ρ3
[
η(s21 + s22)− s21s2 cot θj

]
+O(ε2) , ρ ≡

(
η2 + s21 + s22

)1/2
.

In order to obtain the local representation of the surface Neumann Green’s function
with an error of O(ε), as required for the asymptotic analysis below, we substitute
(2.8) into (2.7) to obtain for x → xj that

Gs(x;xj) =
1

2περ
− 1

4π
log

(ε

2

)
+

1

4π

[
η(s21 + s22)

ρ3
− s21s2 cot θj

ρ3

]

− 1

4π
log (ρ+ η)− 9

20π
+O(ε) .

(2.9)

We now solve (2.1) in the limit ε → 0 by using the method of matched asymptotic
expansions. In the outer region away from the absorbing windows we expand the outer
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solution as

(2.10) v ∼ ε−1v0 + v1 + ε log
(ε

2

)
v2 + εv3 + · · · .

Here v0 is an unknown constant, while v1, v2, and v3 are functions to be determined.
As shown below, the third nonanalytic term in ε in (2.10) arises as a result of the
term in (2.9) with logarithmic dependence on ε. In addition, we show below that one
must add a further term of the form log (ε/2)χ0 directly between the first and second
terms in (2.10), where χ0 is a certain constant. Such terms are called switchback
terms in singular perturbation theory, and they have a long history in the study of
certain ODE and PDE models in fluid mechanics (cf. [27], [28]).

We first substitute (2.10) into (2.1) to obtain that vk, for k = 1, . . . , 3, satisfies

(2.11) �vk = − 1

D
δk1 , x ∈ Ω ; ∂nvk = 0 , x ∈ ∂Ω\{x1, . . . , xN} ,

where δk1 = 1 if k = 1 and δk1 = 0 for k > 1. The analysis below yields appropriate
singularity behaviors for each vk as x → xj for j = 1, . . . , N . In the inner region near
the jth absorbing window we introduce the local coordinates (η, s1, s2) as defined in
(2.5), and we pose the inner expansion

(2.12) v ∼ ε−1w0 + log
(ε

2

)
w1 + w2 + · · · .

We substitute (2.12) into (2.1) after first transforming (2.1a) in terms of the local
coordinate system (2.5) as outlined in Appendix B. In the limit ε → 0, this yields a
sequence of problems for wk for k = 0, 1, 2 given by

Lwk ≡ wkηη + wks1s1 + wks2s2 = δk2 F2 , η ≥ 0 , −∞ < s1, s2 < ∞ ,(2.13a)

∂ηwk = 0 on η = 0 , s21 + s22 ≥ a2j ; wk = 0 on η = 0 , s21 + s22 ≤ a2j ,

(2.13b)

where δ22 = 1 and δk2 = 0 if k = 0, 1. In (2.13a), F2 is defined by
(2.13c)
F2 ≡ 2 (ηw0ηη + w0η)− cot θj (w0s2 − 2s2w0s1s1) , η ≥ 0 , −∞ < s1, s2 < ∞ .

The leading-order matching condition is thatw0 ∼ v0 as ρ ≡ (η2+s21+s22)
1/2 → ∞.

Therefore, we write

(2.14) w0 = v0 (1− wc) ,

where v0 is a constant to be determined, and wc is the solution satisfying wc → 0 as
ρ → ∞ to

Lwc = 0 , η ≥ 0 , −∞ < s1, s2 < ∞ ,(2.15a)

∂ηwc = 0 on η = 0 , s21 + s22 ≥ a2j ; wc = 1 on η = 0 , s21 + s22 ≤ a2j .

(2.15b)

This is the well-known electrified disk problem in electrostatics (cf. [22]), whose solu-
tion is (see page 38 of [12])
(2.16a)

wc =
2

π

∫ ∞

0

sinμ

μ
e−μη/aj J0

(
μσ

aj

)
dμ =

2

π
sin−1

(aj
L

)
, σ ≡ (s21 + s22)

1/2 ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

842 A. F. CHEVIAKOV, M. J. WARD, AND R. STRAUBE

where J0(z) is the Bessel function of the first kind of order zero, and L = L(η, σ) is
defined by

(2.16b) L(η, σ) ≡ 1

2

([
(σ + aj)

2 + η2
]1/2

+
[
(σ − aj)

2 + η2
]1/2)

.

From either an asymptotic expansion of the integral representation of wc using La-
place’s method or, alternatively, from a direct calculation of the simple exact solution
for wc given in (2.16a), we readily obtain the far-field behavior

(2.17) wc ∼
2aj
π

(
1

ρ
+

a2j
6

(
1

ρ3
− 3η2

ρ5

)
+ · · ·

)
as ρ → ∞ ,

which is uniformly valid in η, s1, and s2. Therefore, from (2.14) and (2.17), the
far-field expansion for w0 is

(2.18) w0 ∼ v0

(
1− cj

ρ
+O(ρ−3)

)
as ρ → ∞ , cj ≡

2aj
π

,

where cj is the electrostatic capacitance of the circular disk of radius aj . Next, we
write the matching condition that the near-field behavior of the outer expansion (2.10)
must agree with the far-field behavior of the inner expansion (2.12), so that

(2.19)
v0
ε
+v1+ε log

(ε

2

)
v2+εv3+ · · · ∼ v0

ε

(
1− cj

ρ
+ · · ·

)
+log

(ε

2

)
w1+w2+ · · · .

Therefore, since ρ ∼ ε−1|x − xj |, we obtain that v1 must satisfy (2.11) with the
singular behavior v1 ∼ −v0cj/|x− xj | as x → xj for j = 1, . . . , N . This problem for
v1 can be written in distributional form as

(2.20) �v1 = − 1

D
, x ∈ Ω ; ∂rv1|r=1 = −2πv0

N∑
j=1

cj
sin θj

δ(θ − θj)δ(φ− φj) .

By applying the divergence theorem, (2.20) has a solution only when v0 is given by

(2.21) v0 =
|Ω|

2πDNc̄
, c̄ ≡ 1

N

N∑
j=1

cj , cj =
2aj
π

.

Thus, the solvability condition for the problem for v1 determines the unknown leading-
order constant term v0 in the outer expansion. The solution to (2.20) is then writ-
ten as a superposition over the surface Neumann Green’s function Gs(x;xj), with∫
Ω
Gs(x;xj) dx = 0, together with an unknown constant χ, as

(2.22) v1 = −2πv0

N∑
i=1

ciGs(x;xi) + χ , χ ≡ |Ω|−1

∫
Ω

v1 dx .

Next, we expand v1 as x → xj by using the near-field expansion of the surface
Neumann Green’s function given in (2.9). Upon substituting the resulting expression
into the matching condition (2.19) we obtain

(2.23)

v0
ε

(
1− cj

ρ

)
+

v0cj
2

log
(ε

2

)
+χ+

v0cj
2

[
log(η+ ρ)− η(s21 + s22)

ρ3
+

s21s2 cot θj
ρ3

]
+Bj

+ ε log
(ε

2

)
v2 + εv3 + · · · ∼ v0

ε

(
1− cj

ρ
+O(ρ−3)

)
+ log

(ε

2

)
w1 + w2 + · · · .
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Here the constant Bj is defined by

(2.24) Bj = −2πv0

⎛
⎜⎝− 9

20π
cj +

N∑
i=1
i�=j

ciGsji

⎞
⎟⎠ , Gsji ≡ Gs(xj ;xi) .

We compare the O(log ε) terms on both sides of (2.23), which suggests that w1 ∼
v0cj/2 as ρ → ∞. However, this leads to a problem for v2 with no solution. In order
to obtain a solvable equation for v2, we must write χ in the form

(2.25) χ = log
(ε

2

)
χ0 + χ1 ,

where χ0 and χ1 are constants, independent of ε, to be found. This choice for χ is
equivalent to inserting a constant term of order O(log ε) between v0 and v1 in the
outer expansion (2.10). With this choice of χ in (2.23), the matching condition (2.23)
enforces that w1 ∼ χ0 + v0cj/2 as ρ → ∞. The solution w1 to (2.13) that satisfies
this far-field behavior is

(2.26) w1 =
(v0cj

2
+ χ0

)
(1− wc) ,

where wc, given explicitly in (2.16), is the solution to (2.15). Therefore, using (2.17),
we obtain the far-field behavior

(2.27) w1 ∼
(v0cj

2
+ χ0

)(
1− cj

ρ
+O(ρ−3)

)
.

Next, we substitute (2.27) into the matching condition (2.23) and use ρ ∼ ε−1|x−
x0|. This yields that the solution v2 to (2.11) has the singular behavior v2 ∼
−

(v0cj
2 + χ0

)
cj/|x− xj | as x → xj . Therefore, v2 satisfies

(2.28)

�v2 = 0 , x ∈ Ω ; ∂rv2|r=1 = −2π
N∑
j=1

cj

(v0cj
2

+ χ0

) δ(θ − θj)δ(φ − φj)

sin θj
.

By using the divergence theorem, we obtain that (2.28) is solvable only when χ0 is
given by

(2.29) χ0 = − v0
2Nc̄

N∑
j=1

c2j .

Then, the solution for v2 can be written in terms of the surface Neumann Green’s
function as

(2.30) v2 = −2π

N∑
i=1

ci

(v0ci
2

+ χ0

)
Gs(x;xi) + χ2 .

