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a b s t r a c t

The method of matched asymptotic expansions is used to calculate a two-term asymptotic
expansion for the principal eigenvalue λ(ε) of the Laplacian in a three-dimensional domain
Ω with a reflecting boundary that contains N interior traps of asymptotically small radii.
In the limit of small trap radii ε → 0, this principal eigenvalue is inversely proportional
to the average mean first passage time (MFPT), defined as the expected time required for
a Brownian particle undergoing free diffusion, and with a uniformly distributed initial
starting point in Ω , to be captured by one of the localized traps. The coefficient of the
second-order term in the asymptotic expansion of λ(ε) is found to depend on the spatial
locations of the traps inside the domain, together with the Neumann Green’s function for
the Laplacian. For a spherical domain,where this Green’s function is knownanalytically, the
discrete variational problem of maximizing the coefficient of the second-order term in the
expansion ofλ(ε), or correspondinglyminimizing the averageMFPT, is studied numerically
by global optimizationmethods forN ≤ 20 traps.Moreover, the effect on the averageMFPT
of the fragmentation of the trap set is shown to be rather significant for a fixed trap volume
fraction when N is not too large. Finally, the method of matched asymptotic expansions
is used to calculate the splitting probability in a three-dimensional domain, defined as the
probability of reaching a specific target trap froman initial source point before reaching any
of the other traps. Some examples of the asymptotic theory for the calculation of splitting
probabilities are given for a spherical domain.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider an optimization problem for the principal eigenvalue of the Laplacian in a bounded three-dimensional
domain with a reflecting boundary that is perturbed by the presence of N small traps in the interior of the domain. The
perturbed eigenvalue problem is formulated as

1u + λu = 0, x ∈ Ω\Ωa;

∫
Ω\Ωa

u2 dx = 1, (1.1a)

∂nu = 0, x ∈ ∂Ω, (1.1b)

u = 0, x ∈ ∂Ωa ≡

N
j=1

∂Ωεj . (1.1c)
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Here, Ω is the unperturbed domain, Ωa ≡
N

j=1Ωεj is a collection of N small interior traps Ωεj , for j = 1, . . . ,N , each of
‘radius’ O(ε) ≪ 1, and ∂nu is the outward normal derivative of u on ∂Ω . We assume thatΩεj → xj uniformly as ε → 0, for
j = 1, . . . ,N , and that the traps are well separated in the sense that dist(xi, xj) = O(1) for i ≠ j and dist(xj, ∂Ω) = O(1)
for j = 1, . . . ,N .

The primary motivation for considering (1.1) is its relationship to determining the mean first passage time (MFPT) for
a Brownian particle wandering inside a three-dimensional domain that contains N localized absorbing traps. Denoting the
trajectory of the Brownian particle by X(t), the MFPT v(x) is defined as the expectation value of the time τ taken for the
Brownian particle to become absorbed somewhere in ∂Ωa starting initially from X(0) = x ∈ Ω , so that v(x) = E[τ |

X(0) = x]. The calculation of v(x) becomes a narrow capture problem in the limit when the volume of the absorbing set
|∂Ωa| = O(ε3) is asymptotically small, where 0 < ε ≪ 1 measures the dimensionless trap radius. Since the MFPT diverges
as ε → 0, the calculation of the MFPT v(x) constitutes a singular perturbation problem. It is well known (cf. [1,2]) that the
MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary conditions, formulated as

1v = −
1
D
, x ∈ Ω\Ωa, (1.2a)

∂nv = 0, x ∈ ∂Ω; v = 0, x ∈ ∂Ωa =

N
j=1

∂Ωεj , (1.2b)

where D is the diffusivity of the underlying Brownian motion. With respect to a uniform distribution of initial points x ∈ Ω

for the Brownian walk, the average MFPT, denoted by v̄, is defined by

v̄ = χ ≡
1

|Ω|

∫
Ω

v(x) dx, (1.3)

where |Ω| is the volume ofΩ .
This nature capture problem has wide applications in cellular signal transduction. In particular, in many cases a diffusing

molecule must arrive at a localized signaling region within a cell before a signaling cascade can be initiated. Of primary
importance then is to determine how quickly such a diffusing molecule can arrive at any one of these localized regions. Our
narrow capture problem is closely related to the so-called narrow escape problem, related to the expected time required for
a Brownian particle to escape from a confining bounded domain that has N localized windows on an otherwise reflecting
boundary. The narrow escape problem has many applications in biophysical modeling (see [3,1,4], and the references
therein). The narrow escape problem in both two- and three-dimensional confining domains has been studiedwith a variety
of analytical methods in [1,5–10]. In [11], the MFPT for a Brownian particle in a two-dimensional domain with both a
boundary and interior trap was calculated asymptotically.

We letλ(ε)denote the first eigenvalue of (1.1), with corresponding eigenfunction u(x, ε). Clearly,λ(ε) → 0 as ε → 0. For
ε → 0, a simple calculation shows that λ(ε) is related to the average MFPT χ by λ(ε) ∼ 1/(Dχ). One of the main objectives
of this paper is to derive a two-term asymptotic expansion for λ(ε) as ε → 0. Such a two-term expansion not only provides
a more accurate determination, when ε is not too small, of the principal eigenvalue and the corresponding average MFPT,
it also provides an explicit formula showing how the locations of the traps within the domain influence these quantities.
We emphasize that the leading-order term in the expansion of λ(ε) as ε → 0 is independent of the locations of the traps.
By examining the coefficient of the second-order term in the expansion of λ(ε), we will formulate a discrete optimization
problem for the spatial configuration {x1, . . . , xN} of the centers of the N traps of fixed given shapes that maximizes this
principal eigenvalue λ(ε), and correspondingly minimizes the average MFPT χ .

Asymptotic expansions for the principal eigenvalue of related eigenvalue problems in perforated multi-dimensional
domains, with various boundary conditions on the traps and outer boundary, are given in [12–21] (see also the references
therein). In Section 2, our asymptotic analysis extends the previous results of [13,14,16,18] for the three-dimensional
problemby calculating an extra term in the asymptotic expansion of the principal eigenvalueλ(ε) of (1.1). The resulting two-
term asymptotic expansion for λ(ε) given in Principal Result 2.1 of Section 2 is needed in order to optimize λ(ε)with respect
to the spatial configuration {x1, . . . , xN} of the centers of the traps insideΩ . The coefficient of the second-order term in the
asymptotic expansion of λ(ε), which depends on the trap configuration {x1, . . . , xN}, also depends on the Neumann Green’s
function for the Laplacian and its regular part. This Green’s function is given explicitly in Appendix for the unit sphere. By
using this explicit Green’s function, in Section 2.1 global optimization methods are used to obtain numerical results for the
trap configurations {x1, . . . , xN} that maximize the principal eigenvalue λ(ε) of (1.1) for 2 ≤ N ≤ 20 identically shaped
traps within the unit sphere.

In Section 3,we consider the relatedMFPTproblem (1.2). In Principal Result 3.1,we give a two-termasymptotic expansion
for theMFPT v(x). For several configurations of traps, we illustrate the effect on v(x) of the spatial distribution of traps inside
the unit sphere. By calculating the average MFPT v̄ in (1.3) from v̄ ∼ 1/(Dλ), we also show the effect on the optimal v̄ of
the fragmentation of the trap set for a given small trap volume fraction. The fragmentation of the trap set is found to have a
significant influence on v̄ for a relatively small number of traps.

