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Abstract It is shown that the set of computable local symmetries of the G-equation for flame-front propagation
of premixed combustion is considerably extended if higher-order symmetries are considered. Classical point sym-
metries are exhaustively discussed by Oberlack et al. (Combust Theor Model 5:363–383, 2001). Further, if the
flow velocity is zero, an infinite series of higher-order symmetries has been derived by Oberlack (J Calcutta Math
Soc 1:41–52, 2004). Presently it is evidenced that the G-equation also admits an infinite number of higher-order
symmetries for an arbitrary velocity field. Higher-order symmetries involving derivatives up to second order are
computed. Geometrical and kinematic interpretations of the symmetries are given. For the special case of constant
flow velocity, an infinite set of local conservation laws of the G-equation has been derived using the direct method.
It is demonstrated how the derived infinite sets of local symmetries and conservation laws can be used to develop
novel numerical schemes (including higher-order ones) to perform computations in practical applications involving
the G-equation.

Keywords Conservation law · G-equation · Level-set equation · Premixed combustion · Symmetry

1 Introduction

In recent years, the G-equation for premixed combustion (first derived in [1, pp. 97–131]) has become one of the
dominant approaches for modelling premixed combustion in a very broad range of practical applications, including,
for example, spark-ignition engines.

The G-equation is given by

∂G

∂t
+ uk

∂G

∂xk
= sl

√
∂G

∂xk

∂G

∂xk
, (1)
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122 M. Oberlack, A. F. Cheviakov

where t and x = (x1, . . . , xN ) ∈ R
N and t are time and space variables, respectively, u = (u1, . . . , uN ) is the flow

velocity vector of the premixed gaseous mixture of fuel and oxidizer undergoing combustion, N = 2 or 3; sl is the
laminar burning velocity, and G denotes a scalar field quantity determining an instantaneous flame front at G = G0.
Hence G0 defines a level-set and Eq. 1 falls into the class of level-set equations. The G field has a physical meaning
only at G0. In (1) and below, summation in repeated indices is assumed. Here, and in all subsequent sections, except
for parts of Sect. 3 where it is explicitly discussed, we assume sl = const, although in some refined models in the
literature, sl �= const is also employed. The most important physical effects are curvature and flame stretch which in
the limit of thin flames are modelled, e.g. in [2] or [3]. An additional modification of sl is given in [4] and [5] where
the induced velocity arising from heat release is modelled by a point source at the flame front assuming potential
flow.

A large amount of applied works have been dedicated to the G-equation (1). In order to make the G-equation
amenable to numerical computations, a diversity of numerical schemes have been developed, e.g., [6–10]. All of
these are essentially two-step algorithms. In the first step the G-equation is advanced in time for the entire domain
of integration. Performing this for a large number of time steps may lead to an unstable computation, either because
cusps or steep gradients may develop. Hence, after one or several time steps of advancing the G-equation, a second
step is needed to regularize the G-field apart from the front G0 in order to avoid the above-mentioned numerical
problems. In most applications, the distance function equation |∇G| = 1 is solved, which leads to a smooth unique
G-field that is sufficiently regular for the next time step. This regularization step is computationally expensive
compared to the advancement of the G-field itself. For an overview of numerical schemes, see [11,12].

Finally, to make the G-approach applicable to the computation of turbulent premixed combustion, a variety
of semi-empirical model equations have been proposed, e.g., [13–17] to overcome the disproportional amount of
computational resources needed for the computation of the smallest length scales in the problem.

In contrast, the mathematical properties of the G-equation (1) received considerably less attention. In particular,
only recently have the important symmetry properties of the G-equation been explored. In [18], classical point
symmetries of the G-equation in combination with the equations of fluid dynamics have been computed. It was
shown that one particular symmetry, named “generalized scaling symmetry” (relabelling symmetry) has impor-
tant implications for the understanding and modelling of the G-equation in turbulent flows. New physically sound
modelling routes have been suggested.

Higher-order symmetries of the G-equation (1) were first studied in [19] considering the restricted case of no
underlying flow velocity, i.e., the flame-front propagation is purely due to the burning process. A remarkably large
set of symmetries has been derived for this equation. In terms of Lie point symmetries, it was shown that in R

3,
the G-equation (1) has a 16-dimensional Lie algebra of point symmetries plus an infinite family of relabelling
symmetries. Extending further to higher-order symmetries, an additional infinite set of symmetries has been found,
including infinitesimals with dependence on derivatives of G to arbitrary order.

In the first part of the next Sect. 2, we study Lie point symmetries and higher-order symmetries of the G-equation
(1), extending the work of [19] to the case of arbitrary u �= 0.

In Sect. 3 of the present paper we consider the conservation properties of the G-equation (1). Recall that the
original derivation of the G-equation is exclusively based on the kinematic balance equation

dx f

dt
= u(x f , t) + sln, (2)

involving the flame-front location x f , the propelling velocities u and sln; here the first one is the flow velocity and
the second one is a product of the laminar burning velocity sl and the vector n normal to flame surface. Equation (2)
has no direct link to any classical conservation law. To the best of the authors’ knowledge, no conservation laws or
related Casimirs are known for the G-equation.

Within Sect. 3, we systematically seek local divergence-type conservation laws of the G-equation (1), using the
recently developed direct method [20,21] (see also [22]). The direct method involves seeking multipliers such that
a linear combination of the equations of a given system of partial differential equations (PDE) taken with these
multipliers yield a divergence expression. The direct method is rigorous, in the sense that, if a given PDE system
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can be written in a solved form for some leading derivatives, the method yields all its local conservation laws, with
density and fluxes depending on derivatives up to any prescribed order.

In particular, we show that in two and three space dimensions the G-equation (1) with u = const admits an
infinite number of second-order conservation laws, both for the two- and three-dimensional cases. Conservation
laws of higher orders have not been considered due to the computational complexity.

As is well-known, conservation laws are important since they provide deep insights into the underlying physics.
They are also used in PDE analysis, such as study of existence, uniqueness and stability of solutions. Moreover,
conservation laws have the rather pleasant property of allowing the application of a large number of robust and
efficient numerical schemes which have been derived in the last 50 years, such as finite-volume, finite-element, or
discontinuous Galerkin methods, to name only a few.

In Sect. 4 of the present paper, we discuss applications of the newly derived conservation laws and symmetries of
the G-Equation (1) to the development of new numerical algorithms. The first method advances a set of conservation
equations which after each time step computes G and all spatial derivatives up to order two. The second method,
although not based on conservation laws, also computes a system of equations where each element is a geometrical
term of increasing order starting with the normal vector, the Hessian of G and so forth. In both cases an accurate
front-reconstruction scheme may be applied to G and its higher-order derivatives after each time step.