Next, we match the O(1) terms in (2.23) with χ as given in (2.25). We obtain
that w2 satisfies (2.13) with the far-field behavior
(2.31)

w2 ∼ Bj +χ1 +
v0cj
2

[
log(η+ ρ)− η(s21 + s22)

ρ3

]
+

(
v0cj
2ρ3

)
s21s2 cot θj as ρ → ∞ .
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By superposition, we decompose the solution to this problem for w2 in the form

(2.32) w2 = (Bj + χ1) (1− wc) + v0w2e + v0w2o ,

where wc is the solution to the electrified disk problem (2.15). Upon writing w0 =
v0(1 − wc) to calculate F2 in (2.13c), we set w2e to be the solution to

w2eηη + w2es1s1 + w2es2s2 = −2wcη − 2ηwcηη , η ≥ 0 , −∞ < s1, s2 < ∞ ,
(2.33a)

∂ηw2e = 0 on η = 0 , s21 + s22 ≥ a2j ; w2e = 0 on η = 0 , s21 + s22 ≤ a2j ,

(2.33b)

w2e ∼
cj
2
log(η + ρ)− cj

2ρ3
η(s21 + s22) as ρ → ∞ .(2.33c)

Moreover, w2o is taken to be the solution of

w2oηη + w2os1s1 + w2os2s2 = cot θj (wcs2 − 2s2wcs1s1) , η ≥ 0 , −∞ < s1, s2 < ∞ ,
(2.34a)

∂ηw2o = 0 on η = 0 , s21 + s22 ≥ a2j ; w2o = 0 on η = 0 , s21 + s22 ≤ a2j ,

(2.34b)

w2o ∼ cj
2ρ3

s21s2 cot θj as ρ → ∞ .(2.34c)

In Appendix B we show that the inhomogeneous terms given by the right-hand sides
of (2.33a) and (2.34a) lead explicitly to the leading-order far-field asymptotic behavior
as written in (2.33c) and (2.34c).

The solution v1 in (2.22) involves an as yet unknown constant χ1 from (2.25).
In the determination of χ1 below from a solvability condition applied to the problem
for v3, we must have identified all of the monopole terms of the form b/ρ as ρ → ∞ for
some constant b arising from the far-field behavior of each term in the decomposition
(2.32) of w2. It is only these monopole terms that give nonvanishing contributions in
the solvability condition determining χ1. Clearly, the first term (Bj + χ1) (1 − wc)
in (2.32) yields a monopole term from (2.17). However, upon solving the problem
for w2e exactly as in Lemma B.1 of Appendix B, we obtain that w2e also yields a
monopole term, and it has the far-field behavior

(2.35) w2e =
cj
2
log(η + ρ)− cj

2ρ3
η(s21 + s22)−

cjκj

ρ
+O(ρ−2) as ρ → ∞ ,

where κj is given explicitly by

(2.36) κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Alternatively, the solution w2o to (2.34) is odd in s2 and, hence, does not generate a
monopole term at infinity. An explicit analytical solution for w2o is given in Lemma
B.2 of Appendix B.

In this way, we obtain that the solution w2 to (2.13) with leading-order far-field
behavior (2.31) generates further terms in the far-field behavior of the form

w2 ∼ (Bj + χ1)

(
1− cj

ρ

)
+

v0cj
2

[
log(η + ρ)− η

ρ3
(s21 + s22) +

s21s2
ρ3

cot θj

− 2κj

ρ
+O(ρ−2)

]
as ρ → ∞ .

(2.37)
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Finally, we substitute (2.37) into the matching condition (2.23). The two mono-
pole terms in (2.37) determine the singular behavior for the solution v3 of (2.11)
as

(2.38) v3 ∼ −cj (Bj + χ1 + v0κj)

|x− xj |
as x → xj .

In distributional form, this problem for v3 is equivalent to
(2.39)

�v3 = 0 , x ∈ Ω ; ∂rv3|r=1 = −2π

N∑
j=1

cj (Bj + χ1 + v0κj)
δ(θ − θj)δ(φ − φj)

sin θj
.

The solvability condition for (2.39), obtained by using the divergence theorem, deter-
mines χ1 as

(2.40) χ1 = − 1

Nc̄

N∑
j=1

cj [Bj + v0κj ] .

Then, upon using (2.24) for Bj , we can write χ1 as the sum of two terms, one of which
involves a quadratic form in terms of the capacitance vector CT ≡ (c1, . . . , cN ), as

(2.41) χ1 =
2πv0
Nc̄

pc(x1, . . . , xN )− v0
Nc̄

N∑
j=1

cjκj , pc(x1, . . . , xN ) ≡ CTGsC .

Here κj is given in (2.36) and Gs is the Green’s function matrix defined in terms of
Gs(xi;xj) by
(2.42)

Gs ≡

⎛
⎜⎜⎜⎝

R Gs12 · · · Gs1N

Gs21 R · · · Gs2N

...
...

. . .
...

GsN1 · · · GsN,N−1 R

⎞
⎟⎟⎟⎠ , R = − 9

20π
, Gsij ≡ Gs(xi;xj) .

Finally, we substitute (2.21) for v0 together with (2.22) for v1, with χ as deter-
mined by (2.25), (2.29), and (2.41), into the outer expansion (2.10). This leads to the
following main result.

Principal Result 2.2. For ε → 0, the asymptotic solution to (2.1) is given in
the outer region |x− xj | � O(ε) for j = 1, . . . , N by

v =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
− 2πε

N∑
j=1

cjGs(x;xj)

+
2πε

Nc̄
pc(x1, . . . , xN )− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]
.

(2.43)

Here cj = 2aj/π is the capacitance of the jth circular absorbing window of radius εaj,
c̄ ≡ N−1(c1 + · · ·+ cN ), |Ω| = 4π/3, κj is defined in (2.36), Gs(x;xj) is the surface
Neumann Green’s function given in (2.4), and pc(x1, . . . , xN ) is the quadratic form
defined in (2.41). Since

∫
Ω
Gs dx = 0, then v̄ = |Ω|−1

∫
Ω
v dx is given by
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v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )

− ε

Nc̄

N∑
j=1

cjκj +O(ε2 log ε)

]
.

(2.44)

For the case of one circular window of radius εa, we set N = 1, c1 = 2a/π, and
a1 = a in (2.43), (2.36), and (2.44) to get

v̄ =
|Ω|

4εaD

[
1 +

εa

π
log

(
2

εa

)
+

εa

π

(
−9

5
− 2 log 2 +

3

2

)
+O(ε2 log ε)

]
,

v(x) = v̄ − |Ω|
D

Gs(x;x1) .

(2.45)

For an initial position at the origin, i.e., x = (0, 0), then with Gs(0;x1) = −3/(40π)
from (2.4), (2.45) becomes

(2.46) v(0) =
|Ω|

4εaD

[
1 +

εa

π
log

(
2

εa

)
− 2εa log 2

π
+O(ε2 log ε)

]
.

For the case of one circular absorbing window of radius ε (i.e., a = 1), it was
derived in [41] that

(2.47) v̄ ∼ |Ω|
4εD

[
1 +

ε

π
log

(
1

ε

)
+O(ε)

]
.

The original result in equation (3.52) of [41] omits the π term in (2.47) due to an
omission of an extra factor of π on the left-hand side of the equation above (3.52)
of [41]. This was corrected in [44]. Our result (2.45) agrees asymptotically with
that of (2.47) and determines the O(ε) term to v̄ explicitly. More importantly, our
main result in Principal Result 2.2 generalizes that of [41] to the case of N circular
absorbing windows of different radii on the unit sphere and provides the O(ε) term
that accounts for the specific locations of the traps on the unit sphere.

A further interesting special case of Principal Result 2.2 is when there are N
circular absorbing windows of a common radius ε. Then, upon setting cj = 2/π,
together with aj = 1 for j = 1, . . . , N in (2.36), (2.44) reduces to

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+

ε

π

(
−9

5
+

8π

N

N∑
i=1

N∑
j=i+1

Gs(xi;xj)− 2 log 2 +
3

2

)

+O(ε2 log ε)

]
.

(2.48)

From (2.4), we readily calculate the interaction term Gs(xi;xj) in (2.48) as

Gs(xi;xj) = − 9

20π
+

1

2π

(
1

|xi − xj |
− 1

2
log

[
sin2

(γij
2

)
+ sin

(γij
2

)])
,

cos(γij) = xi · xj ,

(2.49)

where γij denotes the angle between xi and xj . Therefore, (2.48) becomes
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v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+

ε

π

(
−9N

5
− 2 log 2 +

3

2
+

4

N
H̃(x1, . . . , xN )

)

+O(ε2 log ε)

]
,

(2.50a)

where the discrete sum H̃(x1, . . . , xN ) with |xj | = 1 and cos γij = xi · xj for i, j =
1, . . . , N is defined by

(2.50b) H̃(x1, . . . , xN ) =

N∑
i=1

N∑
j>i

(
1

|xi − xj |
− 1

2
log

[
sin2

(γij
2

)
+ sin

(γij
2

)])
.

Equivalently, we can write v̄ in the alternative form

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+

ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)

+O(ε2 log ε)

]
,

(2.51a)

where H(x1, . . . , xN ) is defined by
(2.51b)

H(x1, . . . , xN ) =

N∑
i=1

N∑
j=i+1

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
.

The first term in H is the usual Coulomb singularity in three dimensions, whereas
the second term in (2.51b) represents a contribution from surface diffusion on the
boundary of the sphere, similar to that studied in [7].

As a remark, for the case of N circular absorbing windows of a common ra-
dius ε, the average MFPT, v̄, is minimized in the limit ε → 0 at the trap con-
figuration {x1, . . . , xN} that minimizes the discrete sum H(x1, . . . , xN ) on the unit
sphere |xj | = 1 for j = 1, . . . , N . The classic discrete variational problem of mini-

mizing either the Coulomb energy
∑N

i=1

∑N
j=i+1 |xi−xj |−1 or the logarithmic energy

−
∑N

i=1

∑N
j=i+1 log |xi − xj | on the unit sphere has a long history in approximation

theory (see [11], [15], [3], [33], [34], [25], [17] and the references therein).
Next, we validate our asymptotic result (2.51) with full numerical results. In

Figure 2.1 we compare our asymptotic results for the average MFPT v̄ versus ε with
those computed from full numerical simulations using the COMSOL finite element
package [6]. The comparisons are done for N = 1, N = 2, and N = 4, identical
traps equally spaced on the surface of the unit sphere (see the caption of Figure 2.1).
Table 2.1 compares the two-term and three-term predictions for v̄ from (2.51) with
corresponding full numerical results computed using COMSOL. Note that the three-
term expansion for v̄ in (2.51) agrees well with full numerical results even when ε = 0.5.
For ε = 0.5 andN = 4, we calculateNπε2/(4π) ≈ 0.20, so that the absorbing windows
occupy roughly 25% of the surface area of the unit sphere. For this challenging test
of perturbation theory, the last row and last three columns in Table 2.1 show that the
three-term asymptotic result for the average MFPT differs from the full numerical
result by only about 10%.