In Section 3.1, we consider the related problem of calculating the splitting probability in a three-dimensional domain,
defined as the probability of reaching a specific target trapΩε1 from the initial source point x ∈ Ω\Ωa, before reaching any
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of the other surrounding trapsΩεj for j = 2, . . . ,N . The biological applications for the calculation of the splitting probability
are discussed in [22], and some of the references therein. For the case of two interior small spherical targets, this problem
was considered in Section III(C) of [22] using a pseudo-Green’s function technique. Our systematic asymptotic analysis in
Section 3.1 extends this previous analysis of [22] to the case of N targets of possibly different shape. Our analysis highlights
the key role of the electrostatic capacitances associated with the targets for the determination of the splitting probability.
The theory is illustrated for the case where the confining domain is the unit sphere. The determination of the splitting
probability in the context of the two-dimensional narrow escape problem in a circular disk was considered in Section 5
of [1].

Finally, a few open problems are suggested in Section 4.

2. Small traps in a three-dimensional domain

We now use the method of matched asymptotic expansions to derive a two-term expansion for the principal eigenvalue
λ(ε) of (1.1) as ε → 0. For the problem with no traps, λ0 = 0 and u0 = |Ω|

−1/2 is the unperturbed eigenfunction, where
|Ω| denotes the volume ofΩ . We expand the principal eigenvalue for (1.1) as

λ = ελ1 + ε2λ2 + · · · . (2.1)

In the outer region away from an O(ε) neighborhood of xj, we expand the outer solution as

u = u0 + εu1 + ε2u2 + · · · . (2.2)

Upon substituting (2.1) and (2.2) into (1.1a) and (1.1b), we obtain that u1 and u2 satisfy

1u1 = −λ1u0, x ∈ Ω \ {x1, . . . , xN}; ∂nu1 = 0, x ∈ ∂Ω;

∫
Ω

u1 dx = 0, (2.3)

1u2 = −λ2u0 − λ1u1, x ∈ Ω \ {x1, . . . xN}; ∂nu2 = 0, x ∈ ∂Ω;

∫
Ω

u2 dx = −
|Ω|

1/2

2

∫
Ω

u2
1 dx. (2.4)

The matching of u1 and u2 to inner solutions defined in an O(ε) neighborhood of each trap will yield singularity conditions
for u1 and u2 as x → xj for j = 1, . . . ,N .

In the inner region, near the jth trap we introduce the local variables y andw(y) by

y = ε−1(x − xj), w(y) = u(xj + εy, ε). (2.5)

Upon substituting (2.5) into (1.1a) and (1.1c), we obtain that ∆yw = −ε2λw, where ∆y denotes the Laplacian in the y
variable. We expand the inner solution as

w = w0 + εw1 + ε2w2 + · · · , (2.6)

and then use λ = O(ε) to obtain the following inner problems for k = 0, 1, 2:

∆ywk = 0, y ∉ Ωj; wk = 0, y ∈ ∂Ωj. (2.7)

Here,Ωj denotes anO(ε−1)magnification ofΩεj so thatΩj = ε−1Ωεj . The appropriate far-field boundary condition for (2.7)
is determined by matchingw to the outer asymptotic expansion of the eigenfunction.

The matching condition is that the near-field behavior of the outer eigenfunction as x → xj must agree asymptotically
with the far-field behavior of the inner eigenfunction as |y| = ε−1

|x − xj| → ∞, so that

u0 + εu1 + ε2u2 + · · · ∼ w0 + εw1 + ε2w2 + · · · . (2.8)

Since u0 = |Ω|
−1/2, the first matching condition is thatw0 ∼ |Ω|

−1/2 as |y| → ∞. We then introducewc by

w0 =
1

|Ω|1/2
(1 − wc) , (2.9)

so that from (2.7) with k = 0, we get thatwc satisfies

∆ywc = 0, y ∉ Ωj; wc = 1, y ∈ ∂Ωj; wc → 0 as |y| → ∞. (2.10a)

This is a classic problem in electrostatics, and it is well known that the far-field behavior ofwc is (cf. [23])

wc ∼
Cj

|y|
+

Pj · y
|y|3

+ · · · as |y| → ∞. (2.10b)

Here, Cj is the capacitance of Ωj and Pj denotes the dipole vector, both determined by the shape of Ωj. These intrinsic
quantities can be found explicitly for different trap shapes such as spheres, ellipsoids, etc.
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Upon substituting (2.10b) into (2.8), we obtain that the matching condition becomes

1
|Ω|1/2

+ εu1 + ε2u2 + · · · ∼
1

|Ω|1/2


1 −

εCj

|x − xj|
−
ε2Pj · (x − xj)

|x − xj|3


+ εw1 + ε2w2 + · · · . (2.11)

Therefore, we require that u1 has the singular behavior u1 ∼ −|Ω|
−1/2Cj/|x − xj| as x → xj for j = 1, . . . ,N . The problem

(2.3) for u1 with this singularity behavior can be written inΩ in terms of the Dirac distribution as

1u1 = −λ1u0 +
4π

|Ω|1/2

N−
j=1

Cjδ(x − xj), x ∈ Ω; ∂nu1 = 0, x ∈ ∂Ω, (2.12)

with

Ω
u1 dx = 0. Upon using the divergence theorem, and recalling that u0 = |Ω|

−1/2, we determine λ1 as

λ1 =
4π
|Ω|

N−
j=1

Cj. (2.13)

This leading-order asymptotics is Ozawa’s result [13], and since it does not depend on the trap locations it does not indicate
how to optimize λ. As such, we must extend the calculation to one higher order.

To solve (2.12), we introduce the Neumann Green’s function G(x; ξ), which satisfies

1G =
1

|Ω|
− δ(x − ξ), x ∈ Ω; ∂nG = 0, x ∈ ∂Ω, (2.14a)

G(x; ξ) =
1

4π |x − ξ |
+ R(x; ξ);

∫
Ω

G(x; ξ) dx = 0. (2.14b)

Here, R(x; ξ) is called the regular part of G(x; ξ), and R(ξ ; ξ) is referred to as the self-interaction term. In terms of G, the
unique solution to (2.12), which satisfies


Ω
u1 dx = 0, is simply

u1 = −
4π

|Ω|1/2

N−
k=1

CkG(x; xk). (2.15)

Next, we expand u1 in (2.15) as x → xj. Upon using (2.14b) to obtain the local behavior of G, we obtain

u1 ∼ −
Cj

|Ω|1/2|x − xj|
+ Aj as x → xj; Aj = −

4π
|Ω|1/2

CjRj,j +

N−
k=1
k≠j

CkGj,k

 . (2.16)

Here, we have defined Rj,j ≡ R(xj; xj) and Gj,k ≡ G(xj; xk). Upon substituting this expression into the matching condition
(2.11), we obtain

1
|Ω|1/2

+ ε


−

Cj

|Ω|1/2|x − xj|
+ Aj


+ ε2u2 + · · · ∼

1
|Ω|1/2

×


1 −

εCj

|x − xj|
−
ε2Pj · (x − xj)

|x − xj|3


+ εw1 + ε2w2 + · · · . (2.17)