2 Local symmetry groups of the G-equation

In general, a symmetry of a PDE system is any transformation of its dependent and independent variables that
leaves the solution manifold invariant. Therefore, in principle, any PDE system has symmetries. The simplest dis-
crete and continuous symmetries, such as reflections and translations, can often be found by inspection. One can
also systematically seek Lie point symmetries, i.e., point symmetries that form one-parameter Lie groups. For the
G-equation (1), such symmetries have the global form

t∗ = f (t, x, G; ε), x∗ = g(t, x, G; ε), G∗ = h(t, x, G; ε), (3)

where ε is the group parameter. Locally, symmetries (3) have the form [22, Chap. 1; 23, Chap. 2]

t∗ = t + εξ t (t, x, G) + O(ε2),

x∗
i = xi + εξ x

i (t, x, G) + O(ε2), i = 1, . . . , n,

G∗ = G + εη(t, x, G) + O(ε2), (4)

where the infinitesimal components are given by

ξ t = ∂ f

∂ε

∣∣∣
ε=0

, ξ x
i = ∂gi

∂ε

∣∣∣
ε=0

, η = ∂h

∂ε

∣∣∣
ε=0

. (5)

The upper indices exponents of the infinitesimal components denote the variables they refer to.
To find point symmetries of the G-equation in (1), one considers symmetry generators,

X = ξ t ∂

∂t
+ ξ x

i
∂

∂xi
+ η

∂

∂G
, (6)

and solves the determining equations

X̂
(

Gt + uk G,k − sl
√

G,nG,n = 0
) ∣∣∣

Gt +uk G,k−sl
√

G,n G,n=0
= 0, (7)

where X̂ is the prolongation of X in (6) that includes components corresponding to derivatives [22, Chap. 1; 23,
Chap. 2]. In (7) and below, we indicate derivatives of G by subindices. The time-derivative of G is denoted by
∂G
∂t ≡ Gt , while the spatial derivatives are abbreviated by ∂G

∂xi
≡ G,i , ∂2G

∂xi∂x j
≡ G,i j , etc.
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2.1 Point symmetries of the G-equation

First we note that the G-equation (1) involves the undefined vector function u, the velocity of the underlying flow.
Therefore symmetries of the G-equation essentially depend on the symmetry properties of equations defining u.
We now list point symmetries of the G-equation (1) for the two important cases; for details, see [18,19].

2.1.1 Point symmetries for arbitrary u

One can show that for an arbitrary underlying flow velocity u, in three space dimensions (N = 3), the G-equation (1)
has point symmetries given by the following symmetry generators:

– translations in time and space

X1 = ∂

∂t
, X2 = ∂

∂x1
, X3 = ∂

∂x2
, X4 = ∂

∂x3
; (8)

– scalings of independent variables

X5 = t
∂

∂t
+ xi

∂

∂xi
; (9)

– infinite symmetries

XR = K (G)
∂

∂G
, (10)

where K (G) is an arbitrary continuous function.

In particular, symmetries (10) in the global form (3) are written as

G∗ = F(G), (11)

where F(G) is a largely arbitrary function subject to the restriction dF(G)/dG > 0. As specific cases, the sym-
metries (10) include translations in G:

XT = ∂

∂G
(12)

and scalings in G

XS = G
∂

∂G
. (13)

Transformations (11) have important physical implications, and are employed within a novel modelling route in
premixed turbulent combustion. In the literature, symmetry (11) is usually called relabeling symmetry.

In two space dimensions (N = 2), for an arbitrary propelling velocity u, the G-equation (1) evidently has point
symmetries X1, X2, X3, X5 (8), (9) and XR (10), which includes XT (12) and XS (13).

2.1.2 Point symmetries for u = const

Due to a possible Galilean boost and hence without loss of generality, in this case, one may assume u = 0. Under
such restriction, the three-dimensional G-equation (1) has a wider class of point symmetries, as is detailed in [19]:

– Translations in time and space and scalings of independent variables, given by X1, . . . , X5 (8), (9);
– three spatial rotations:

X6 = x2
∂

∂x1
− x1

∂

∂x2
, X7 = x3

∂

∂x1
− x1

∂

∂x3
, X8 = x3

∂

∂x2
− x2

∂

∂x3
; (14)
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– three spacetime rotations (boosts):

X9 = x1
∂

∂t
+ s2

l t
∂

∂x1
, X10 = x2

∂

∂t
+ s2

l t
∂

∂x2
, X11 = x3

∂

∂t
+ s2

l t
∂

∂x3
; (15)

– four additional symmetries:

X12 = t x1
∂

∂t
+ 1

2

(
s2
l t2 + x2

1 − x2
2 − x2

3

) ∂

∂x1
+ x1x2

∂

∂x2
+ x1x3

∂

∂x3
,

X13 = t x2
∂

∂t
+ x1x2

∂

∂x1
+ 1

2

(
s2
l t2 − x2

1 + x2
2 − x2

3

) ∂

∂x2
+ x2x3

∂

∂x3
,

(16)
X14 = t x3

∂

∂t
+ x1x3

∂

∂x1
+ x2x3

∂

∂x2
+ 1

2

(
s2
l t2 − x2

1 − x2
2 + x2

3

) ∂

∂x3
,

X15 = 1

2

(
s2
l t2 + x2

1 + x2
2 + x2

3

) ∂

∂t
+ t x1

∂

∂x1
+ t x2

∂

∂x2
+ t x3

∂

∂x3
;

– infinite relabelling symmetries XR (10) (K (G) �= const);
– translations in G, given by XT (12).

The reduction to two space dimensions is straightforward by limiting the admitted algebra to those symmetries
independent of x3, i.e., X1, X2, X3, X R, X6, X9, and X10, and in addition X12, X13, and X15, wherein ∂/∂x3 and
x3 is zero.

In addition to the above of point symmetries in [19] it has been proven that an infinite series of higher-order
(Lie–Bäcklund) symmetries is admissible by (1) with u = 0. Further details may be taken from the next subsection.

Note that Eq. 1 with u = 0 has close links with other important equations known in mathematical physics such
as the wave equation. Details are given in [19].

2.2 Higher-order symmetries of the G-equation

In mathematical physics it is known that many fundamental equations, such as the Burgers equation and the
Korteweg–de Vries equation, admit wide classes of higher-order symmetries, sometimes called Lie–Bäcklund or
Noether symmetries, in which, unlike Lie point symmetries, the infinitesimal components depend on derivatives of
the dependent variables; e.g., [23, Chap. 5].

The actual derivation of the higher-order symmetries is almost identical to that of the classical point symme-
tries. However, the necessary algebra becomes increasingly more tedious for large orders of derivatives in the
infinitesimals. For mathematical convenience, we here adopt the equivalent evolutionary form of the higher-order
symmetries, where ξ t and ξ i may be set to zero if at least all first-order derivatives of G are included in η (see
[23, Eq. 5.19]). Hence, without loss of generality, we seek the higher-order symmetries in the form

X̃ = η̃(t, x, G, ∂G, ∂2G, . . .)
∂

∂G
, (17)

where ∂s G is a vector of all spatial derivatives of G of order s. In the present context, we may exclude all time
derivatives of G since they can immediately be substituted using (1) and its differential consequences.