Finally, we remark that our main result (2.44) can also readily be used for absorb-
ing windows that are not circular. To treat this modification of (2.1), the following



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

848 A. F. CHEVIAKOV, M. J. WARD, AND R. STRAUBE

20

16

12

8

4

0

0.50.40.30.20.10.0

v̄

ε

�

�

�

�

�

�
�

�

�

�
�

� �

Fig. 2.1. Plot of the average MFPT v̄ versus ε from (2.51) with D = 1 for either one, two,
or four identical windows on the surface of the unit sphere. The solid curves are the three-term
expansion from (2.51), while the dotted curves are the truncation of (2.51) to two terms. The
triangles denote the full numerical results computed from COMSOL [6]. Top curves: N = 1. Middle
curves: N = 2 with antipodal windows. Bottom curves: N = 4 with windows at the north and south
poles and two windows equally spaced on the equator.

Table 2.1

Comparison of asymptotic and full numerical results for v̄ for either N = 1, N = 2, or N = 4,
identical circular windows of radius ε equidistantly placed on the surface of the unit sphere (see the
caption of Figure 2.1). Here v̄2 is the two-term asymptotic result obtained by omitting the O(ε)
term in (2.51), v̄3 is the three-term asymptotic result of (2.51), and v̄n is the full numerical result
computed from COMSOL [6].

N = 1 N = 2 N = 4
ε v̄2 v̄3 v̄n v̄2 v̄3 v̄n v̄2 v̄3 v̄n

0.02 53.89 53.33 52.81 26.95 26.42 26.12 13.47 13.11 12.99
0.05 22.17 21.61 21.35 11.09 10.56 10.43 5.54 5.18 5.12
0.10 11.47 10.91 10.78 5.74 5.21 5.14 2.87 2.51 2.47
0.20 6.00 5.44 5.36 3.00 2.47 2.44 1.50 1.14 1.13
0.50 2.56 1.99 1.96 1.28 0.75 0.70 0.64 0.28 0.30

generalized electrified disk problem for wc replaces (2.15):

Lwc = 0 , η ≥ 0 , −∞ < s1, s2 < ∞ ,(2.52a)

∂ηwc = 0 on η = 0 , (s1, s2) /∈ Ω ; wc = 1 on η = 0 , (s1, s2) ∈ Ω ,
(2.52b)

wc ∼ cj/ρ as ρ → ∞ .(2.52c)

Here the absorbing set Ω in the plane η = 0 is possibly multiconnected, which can
incorporate the window clustering effect of [20]. When Ω has two lines of symmetry,
then wc can be chosen to be even in s1 and s2, so that the far-field behavior of wc is
wc ∼ cj/ρ+O(ρ−3) as ρ → ∞, similar to that in (2.17). The analysis leading to (2.44)
can then be repeated, and as remarked following (B.13) of Appendix B, the far-field
behavior (2.37) will still hold for this generalized problem. Consequently, to treat the
case of arbitrarily shaped absorbing windows centered at xj for j = 1, . . . , N on the
boundary of the unit sphere, we need only replace cj in (2.44) with the capacitance cj
associated with the far-field behavior of (2.52). In addition, for an arbitrarily shaped
absorbing window, we must also recalculate the monopole coefficient κj in (2.44) from
the solution to (B.4) subject to the far-field behavior (B.13). Although cj and κj must



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NARROW ESCAPE FROM A SPHERE 849

in general be calculated numerically, such as from fast boundary integral methods of
potential theory (cf. [46]), the capacitance cj is in fact known analytically for a few
special geometries. In particular, for an elliptical-shaped absorbing window with
semiaxes aj and bj so that s21/a

2
j + s22/b

2
j = 1 with bj < aj , then cj is given in terms

of the complete elliptic integral of the first kind K(μ) as (see [41])

(2.53) cj =
aj

K(ej)
, K(μ) =

∫ π/2

0

dθ√
1− μ2 sin2 θ

, ej ≡
√
1− b2j/a

2
j .

In addition, for the case of a cluster of two circular windows, each with radius aj ,
and with center-to-center separation 2l, with l > aj , it is known from [37] (see also
equation (27) of [13]) that for l/aj � 1

(2.54) cj ∼
4aj
π

[
1− aj

lπ
+

a2j
l2π2

−
a3j
l3π3

+ · · ·
]
.

Upper and lower bounds for the capacitance cj of multiple nonoverlapping circular
disks are derived in [13]. Similar bounds are used in [20] to study the effect of window
clustering on the average MFPT, whereby several circular absorbing windows are
clustered within an O(ε) region near some point on the boundary of the sphere.
In our analysis, these bounds for the capacitance cj can be used in the three-term
expansion (2.44) for the average MFPT.

3. The principal eigenvalue of the Laplacian. In this section we asymptot-
ically calculate the principal eigenvalue of the Laplacian in the unit sphere Ω, when
the boundary of the sphere is almost entirely reflecting, but is perturbed by N small
nonoverlapping locally circular absorbing traps ∂Ωεj , centered at xj with |xj | = 1,
for j = 1, . . . , N . The perturbed eigenvalue problem is

Δu ≡ urr +
2

r
ur +

1

r2 sin2 θ
uφφ +

cot θ

r2
uθ +

1

r2
uθθ = −λu , x ∈ Ω ,

∫
Ω

u2 dx = 1 ,

(3.1a)

∂ru = 0 , x ∈ ∂Ω\∂Ωa ; u = 0 , x ∈ ∂Ωa ≡
N⋃
j=1

∂Ωεj .(3.1b)

Each boundary trap, ∂Ωεj , for j = 1, . . . , N is a small “circular” cap centered at
(θj , φj), as defined by (2.1c), with area |∂Ωεj | ∼ πε2a2j , and with ∂Ωj → xj as ε → 0,
where xj = (cosφj sin θj , sinφj sin θj , cos θj). Here 0 ≤ φ ≤ 2π is the longitude and
0 ≤ θ ≤ π is the latitude.

We let λ(ε) denote the principal eigenvalue of (3.1), with corresponding eigen-
function u(x, ε). Clearly, λ(ε) → 0 as ε → 0 with u → u0 = |Ω|−1/2. A leading-order
calculation for λ(ε) was given in section 5.2 of [47]. Here, we use a more refined
matched asymptotic analysis to calculate a three-term asymptotic expansion for λ(ε)
as ε → 0. Our asymptotic calculation will show, to within the three-term asymptotic
approximation, that λ(ε) is related to the average MFPT v̄ of (1.2) by λ ∼ 1/(Dv̄).

We expand the principal eigenvalue for (3.1) as

(3.2) λ = ελ1 + ε2 log
(ε

2

)
λ2 + ε2λ3 + · · · .

In the outer region away from the boundary traps we expand the outer solution as

(3.3) u ∼ u0 + εu1 + ε2 log
(ε

2

)
u2 + ε2u3 + · · · ,
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where u0 ≡ |Ω|−1/2. The logarithmic terms in (3.2) and (3.3) arise as a direct con-
sequence of the subdominant logarithmic singularity of the surface Neumann Green’s
function given in (2.7).

We first substitute (3.3) into (3.1) to obtain that uk for k = 1, 2 satisfies
(3.4)

Δuk = −λku0 , x ∈ Ω ; ∂ruk = 0 , x ∈ ∂Ω\{x1, . . . , xN} ;
∫
Ω

uk dx = 0 .

In contrast, u3 satisfies

Δu3 = −λ1u1 − λ3u0 , x ∈ Ω ; ∂ru3 = 0 , x ∈ ∂Ω\{x1, . . . , xN} ;(3.5) ∫
Ω

(
u2
1 + 2u0u3

)
dx = 0 .

In the inner region near the jth boundary trap we introduce the local coordi-
nate system (η, s1, s2) by (2.5). We then write the inner expansion of the principal
eigenfunction as

(3.6) u ∼ w0 + ε log
(ε

2

)
w1 + εw2 + · · · .

We substitute (3.6) into (3.1) and then transform the Laplacian in (3.1) in terms of
the local coordinate system (2.5). Upon collecting similar terms in ε, we obtain that
wk for k = 0, 1, 2 satisfies (2.13).

The leading-order matching condition is that w0 ∼ u0 = |Ω|−1/2 as ρ ≡ (η2 +
s21 + s22)

1/2 → ∞. Thus, we write

(3.7) w0 = u0 (1− wc) ,

where wc is the solution to the electrified disk problem (2.15), as given in (2.16). The
far-field behavior of w0 is given in (2.18). Upon writing (2.18) in terms of outer vari-
ables by using (2.5), we obtain the matching condition that the near-field behavior of
the outer expansion (3.3) must agree with the far-field behavior of the inner expansion
(3.6), so that
(3.8)

u0+εu1+ε2 log
(ε

2

)
u2+ε2u3+· · · ∼ u0

(
1− cjε

|x− xj |
+· · ·

)
+ε log

(ε

2

)
w1+εw2+· · · .

From this matching condition, we obtain that u1 must satisfy (3.4) and have the
singular behavior u1 ∼ −cju0/|x− xj | as x → xj for j = 1, . . . , N . This problem can
be written in distributional form as

(3.9) Δu1 = −λ1u0 , x ∈ Ω ; ∂ru1|r=1 = −2πu0

N∑
j=1

cj
sin θj

δ(θ − θj)δ(φ− φj) ,

with
∫
Ω u1 dx = 0. From the divergence theorem and by using u0 = |Ω|−1/2, we

calculate λ1 as

(3.10) λ1 =
2π

|Ω|

N∑
j=1

cj , cj =
2aj
π

.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NARROW ESCAPE FROM A SPHERE 851

Then, the solution to (3.9) with
∫
Ω
u1 dx = 0 can be written as

(3.11) u1 = −2πu0

N∑
i=1

ciGs(x;xi) .

Here Gs(x;xj) is the surface Neumann Green’s function satisfying (2.2). It is given
explicitly in (2.4) and has the near-field behavior for x → xj as given in (2.9).