We then conclude thatw1 ∼ Aj as |y| → ∞. The solutionw1 to (2.7) is

w1 = Aj (1 − wc) ∼ Aj


1 −

Cj

|y|
+ · · ·


as |y| → ∞, (2.18)

wherewc is the solution to (2.10). Next,wewrite the far-field behavior in (2.18) in outer variables and substitute the resulting
expression into the right-hand side of the matching condition (2.17) to identify the terms of O(ε2). In this way, we obtain
that the outer eigenfunction u2 must have the following singularity behavior as x → xj:

u2 ∼ −
AjCj

|x − xj|
−

Pj · (x − xj)
|x − xj|3

as x → xj, j = 1, . . . ,N. (2.19)

The problem (2.4) for u2, together with singularity behavior (2.19), can be written inΩ in terms of the Dirac distribution as

1u2 = −λ2u0 − λ1u1 + 4π
N−
j=1

AjCjδ(x − xj)− 4π
N−
j=1

Pj · ∇δ(x − xj), x ∈ Ω, (2.20)
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with ∂nu2 = 0 for x ∈ ∂Ω . Then, applying the divergence theorem to (2.20), and using

Ω
u1 dx = 0, we get

λ2 =
4π

|Ω|1/2

N−
j=1

AjCj. (2.21)

We remark that this eigenvalue correction λ2 does not depend on the dipole vector Pj defined in (2.10b).
Next, it is convenient to introduce the capacitance vector c and the symmetric Neumann Green’s matrix G by

G ≡


R1,1 G1,2 · · · G1,N

G2,1
. . .

. . .
...

...
. . .

. . . GN−1,N
GN,1 · · · GN,N−1 RN,N

 , c ≡

C1
...
CN

 . (2.22)

Here, Cj is the capacitance defined in (2.10b), and Gi,j ≡ G(xi; xj) for i ≠ j is the Neumann Green’s function of (2.14) with
self-interaction Rj,j ≡ R(xj; xj). Upon substituting (2.13) and (2.21) into (2.1), we obtain the following main result:

Principal Result 2.1. In the limit of small trap radius, ε → 0, the principal eigenvalue λ(ε) of (1.1) has the two-term asymptotic
expansion

λ(ε) ∼
4πεN
|Ω|

C̄ −
16π2ε2

|Ω|
pc(x1, . . . , xN). (2.23a)

Here, C̄ ≡ N−1(C1 + · · · + CN) and pc(x1, . . . , xN) is the discrete sum defined in terms of the entries Gi,j of the Green’s matrix G
of (2.22) by

pc(x1, . . . , xN) ≡ cTGc =

N−
i=1

N−
j=1

CiCjGi,j. (2.23b)

The corresponding eigenfunction u is given asymptotically in the outer region |x − xj| ≫ O(ε) for j = 1, . . . ,N by

u ∼
1

|Ω|1/2
−

4πε
|Ω|1/2

N−
j=1

CjG(x; xj)+ O(ε2). (2.23c)

For ε ≪ 1, the principal eigenvalue λ(ε) is maximized when the trap configuration {x1, . . . , xN} is chosen to minimize
pc(x1, . . . , xN). For N identical traps with a common capacitance C, (2.23a) reduces to

λ(ε) ∼
4πεNC

|Ω|

[
1 −

4πεC
N

p(x1, . . . , xN)
]
, p(x1, . . . , xN) ≡ eTGe =

N−
i=1

N−
j=1

Gi,j. (2.23d)

The capacitance Cj, defined in (2.10), has two key properties. Firstly, it is invariant under rotations of the trap shape.
Secondly,with respect to all trap shapesΩj in (2.10) of the same volume, Cj isminimized for a spherical-shaped trap (cf. [24]).
Although Cj must in general be calculated numerically from (2.10) whenΩj has an arbitrary shape, it is known analytically
for some simple shapes, as summarized in Table 1. The capacitance Cj is also known in a few other situations. For instance,
for the case of two overlapping identical spheres of radius εaj that intersect at exterior angleψ , with 0 < ψ < π , then Cj is
given by (cf. [25])

Cj = 2aj sin

ψ

2

∫
∞

0

[
1 − tanh(πτ) tanh


ψτ

2

]
dτ . (2.24)

For ψ → 0, (2.24) reduces to the well-known result Cj = 2aj log 2 for the capacitance of two touching spheres.
Principal Result 2.1 also holds when there is a cluster of traps localized within an O(ε) region near some location

xj ∈ Ω . For this case, Cj is still determined from (2.10), provided that we replace Ωj by a multi-connected set of the
formΩj =

kj
k=1Ωjk, where kj denotes the number of distinct traps in the jth clustering region. This capacitance is known

analytically for the special case of two identical spheres of radius εaj clustered near x = xj, where εdj is the distance between
the centers of the two spheres, with dj > 2aj. For this case, Cj is given by (cf. [26,27])

Cj = 2aj sinh(β)
∞−
n=1

1
sinh(nβ)

, cosh(β) =
dj
2aj
. (2.25)
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Table 1
Capacitance Cj of some simple trap shapes, defined from the solution to (2.10).

Trap shapeΩj = ε−1Ωεj Capacitance Cj

Sphere of radius a Cj = a
Hemisphere of radius a Cj = 2a


1 −

1
√
3


Flat disk of radius a Cj =

2a
π

Prolate spheroid with semi-major and minor axes a, b Cj =

√
a2−b2

cosh−1(a/b)

Oblate spheroid with semi-major and minor axes a, b Cj =

√
a2−b2

cos−1(b/a)

Ellipsoid with axes a, b, and c Cj = 2


∞

0 (a2 + η)−1/2(b2 + η)−1/2(c2 + η)−1/2 dη
−1

2.1. Numerical results for the unit sphere

We now optimize the coefficient of the second-order term in the asymptotic expansion of λ in (2.23d) of Principal
Result 2.1 for the special case, whenΩ is a sphere of radius one that contains N small identically shaped traps of a common
‘‘radius’’ ε. By using a simple scaling argument, our results below for this special case of a unit sphere also apply to the more
general case of a sphere of radius L that contains N small identical traps of a common ‘‘radius’’ σ . By scaling lengths by L,
Principal Result 2.1 holds provided that we multiply λ in this result by L−2 and identify ε as ε = σ/L ≪ 1. Therefore, we
need to consider only the case of the unit sphere.

As shown in the Appendix, the Neumann Green’s function of (2.14) for the unit sphere is given explicitly by

G(x; ξ) =
1

4π |x − ξ |
+

1
4π |x||x′ − ξ |

+
1
4π

log


2
1 − |x| |ξ | cos θ + |x||x′ − ξ |


+

1
6|Ω|


|x|2 + |ξ |2


−

7
10π

, (2.26a)

where |Ω| = 4π/3. Here, x′
= x/|x|2 is the image point to x outside the unit sphere, and θ is the angle between ξ and x,

i.e. cos θ = x · ξ/|x| |ξ |, where · denotes the dot product. This result, without the constant term on the right-hand side of
(2.26a), is given in [28] without derivation.

To calculate R(ξ ; ξ) from (2.26a), we take the limit of G(x, ξ) as x → ξ and extract the non-singular part of the resulting
expression. Setting x = ξ and θ = 0 in (2.26a), we obtain |x′

− ξ | = −|ξ | + 1/|ξ |, so that

R(ξ , ξ) =
1

4π

1 − |ξ |2

 +
1
4π

log


1
1 − |ξ |2


+

|ξ |2

4π
−

7
10π

. (2.26b)

Consider the special case of two concentric spheres of radius r = 1 and r = ε. For this case, the principal eigenvalue and
corresponding radially symmetric (unnormalized) eigenfunction satisfy

u =
1
r


sin
√
λr


− tan
√
λε

cos

√
λr

, tan

√
λ


=

√
λ+ tan

√
λε


1 −
√
λ tan

√
λε
 . (2.27)

For ε → 0, the principal root to the transcendental equation (2.27) is readily calculated as λ ∼ 3ε + 27ε2/5. This
result for λ agrees with that given in (2.23a) of Principal Result 2.1, as seen upon substituting C1 = 1 (see Table 1) and
R1,1 = R(0; 0) = −9/(20π), from (2.26b), into (2.23a).