Keeping η̃ completely general and using the determining equations (7) with (17), we obtain̂̃X (
Gt + uk G,k − sl

√
G,nG,n

)∣∣∣
Gt +uk G,k−sl

√
G,n G,n=0

= 0, (18)

wherễX = η̃
∂

∂G
+ (Dt η̃)

∂

∂Gt
+ (Di η̃)

∂

∂G,i

is the prolongation of X̃ (17), and the total derivatives Dt and Dm are defined as

Dt = ∂

∂t
+ Gt

∂

∂G
+ Gt,i

∂

∂G,i
+ Gt,i j

∂

∂G,i j
+ · · · (19)
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and

Dm = ∂

∂xm
+ G,m

∂

∂G
+ G,mi

∂

∂G,i
+ G,mi j

∂

∂G,i j
· · · . (20)

Note that in (18) we consider u as being a given function of space and time. Hence the dynamic equations determining
u may not be considered in the present context.

After expanding (18) we may replace any term of the form Gt,i j ... by the differential consequences of Gt taken
from (1). This finally leads to a single determining equation for η̃ of the form

∂η̃

∂t
+

(
ui − sl

G,i√
G,nG,n

)
∂η̃

∂xi
− ∂uk

∂xi
G,k

∂η̃

∂G,i
+

[
− ∂2uk

∂xi∂x j
G,k − ∂uk

∂xi
G,k j − ∂uk

∂x j
G,ki

+ sl

(
G,im G, jm√

G,nG,n
− G,im G,m G, jnG,n

(G,k G,k)
3/2

)]
∂η̃

∂G,i j
+ · · · + �i1i2...i p (∂G, ∂2G, ∂ pG)

∂η̃

∂G,i1i2...i p

= 0, (21)

where �i1i2...i p comprises all the terms emerging from the differential consequences of (1). Several things are
important to note about Eq. 21. No derivative of η̃ with respect to G appears, so any solution for η̃ can arbitrarily
depend on G, since it is a free parameter of (21) in accordance with symmetry (10) or actually (11).

Most importantly, Eq. 21 is closed. We may readily verify this by choosing η̃ to depend only on derivatives of G
up to the order p indicated by ∂ pG. Computing all differential consequences of (1), i.e., determining all �i1i2...i p up
to order p, we find that they contain derivatives of G only up to ∂ pG. Hence, Eq. 21 constitutes a linear hyperbolic
equation in η̃ depending on the set of variables: t, x, G, G,i , G,i j , . . . , G,i1i2...i p , where in fact G only appears as a
parameter.

Solutions for η̃ with increasing derivative order ∂ pG may be successively obtained, beginning with the lowest
derivative order. First, we consider η̃ solely depending on G-derivatives up to order one. Hence, we limit η̃ to be a
function of t, x, G and ∂G only. As a consequence (21) reduces to

∂η̃

∂t
+

(
ui − sl

G,i√
G,nG,n

)
∂η̃

∂xi
− ∂uk

∂xi
G,k

∂η̃

∂G,i
= 0. (22)

The characteristic system of equation (22) is

dt

dε
= 1,

dxi

dε
= ui − sl

G,i√
G,nG,n

and
dG,i

dε
= −∂uk

∂xi
G,k . (23)

which may be combined to

dxi

dt
= ui − sl

G,i√
G,nG,n

(24)

and
dG,i

dt
= −∂uk

∂xi
G,k = − (Ski + Wki ) G,k . (25)

For purposes that will become clear later on we have decomposed the velocity gradient into a symmetric and a
skew-symmetric part S and W.

The latter two ordinary differential equations (ODE) of the characteristic system may by interpreted from a
physical point of view. The first equation is simply the classical G-equation in explicit form, cf. (2), where the last
term on the right-hand side is the normalized normal vector ni = − G,i√

G,n G,n
on an iso-G-surface. Hence we have

dxi

dt
= ui + slni , (26)

which is the original form due to [1]. It expresses the fact that the position vector x pointing to the surface is advected
by the sum of the velocity field and the burning velocity propagating normal to the front.
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Equation (25) states that the normal vector G,i , not normalized here, changes its direction only by a non-zero
velocity gradient. Since G,i is also a measure for the size of the surface element, we find that in a Lagrange-like
coordinate system the propagation of the normal vector or alternatively the size of the surface element is independent
of the burning velocity. This is evident from a physical point of view since propagation normal to itself does not
increase the flame surface area.

Since for the solution of (26) along any characteristic only the normalized form of the normal vector is needed,
we may rewrite (25) as

dni

dt
= − (δil − ni nl)

∂uk

∂xl
nk . (27)

The Eqs. 26 and 27 are fully equivalent to the system (24), (25). The right-hand side of (27) may be interpreted
geometrically such that the velocity gradient on the front is projected into a tangential plane and the resulting vector
projected into the front normal direction.

Although Eqs. 26, 27 or 24, 25 above are only defining the infinitesimal η̃, they have in fact a much broader
foundation. For this we may take the fundamental definition of the normal vector in level-set form

n = − ∇G

|∇G| (28)

and apply the time derivative on both sides. Second, we replace the terms on the right-hand side by differential
consequences that emerge from the G-equation (1). Replacing all spatial gradients of G by (28), we finally obtain
the evolution equation for the normal vector (here in Cartesian index notation)

∂ni

∂t
+ (uk + slnk)

∂ni

∂xk
= − (δil − ni nl)

∂uk

∂xl
nk . (29)

The latter equation possesses an identical right-hand side as (27). Redefining the left-hand side by the Lagrange-like
operator

d

dt
= ∂

∂t
+ (uk + slnk)

∂

∂xk
, (30)

we recover (27).
Note that the Lagrange-like formulation of the flame surface given by (26) and (27) constitutes a closed set of

ODEs for a given u. This is in contrast to (26) alone, which is a PDE. This may readily be observed by expressing
n using surface-attached coordinates µ and λ (parametrization) and hence the normal vector is given by

n =
∂x
∂λ

× ∂x
∂µ∣∣∣ ∂x

∂λ
× ∂x

∂µ

∣∣∣ . (31)

Since (24) and (25) or alternatively (26) and (27) constitute a set of ODEs we conclude that infinitesimally small
surface “elements” may be propagated independent of its adjacent surface elements. For a given velocity field u the
system (24) and (25) may be readily integrated.

The system considerably simplifies for “homogeneous“ flows, i.e., when the velocity is a linear function of x
only:

ui = Ai j x j with Ai j = ∂ui

∂x j
, (32)

where Ai j is at most a function of time. In this case (25) may be solved independently since it decouples from (24).
Since the velocity gradient may always be uniquely decomposed into a symmetric and a skewsymmetric part S and
W, respectively, two extreme cases may be distinguished.

For S = 0 we have pure rotation and hence there is no decrease or increase of surface area which corresponds
to two imaginary eigenvalues of (25) with opposite sign and one null eigenvalue. Consequently, no flame surface
area is generated or destructed.
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The other case corresponds to a case with pure strain and no rotation W = 0. Restricting to incompressible flows
we find two real eigenvalues and a third one being the sum of the latter with opposite sign and hence leading to an
increase or decrease of flame surface area.

It is very important to note at this point that from a geometrical interpretation of the characteristics, Eq. 1 may
admit weak solutions. In this case two characteristics starting from the same initial iso-surface may cross at a later
time. As a result a unique solution for the entire domain is no longer valid. The problems of weak or non-unique
solutions are not discussed in this paper.