Next, we expand u1 in (3.11) as x → xj by using the near-field behavior (2.9)
for Gs. Upon substituting the resulting expression into the matching condition (3.8),
we obtain

u0

(
1− cj

ρ

)
+

εu0cj
2

log
(ε

2

)
− 2επu0Bj

+
εu0cj
2

[
log(η + ρ)− η(s21 + s22)

ρ3
+

s21s2 cot θj
ρ3

]

+ ε2 log
(ε

2

)
u2 + ε2u3 + · · · ∼ u0

(
1− cj

ρ

)
+ ε log

(ε

2

)
w1 + εw2 + · · · .

(3.12)

Here the constant Bj is defined by

(3.13) Bj = − 9

20π
cj +

N∑
i=1
i�=j

ciGsj,i , Gsj,i ≡ Gs(xj ;xi) .

The matching condition (3.12) for the O (ε log[ε/2]) terms yields that w1 ∼ cju0/2 as
ρ → ∞. The solution w1 to (2.13) is given in terms of the solution wc to (2.15) with
far-field behavior (2.18), so that

(3.14) w1 =
cju0

2
(1− wc)∼

cju0

2

(
1− cj

ρ
+O(ρ−3)

)
as ρ → ∞ .

Next, we substitute (3.14) into the matching condition (3.12) and use ρ ∼ ε−1|x−
x0|. By matching the O(ε2 log ε) terms, we obtain that u2 satisfies (3.4) with singu-
lar behavior u2 ∼ −c2ju0/(2|x − xj |) as x → xj for j = 1, . . . , N . Therefore, in
distributional form, the problem for u2 is equivalent to

(3.15) Δu2 = −λ2u0 , x ∈ Ω ; ∂ru2|r=1 = −πu0

N∑
j=1

c2j
δ(θ − θj)δ(φ − φj)

sin θj
,

with
∫
Ω u2 dx = 0. From the divergence theorem and by using u0 = |Ω|−1/2, we

calculate λ2 as

(3.16) λ2 =
π

|Ω|

N∑
j=1

c2j .

Then, the solution u2 to (3.15), with
∫
Ω
u2 dx = 0, is written in terms of Gs(x;xj) as

(3.17) u2 = −πu0

N∑
j=1

c2jGs(x;xj) .
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Next, we match the O(ε) terms on the left-hand side of (3.12). We obtain that
w2 satisfies the inhomogeneous problem (2.13) and has the far-field behavior
(3.18)

w2 ∼ −2πu0Bj +
cju0

2

[
log(η + ρ)− η(s21 + s22)

ρ3
+

s21s2 cot θj
ρ3

]
as ρ → ∞ .

To determine w2, we first set w0 = u0(1−wc) in the definition of the inhomogeneous
term F2 in (2.13c), where wc is the solution to (2.15). Then, we decompose w2 into
the sum of three terms as

(3.19) w2 = −2πBju0 (1− wc) + u0w2e + u0w2o .

With the operator L as defined in (2.13a), w2e and w2o are the solutions of (2.33) and
(2.34), respectively.

The explicit solution to (2.33) for w2e is given in Lemma B.1 of Appendix B. This
solution has the far-field behavior (2.35). The explicit solution to (2.34) for w2o is
given by Lemma B.2 of Appendix B. In this way, we obtain that w2 has the far-field
behavior

w2 ∼ −2πBju0

(
1− cj

ρ

)
+

cju0

2

[
log(η + ρ)− η

ρ3
(
s21 + s22

)
− 2κj

ρ

]

− cjη

2ρ3
(
s21 + s22

)
+ o

(
ρ−1

)
as ρ → ∞ .

(3.20)

By substituting (3.20) into the matching condition (3.12), we obtain that the two
monopole terms in (3.20) proportional to ρ−1 determine the singularity behavior for
the correction term u3 in (3.12). Therefore, we obtain that u3 satisfies (3.5) with the
singular behavior

(3.21) u3 ∼ 2πBjcju0

|x− xj |
− cju0κj

|x− xj |
as x → xj , j = 1, . . . , N ,

where κj is defined in (2.36). This problem for u3 can be written in distributional
form as

Δu3 = −λ1u1 − λ3u0 , x ∈ Ω ;

∂ru3|r=1 = u0

N∑
j=1

(
4π2Bjcj − 2πcjκj

) δ(θ − θj)δ(φ − φj)

sin θj
.

(3.22)

By using the divergence theorem, together with u0 = |Ω|−1/2,
∫
Ω u1 dx = 0, and

(2.36), we calculate λ3 as

(3.23) λ3 = −4π2

|Ω|

N∑
j=1

Bjcj +
π

|Ω|

N∑
j=1

c2j

(
2 log 2− 3

2
+ log aj

)
.

Finally, we substitute u0 = |Ω|−1/2, (3.11), and (3.17) into (3.3) to obtain the
outer expansion of the eigenfunction. The perturbed eigenvalue is obtained by sub-
stituting (3.10), (3.16), and (3.23) into (3.2). We summarize the result as follows.

Principal Result 3.1. Consider (3.1) in the unit sphere Ω with N small cir-
cular boundary traps of radius εaj on ∂Ω centered at xj for j = 1, . . . , N . Then, for
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ε → 0, the asymptotic solution to (3.1) is given in the outer region |x − xj | � O(ε)
for j = 1, . . . , N by
(3.24)

u =
1

|Ω|1/2

(
1− 2πε

N∑
j=1

cjGs(x;xj)− ε2π log
(ε

2

) N∑
j=1

c2jGs(x;xj) +O(ε2)

)
.

Here cj = 2aj/π is the capacitance associated with the jth boundary trap of radius εaj,
and Gs(x;xj) is the surface Neumann Green’s function given in (2.4). For ε → 0,
the principal eigenvalue λ(ε) of (3.1) is given by
(3.25a)

λ =
2πεNc̄

|Ω| +
πε2

|Ω|

N∑
j=1

c2j

[
log (εaj)+ log 2− 3

2

]
− 4π2ε2

|Ω| pc(x1, . . . , xN ) +O
(
ε3 log ε

)
,

where c̄ ≡ N−1 (c1+· · ·+cN ). The quadratic form pc(x1, . . . , xN ) in (3.25a) is defined
in terms of the entries Gsi,j of the Green’s matrix Gs of (2.42) by the weighted discrete
sum

(3.25b) pc(x1, . . . , xN ) ≡
N∑
i=1

N∑
j=1

cicjGsi,j , cj =
2aj
π

,

where Gsi,j ≡ Gs(xi;xj) is given explicitly from (2.4) by

Gsi,j = − 9

20π
+

(1 − δij)

2π
[log 2 +Hsi,j ] , i, j = 1, . . . , N ,(3.25c)

Hsi,j =
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |) , i �= j .(3.25d)

Here δij = 1 if i = j and δij = 0 if i �= j. In terms of Hsi,j , we can write (3.25a) as

(3.25e) λ =
2πεNc̄

|Ω| +
πε2

|Ω|

N∑
j=1

c2j

[
log (εaj) + 3 log 2− 3

2

]

− 4π2ε2

|Ω|

N∑
i=1

N∑
j=i+1

cicjHsi,j +
πε2

|Ω|

(
9

5
− 2 log 2

) N∑
i=1

N∑
j=1

cicj +O(ε3 log ε) .

For the special case where there are N identical circular boundary traps of a
common radius εa, then (3.25e) with c = 2a/π and |Ω| = 4π/3 reduces to

λ ∼ 2πεNc

|Ω|

[
1 +

εc

2
log (εa) +

εc

2

(
log 2− 3

2

)
+

9εcN

10

− εc(N − 1) log 2− 2εc

N
H(x1, . . . , xN )

]
.

(3.26)

Here the discrete energy function H(x1, . . . , xN ) ≡
∑N

i=1

∑N
j=i+1 Hsi,j is given by

(2.51b). For the case of one single trap, the result (3.26) yields the three-term expan-
sion

(3.27) λ ∼ 2πεc

|Ω|

[
1 +

εc

2

(
log (εa) + log 2− 3

2

)
+

9εc

10

]
.
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Upon setting c = 2/π in (3.26), corresponding to N locally circular traps of a
common radius ε, it is readily verified from (3.26) and (2.51) that, to within the three-
term asymptotic approximations, the relation v̄ ∼ 1/(Dλ) between the averageMFPT
and the principal eigenvalue is asymptotically valid in the limit ε → 0. Therefore, we
conclude that for the case of N circular boundary traps of a common radius εa the
principal eigenvalue of (3.1) is maximized, and the corresponding MFPT minimized,
in the limit ε → 0 at the boundary trap configuration {x1, . . . , xN} that minimizes the
discrete sum H(x1, . . . , xN ) in (2.51b) on the unit sphere |xj | = 1 for j = 1, . . . , N .

4. Numerical optimization results for the unit sphere. Next, we numer-
ically compute the optimum energy and the optimum arrangements {x1, . . . , xN} of
the centers of N ≥ 3 circular boundary traps of a common radius that minimize the
discrete energy (2.51b). We compare our results with corresponding results associated
with minimizing either the Coulomb energy or the logarithmic energy defined by

(4.1) HC =

N∑
i=1

N∑
j=i+1

1

|xi − xj |
, HL = −

N∑
i=1

N∑
j=i+1

log |xi − xj | .

Various numerical methods for global optimization are available (cf. [31], [21],
[36]), including methods for nonsmooth optimization and optimization with con-
straints. For low-dimensional problems, exact methods are available, whereas for
higher-dimensional problems one often must use heuristic strategies, including evolu-
tion algorithms and simulated annealing. The following methods were used to confirm
our numerical optimization results for (2.51b):

1. The extended cutting angle method (ECAM). This deterministic global opti-
mization technique is applicable to Lipschitz functions. Within the algorithm,
a sequence of piecewise linear lower approximations to the objective function
is constructed. The sequence of the corresponding solutions to these relaxed
problems converges to the global minimum of the objective function (cf. [1]).