Next, we compute optimal spatial arrangements {x1, . . . , xN} of N ≥ 2 identically shaped traps inside the unit sphere
that minimizes p(x1, . . . , xN) in (2.23d), or equivalently maximizes the coefficient of the second-order term in ε in the
asymptotic expansion of λ(ε) given in (2.23d). To simplify the computation, we will minimize the function Hball defined in
terms of p of (2.23d) by

Hball ≡

N−
i=1

N−
j=1

Gi,j =

N−
i=1

N−
j=1


(1 − δij)Gij + δijRii


, p(x1, . . . , xN) =

Hball

4π
−

7N2

10π
, (2.28)

where δij = 0 if i ≠ j and δjj = 1. Here, we have defined Gi,j,Gi,j andRj,j by Gi,j = 4π(Gi,j − B),Gi,j ≡ 4π(Gi,j − B), andRj,j ≡ 4π(Rj,j − B), where B = −7/(10π) and Gi,j and Rj,j are obtained from (2.26).
Various numerical methods for global optimization are available (cf. [29–31]), including methods for non-smooth

optimization and optimization with constraints. For low-dimensional problems, exact methods are available, whereas
for higher-dimensional problems one often must use heuristic strategies, including evolution algorithms and simulated
annealing. The following methods were used to confirm our numerical optimization results for (2.28):
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Table 2
Numerically computed minimal values of the discrete energy functions H

(a)
ball and H

(b)
ball for the optimal arrangement of N-traps within a unit sphere, as

computed using the DSO method. The numerically computed minimum value of Hball in (2.28) is shown in bold face.

N H
(a)
ball Spherical radii r1 = · · · = rN H

(b)
ball Spherical radii r2 = · · · = rN (r1 = 0)

2 7.2763 0.429 9.0316 0.563
3 18.5047 0.516 20.3664 0.601
4 34.5635 0.564 36.8817 0.626
5 56.2187 0.595 58.1823 0.645
6 82.6490 0.618 85.0825 0.659
7 115.016 0.639 116.718 0.671
8 152.349 0.648 154.311 0.680
9 195.131 0.659 196.843 0.688

10 243.373 0.668 244.824 0.694
11 297.282 0.676 297.283 0.700
12 355.920 0.683 357.371 0.705
13 420.950 0.689 421.186 0.710
14 491.011 0.694 491.415 0.713
15 566.649 0.698 566.664 0.717
16 647.738 0.702 647.489 0.720
17 734.344 0.706 733.765 0.722
18 826.459 0.709 825.556 0.725
19 924.360 0.712 922.855 0.727
20 1027.379 0.715 1025.94 0.729

(1) The Extended Cutting Angle Method (ECAM). This deterministic global optimization technique is applicable to Lipschitz
functions. Within the algorithm, a sequence of piecewise linear lower approximations to the objective function is
constructed. The sequence of the corresponding solutions to these relaxed problems converges to the global minimum
of the objective function (cf. [32]).

(2) Dynamical Systems Based Optimization (DSO). A dynamical system is constructed, using a number of sampled values of
the objective function to introduce ‘‘forces’’. The evolution of such a system yields a descent trajectory converging to
lower values of the objective function. The algorithm continues sampling the domain until it converges to a stationary
point (cf. [33]).

Our computational results given below for the minimization of (2.28) were obtained by using the open software library
GANSO (cf. [34]), where both the ECAM and DSO methods are implemented.

Inside the unit sphere, the location xj of every trap is written in spherical coordinates (rj, θj, φj), where rj is the spherical
radius, θj is the latitude, and φj is the longitude. For the first trap location, x1, we take θ1 = φ1 = 0, while for the second trap
we take φ2 = 0. These constraints eliminate the effect of the rotational symmetry of the sphere. Then, for the case of N traps
in the unit sphere, one has a global optimization problem involving the 3N − 3 parameters 0 ≤ rj ≤ 1 for j = 2, . . . ,N ,
0 < θj ≤ π for j = 2, . . . ,N , and 0 ≤ φj < 2π for j = 3, . . . ,N .

As an ‘‘initial guess’’ for the global optimization numerical routines, we let all traps have spherical radius rj = 1/2, and
we place the traps x2, . . . , xN equally spaced on the equator θj = π/2, where φj = 2π(j − 2)/(N − 1) for j = 2, . . . ,N .
By using the DSO and ECAM methods, as outlined above, we numerically compute optimal arrangements of the locations
N = 2, . . . , 20 spherical traps inside the unit sphere that minimizes Hball in (2.28).

The optimal trap pattern when N is small, consisting of N traps on one inner sphere, is found to switch to an optimal
pattern with N − 1 traps on an inner sphere and one at the origin as N is increased. We compare the minimal values of the
discrete energy Hball in (2.28) for the case (a) when all traps are forced to lie on one sphere (H (a)

ball), and in the case (b) when
one trap remains at the origin (r1 = 0), while the remaining traps lie on one inner sphere (H (b)

ball). These optimal energy
values and the corresponding inner sphere radii, computed with the DSO method, are given in Table 2. For each N with
2 ≤ N ≤ 15, our results show that the optimal configuration has N traps located on a single inner sphere within the unit
sphere. The case N = 16 is the smallest value of N that deviates from this rule. In particular, for 16 ≤ N ≤ 20, there is one
trap located at the origin (r1 = 0), while the remaining N −1 traps are located on one interior sphere so that r2 = · · · = rN .

We remark that the numerically computed minima of the energy function Hball in (2.28) were computed directly using
the ECAM and DSO methods, and the results obtained were found to coincide with the results shown in Table 2 computed
from the restricted optimization problem associated with H

(a)
ball for 2 ≤ N ≤ 15 and with H

(b)
ball for N = 16, 17, 18. In Fig. 1,

we show the numerically computed optimal spatial arrangements of traps for N = 8, 15, 16.
Next, we illustrate the sensitivity of the discrete energy Hball of (2.28) for non-optimally located traps in the unit sphere.

In Fig. 2(a), we plot Hball versus the radius r of an inner sphere, when either N = 3, N = 4, or N = 5 traps are optimally
placed on the surface of this inner sphere. The minimum value for each of the curves in Fig. 2(a) with respect to r is the
optimal result given in Table 2. In Fig. 2(b), we plot Hball versus the inner sphere radius r for three different arrangements
of N = 5 traps on the surface of the inner sphere (see the caption of Fig. 2(b)).
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(a) N = 8. (b) N = 15. (c) N = 16.

Fig. 1. Numerically computed optimal spatial arrangements of traps inside a unit sphere. For N = 8 and N = 15, all traps are on an interior sphere. For
N = 16 there is one trap at the origin, while 15 traps are on an interior sphere.

(a) Hball vs. r for N = 3, 4, 5. (b) Hball vs. r for N = 5.