Extending the dependence of η̃ in the next step in (21) to the second derivatives ∂2G, we observe that (22)
extends to

∂η̃

∂t
+

(
ui − sl

G,i√
G,nG,n

)
∂η̃

∂xi
− ∂uk

∂xi
G,k

∂η̃

∂G,i
+

[
− ∂2uk

∂xi∂x j
G,k − ∂uk

∂xi
G,k j − ∂uk

∂x j
G,ki

+ sl

(
G,im G, jm√

G,nG,n
− G,im G,m G, jnG,n

(G,k G,k)
3/2

)]
∂η̃

∂G,i j
= 0. (33)

The corresponding set of characteristic equations, Eq. 23, is expanded by

dG,i j

dt
= − ∂2uk

∂xi∂x j
G,k − ∂uk

∂xi
G,k j − ∂uk

∂x j
G,ki + sl

(
G,im G, jm√

G,nG,n
− G,im G,m G, jnG,n

(G,k G,k)
3/2

)
, (34)

where due to the first equation of (23) the dummy variable ε has already been replaced by t . In contrast to the
equation for G,i or ni , which does not contain the burning velocity, the latter equation for the spatial Hessian of G
explicitly contains sl .

For the purpose of analyzing (34) we employ the identity (see [19])

G−1
,ki

dG,i j

dt
G−1

, jl = −dG−1
,kl

dt
, (35)

where G−1
,i j is the matrix inverse of G,i j and G,ik G−1

,k j = G−1
,ik G,k j = δi j . Multiplying (34) with G−1

,ki and G−1
, jl we

find, using (35), that

dG−1
,kl

dt
= G−1

,ki G−1
, jl

∂2um

∂xi x j
G,m + G−1

,ki
∂ul

∂xi
+ G−1

, jl
∂uk

∂x j
− sl

(
δkl√

G,nG,n
− G,k G,l

(G,nG,n)3/2

)
. (36)

This equation has the interesting property that a projection on G,k leads to an equation that is independent of sl . To
modify the resulting equation, to an evolution equation, we introduce the vector-valued quantity

Hi = G−1
,ki G,k, (37)

characterizing the curvature effect of the surface. Note that G−1
,ki may be expressed in terms of G,ki itself using the

matrix–tensor identity

G−1
,i j = 3

2λ3 − 3λ2λ1 + λ3
1

[
(λ2

1 − λ2)δi j − 2λ1G,i j + 2G2
,i j

]
, (38)

with the eigenvalues λ1 = G,kk, λ2 = G2
,kk and λ3 = G3

,kk as is proved in [19].

Taking the temporal derivative of (37), using the product rule of differentiation and replacing
dG,k

dt and
dG−1

,kl
dt

by its right-hand sides in (25) and (36) we obtain

dHl

dt
= G,k G−1

,ki G−1
, jl

∂2um

∂xi x j
G,m + ∂ul

∂xi
Hi . (39)

For flows with weak curvature or homogeneous flows as defined in (32), the latter equation simplifies consid-
erably since the first term on the right-hand side becomes negligible. Under this constraint (39) becomes a closed
equation:
dHi

dt
= ∂ui

∂xk
Hk = (Ski − Wki ) Hk, (40)
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where the right-hand side has been rewritten employing S and W. Although (40), appears to be quite similar to (25),
there is one considerable difference, namely the sign of the strain rate S. Physically this means that an increase of
flame surface area due to G,i leads to a decrease of the curvature-related quantity Hi and vice versa.

Apart from the latter, any second-order geometric measure may be determined from the knowledge of G,i and
G,i j such as the Gaussian or the mean curvature on the flame surface G = G0. For instance, the mean curvature on
a given point vx is given by

κ(t, x) = div n

in terms of the normalized normal vector n defined in (28).
Note that, even in a Lagrange-like frame of reference that moves with the flame front, most of the curvature

measures are not independent of sl , unlike in the situation with a normal vector or Hi . For κ this is evident if
one takes the divergence of (29). This leads to an sl -dependent term which cannot be re-cast in the form of the
Lagrange-like convection operator (30).

Remark 1 From the determining equations (22) and (33), one readily finds, respectively, first- and second-order
symmetries of the G-equation (1) for the case u = 0 as is pointed out in detail in [19]. Indeed, Eq. 22 reduces to
the PDE

∂η̃

∂t
− sl

G,i√
G,nG,n

∂η̃

∂xi
= 0,

and hence one obtains an infinite set of first-order symmetries given by

X̃(1) = G (G, ∂G, C)
∂

∂G
, C = x − slnt, (41)

where G (G, ∂G, C) is an arbitrary function.
The determining equations for the second-order symmetries reduce to the linear PDE

∂η̃

∂t
− sl

G,i√
G,nG,n

∂η̃

∂xi
+

[
sl

(
G,im G, jm√

G,nG,n
− G,im G,m G, jnG,n

(G,k G,k)
3/2

)]
∂η̃

∂G,i j
= 0,

which yields an infinite set of second-order symmetries given by

X̃(2) = H(G, ∂G, C,D)
∂

∂G
, (42)

where H(G, ∂G, C,D) is an arbitrary function, and the tensor D is given by

Di j = sl

[
δi j√

G,m G,m
− G,i G, j

(G,m G,m)3/2

]
t + 3

2λ3 − 3λ2λ1 + λ3
1

[
(λ2

1 − λ2)δi j − 2λ1G,i j + 2G,ik G,k j

]
, (43)

with λi given below Eq. 38.
Although not obvious, one may show that that all point symmetries (8)–(10), (14)–(16) of the G-equation (1)

with u = 0 are contained in the first- and second-order symmetries (41), (42). For example, the point symmetry X9

(15) is found from (41) with G (G, ∂G, C) = sl
√

G,nG,nC1.

3 Conservation laws of the G-equation

Within the current section, we consider the conservation properties of the G-equation (1). Recall that the derivation
of the G-equation is exclusively based on the kinematic balance equation (2). The latter equation has no link to any
classical conservation law and to the best of the authors’ knowledge no conservation laws or related Casimirs are
known for the G-equation.
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We seek local conservation laws of the G-equation (1) of the form

Dt
[G, u] + Dk�k[G, u] = 0, (44)

where Dt and Dk are defined by (19), (20). The density 
[G, u] and the fluxes �k[G, u] can depend on t, x, G,
the underlying flow velocity u, and partial derivatives of G and u. (The dependence on G and/or its derivatives is
essential.)

In particular, we are interested in finding local conservation laws of the G-equation (1) in the following settings,
both in two and three spatial dimensions:

– local conservation laws of (1) holding for arbitrary propelling velocities u(t, x);
– local conservation laws of (1) coupled to fluid-dynamics equations satisfied by u, e.g., incompressible Euler or

Navier–Stokes equations;
– local conservation laws of (1) for u = 0 (equivalently, u = const);
– local conservation laws of (1) for sl �= const.