2. Dynamical systems based optimization (DSO). A dynamical system is con-
structed, using a number of sampled values of the objective function to in-
troduce “forces.” The evolution of such a system yields a descent trajectory
converging to lower values of the objective function. The algorithm continues
sampling the domain until it converges to a stationary point (cf. [29]).

3. Lipschitz-continuous global optimizer (LGO). This is a commercial global op-
timization software program available for a number of software and hardware
platforms, based on a combination of several rigorous (theoretically conver-
gent) global minimization strategies, as well as a number of local minimization
strategies. For further details, see [31].

On a unit sphere, it is convenient to write the location xj of each trap in terms
of spherical coordinates (θj , φj), where θj is the latitude and φj is the longitude.
To partially eliminate the effect of the rotational symmetries of the sphere, we fix
the first trap x1 at the north pole, i.e., (θ1, φ1) = (0, 0), and we let φ2 = 0 for the
second trap centered at x2. Then, for N traps on the unit sphere, one has a global
optimization problem of 2N − 3 parameters in the range 0 < θj ≤ π for j = 2, . . . , N
and 0 ≤ φj < 2π for j = 3, . . . , N . As an “initial guess” for the global optimization
routines, we chose the remaining traps x2, . . . , xN to be equally spaced on the equator
θ = π/2.

For 3 ≤ N ≤ 20 traps, the ECAM and DSO methods, as outlined above and
implemented in the open software library GANSO [14], were used to obtain the numerical
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Table 4.1

Numerically computed minimal values of the discrete energy H of (2.51b) for 3 ≤ N ≤ 20,
together with the optimal Coulomb and logarithmic energies in (4.1) for N-trap arrangements on
the unit sphere. The results were obtained using both the ECAM and the DSO methods and are
believed to be correct to the number of digits shown.

N H (2.51b) HC (4.1) HL (4.1)

ECAM (DSO) ECAM (DSO) [Refs. [18], [34]] ECAM (DSO) [Ref. [3]]

3 −1.067345 (−1.067345) 1.732051 (1.732051) [ – ] −1.647918 (−1.647918)

4 −1.667180 (−1.667180) 3.674234 (3.674234) [3.674234] −2.942488 (−2.942488)

5 −2.087988 (−2.087988) 6.474691 (6.474691) [6.474692] −4.420507 (−4.420507)

6 −2.581006 (−2.581006) 9.985281 (9.985281) [9.985281] −6.238324 (−6.238324)

7 −2.763658 (−2.763658) 14.452978 (14.452977) [14.452977] −8.182476 (−8.182477)

8 −2.949577 (−2.949576) 19.675288 (19.675288) [19.675288] −10.428018 (−10.428018)

9 −2.976434 (−2.976434) 25.759987 (25.759987) [25.759987] −12.887753 (−12.887753)

10 −2.835735 (−2.835735) 32.716950 (32.716950) [32.716950] −15.563123 (−15.563123)

11 −2.456734 (−2.456734) 40.596450 (40.596522) [40.596451] −18.420480 (−18.420480)

12 −2.161284 (−2.161284) 49.165253 (49.165253) [49.165253] −21.606145 (−21.606145)

16 1.678405 (1.678405) 92.911655 (92.911655) [92.911655] −36.106152 (−36.106152)

20 8.481790 (8.481790) 150.881571 (150.881569) [150.881568] −54.011130 (−54.011130)

results in Table 4.1 for the global minimum of the discrete energy (2.51b) and the two
classic energies of (4.1). A good agreement between the ECAM and DSO methods for
the minimum values of these three discrete energy functions, as well as the optimal
trap locations, were used to validate the results. For the classic discrete energies in
(4.1), our results compare favorably with the tabulated data of [18], [11], and [34]
for the Coulomb energy and with the results of [3] for the logarithmic energy. From
Table 4.1, it is interesting to observe that for these values of N the minimal Coulomb
and logarithmic energies are monotone functions of N , whereas (2.51b) has a local
minimum for N = 9 traps. Due to the difficulty in trying to find optimal trap
arrangements analytically, we are unable to offer a theoretical explanation for this
observation here. By using numerical optimization LGO software, further data for
the optimal values of H for larger values of N were computed by Prof. Raymond
Spiteri and Sheldon Richards [45], and these are given in Table 4.2.

For N circular traps of a common radius ε, the average MFPT v̄ is given in
(2.51), and the corresponding principal eigenvalue λ is obtained upon setting a = 1
and c = 2/π in (3.26). We then use the results for the optimum value of H as given in
Table 4.2 to show the significant effect on the optimal v̄ and λ of the fragmentation
of the trap set on the surface of the unit sphere. More specifically, to study the
effect of fragmentation, we denote the percentage surface area fraction of traps by
100f , where f ≡ Nπε2/4π = Nε2/4. Then, for each fixed value of 100f , where
f is small, in Figure 4.1(a) we plot v̄ versus 100f for the optimal arrangement of
N = 5, 10, 20, 30, 40, 50, 60 traps on the surface of the unit sphere. In this figure we
also plot v̄ for a single large trap having the same trap surface area fraction. In
Figure 4.1(b) we plot the corresponding optimal value for the principal eigenvalue
versus 100f . For N not too large, we conclude that even when f is small the effect
of fragmentation of the trap set is rather significant. The clustering of the curves
in Figure 4.1(a) when N becomes larger suggests that the effect of fragmentation
decreases significantly when the traps are sufficiently dispersed over the surface of the
sphere.

To further illustrate our asymptotic results, we take N = 11 locally circular traps
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Table 4.2

Numerically computed minimal values of the discrete energy H of (2.51b) for N-trap arrange-
ments on the unit sphere. The results were obtained by Prof. Raymond Spiteri and Sheldon Richards
[45] using a global optimization package based on the LGO method (see [31]) and are believed to be
correct to the number of digits shown.

N H N H N H
3 −1.067345 24 18.5819814721 45 130.9053155742
4 −1.6671798784 25 21.7249125077 46 138.9204719381
5 −2.0879876408 26 25.0100311587 47 147.1503517898
6 −2.5810055438 27 28.4296992470 48 155.4174212367
7 −2.7636583659 28 32.1929330003 49 164.2174643572
8 −2.9495765146 29 36.2197825589 50 173.0786752357
9 −2.9764336362 30 40.3544394110 51 182.2666361905
10 −2.8357352067 31 44.7576166539 52 191.7242795403
11 −2.4567341080 32 49.2409493909 53 201.3847502086
12 −2.1612842350 33 54.2959715142 54 211.2834896820
13 −1.3678268562 34 59.3794884966 55 221.4638143503
14 −0.5525927824 35 64.7367106977 56 231.8539761252
15 0.4774375981 36 70.2760966504 57 242.5180260656
16 1.6784048848 37 76.0662374477 58 253.4345991848
17 3.0751594437 38 82.0802998438 59 264.5718557147
18 4.6651247247 39 88.3295602222 60 275.9094168850
19 6.5461713534 40 94.8178306425 61 287.6211395726
20 8.4817895578 41 101.5685414461 62 299.4803102551
21 10.7013196449 42 108.5402790527 63 311.6558516852
22 13.1017418136 43 115.7702835060 64 324.0896310134
23 15.8212820967 44 123.1634320345 65 336.7697097130

of a common radius ε and in Figure 4.2(a) we plot v̄ in (2.51) versus ε for three
different point arrangements on the sphere, including the set of points that minimize
H in (2.51b). For N = 11 and ε = 0.2, the traps occupy 11% of the surface area
of the sphere. The optimal point arrangement on the sphere is depicted in Figure
4.2(b). From Figure 4.2(a) we observe that a randomly generated point arrangement
gives a result for v̄ that is rather close to that for the optimal point arrangement.
For ε = 0.1907, the 11 traps occupy about 10% of the surface area of the sphere,
and the optimal v̄ is v̄ ≈ 0.368. We remark that for a single large trap with a 10%
surface area fraction its radius must be ε = 0.6325. For this value of ε, (2.45) yields
v̄ ≈ 1.48, which is about three times larger than for the optimal point arrangement.
This example shows clearly the significant effect on v̄ of trap fragmentation.

Next, we remark on the spatial configuration of the optimal arrangement of traps
for small N . For N = 2, 3, 4, the optimal trap arrangements for the discrete energy
(2.51b) and the two classical energies of (4.1) must be the same, since equidistant
spherical arrangements are available. For N = 2, the traps occupy the two poles; for
N = 3, they are located at the vertices of an inscribed equilateral triangle; and for
N = 4, they are located at the vertices of an inscribed tetrahedron. Our computational
results show that, for at least 2 ≤ N ≤ 20, the optimal trap arrangements for the
discrete energy (2.51b) and the two classical energies of (4.1) are the same. It is
an open problem to prove this result and to investigate numerically whether this
equivalence holds for even larger values of N .

In Table 4.3 we give our numerical results for the optimal trap locations when 3 ≤
N ≤ 12. The numerically computed minimal energy arrangements for N = 4, 5, 6, 7
are shown in Figure 4.3. For N = 5, N = 6, and N = 7, two traps are located at
the poles, while the other N − 2 traps are on the equator. For N = 8, 9, 10, 12, the
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6.0

5.0

4.0

3.0

2.0

1.0

0.0
2.01.81.61.41.21.00.80.60.40.2

v̄

% surface area fraction of traps

(a) v̄ versus f

2.5

2.0

1.5

1.0

0.5

0.0
2.01.81.61.41.21.00.80.60.40.2

λ

% surface area fraction of traps

(b) λ versus f

Fig. 4.1. The average MFPT v̄ in (2.51) with D = 1 and the principal eigenvalue λ of (3.26)
with c = 2/π and a = 1 versus the percentage trap surface area fraction 100f , where f = Nε2/4,
for the optimal arrangement of N identical circular traps of a common radius ε on the boundary of
the unit sphere. Top figure: v̄ versus 100f for N = 1, 5, 10, 20, 30, 40, 50, 60 (top to bottom curves).
Bottom figure: λ versus f for N = 1, 5, 10, 20, 30, 40, 50, 60 (bottom to top curves).

minimal energy arrangements are more irregular and are shown in Figure 4.4. For
N = 10, 12, the minimal energy arrangements have two “belts” of traps with common
latitude θ, with two traps located at the poles.