Fig. 2. Left figure: the discrete energy Hball of (2.28) for N = 3 (dashed curve), N = 4 (solid curve), and N = 5 (heavy solid curve) optimally placed traps
on the surface of an inner sphere of radius r . The minimum value for each of these curves is the optimal result of Table 2. Right figure: Hball versus r for
three different arrangements of N = 5 traps on an inner sphere of radius r: optimally spaced traps (heavy solid curve); five traps on the equatorial plane
(solid curve); five traps on the azimuthal plane θ = π/4 (dashed curve).

The numerical optimization problem becomes increasingly difficult to solve as N increases, due to the occurrence of
many local minima. An open problem is to reliably compute the global minimum of the discrete energy Hball for N large and
to determine a scaling law for it valid as N → ∞.

3. Mean first passage time and splitting probabilities

The MFPT v(x) is the expectation value of the time τ taken for a Brownian particle starting from x to become absorbed
somewhere in the multiply connected trap boundary set ∂Ωa ≡

N
j=1 ∂Ωεj . It is well known (cf. [1,2]) that the MFPT v(x)

satisfies

1v = −
1
D
, x ∈ Ω\Ωa ≡

N
j=1

Ωεj; v = 0, x ∈ ∂Ωa; ∂nv = 0, x ∈ ∂Ω, (3.1)

where D is the constant diffusivity for the underlying Brownian motion. We assume thatΩεj → xj uniformly as ε → 0, for
j = 1, . . . ,N , and that the traps are well separated.

The MFPT v is readily calculated by using the matched asymptotic approach of Section 2.1. Alternatively, v can be
calculated by representing it as an eigenfunction expansion in terms of the normalized eigenfunctions φk and eigenvalues
λk for k ≥ 1 of (1.1). In the trap-free domainΩp = Ω\Ωa, we readily derive that

v =
1
D


φ1

λ1

∫
Ωp

φ1 dx


+

∞−
k=2

φk

λk

∫
Ωp

φk dx


. (3.2)

For ε → 0, the principal eigenpair λ1, φ1, are given in (2.23a) and (2.23c), respectively. They satisfy

Ωp
φ1 dx = 1 + O(ε2)

and λ1 = O(ε). Next, we give a rough estimate of the asymptotic order of the infinite sum in (3.2). This infinite sum does
converge for each fixed ε, since λk = O(k2) as k → ∞. However, for each fixed kwith k > 2, we have that λk = λk0 + O(ε)
as ε → 0, where λk0 > 0 for k ≥ 2 are the eigenvalues of the Laplacian in the trap-free unit sphere with homogeneous
Neumann boundary condition. In addition, for each fixed k with k ≥ 2, we have that


Ωp
φk dx = O(ε), due to the near
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(a) v̄ versus 100f . (b) λ versus 100f .

Fig. 3. Average MFPT v̄ in (3.3b) with D = 1 and the principal eigenvalue λ of (2.23d) versus the percentage trap volume fraction 100f = 100ε3N for the
optimal arrangement of N identical traps of a common radius ε in the unit sphere. Left figure: v̄ versus 100f for N = 1, 5, 8, 11, 14, 17, 20 (top to bottom
curves). Right figure: λ versus 100f for N = 1, 5, 8, 11, 14, 17, 20 (bottom to top curves).

orthogonality of φk and 1 as ε → 0 when k ≥ 2. In this way, for ε → 0, the infinite sum in (3.2) contributes at most an O(ε)
term, and consequently it can be neglected in comparison with the leading term in (3.2). This leads to the following result:

Principal Result 3.1. In the limit ε → 0 of small trap radius, the MFPT v, satisfying (3.1), is given asymptotically in the outer
region |x − xj| ≫ O(ε) for j = 1, . . . ,N by

v ∼
|Ω|

4πNC̄Dε


1 − 4πε

N−
j=1

CjG(x; xj)+
4πε
Nc̄

pc(x1, . . . , xN)+ O(ε2)


. (3.3a)

Here C̄ = N−1(C1+· · ·+CN), and pc(x1, . . . , xN) is the weighted discrete sum in (2.23b). The averageMFPT v̄ ∼ |Ω|
−1

Ω
v dx,

based on a uniform distribution of starting points x, satisfies

v̄ ∼
1

D|Ω|λ1
+ O(ε) =

|Ω|

4πNC̄Dε

[
1 +

4πε
NC̄

pc(x1, . . . , xN)+ O(ε2)

]
. (3.3b)

For the special case of N traps with a common capacitance C = Cj for j = 1, . . . ,N inside the unit sphere Ω , then v̄ in
(3.3b) becomes

v̄ ∼
|Ω|

D

[
1

4πεNC
+

1
N2

p(x1, . . . , xN)
]
, p(x1, . . . , xN) =

N−
i=1

N−
j=1

Gij =
Hball

4π
−

7N2

10π
, (3.4)

where Hball is the discrete energy defined in (2.28). Next, we use (3.4) to illustrate the effect on v̄ of trap clustering. For
N = 20 optimally placed spherical traps of a common radius ε, we set C = 1 and use the last entry for Hball in Table 2 for
N = 20 to evaluate p in (3.4). In contrast, suppose that there are N = 10 clusters of two touching spheres of a common
radius ε inside the unit sphere. Assume that the clusters are optimally located within the unit sphere. For this arrangement,
we set N = 10 in (3.4), and use the capacitance C = 2 log 2 of two touching spheres, together with optimal value for Hball
given in Table 2 for N = 10. In this way, we obtain

v̄ ∼
|Ω|

D


1

80πε
− 0.01871


, (no trap clustering);

v̄ ∼
|Ω|

D


1

80πε log 2
− 0.02915


, (trap clustering).

(3.5)

Therefore, to leading order, this case of trap clustering increases the average MFPT by a factor of 1/ log 2.
Principal Result 3.1 can be used to show the influence of the number N of distinct subregions comprising the trap set. We

consider N spherical traps of a common radius ε inside the unit sphere. We denote the percentage trap volume fraction by
100f , where f = 4πε3N/(3|Ω|) = ε3N . In Fig. 3(a) we plot v̄, given in (3.4) with C = 1, versus the trap volume percentage
fraction 100f corresponding to the optimal arrangement of N = 5, 8, 11, 14, 17, 20 traps, as computed from the global
optimization routine in Section 2.1 (see Table 2). In this figure, we also plot v̄ for a single large trap with the same trap
volume fraction. We conclude that even when f is small, the effect of fragmentation of the trap set is rather significant. In
Fig. 3(b), we plot the corresponding principal eigenvalue λ of (2.23d) versus the percentage trap volume fraction.
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3.1. Splitting probabilities

Next, we use the method of matched asymptotic expansions to calculate the splitting probabilities of [22]. The splitting
probability u(x) is defined as the probability of reaching a specific target trapΩε1 from the initial source point x ∈ Ω\Ωa,
before reaching any of the other surrounding trapsΩεj for j = 2, . . . ,N . Then, it is well known that u satisfies (cf. [22])

1u = 0, x ∈ Ω\Ωa ≡

N
j=1

Ωεj; ∂nu = 0, x ∈ ∂Ω, (3.6a)

u = 1, x ∈ ∂Ωε1; u = 0, x ∈

N
j=2

∂Ωεj . (3.6b)

In the outer region, we expand u as

u = u0 + εu1 + ε2u2 + · · · . (3.7)