For the derivation of local conservation laws, we employ the direct method [20–22]. The direct method consists
in finding local multipliers of the PDEs of the given system, depending on independent and dependent variables of
the given system and derivatives of dependent variables, such that the corresponding linear combination yields a
divergence expression (44).

In particular, for PDE systems which can be written in a solved form with respect to some leading derivatives
(which is the case for the majority of physical PDE systems), it is well-known that all its local conservation laws
(44) arise from local multipliers, provided that a sufficiently general ansatz for multipliers has been chosen.

To generate determining equations for local conservation-law multipliers, the direct method employs Euler dif-
ferential operators. In this paper, determining equations for multipliers were written and solved using the automated
symbolic software package GeM for Maple [24].

First, consider the G-equation (1) coupled to incompressible Euler (ν = 0) or Navier–Stokes (ν �= 0) equations,
in two dimensions:

Gt + uk G,k = sl
√

G,k G,k,

(ui )t + uk(ui ),k = − 1

ρ
p,i + ν�ui , i = 1, 2,

(u1),1 + (u2),2 = 0, (45)

In (45), p(t, x) is the fluid pressure, and ρ = const is the fluid density. To find local conservation laws of the
system (45) using the direct method, one seeks quadruples of multipliers �q [Ĝ, û, p̂] = �q(t, x, Ĝ, û, p̂, ∂Ĝ,

∂û, ∂ p̂, . . .), q = 1, 2, 3, 4, such that the linear combination yields a divergence expression,

�1[Ĝ, û, p̂]
(

Ĝt + ûk Ĝ,k − sl

√
Ĝ,k Ĝ,k

)
+ �2[Ĝ, û, p̂]

(
(û1)t + ûk(û1),k + 1

ρ
p̂,1 − ν�û1

)

+�3[Ĝ, û, p̂]
(

(û2)t + ûk(û2),k + 1

ρ
p̂,2 − ν�û2

)
+ �4[Ĝ, û, p̂] ((û1),1 + (û2),2

)
≡ Dt
[Ĝ, û, p̂] + Dk�k[Ĝ, û, p̂], (46)

for arbitrary functions Ĝ, û, p̂. Then for solutions (Ĝ = G(t, x), û = u(t, x), p̂ = p(t, x)) of the PDE system
(45), multipliers �q [G, u, p], q = 1, 2, 3, 4, yield a conservation law (44).

However, the following negative result is established by direct computation.

Theorem 1 The PDE system (45) in two spatial dimensions has no G-dependent local conservation laws arising
from multipliers depending on t, x1, x2, u1, u2, p, G, pt , ∂G, ∂u1, ∂u2, ∂p, ∂2G and ∂2 P.

Corollary 1 The G-equation (1) in two spatial dimensions does not have conservation laws holding for arbitrary
propelling velocities u(t, x), arising from multipliers depending on t, x1, x2, G, ∂G and ∂2G.
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We note that multipliers of all usual (G-independent) local conservation laws of fluid dynamics (i.e., the
conservation of mass for ν �= 0, and the conservation of mass, momentum, energy, and angular momentum for
ν �= 0) were recovered in the computation for Theorem 1.

Remark 2 Corollary 1 also holds for the G-equation (1) in three spatial dimensions.

However, one can show that an infinite number of conservation laws arises for the G-equation (1) with u = const,
both in two and three dimensions. Here one seeks a multiplier �[G] such that

�[Ĝ]
(

Ĝt + ûk Ĝ,k − sl

√
Ĝ,k Ĝ,k

)
≡ Dt
[Ĝ] + Dk�k[Ĝ] (47)

holds for an arbitrary function Ĝ(t, x). The following theorem holds.

Theorem 2 The G-equation (1) with u = 0 (u = const), in two and three spatial dimensions, has an infi-
nite number of second-order conservation laws, i.e., conservation laws corresponding to multipliers of the form
�[G] = �(t, x, G, ∂G, ∂2G).

It can be shown that no conservation laws arise for the G-equation from purely first-order multipliers �[G] =
�(t, x, G, ∂G).

In Sect. 3.1 below, we completely classify second-order local conservation laws of the G-equation arising from
multipliers �[G] = �(G, ∂G, ∂2G) in two dimensions. In three dimensions (Sect. 3.2), such a classification
presents a significant computational difficulty, therefore we limit ourselves to finding infinite families of conserva-
tion laws generalizing the families found for the two-dimensional case.

Remark 3 It easy to show that the G-equation (1) with sl = sl(t) also has an infinite number of local conservation
laws, since one may redefine the time variable according to dτ = sl(t)dt , and convert (1) to an equivalent one
with sl = 1. The more general case sl = sl(t, x) requires conservation law classification and no general conserved
quantity exists for arbitrary sl(t, x).

Remark 4 Although by Theorem 1, within the multiplier ansatz specified therein, there are no local conservation
laws of the G-equation (1) for a general flow velocity u satisfying incompressible Euler or Navier–Stokes equa-
tions, one may easily find particular velocity distributions (which can satisfy Euler or Navier–Stokes equations),
for which even infinite numbers of conservation laws exist! For example, this is the case for u = (0, x). However, a
classification of conservation laws of the G-equation (1) with respect to u(t, x) as a constitutive function is a highly
computationally intensive task, and is out of scope of this paper.

3.1 Local conservation laws of the G-equation (1) with u = 0 in the two-dimensional case

In two dimensions, with no underlying flow velocity, the G-equation (1) takes the form

Gt = sl

√
G2

,1 + G2
,2. (48)

We look for conservation laws arising from second order local conservation law multipliers

�[G] = �(G, G,1, G,2, G,11, G,12, G,22). (49)

The solution of the corresponding determining equations (omitted because of extensive length, see [22]), yields the
following result.
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Theorem 3 Consider the two-dimensional G-equation (48), and multipliers of the form (49). The complete set of
such multipliers yielding local conservation laws of the G-equation (48) is exhausted by the following classes.

�(1)[G] = 1

G3
,2

(G,2G,12 − G,1G,22); (50)

�(2)[G] = 1

G3
,1

(G,2G11 − G,1G12); (51)

�(3)[G] = F(G,1, G,2)H2; (52)

�(4)[G] = 1

G3
,1

R

(
G,2

G,1

) (
G2

,2G,11 + G2
,1G,22 − 2G,1G,2G,12

)
; (53)

�(5)[G] = 1

G2
,1

(
G,1

G,2

[
G,1

G,2
Q

(
G,2

G,1

)
− Q′

(
G,2

G,1

)]
G,22

+ 2Q′
(

G,2

G,1

)
G,12 −

[
Q

(
G,2

G,1

)
+ G,2

G,1
Q′

(
G,2

G,1

)]
G,11

)
, (54)

where F, R and Q are arbitrary sufficiently smooth functions of their arguments, and

H2 =
∣∣∣∣ G,11 G,12

G,12 G,22

∣∣∣∣ (55)

is the two-dimensional spatial Hessian determinant of G.

One can check that the set of multipliers (50)–(54) is closed under the interchange of the spatial variables
x1 ↔ x2.