Next, we formally derive a scaling law asN → ∞ for the discrete energyH(x1, . . . ,
xN ) in (2.51b). We decompose H into the sum of three terms as

(4.2a) H(x1, . . . , xN ) = H1 +H2 +H3 ,

where

H1 =

N∑
i=1

N∑
j=i+1

1

|xi − xj |
, H2 = −1

2

N∑
i=1

N∑
j=i+1

log |xi − xj | ,

H3 = −1

2

N∑
i=1

N∑
j=i+1

log (2 + |xi − xj |) .
(4.2b)

We then derive an approximation to the optimal value of Hj as N → ∞ for j = 1, 2, 3
by using the mean-field approximation method of [15] and [3].
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2.0

1.6

1.2

0.8

0.4

0.0
0.200.180.160.140.120.100.080.06

v̄

ε

(a) v̄ versus ε

(b) Optimal points on the sphere

Fig. 4.2. Top figure: plot of the average MFPT v̄ in (2.51) versus ε for D = 1 and N = 11
and three different arrangements of points on the sphere. The heavy solid curve corresponds to the
minimum point of H in (2.51b), the solid curve is for 11 points equidistantly spaced on the equator,
and the dotted curve is for a randomly generated point arrangement. Bottom figure: the optimal
arrangement of N = 11 points on the sphere that minimize H in (2.51b).

We first consider the Coulomb term H1, as was discussed in [15]. Suppose that a
charge is located at the north pole. We write its interaction energy E1i with the ith
other charge as

E
(1)
1i =

1

r1i
, r1i = |x1 − xi| =

√
2(1− cos θ) ,

where θ is the azimuthal angle of the particle located at xi. For large N , we assume
that the charges are distributed “homogeneously” on the sphere, and that there is no
charge in the azimuthal neighborhood 0 ≤ θ < θ0 of the north pole, where θ0 � 1.
Therefore, for θ0 � 1, the number density of charges is given approximately by

P (θ, φ) =

{ N
4π for θ0 < θ < π ,

0 for 0 < θ < θ0 ,

where θ0 is determined from the condition that
∫ 2π

0

∫ π

θ0
P (θ, φ) sin θ dθ dφ = N − 1,
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Table 4.3

Spherical coordinates (θ, φ) of the optimal locations of 3 ≤ N ≤ 12 traps. These arrangements
simultaneously minimize the discrete energy (2.51b) and the two classical discrete energies in (4.1).

N Spherical coordinates of optimal trap locations

3 θ 0.000 2.094 2.094

φ 0.000 0.000 3.142

4 θ 0.000 1.911 1.911 1.911

φ 0.000 0.000 2.094 4.189

5 θ 0.000 1.571 1.571 1.571 3.142

φ 0.000 0.000 2.094 4.189 0.000

6 θ 0.000 1.571 1.571 1.571 1.571 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.000

7 θ 0.000 1.570 1.570 1.570 1.570 1.570 3.142

φ 0.000 0.000 2.513 5.027 1.257 3.770 0.000

8 θ 0.000 1.251 1.251 1.399 1.399 1.952 2.497 2.497

φ 0.000 1.445 3.565 0.000 5.010 2.505 0.706 4.304

9 θ 0.000 1.207 1.207 1.325 1.325 1.561 2.361 2.415 2.415

φ 0.000 0.000 2.369 3.639 5.013 1.185 4.326 2.369 0.000

10 θ 0.000 1.134 1.134 1.134 1.134 2.007 2.007 2.007 2.007 3.142

φ 0.000 0.000 1.571 3.142 4.712 0.785 2.356 3.927 5.498 0.000

11 θ 0.000 1.041 1.019 1.192 1.254 1.399 1.906 2.095 2.056 2.272 2.799

φ 0.000 0.000 2.516 3.862 5.047 1.041 1.948 3.194 6.044 4.576 1.042

12 θ 0.000 1.107 1.107 1.107 1.107 1.107 2.035 2.035 2.035 2.035 2.035 3.142

φ 0.000 0.628 1.885 3.142 4.398 5.655 0.000 1.257 2.513 3.770 5.026 2.132

(a) N = 4 (b) N = 5 (c) N = 6 (d) N = 7

Fig. 4.3. Minimal energy trap configurations for N = 4, 5, 6, 7 traps, common for the three
discrete energy functions.

(a) N = 8 (b) N = 9 (c) N = 10 (d) N = 12

Fig. 4.4. Minimal energy trap configurations for N = 8, 9, 10, 12 traps, common for the three
discrete energy functions.

which yields cos θ0 = 1 − 2/N . For N � 1, we use cos θ0 ≈ 1 − θ20/2, to obtain
θ0 ≈

√
4/N , as was given in [3].

Next, the interaction energy of the north-pole charge with the remaining charges
is approximated by

(4.3) ε1 =

∫ 2π

0

∫ π

θ0

P (θ, φ)E
(1)
1i sin θ dθ dφ ,

which can be calculated analytically as ε1 = −N
[
sin

(
N−1/2

)
− 1

]
. From a Taylor

series expansion, valid for large N , we can approximate the total energy of the particle
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configuration as

H1 =
1

2
Nε1 ≈

1

2
N2 − 1

2
N3/2 +

1

12
N1/2 − 1

240
N−1/2

+
1

10080
N−3/2 − 1

725760
N−5/2 +O(N−3) .

(4.4)

In a similar way, the interaction energy ε2 for H2 is given by
(4.5)

ε2 =
N

4π

∫ 2π

0

∫ π

θ0

E
(2)
1i sin θ dθ dφ , E

(2)
1i = −1

2
log r1i , r1i =

√
2(1− cos θ) ,

which can be evaluated explicitly to yield

(4.6) ε2 = − log
[
sin

(
N−1/2

)](
−N

2
+cos2

(
N−1/2

))
+(2 log 2−1) cos2

(
N−1/2

)
.

From a Taylor series expansion, valid for N � 1, the total energy H2 = Nε2/2 is
estimated as

H2 ≈ N2

8
(1 − 2 log 2)− 1

8
N logN − 1

8
N(1− 2 log 2) +

1

24
logN − 1

12
log 2

+N−1

(
1

144
+

1

90
log 2

)
− 1

180
N−1 logN −N−2

(
7

6480
− 1

1260
log 2

)

+
1

2520
N−2 logN +O(N−3) .

(4.7)

The second logarithmic term H3 in (4.2b) can be estimated in a similar way. We
define ε3 as
(4.8)

ε3 =
N

4π

∫ 2π

0

∫ π

θ0

E
(3)
1i sin θ dθ dφ , E

(3)
1i = −1

2
log(2 + r1i) , r1i =

√
2(1− cos θ) .

We obtain analytically that

ε3 =
N

4

[
2 sin

(
N−1/2

)
− (2 log 2− 1) cos2

(
N−1/2

)
− 2

− 2 cos2
(
N−1/2

)
log

[
1 + sin

(
N−1/2

)]]
.

(4.9)

For N � 1, the resulting total energy H3 = Nε3/2 is estimated from a Taylor series
expansion as

H3 ≈ −N2

8
(1 + 2 log 2) +

log 2

4
N +

1

6
N1/2 −

(
1

16
+

1

12
log 2

)
− 1

20
N−1/2

+N−1

(
1

48
+

1

90
log 2

)
+

23

5040
N−3/2 −N−2

(
1

480
+

1

1260
log 2

)

− 31

90720
N−5/2 +O(N−3) .

(4.10)

In Figure 4.5(a) we compare the sumH = H1+H2+H3, obtained by adding (4.4),
(4.7), and (4.10) (and neglecting the unspecified O(N−3) terms), with the numerically
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(a) Optimal H vs. N
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(b) Scatter Plot of the Error |F −H| vs. N

Fig. 4.5. Top figure: comparison of full numerical results for the optimal energy H versus N
(dashed curve) with the large N prediction given by the sum of (4.4), (4.7), and (4.10) (solid curve).
Bottom figure: absolute value of the error between the full numerical results of Table 4.2 for H and
the least squares fit F(N) of H given in (4.11).

computed results for the optimal values of H as given in Table 4.2. As seen in Figure
4.5(a), the agreement is relatively close.

The mean-field approximation completely disregards the spatial distribution of
the optimal arrangement of particles on the sphere and therefore yields an approximate
result whose precise asymptotic validity as N → ∞ is very difficult to assess. The
highest power ofN obtained by this approximation is presumably theoretically correct
in analogy with previous rigorous results for the classical Coulomb or logarithmic
energies (see [25], [33], and [34]). However, the coefficients of the lower-order terms
should depend on the optimal trap arrangement. Therefore, in terms of some unknown
coefficients bj for j = 1, . . . , 6, we postulate that for N � 1 the energy H has the
form
(4.11a)

H ≈ F(N) =
N2

2
(1− log 2) + b1N

3/2 + b2N logN + b3N + b4N
1/2 + b5 logN + b6 ,

as suggested by the various terms in (4.4), (4.7), and (4.10). The resulting least
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squares fit of (4.11a) to the data in Table 4.2 yields

b1 ≈ −0.5668 , b2 ≈ 0.0628 , b3 ≈ −0.8420 ,

b4 ≈ 3.8894 , b5 ≈ −1.3512 , b6 ≈ −2.4523 .
(4.11b)

In Figure 4.5(b) we show the scatter plot of the absolute error between F(N) and
the data for H of Table 4.2. This figure indicates that F(N) provides a very good
approximation to the numerically computed optimal values of H.

Finally, by using the scaling law H ≈ N2

2 (1 − log 2) + b1N
3/2 for large N , we

obtain the following rough estimate of the minimum value of the average MFPT v̄ in
(2.51) for the case of N � 1 circular traps of a common radius ε:

(4.12a) v̄ ∼ |Ω|
4εDN

[
1− ε

π
log ε+

εN

π

(
1

5
+

4b1√
N

)]
.