Here, u0 is an unknown constant, and uk for k = 1, 2 satisfies

1uk = 0, x ∈ Ω \ {x1, . . . , xN}; ∂nuk = 0, x ∈ ∂Ω, (3.8)

with certain singularity conditions as x → xj for j = 1, . . . ,N determined upon matching to the inner solution.
In the inner region near the jth trap, we expand the inner solutionw(y) ≡ u(xj + εy), with y ≡ ε−1(x − xj), as

w = w0 + εw1 + · · · . (3.9)

Upon substituting (3.9) into (3.6a) and (3.6b), we obtain thatw0 andw1 satisfy

∆yw0 = 0, y ∉ Ωj; w0 = δj1, y ∈ ∂Ωj, (3.10a)

∆yw1 = 0, y ∉ Ωj; w1 = 0, y ∈ ∂Ωj. (3.10b)

Here, Ωj = ε−1Ωεj , and δj1 is Kronecker’s symbol. The far-field boundary conditions for w0 and w1 are determined by the
matching condition as x → xj between the inner and outer expansions (3.9) and (3.7), respectively, written as

u0 + εu1 + ε2u2 + · · · ∼ w0 + εw1 + · · · . (3.11)

The first matching condition is thatw0 ∼ u0 as |y| → ∞, where u0 is an unknown constant. Then, the solution forw0 in
the jth inner region is given by

w0 = u0 +

δj1 − u0


wc(y), (3.12)

wherewc is the solution to (2.10a). Upon, using the far-field asymptotic behavior (2.10b) forwc , we obtain that

w0 ∼ u0 +

δj1 − u0

  Cj

|y|
+

Pj · y
|y|3


, as y → ∞. (3.13)

Here, Cj and Pj are the capacitance and dipole vector ofΩj, respectively, as defined in (2.10b).
From (3.13) and (3.11), we conclude that u1 satisfies (3.8) with singular behavior u1 ∼ (δj1 − u0)Cj/|x− xj| as x → xj for

j = 1, . . . ,N . Therefore, in terms of the Dirac distribution, u1 satisfies

1u1 = −4π
N−
j=1


δj1 − u0


Cjδ(x − xj), x ∈ Ω; ∂nu1 = 0, x ∈ ∂Ω. (3.14)

The solvability condition for u1, obtained by the divergence theorem, determines the unknown constant u0 as

u0 =
C1

NC̄
, C̄ ≡

1
N
(C1 + · · · + CN) . (3.15)

In terms of the Neumann Green’s function of (2.14), and an unknown constant χ1, the solution to (3.14) is

u1 = 4π
N−
i=1

(δi1 − u0) CiG(x; xi)+ χ1, χ1 =
1

|Ω|

∫
Ω

u1 dx. (3.16)

Next, by expanding u1 as x → xj, and using the local behavior G(x; xi) ∼ 1/(4π |x− xi|)+Ri,i of G as x → xi from (2.14b),
we obtain that

u1 ∼


(1 − u0)C1

|x − x1|
+ A1 + χ1, as x → x1,

−
−u0Cj

|x − xj|
+ Aj + χ1, as x → xj, j = 2, . . . ,N.

(3.17a)
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Here, the constants Aj for j = 1, . . . ,N are defined by

A1 = 4πC1R1,1 − 4πu0


C1R1.1 +

N−
i=2

CiG1,i


;

Aj = 4πC1Gj,1 − 4πu0

CjRj,j +

N−
i=1
i≠j

CiGj,i

 , j = 2, . . . ,N.

(3.17b)

Upon substituting (3.17) into the matching condition (3.11), we obtain that the solution w1 to (3.10b) must satisfy w1 ∼

Aj + χ1 as |y| → ∞. Thus, w1 = (Aj + χ1)(1 − wc), where wc is the solution to (2.10a). Upon, using the far-field behavior
(2.10b) forwc , and substituting the resulting expression into the matching condition (3.11), we obtain that u2 satisfies (3.8)
with singularity behavior

u2 ∼ −
Cj

Aj + χ1


|x − xj|

+

δj1 − u0

 Pj · (x − xj)
|x − xj|3

, as x → xj, j = 1, . . . ,N. (3.18)

Therefore, in terms of distributions, u2 satisfies

1u2 = 4π
N−
j=1

Cj

Aj + χ1


δ(x − xj)+ 4π

N−
j=1


δj1 − u0


Pj · ∇δ(x − xj), x ∈ Ω, (3.19)

with ∂nu2 = 0 on x ∈ ∂Ω . The solvability condition for u2, obtained by the divergence theorem, determines χ1 as

χ1 = −
1
NC̄

N−
j=1

AjCj. (3.20)

Finally, we substitute (3.17b) for Aj into (3.20) and write the resulting expression for χ1 in matrix form by using the Green’s
matrix G of (2.22). We summarize our result as follows:

Principal Result 3.2. In the limit ε → 0 of small trap radius, the splitting probability u, satisfying (3.6), is given asymptotically
in the outer region |x − xj| ≫ O(ε) for j = 1, . . . ,N by

u ∼
C1

NC̄
+ 4πεC1


G(x; x1)−

1
NC̄

N−
j=1

CjG(x; xj)


+ εχ1 + O(ε2), (3.21a)

where χ1 is given by

χ1 = −
4πC1

NC̄

[
(Gc)1 −

1
NC̄

cTGc
]
. (3.21b)

Here, G is the Green’s matrix of (2.22), c = (C1, . . . , CN)
T , and (Gc)1 is the first component of Gc . The averaged splitting

probability ū ≡ |Ω|
−1

Ω
u dx, which assumes a uniform distribution of starting points x ∈ Ω , is

ū ∼
C1

NC̄
+ εχ1 + O(ε2). (3.21c)

From (3.21a) we observe that u ∼ C1/(NC̄), so that there is no leading-order effect on the splitting probability u of either
the location of the source, the target, or the surrounding traps. If Cj = 1 for j = 1, . . . ,N , then u ∼ 1/N . Therefore, for this
equal-capacitance case, then to leading order in ε it is equally likely to reach any one of the N possible traps. If the target at
x1 has a larger capacitance C1 than those of the other traps at xj for j = 2, . . . ,N , then the leading-order theory predicts that
u > 1/N . The formulae for the capacitances in Table 1 can be used to calculate the leading-order term for u for different
shapes of either the target or surrounding traps.

Next, we use (3.21) to illustrate the more interesting effect on u of the relative locations of the source, target, and
surrounding traps. In the two examples below, Ω is taken to be the unit sphere, for which the Green’s function and its
regular part, as required in (3.21), are given analytically in (2.26a) and (2.26b), respectively.

We first consider the two-trap case N = 2. Then, (3.21) is readily reduced to

u ∼
C1

C1 + C2
+ 4πεC1


C2

C1 + C2
(G1 − G2)−

1
(C1 + C2)2


C2 (C1R11 − C2R22)+ C2 (C2 − C1)G12


. (3.22)
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Fig. 4. Left figure: the splitting probability u, computed from (3.22), versus the location x1 = (ξ , 0, 0) of the center of a target sphere of radius 1.5ε. The
other trap centered at x2 = (0.2, 0.08, 0.0) is a sphere of radius 0.5ε. Here, ε = 0.04 and the source is at x = (−0.2, 0.08, 0).

Table 3
Spherical coordinates (θ, φ) of the optimal locations of nine traps on the boundary of a sphere.