3.1.1 Computation of densities and fluxes

We now find explicit forms of conservation laws using the multipliers (50)–(54).
Since the G-equation (48) has a scaling symmetry (13), it is scaling-invariant. A method of computation of den-

sity and fluxes of scaling-invariant conservation laws of scaling-invariant PDE systems was proposed in [25] (see
also [22,26]). Within this method, formulas for density and fluxes are rather simple and involve only differentiation.

Here we list density/flux formulas only for first-order PDEs. Let �[G] be a local conservation law multiplier,
and X (6) a local symmetry of the PDE (48). In evolutionary form (17), a local symmetry generator (6) is written as

X̃ = η̃[G] ∂

∂G
, η̃[G] = ηG − Gtξ

t − G,iξ
x
i . (56)

In particular, if the symmetry (56) is a scaling symmetry, it has the form

X̃scal = η̃[G] ∂

∂G
≡ (qG − Gt pt − G,i pi xi )

∂

∂G
, q, p, pi = const. (57)

Then the density and the fluxes of the local conservation law (44) corresponding to the multiplier �[G] (cf. (47))
are given (up to conservation law equivalence) by


[G] = η̃[G]�[G]∂ R[G]
∂Gt

, �i [G] = η̃[G]�[G]∂ R[G]
∂G,i

, i = 1, 2, (58)

where R[G] = s−1
l Gt −

√
G2

,1 + G2
,2.

Remark 5 The only restrictions in applying formulas (58) are that the conservation law being sought must be
scaling-invariant and noncritical with respect to XS , i.e.,

χ = λ + r + p +
n∑

i=1

pi �= 0, (59)
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where λ and r are constant scaling weights of the multiplier and the G-equation:

Xscal�[G] = λ�[G], Xscal R[G] = r R[G].
If a conservation law is critical with respect to XS , i.e., χ = 0, then formulas (58) yield density and fluxes of a
trivial (and thus useless) conservation law. (For details, see [22,25,26].)

Remark 6 Formulas (58) can be used with an arbitrary local symmetry (56) of a given PDE, i.e., not necessarily
a scaling symmetry. In that case, formulas (58) yield density and fluxes of a conservation law which is generally
different from the one corresponding to the multiplier �[G] (cf. (47)). For further details, see [22,25,26].

Also note that in general, the symmetry involved in the formula (58) does not have to be a point symmetry, but
may be a contact or a higher-order symmetry as is explicitly given for (48) or (63) up to order two in (42).

Since ∂ R[G]/∂G,i = ni , where n = (n1, n2) is the unit normal (28) to the flame front, each conservation law
found through the formula (58) has a general form

Dt (s
−1
l η̃[G]�[G]) + Dk (nk η̃[G]�[G]) = 0. (60)

The two-dimensional G-equation (48) has the following point symmetries:

– translations in G given by XT (12);
– Translations and scalings X1, X2, X3, X5 given by (8)–(9);
– relabelling symmetry XR given by (10);
– rotations X6 and boosts X9, X10 given by (14), (15);
– 2D version of the symmetries X12, X13 and X15 given by (16) (∂/∂x3 = 0, x3 = 0).

These symmetries, together with multipliers �(i)[G] (i = 1, . . . , 5) given by (50)–(54), yield the total of
12 × 5 = 60 classes of conservation laws of the two-dimensional G-equation (48). This set, however, contains
some trivialities and redundancies, as explained below:

1. for each of the multipliers �(1)[G] (50), �(2)[G] (51), one has 11 scalar conservation laws corresponding to
single point symmetries, and an infinite family of conservation laws corresponding to the family of relabelling
symmetries XR (10);

2. from the multipliers �(3)[G] (52), one has 10 infinite families of conservation laws, since conservation laws
arising from translation symmetries X2, X3 (8) also arise from symmetry XT (12) for a different form of
F(G,1, G,2);

3. from the multipliers �(4)[G] (53) and �(5)[G] (54), one obtains 12 infinite families of conservation laws
corresponding to the above 12 point symmetries;

4. for each multiplier �(i)[G], scaling symmetries X5 (9) and XS (13) (i.e., XR with K (G) = G) yield equivalent
conservation laws;

5. for multipliers �(1,2)[G] and the scaling symmetry XS (13), one has p = pi = 0. For this symmetry, one readily
finds the scaling weight λ = −1 for each of the multipliers �(1,2)[G]. The corresponding scaling weight of the
G-equation here is r = 1. Therefore one has χ = −1 + 1 = 0, and it follows that the corresponding conserva-
tion law is critical. Its density and fluxes are thus not obtainable from formulas (58), i.e., the conservation law
given by the expression (60) is trivial;

6. there might be further redundancies and trivial conservation laws within the above indicated conservation law
set. These will be studied in detail in future work.

Remark 7 In the formula (60), one can indeed use higher-order symmetries η̃[G]. Using the known infinite family
of second-order symmetries (42) (which includes first-order and point symmetries) of G-equation (48), we obtain
a wider class of conservation laws

Dt

(
s−1
l �(i)[G]H(G, ∂G, C,D)

)
+ Dk

(
nkH(G, ∂G, C,D)�(i)[G]

)
= 0, i = 1, . . . , 5, (61)
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satisfied by all solutions of the G-equation (48). Here �(i)[G] are given by (50)–(54). From (61) we may derive
conserved densities know as classical measures from differential geometry. For instance, we may choose R in (53)
and H in (61) such that we obtain

�(4)[G]H(G, ∂G, C, D) ≡ κ(G) = − t(G) · H(G) · t(G)T

|∇G| , (62)

where κ is the curvature of a plane implicit curve and t(G) and H(G) are, respectively, the normalized tangent
vector and the Hessian matrix of G:

t(G) = ∇G

|∇G| , H(G) =
(

Gxx Gxy

Gxy G yy

)
.

Even vector-valued quantities such as H(G) · t(G)T , normalized adequately, may be derived from (50) and (51) as
conserved densities.

3.2 Local conservation laws of the G-equation (1) with u = 0 in the three-dimensional case

In three dimensions with no flow, the G-equation (1) takes the form

Gt = sl

√
G2

,1 + G2
,2 + G2

,3. (63)

We look for conservation laws arising from second-order conservation law multipliers

M[G] = M(G, G,1, G,2, G,3, G,11, G,12, G,13, G,22, G,23, G,33). (64)

The following theorem holds:

Theorem 4 The three-dimensional G-equation (63) has local conservation laws arising from the following multi-
pliers of the form (64):

1. the multiplier

M(1)[G] = G,1G,2G,3

(G2
,2 + G2

,3)
2
(G,22 − G,33) − G,1(G2

,2 − G2
,3)

(G2
,2 + G2

,3)
2

G,23 + G,2G,13 − G,3G,12

G2
,2 + G2

,3

(65)

and two additional multipliers M(2)[G], M(3)[G] obtained by the two cyclic permutations x1 → x2 → x3 →
x1;

2. the multiplier

M(4)[G] = G,3G,11 − G,1G,13

2(G2
,1 + G2

,3)
+ G,2G,23 − G,3G,22

2(G2
,2 + G2

,3)
+ G,3(G2

,1 − G2
,2)G,33

2(G2
,1 + G2

,3)(G
2
,2 + G2

,3)
(66)

and two additional multipliers M(5)[G], M(6)[G]obtained by the two cyclic permutations x1 → x2 → x3 → x1;
3. the family of multipliers

M(7)[G] = F(G,1, G,2, G,3)H3, (67)

where F(G,1, G,2, G,3) is an arbitrary sufficiently smooth function of its arguments, and

H3 =
∣∣∣∣∣∣
G,11 G,12 G,13

G,12 G,22 G,23

G,13 G,23 G,33

∣∣∣∣∣∣ (68)

is the three-dimensional Hessian determinant of G.
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The complete classification of local conservation-law multipliers of the form (64) has not been done in this paper
because of the computational complexity.