In terms of the trap surface area fraction f , given by f = Nε2/4, (4.12a) can be
written equivalently as

(4.12b) v̄ ∼ |Ω|
8D

√
fN

[
1−

√
f/N

π
log

(
4f

N

)
+

2
√
fN

π

(
1

5
+

4b1√
N

)]
.

In order that the expansions (4.12a) and (4.12b) remain ordered, we require that the
third term in (4.12a) be asymptotically smaller than the second term. This enforces
the requirement that εN � 1 when N � 1. Therefore, (4.12b) holds for N � 1
when the trap area fraction satisfies f � O(ε). It would be very interesting to
determine if there is a relationship between our optimal average MFPT results and
corresponding results that can be obtained from the dilute trap volume fraction limit
of homogenization theory.

5. Conclusion. The method of matched asymptotic expansions was used to
calculate a three-term asymptotic expansion for the MFPT for escape from the unit
sphere when there are N locally circular traps of asymptotically small radii on the
boundary of the unit sphere. The third term in this expansion was shown to depend
on the spatial configuration of the traps on the surface of the sphere. For N not too
large, it was shown that the fragmentation of the trap set has a strong influence on
the average MFPT for a fixed small trap surface area fraction.

There are four open problems that warrant further study. The first open problem
is to give a rigorous justification of the three-term asymptotic result (2.44) derived
here formally by the method of matched asymptotic expansions. The second open
problem is to derive a result analogous to (2.44) for the averageMFPT for an arbitrary
bounded three-dimensional domain that hasN asymptotically small windows of radius
O(ε) on its boundary. Only the third term in such an expansion should depend on
the relative locations of the absorbing windows on the domain boundary. Such an
analysis would require detailed knowledge of the regular part of the surface Neumann
Green’s function for an arbitrary three-dimensional domain. A two-term expansion
for this MFPT, which is independent of the window locations, is given in [44] for an
arbitrary bounded three-dimensional domain.

A third interesting open problem is to explore whether there is any relationship
between results that can be obtained from the dilute trap fraction limit of homog-
enization theory and the results obtained herein for the scaling law for the discrete



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NARROW ESCAPE FROM A SPHERE 863

energy function for large N . Such an approach should hopefully provide an asymp-
totic formula for the average MFPT that is uniform in ε and N . To illustrate the need
for such a result, consider the narrow capture problem of [26] for a viral particle that
has entered a biological cell containing a small spherical nucleus with 2000 nanopores
on its surface. For this problem, the ratio of the radius of the nanopore to the radius
of the nucleus is ε = 2× 10−3. Therefore, since εN ≈ 4, the limiting result (4.12a) is
not valid, and an alternative approach based on homogenization theory is required to
estimate the average MFPT.

Finally, a fourth open problem is to calculate a high-order asymptotic expansion
for the average MPFT for the case of interior traps of small radii within a three-
dimensional domain, or to determine the average MFPT for some narrow capture
problems. Some results in this direction are given in [5].

Appendix A. The surface Neumann Green’s function for a sphere. Here
we calculate the explicit solution to (2.2). Since the singular point is on the boundary
of the sphere, then Gs(x;xj) ∼ (2π)−1/ |x − xj | as x → xj ∈ ∂Ω. Our goal is to
calculate Gs(x;xj) analytically and to determine higher-order terms in the singular
behavior as x → xj . To solve (2.2) analytically, we let |x|2 = r2 and decompose Gs

as

(A.1) Gs =
1

6|Ω|

(
|x|2 + 1

)
+ Ḡs + C ,

where C is a constant chosen to ensure that
∫
Ω Gs dx = 0. Then, we obtain from

(A.1) and (2.2) that Ḡs satisfies

(A.2) �Ḡs = 0 , x ∈ Ω ; ∂rḠs

∣∣∣
r=1

= δ(cos θ − cos θj)δ(φ − φj)−
1

4π
.

Next, the boundary condition in (A.2) is expressed in terms of Legendre polynomials.
This is done as follows.

Lemma A.1. Let γ denote the angle between x and xj so that cos γ = x · xj .
Then, we have the identity

(A.3) ∂rḠs

∣∣∣
r=1

= δ(cos θ − cos θj)δ(φ− φj)−
1

4π
=

1

4π

∞∑
m=1

(2m+ 1)Pm(cos γ) .

Proof. We recall the completeness formula for the spherical harmonics Ymn given
by (cf. [22])

(A.4)

∞∑
m=0

m∑
n=−m

Y ∗
mn(θj , φj)Ymn(θ, φ) = δ(φ− φj)δ(cos θ − cos θj) ,

where ∗ denotes complex conjugate. The well-known addition theorem for Legendre
polynomials (cf. [22]) states that

(A.5)
(2m+ 1)

4
Pm(cos γ) =

m∑
n=−m

Y ∗
mn(θj , φj)Ymn(θ, φ) .

Upon summing (A.5) from m = 0 to ∞ and using (A.4) and P0(cos γ) = 1, we obtain
(A.3).
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The solution to �Ḡs = 0, which satisfies the boundary condition in (A.3), is
simply
(A.6)

Ḡs =
1

4π

∞∑
m=1

(2m+ 1)

m
rmPm(cos γ) =

1

2π

∞∑
m=1

rmPm(cos γ) +
1

4π

∞∑
m=1

rm

m
Pm(cos γ) .

We now calculate the two terms in (A.6) separately.
The well-known generating function

(
1 − 2xt + t2

)−1/2
=

∑∞
m=0 Pm(x)tn shows

that the first term in (A.6) is

(A.7)
1

2π

∞∑
m=1

rmPm(cos γ) =
1

2π

1√
r2 + 1− 2r cos γ

− 1

2π
=

1

2π|x− xj |
− 1

2π
.

Next, we define I(r) ≡
∑∞

m=1
rm

m Pm(cos γ). By differentiating I and then using the
generating function, we get

(A.8) I ′(r) =
1

r

∞∑
m=1

rmPm(cos γ) =
1

r

[
1√

1− 2r cos γ + r2
− 1

]
.

Since I(0) = 0, we can integrate the equation above and then use |x − xj | =(
1 + r2 − 2r cos γ

)1/2
to obtain

I(r) =

∞∑
m=1

rm

m
Pm(cos γ) =

∫ r

0

(
1

s

1√
1− 2s cos γ + s2

− 1

s

)
ds

= log

(
2

1− r cos γ + |x− xj |

)
,

(A.9)

which determines the second term in (A.6). Then, substituting (A.9) and (A.7) into
(A.6) and using (A.1), we can write Gs up to an arbitrary constant C as
(A.10)

Gs(x;xj) =
1

8π

(
|x|2 + 1

)
+

1

2π |x− xj |
+

1

4π
log

(
2

1− r cos γ + |x− xj |

)
+ C .

Finally, the integral condition in (2.2), written as
∫ 2π

0

∫ π

0

∫ 1

0
Gsr

2 sin γ dr dγ dφ =
0, determines C. Here, without loss of generality, we have chosen xj to be at the north

pole so that γ = θ. By orthogonality of the Pm(z), it follows that
∫ π

0 Pm(cos γ) sin γ dγ
= 2δm,0, where δm,0 is Kronecker’s symbol, δn,n = 1, and δm,n = 0 if m �= n.
Therefore, this identity together with (A.9) shows that the integral over the sphere of
the logarithmic term in (A.10) vanishes identically. Next, from (A.7) and P0(z) = 1,
we use the same identity to calculate
(A.11)

1

2π

∫
Ω

1

|x− xj |
dx =

1

2π

∞∑
m=0

∫ 2π

0

∫ π

0

∫ 1

0

rmPm(cos γ) (sin γ) r2 dγ dφ dr =
2

3
.

In this way, we obtain that

∫
Ω

Gs dx =

∫ 2π

0

∫ π

0

∫ 1

0

Gsr
2 sin γ dγ dφ dr =

1

2

∫ 1

0

(
r2 + 1

)
r2 dr +

2

3
+

4πC

3
= 0 ,
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which yields C = −7/(10π) and determines Gs explicitly in (A.10). This completes
the proof of Lemma 2.1.

Appendix B. The inner problem for w2. Here we first derive the PDE
(2.13) for the second inner correction term w2. Under the mapping η = ε−1(1 − r),
s1 = ε−1 sin θj(φ − φj), and s2 = ε−1(θ − θj), we show that the Poisson equation
(2.1a) in spherical coordinates for v(r, φ, θ) transforms for ε → 0 to (2.13). Let
w(η, s1, s2) = v [r(η), φ(s1), θ(s2)]. Then, we calculate

vrr +
2

r
vr = ε−2wηη − 2ε−1wη +O(1) ,

r−2 (vθθ + vθ cot θ) = (1 − εη)−2
(
ε−2ws2s2 + ε−1 cot θjws2 +O(1)

)
= ε−2ws2s2 + ε−1 (2ηws2s2 + cot θjws2 ) +O(1) ,

1

r2 sin2 θ
vφφ =

(1− εη)−2

[sin(θj + εs2)]
2 ε

−2 sin2 θjws1s1

= ε−2ws1s1 + ε−1 [2ηws1s1 − 2s2 cot θjws1s1 ] +O(1) .

Therefore, upon adding the three expressions above, we get that Δv = −D−1 in (2.1a)
becomes

Δv = ε−2 (wηη + ws1s1 + ws2s2)

+ ε−1 [2η (ws1s1 + ws2s2)− 2wη + cot θj (ws2 − 2s2ws1s1)]

+O(1) = − 1

D
.

(B.1)

If we then expand w ∼ ε−1w0 + log
(ε
2

)
w1 + w2 + · · · as in (2.12), we readily obtain

(2.13) for w2 upon using the leading-order equation w0ηη = − (w0s1s1 + w0s2s2) to
simplify the coefficient of η in (B.1).

Next, we analyze the solution w2 to (2.13), with the prescribed far-field behavior
in (2.31), in terms of the solution decomposition given in (2.32). Our analysis shows
how the solution to this problem generates a monopole term in its far-field expansion
as written in (2.35), where the monopole coefficient κj in (2.35) is as given in (2.36).

We analyze (2.33) for the term w2e in the decomposition (2.32) of w2. Although
(2.33) is an inhomogeneous problem involving the solution wc of the electrified disk
problem (2.15), its solution w2 can be determined analytically.