No. of traps Spherical coordinates of optimal trap locations

9 θ 0.000 1.207 1.207 1.325 1.325 1.561 2.361 2.415 2.415
φ 0.000 0.000 2.369 3.639 5.013 1.185 4.326 2.369 0.000

Here, we have defined G1 ≡ G1(x; x1), G2 ≡ G2(x; x1), G12 ≡ G1(x1; x2), R11 ≡ R(x1; x1), and R22 ≡ R(x2; x2). We first
consider the specific example in [22] corresponding to a target centered at a variable point x1 = (ξ , 0, 0), a trap centered at
x2 = (0.2, 0.08, 0.0), and a fixed source location at x = (−0.2, 0.08, 0). The target is a sphere of radius 1.5ε, while the other
trap is a sphere of radius 0.5ε, where ε = 0.04. Thus, C1 = 1.5 and C2 = 0.5. The probability u of first reaching the target
trap at x1 = (ξ , 0, 0), with−1 < ξ < 1, is shown in Fig. 4, and agrees with Fig. 12(b) of [22]. The notable qualitative feature
in Fig. 4 of u having two local maxima is discussed in [22]. The leading-order theory predicts that u ∼ C1/(C1 + C2) = 3/4,
but the higher order in ε effect of the spatial configuration of target, trap, and source, as seen in Fig. 4, is clearly significant
even at ε = 0.04.

For the special case of two small spherical traps of radii εa1 and εa2 centered at x1 ∈ Ω and x2 ∈ Ω , respectively,
an approximation for the splitting probability was derived in equation (64) of [22] by using a pseudo-Green’s function
technique. In terms of our notation, this result of [22] can be written as

u(x) ∼
G(x; x1)− G(x; x2)+ (4πεa2)−1

+ R22 − G12

(4πεa1)−1 + (4πεa2)−1 + R11 + R22 − 2G12
. (3.23)

By rewriting (3.23) as

u(x) ∼
a1 + 4πεa2a1 [G(x; x1)− G(x; x2)+ R22 − G12]

a1 + a2 + 4πε(a1a2) (R11 + R22 − 2G12)
, (3.24)

and expanding (3.24) for ε → 0, we recover the two-term expansion (3.22), provided that we correctly identify a1 = C1
and a2 = C2. Therefore, for the case of two spherical targets, (3.22) agrees with equation (64) of [22] through terms of order
O(ε).

Next, we consider a non-trivial example of (3.21) for N = 10 traps that has an interesting qualitative interpretation. We
take a target trap centered near the origin at x1 = (0, 0, 0.2) and surround it with 9 traps with centers optimally spaced
on an inner sphere that is concentric with the unit disk Ω . The spherical angular coordinates of these points are given in
Table 3, and were computed numerically by the method of Section 2.1. The inner sphere is taken to have a radius of either
rs = 0.7, rs = 0.5, or rs = 0.35. The target and surrounding traps are spheres with a common radius ε = 0.04, so that
Cj = 1 for j = 1, . . . , 10. In Fig. 5(a) we plot u, computed from (3.21), for a source position on the x-axis at location (x, 0, 0)
with −1 < x < 1. For these parameter values, the leading-order theory predicts that u ∼ 0.1. From Fig. 5(a), we observe a
clear screening effect. When the source is outside the inner sphere, which effectively acts as a ‘‘wall’’ of traps, it is difficult
to reach the target sphere centered at (0, 0, 0.2). Therefore, when the source is outside the inner sphere we would expect
u < 0.1. This is clearly observed in Fig. 5(a). However, we would expect that u increases considerably when the source
crosses inside the inner sphere, as the target sphere near the origin is then well isolated from the surrounding traps and is
in closer proximity to the source. If the inner sphere has a smaller radius, such as rs = 0.35, then the target sphere is not as
isolated from the surrounding traps as when rs = 0.7. Correspondingly, the peak in u is not as pronounced near the origin
when rs = 0.35 as it is for larger values of rs. This is precisely what is observed in Fig. 5(a). The local minimum in u in the
dashed curve of Fig. 5(a) for a source point at (x, 0, 0) ≈ (0.35, 0, 0) is due to a nearby trap on the inner sphere centered at
x2 ≈ (0.327, 0.0, 0.125). This nearby trap significantly lowers the probability that the target near the origin will be reached
first. In Fig. 5(b), we show the corresponding result for the case when the target trap centered at x1 = (0, 0, 2) has a higher
capacitance of C1 = 2 relative to the surrounding traps on the inner sphere with Cj = 1 for j = 2, . . . , 10. To leading order
in ε, we expect u ∼ 2/11 ≈ 0.182. For this case, we observe from Fig. 5(b) a weaker screening effect together with a more
pronounced peak in u near the origin, as expected intuitively.
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(a) u vs. source at (x, 0, 0): N = 10, Cj = 1. (b) u vs. source at (x, 0, 0): N = 10, C1 = 2,
C2 =, . . . , C10 = 1.

Fig. 5. Left figure: the splitting probability u versus the location x = (x, 0, 0) of the source for a target trap centered at x1 = (0, 0, 0.2) surrounded by
nine traps centered at optimally spaced points on an inner sphere that is concentric with the unit sphere. The inner sphere has radius rs = 0.7 (heavy solid
curve), rs = 0.5 (solid curve), or rs = 0.35 (dashed curve). The target and surrounding traps are spheres of a common radius ε = 0.04 so that Cj = 1 for
j = 1, . . . , 10. Right figure: same spatial configuration of traps with ε = 0.04 except that the target sphere has twice the capacitance of the surrounding
traps, i.e. C1 = 2 and Cj = 1 for j = 2, . . . , 10.

There are many other qualitatively interesting applications of Principal Result 3.2 for different arrangements of a target
and surrounding traps. However, we emphasize that (3.21) applies only in the outer region |x − xj| ≫ O(ε) and for
|xi − xj| ≫ O(ε). Thus, the source and traps must be well separated, and no two traps can be closely spaced by O(ε).
For two closely spaced, but non-overlapping, spherical traps of the same radius, one can use (2.25) for the capacitance of the
two-sphere cluster and then modify (3.21) accordingly. The details are left to the reader.

4. Conclusion

Themethod of matched asymptotic expansions was used to calculate a two-term asymptotic expansion for the principal
eigenvalue of the Laplacian in a three-dimensional domain with a reflecting boundary that contains N interior traps of
asymptotically small radii. The coefficient of the second-order term in this asymptotic expansion was found to depend on
the locations of the traps within the domain. The principal eigenvalue is inversely proportional to the average MFPT for the
capture of a Brownian particlewithin the domain. For small values ofN , numericalmethods of global optimizationwere used
to determine the spatial configuration of spherical traps of small radii within the unit sphere that maximize the principal
eigenvalue, or correspondingly minimize the average MFPT for capture. A related problem of the asymptotic calculation
of the splitting probability in a three-dimensional domain with localized traps was also investigated, and illustrated for a
spherical domain.