To construct the actual conservation laws, we use the same technique as for the 2D case. For each pair of local
symmetry in the evolutionary form (56) and a local conservation law multiplier M[G], one obtains a conservation
law (60) (with summation in k now taken from 1 to 3.)

Equation (63) has the point symmetries X1, . . . , X15 given by (8), (9), (14)–(16), relabelling symmetries XR

(10) (K (G) �= const), and translations in G given by XT (12).
These symmetries, together with multipliers M(i)[G] (i = 1, . . . , 7) (65)–(67), yield a total of 17 × 7 = 119

classes of conservation laws of the two-dimensional G-equation (48). In particular, one obtains an infinite number
of conservation arising from infinite relabelling symmetries XR and/or multipliers from an infinite family (67).

Again, some of these conservation laws are equivalent. Similarly to the 2D case, for each M(i)[G], equivalent
conservation laws arise from scaling symmetries X5 (9) and XS (13) (i.e., XR with K (G) = G). Moreover, from
the multipliers M(7)[G] (67), conservation laws arising from translation symmetries X2, X3 (8) also arise from
symmetry XT (12) for a different form of F(G,1, G,2, G,3).

Remark 8 Similarly to the two-dimensional case, one obtains a much wider class of conservation laws for the
three-dimensional G-equation (63) by considering higher-order symmetries η̃[G], in particular, the infinite family
of second-order symmetries (42). It follows that the G-equation (63) has seven sets of conservation laws given by

Dt

(
M(i)[G]H(G, ∂G, C,D)

)
+ Dk

(
nkH(G, ∂G, C,D)M(i)[G]

)
= 0, i = 1, . . . , 7, (69)

where M(i)[G] are given by (65)–(67).

In summary, an infinite system of conservation laws has been generated, both for the two- and three-dimensional
G-equation in the limit of sl = const (equivalently, sl = sl(t)) and u = 0 (equivalently, u = const).

Both symmetry and conservation-law properties of the previous and the present section are employed in the
subsequent section for the construction of new numerical schemes solving the G-equation.

4 Application to the construction of numerical schemes

In the introduction it has been briefly pointed out that a broad variety of numerical schemes have been derived for
the G-equation and level-set equations in general. The level-set method was devised by Osher and Sethian [7] as a
simple and versatile method for computing and analyzing the motion of an interface in two or three dimensions. In
short, the key advantage of the level set method is due to the fact that, in general, it allows for advancing of interfaces
that change topology, formate corners, cusps, and singularities, as well as it elegantly models the interplay between
different disciplines such as flow physics and chemistry on the interface.

A detailed review on the different numerical methods for solving level-set equations is given in [27] and, more
specifically, for fluid interfaces in [28].

Essentially all schemes rely on two global steps during the time advancement. In the first step the level-set
equation, here the G-equation, is advanced in time. Although, in principle, advancement is only needed for the
front level-set G = G0, practically it has to be advanced either in a narrow band close to the front or even in
the entire domain of integration. Depending on the geometrical complexity of the level-set, the advancement of
the neighbouring level-set functions in tandem with the one corresponding to the zero level-set—the extension
velocity, and the actual model equations a variety of numerical difficulties may arise. These can include issues such
as the development of singularities which are non-differentiable along the level-set or small slopes normal to the
level-set which decreases the numerical accuracy for capturing the position of the level-set. Because of the latter
and related issues, the actual computation may completely break down after a certain number of time steps.

For this reason, a second step usually has to be invoked, i.e., after one or several time steps, a reinitialization of
the neighboring level-set functions is executed, such that the gradient normal to the zero level-set is set to equal one.
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In other words, the signed distance function equation |∇G| = 1 is solved. This leads to a smooth unique G-field
sufficiently regular for the next time step. These and related techniques solve the problem emerging from the first
step though implying new difficulties, as pointed out in [28]. First, reinitialization tends to generate some error in
the position of the front, and these errors can lead to inaccuracy. As a result, the general problem of mass loss during
long calculations may become worse. Second, poor programming of reinitialization schemes, adaptive strategies,
and extension schemes can easily render an efficient algorithm inefficient. In conclusion, reinitialization may only
be adapted if necessary and as seldom as possible.

Apart from the problems pointed out in the introduction such as stability or high computational costs, most
of the classical schemes have an additional disadvantage that the computation of curvature terms becomes rather
inaccurate. This is primarily due to the fact that in most applications, second-order finite-difference or finite- volume
schemes are employed. Hence the computation of curvature terms which are second order in derivative may become
rather inaccurate. This in fact may lead to spurious results.

We argue that both of the proposed methods are completely different from what has been developed so far and
may account for some of these problems. There are two key differences. First, we do not only advance a single
scalar level-set equation but instead may propagate higher-order geometrical terms such as the normal vector or
the spatial Hessian of G. Hence, it is natural to deduce that by invoking these quantities higher-order numerical
accuracies may be achieved.

Second, for the schemes to be derived in Sect. 4.1, we note that only conservation laws need to be solved. For
this reason, we may hark back to almost any scheme that has been developed in the last decades for nonlinear
conservation laws. Many of these schemes can cope with singularies if, e.g., flux or slope limiters are invoked.

Still, one cannot conceal that certain new problems may arise. First of all, it is quite clear, as it has been pointed
out above, that any derivative to be computed needs to be continuous. This may either limit the possible level-set
geometries or, if employed in the context of a splitting scheme, one part of the equation will need to assure smooth-
ness up to the needed derivative order (details are discussed below). A second problem may arise from gradients
normal to the zero level-set. Though many robust and flexible schemes for nonlinear conservation laws may cope
with singularities, i.e., high gradients in the numerical scheme, the computation may still need some reinitialization
after certain time steps. This may not be judged on without any actual testing.

4.1 Numerical schemes based on conservation laws

Families of conservation laws for the two-dimensional and three-dimensional G-equations (48) and (63) for u = 0
obtained in Sects. 3.1 and 3.2 can be directly used for the construction of numerical schemes, as described below.
Suppose at t = 0, initial data for the function G and its first and second spatial partial derivatives is provided.
Values on the next time step are denoted by tildas.