Lemma B.1. The solution to (2.33) is given explicitly by

(B.2) w2e = −η2

2
wcη −

η

2
wc +

1

2

∫ η

0

wc(z, s1, s2) dz +K(s1, s2) + w2h .

Here K(s1, s2) satisfies a Poisson equation with a compactly supported forcing func-
tion, formulated as
(B.3a)

Ks1s1+Ks2s2 = q(s1, s2) ; K(s1, s2) =
cj
2
log σ+o(1) as σ ≡ (s21+s22)

1/2 → ∞ ,

where cj is defined by wc ∼ cj/ρ as ρ → ∞, while q(s1, s2) is defined in terms of the
surface charge density of the electrified disk problem (2.15) by

(B.3b) q(s1, s2) ≡ −1

2
wcη|η=0IΩ , IΩ =

{
1 , (s1, s2) ∈ Ω ,
0 , (s1, s2) /∈ Ω ,
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where Ω ≡ {(s1, s2) | s21+s22 ≤ a2j}. Moreover, in terms of K(s1, s2), the function w2h

in (B.2) satisfies Laplace’s equation in a half-space with mixed Dirichlet-Neumann
boundary conditions, formulated as

w2hηη + w2hs1s1 + w2hs2s2 = 0 , η ≥ 0 , −∞ < s1, s2 < ∞ ,(B.4a)

∂ηw2h = 0 , η = 0 , (s1, s2) /∈ Ω ; w2h = −K(s1, s2) , η = 0 , (s1, s2) ∈ Ω ,
(B.4b)

w2h = O(ρ−1) as ρ = (η2 + s21 + s22)
1/2 → ∞ .(B.4c)

The solution w2e in (B.2) has the far-field asymptotic behavior

(B.5) w2e =
cj
2
log(η + ρ)− cj

2ρ3
η(s21 + s22)−

cjκj

ρ
+O(ρ−2) as ρ → ∞ .

We remark that the o(1) condition in (B.3a) and the decay condition in (B.4c)
determine K(s1, s2) and w2h uniquely. In addition, it is readily observed that the
problem for K has the correct strength for the logarithmic singularity at infinity. To
see this, we let s = (s1, s2) and solve (B.3) in terms of the free-space Green’s function
as

K(s1, s2) =
1

2π

∫
Ω

log |s̃− s| q(s̃) ds ∼
(

1

2π

∫
Ω

q(s̃) ds̃

)
log σ

− s · ej
2π|s|2 +O(|s|−2) as σ = |s| → ∞ ,

(B.6)

where ej ≡
∫
Ω s̃jq(s̃) ds̃. Therefore, K ∼ d0 log σ + o(1) as σ → ∞, where d0 =

−(4π)−1
∫
Ω wcη|η=0ds̃. To identify that d0 = cj/2, where cj is the monopole coefficient

obtained from the far-field behavior wc ∼ cj/ρ as ρ → ∞, we use the divergence
theorem over a half-sphere on the defining problem (2.15) for wc to obtain −2πcj +∫
Ω
(−wcη|η=0) ds̃ = 0. This yields cj = −(2π)−1

∫
Ω
wcη|η=0 ds̃, so that d0 = cj/2 as

required.
There are three main steps to the proof of Lemma B.1. First, we must show

that (B.2) accounts for the inhomogeneous term in the PDE (2.33a). Then, we must
show that the boundary conditions (2.33b) and the far-field behavior (2.33c) are both
satisfied.

By an explicit calculation we first verify that (B.2) satisfies the PDE (2.33a).
Since w2h satisfies the homogeneous problem, we need only verify that w2p, defined
by

(B.7) w2p ≡ −η2

2
wcη −

η

2
wc +

1

2

∫ η

0

wc(z, s1, s2) dz +K(s1, s2) ,

satisfies (2.33a). Denoting Lv ≡ vηη +Δsv, where Δsv ≡ vs1s1 + vs2s2 , we calculate

w2pηη = −η2

2
wcηηη − 5η

2
wcηη −

3

2
wcη ,(B.8a)

Δsw2p = −η2

2
∂η (Δswc)−

η

2
Δswc +

1

2

∫ η

0

Δswc dz +ΔsK .(B.8b)

Then, using the equation wcηη = −Δswc satisfied by wc, (B.8b) becomes

Δsw2p =
η2

2
wcηηη +

η

2
wcηη − 1

2

∫ η

0

wczz dz +ΔsK

=
η2

2
wcηηη +

η

2
wcηη − 1

2
wcη +

1

2
wcη|η=0 +ΔsK .

(B.9)
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Upon adding (B.8a) and (B.9), we calculate Lw2p = w2pηη +Δsw2p as

(B.10) Lw2p = −2ηwcηη − 2wcη +
1

2
wcη|η=0 +ΔsK(s1, s2) .

Therefore, when K(s1, s2) satisfies the Poisson equation (B.3), it follows that w2p

satisfies the PDE (2.33a).
Next, we note from (B.2) that on η = 0 the boundary conditions ∂ηw2e = 0 for

(s1, s2) /∈ Ω and w2e = 0 for (s1, s2) ∈ Ω are satisfied provided that w2h satisfies the
boundary conditions in (B.4b).

Next, we determine the asymptotic far-field behavior of w2e as defined in (B.2).
We use wc ∼ cjρ

−1 as ρ → ∞ with ρ = (η2 + σ2)1/2 and σ = (s21 + s22)
1/2 to calculate

−1

2
η2wcη −

1

2
ηwc ∼ −cj

2

ησ2

(η2 + σ2)
3/2

as ρ → ∞ ,(B.11a)

1

2

∫ η

0

wc(z, s1, s2) dz ∼ cj
2

∫ η

0

1

(z2 + σ2)1/2
dz

=
cj
2

[
log

(
η +

√
η2 + σ2

)
− log σ

]
as ρ → ∞ .

(B.11b)

Therefore, w2e in (B.2) has the far-field behavior

(B.12) w2e ∼
cj
2
log

(
η +

√
η2 + σ2

)
− cj

2

ησ2

(η2 + σ2)
3/2

− cj
2
log σ +K + w2h .

We observe that the first two terms on the right-hand side of (B.12) agree exactly
with those in (2.33c). In order that the remaining terms in the far-field behavior
(B.12) cancel, as indicated by (2.33c), we require that K ∼ cj

2 log σ + o(1) as σ → ∞,
as written in (B.3a), and that w2h → 0 as ρ → ∞, as given in (B.4c).

The problem (B.4) for w2h is a mixed Dirichlet–Neumann boundary value problem
for the Laplacian with a spatially inhomogeneous Dirichlet condition imposed on the
absorbing window. As such, it follows that w2h = O(ρ−1) as ρ → ∞. Moreover, since
K is proportional to cj , we can write the far-field behavior for w2h as

(B.13) w2h = −cjκj

ρ
+O(ρ−2) as ρ → ∞

for some monopole coefficient κj to be determined.
We remark that up to this stage of the analysis in this appendix we have not

assumed that the absorbing window Ω is a circular disk of radius aj . All that has
been required so far is that wc satisfy Lwc = 0 with boundary conditions ∂nwc = 0 on
η = 0, (s1, s2) /∈ Ω and wc = 1 on η = 0, and (s1, s2) ∈ Ω with wc ∼ cj/ρ as ρ → ∞.

For the special case of a circular absorbing window of radius aj , we can solve
(B.3) analytically and then explicitly calculate the coefficient κj of the monopole
term in (B.13). For a circular disk, the function q in (B.3) is simply q(s1, s2) =

π−1
[
a2j − σ2

]−1/2
, where σ =

(
s21 + s22

)1/2
(see page 38 of [12]). Therefore, from

(B.3), K = K(σ) is the solution of the radially symmetric problem

(B.14) σ−1 (σKσ)σ =

{
π−1

[
a2j − σ2

]−1/2
, 0 ≤ σ < aj ,

0 , σ ≥ aj ,
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with K(σ) = ajπ
−1 log σ for σ ≥ aj. The solution to (B.14) for σ ≤ aj with K(aj) =

ajπ
−1 log(aj) is simply

(B.15) K(σ) =
1

π

[
aj log

(
aj +

√
a2j − σ2

)
−

√
a2j − σ2

]
, 0 ≤ σ ≤ aj .

For a circular disk, the coefficient κj of the monopole term in (B.13) can be calculated
by using the known far-field behavior of w2h given by (see [10] or section 1.4 of [12])

(B.16) w2h ∼ − 2

πρ

∫ aj

0

K(σ)σ√
a2j − σ2

dσ as ρ → ∞ .

The integral in (B.16) can be calculated explicitly by using (B.15) for K(σ). This
yields

J ≡
∫ aj

0

K(σ)σ√
a2j − σ2

dσ =
a2j
π

[∫ 1

0

x√
1− x2

(
log

[
1 +

√
1− x2

]
−

√
1− x2

)
dx

+ log aj

∫ 1

0

x√
1− x2

dx

]
,

(B.17)

which evaluates to J = a2jπ
−1

[
2 log 2− 3

2 + log aj
]
. Since cj = 2aj/π, it follows from

(B.13) and (B.16) that

(B.18) w2h ∼ −cjκj

ρ
, ρ → ∞ , κj =

cj
2

[
2 log 2− 3

2
+ log aj

]
.

This detailed analysis of the solution to the inner problem for w2 completes the proof
of Lemma B.1 and justifies the far-field result (2.37) with κj as given in (2.36).

Finally, we remark that the solution w2o to (2.34) is odd in s2 and therefore
cannot generate a monopole term at infinity. The explicit solution to (2.34) is given
in terms of the solution wc of the electrified disk problem (2.15) as follows.

Lemma B.2. The solution to (2.34) is given explicitly by

(B.19) w2o = cot θj

(
s21
2
wcs2 − s2s1wcs1

)
.

It is readily verified that (B.19) incorporates the inhomogeneous terms in (2.34a),
satisfies the boundary conditions in (2.34b), and has far-field asymptotic behavior
that agrees with that in (2.34c). We leave the verification of these details to the
reader.
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