There are a few open problems that warrant further study. The first open problem is to give a rigorous justification of
the two-term asymptotic result for the asymptotic expansion of the principal eigenvalue in Principal Result 2.1 and for
the splitting probability in Principal Result 3.2. The second open problem is to determine, for large values of N , the spatial
configuration {x1, . . . , xN} of the centers of N interior spherical traps of a common radius ε that maximize the coefficient
of the O(ε2) term in the asymptotic expansion of the principal eigenvalue in Principal Result 2.1. For 2 ≤ N ≤ 20, the
optimal arrangements were computed in Section 2.1. For N → ∞, but in the limit of small trap volume fraction Nε3 ≪ 1,
we would like to derive a scaling law associated with this optimal arrangement, and to explore whether such a result could
be derived from techniques of homogenization theory. A third open problem is to consider the optimization of the principal
eigenvalue in non-spherical domains with N localized traps. In particular, for the unit cube, the periodic Green’s function,
as given explicitly in [35], can be adapted for use in Principal Result 2.1.
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Appendix. Neumann Green’s function for the sphere

We now calculate the Neumann Green’s function G(x, ξ) satisfying (2.14), when Ω is a sphere of radius a for which
|Ω| = 4πa3/3. We decompose G and introduce φ by

G(x; ξ) =
1

4π |x − ξ |
+

1
6|Ω|


|x|2 + |ξ |2


+

1
4π
φ(x; ξ). (A.1)
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Upon substituting (A.1) into (2.14), we find that φ satisfies

1φ = 0, x ∈ Ω; ∂nφ = −
1
a2

− ∂n


1

|x − ξ |


, x ∈ ∂Ω. (A.2)

To solve (A.2), we choose a coordinate system so that the source point x = ξ is on the positive z axis. Then, since 1φ = 0
and φ is axisymmetric, then φ admits the series expansion

φ(x; ξ) =

∞−
n=0

BnPn(cos θ)


|x| |ξ |
a2

n

. (A.3)

Here, Pn(z) is the Legendre polynomial of integer n and the Bn for n = 0, 1, . . . are coefficients to be determined. Notice that
we have enforced φ(x; ξ) = φ(ξ ; x), so that G(x; ξ) = G(ξ ; x). The coefficients Bn in (A.3) are determined upon satisfying
the boundary conditions in (A.2). We let ρ = |x| and calculate that

∂nφ|∂Ω = ∂ρφ|ρ=a =

∞−
n=0

nBn

an+1
Pn(cos θ)|ξ |n. (A.4)

Next, we recall the generating function for Legendre polynomials given by

1
√
1 − 2tz + t2

=

∞−
k=0

tkPk(z), |t| < min
z ±


z2 − 1

 . (A.5)

We let z = cos θ and t = |ξ |/|x| so that

1
|x − ξ |

=
1

|ξ |2 − 2|x| |ξ | cos θ + |x|2
=

∞−
n=0

|ξ |n

|x|n+1
Pn(cos θ). (A.6)

By differentiating this expression with respect to |x|, we get

∂ρ

|x − ξ |−1

|ρ=a = −

∞−
n=0

(n + 1)|ξ |n

an+2
Pn(cos θ). (A.7)

Upon substituting (A.4) and (A.7) into the boundary condition given in (A.2), we obtain

∞−
n=0


nBn −

(n + 1)
a


Pn(cos θ)

|ξ |n

an+1
= −

1
a2
. (A.8)

Since B0 is arbitrary, we can choose B0 = 1/a for convenience below. The other coefficients must satisfy

Bn =
1
a

+
1
na
, for n ≥ 1; B0 =

1
a
. (A.9)

Upon substituting (A.9) into (A.3), we can represent φ in terms of two infinite series as

φ(x; ξ) =
1
a

∞−
n=0

Pn(cos θ)


|x| |ξ |
a2

n

+
1
a

∞−
n=1

1
n
Pn(cos θ)


|x| |ξ |
a2

n

. (A.10)

The first infinite sum in (A.10) is readily summed by using the generating function (A.5), to get

1
a

∞−
n=0

Pn(cos θ)


|x| |ξ |
a2

n

=
a

|x|r ′
, (A.11)

where x′
= xa2/|x|2 is the image point to x outside the sphere and r ′

≡ |x′
− ξ |. To calculate the second infinite sum in

(A.10), we begin by defining I(β) by

I(β) =

∞−
n=1

1
n
Pn(cos θ)βn. (A.12)

Upon differentiating (A.12) and then using the generating function (A.5), we get

I ′(β) =
−1
β


1 −

∞−
n=0

Pn(cos θ)βn


=

1
β


1

β2 − 2β cos θ + 1
− 1


. (A.13)
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Since I(0) = 0, then I(β) can be expressed as a definite integral that is readily evaluated as (cf. page 95 of [36])

I(β) =

∫ β

0

1
s

[
1

√
s2 − 2s cos θ + 1

− 1
]

ds = log


2

1 − β cos θ +

1 + β2 − 2β cos θ


. (A.14)

The second infinite sum in (A.10) is simply a−1I(β), where β = |x| |ξ |/a2. By using the resulting expression, together with
(A.11), to replace the two infinite sums in (A.10), we obtain after a short calculation that

φ(x; ξ) =
a

|x|r ′
+

1
a
log


2a2

a2 − |x| |ξ | cos θ + |x|r ′


, x′

=
a2x
|x|2

, r ′
= |x′

− ξ |. (A.15)

Finally, we substitute (A.15) into (A.1) to obtain an explicit expression for G up to a constant B,

G(x; ξ) =
1

4π |x − ξ |
+

a
4π |x|r ′

+
1

4πa
log


2a2

a2 − |x| |ξ | cos θ + |x|r ′


+

1
6|Ω|


|x|2 + |ξ |2


+ B. (A.16)

The constant B is to be chosen so that

Ω
G(x; ξ) dx = 0. The following lemma proves that B is independent of ξ .

Lemma A.1. Suppose that G(x; ξ) satisfies

1G =
1

|Ω|
− δ(x − ξ), x ∈ Ω; ∂nG = 0, x ∈ ∂Ω, (A.17)

with G(x; ξ) = G(ξ ; x). Then,

Ω
G(x; ξ) dx is a constant independent of ξ .

To prove this simple result, we calculate as follows:

0 =

∫
Ω

G(x; ξ ′)

[
1G(x; ξ)−

1
|Ω|

+ δ(x − ξ)

]
dx

= G(ξ ; ξ ′)−
1

|Ω|

∫
Ω

G(x; ξ ′) dx +

∫
Ω

G(x; ξ ′)1G(x; ξ) dx,

0 = G(ξ ; ξ ′)−
1

|Ω|

∫
Ω

G(x; ξ ′) dx +

∫
Ω

∇ ·

G(x; ξ ′)G(x; ξ)


dx −

∫
Ω

∇G(x; ξ) · ∇G(x; ξ ′) dx.

Then, upon using the divergence theorem and the boundary condition ∂nG = 0 on ∂Ω , we conclude that

1
|Ω|

∫
Ω

G(x; ξ ′) dx = G(ξ ; ξ ′)−

∫
Ω

∇G(x; ξ) · ∇G(x; ξ ′) dx. (A.18)

Since the right-hand side of (A.18) is symmetric in ξ and ξ ′ it follows that

Ω
G(x; ξ ′) dx =


Ω
G(x; ξ) dx. �

Since B in (A.16) is independent of ξ , we can conveniently calculate this constant by setting

Ω
G(x; 0) dx = 0. Setting

ξ = 0 in (A.16), using the radial symmetry of G(x; 0), and noting that r ′
= a2/ρ with ρ = |x|, we obtain that the condition

Ω
G(x; 0) dx = 0 becomes

1
4π

∫ a

0
ρ2

1
ρ

+
1
a


dρ +

1
8πa3

∫ a

0
ρ4 dρ + B

∫ a

0
ρ2 dρ = 0.

This yields B = −7/(10πa). Upon setting a = 1, we obtain the explicit formula (2.26a) for G for the unit sphere.
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