4.1.1 Two dimensions

In two dimensions, one can use different families of local conservation laws (60) to obtain values for the function
G(t, x) and its first and second spatial partial derivatives on the next time step. For example, one can proceed as
follows:

1. the conservation law arising from the symmetry XT (12) and the multiplier �(3)[G] (52) with F(G,1, G,2) = 1
yields the Hessian determinant H̃2 (55);

2. the conservation law arising from the symmetry XR (10) with K (G) = G and the multiplier �(3)[G] (52) with
F(G,1, G,2) = 1 yields G̃ H̃2, and hence, employing H̃2 from step 1, one obtains G̃;

3. the conservation law arising from the symmetry XT (12) and the multiplier�(3)[G] (52) with F(G,1, G,2) = G,1

and G,2, respectively, yield G̃,1 H̃2 and G̃,2 H̃2, and hence, again employing H̃2 from step 1, G̃,1 and G̃,2;
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4. let A = G,1G,22 − G,2G,12, B = G,2G,11 − G,1G,12. Then the conservation laws arising from the symmetry
XT (12) and the multipliers �(1)[G] (50), �(2)[G] (51) yield quantities Ã and B̃ at the next time step. Quantities
Ã, B̃ and H̃ can be solved to yield the second partial derivatives G̃,11, G̃,12 and G̃,22 on the next time step.

If only G and its first spatial derivatives are required, one can limit the algorithm to the first three steps, which
considerably reduces the number of computations. In this case the computation of the second-order spatial derivative
terms are not needed at all.

In this case it is also possible to modify the algorithm as such that very small values for
√

G2
,1 + G2

,2 are avoided
which may lead to computational difficulties in the spatial flux terms. This may easily be achieved by introducing

F(G,1, G,2) → F(G,1, G,2)

√
G2

,1 + G2
,2 which avoids division by near zero values.

4.1.2 Three dimensions

In three dimensions, values for the function G(t, x) and its first and second spatial partial derivatives are obtained
in a similar fashion. Here one can use the larger set of available conservation laws (60) in three dimensions, to
compute the three first and the six second spatial partial derivatives of G(t, x) on the next time step. For example,
one can proceed as follows:

1. use the conservation law arising from the translational symmetry XT (12) M(7)[G] (67) with F(G,1, G,2,

G,3) = 1 to obtain the Hessian determinant H̃3 (68);
2. use the conservation law the conservation law arising from the relabelling symmetry XR (10) with K (G) = G

(i.e., scaling symmetry) and M(7)[G] (67) with F(G,1, G,2, G,3) = 1 to compute G̃ H̃3, and hence with the
result from step 1 obtain G̃;

3. the conservation laws arising from the symmetry XT (12) and the multiplier M(7)[G] (67) with F(G,1, G,2,

G,3) = G,1, G,2, and G,3, respectively, yield G̃,1 H̃3, G̃,2 H̃3 and G̃,3 H̃3, and hence G̃,1, G̃,2 and G̃,3;
4. finally, consider the six conservation laws arising from the symmetry XT (12) and each of the six multipliers

M(1)[G], . . . , M(6)[G] given by (65), (66) and their cyclic permutations. This yields the six linearly indepen-
dent quantities (right-hand sides of (65), (66) and their cyclic permutations) on the next time step. Using the
knowledge of G̃, G̃,1, G̃,2 and G̃,3, one can solve the six equations to obtain the values of the second derivatives
G̃,11, G̃,12, G̃,13, G̃,22, G̃,23, and G̃,33 on the next time step.

Similarly to the 2D case, if only G and its first spatial derivatives are required, one can simplify the algorithm
accordingly. The near-singular behaviour is also avoided analogously to the 2D case.

Note that in both the 2D and 3D cases the numerical algorithm is based on six and 10 conservation laws, respec-
tively. Hence, the computational effort of traditionally advancing a single level-set equation compared to several
equations in the present procedures is considerably increased. Still, it might be very well worth the effort because
of three reasons:

(i) a broad variety of robust and efficient numerical schemes for hyperbolic conservation laws have been devel-
oped which may directly be applicable. Hence, near singular behavior and even weak solutions are readily
computable;

(ii) as a result the possible numerical instability when advancing the G-equation alone and hence the rather time
consuming re-initialization method may be avoided;

(iii) even the case u �= 0 may be accessible by way of an operator splitting method though somewhat different
from classical Strang or Lie splitting.

In essentially all splitting methods a PDE system with the dependent variable � of the form

∂�

∂t
= L1[�] + L2[�] (70)

with Li are spatial operators, is splitted into at least two sets of equations with a single spatial operator
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∂�

∂t
= L1[�] and

∂�

∂t
= L2[�], (71)

which are numerically evaluated by some alternating scheme. We now split (1) into
∂G

∂t
= −uk

∂G

∂xk
⇔ ∂G

∂t
= −∂(uk G)

∂xk
, (72)

where for the second form the continuity equation ∇ · u = 0 has been applied, and

∂G

∂t
= sl

√
∂G

∂xk

∂G

∂xk
. (73)

Since (72b) is already in conserved form it is computationally accessible by any of the above mentioned schemes
for hyperbolic conservation laws.

For the numerical evaluation of (73), the conserved forms derived in Sect. 3 can be used. Hence the numerical
procedures based on the conserved forms pointed out above are directly applicable.

The actual time advancement of the full G-equation has to be based on a new algorithm since classical splitting
schemes such as Strang or Lie splitting are not directly applicable. This is because the quantity to be advanced in
time is not the same as in the separated equations as, e.g., in (71). Instead, here in the one step G alone is advanced
due to (72b) while in the second step (73) will be advanced due to the above given conserved forms. In order to
perform this in an alternating procedure, intermediate values for G and its derivatives may be re-computed in order
to evaluate, e.g., M(i)[G] in the density and fluxes of a conservation law (60).

If only G and its first spatial derivatives are to be computed, the above procedure for computing G-equation
alone with u = 0 has to be slightly modified, since quantities such as M(i)[G], which also contain second-order
derivatives in G, need to be re-initialized (re-computed) after an intermediate step where (72) has been conducted.
This, of course, is not necessary when the G-equation alone is computed with u = 0 since there second order
derivatives of G needs only be evaluated from the initial G-field.

It is well-known that flame fronts described by the G-equation often develop cusps (corners). Therefore in the
whole flame domain, one should generally expect spatial partial derivatives of G to be discontinuous. In particular,
if spatial partial derivatives Gt , G,i ∈ L1

loc(R
n), then second spatial derivatives are generalized functions (distri-

butions). The product of a discontinuous function and a distribution, in general, may not be consistently defined.1

It follows that for conservation laws of the G-equation arising from multipliers, in order to consider globally non-
smooth solutions, it is necessary to restrict conservation law multipliers �[G] to belong to the class L1

loc(R
n), i.e.,

�[G] = �(t, x, G, ∂G). However, no conservation laws arise from such ansatz; see Sect. 3. In fact, all conservation
laws of the G-equation in 2D and 3D space found in Sect. 3 arise from multipliers essentially involving second
derivatives of G, and therefore can be used in numerical methods either only locally in the domains of smoothness
of G, or possibly in numerical methods that involve splitting.

4.2 Numerical schemes based on geometrical properties

A rather straightforward alternative idea for advancing the G-equation is based on solving the G-equation extended
by an arbitrary order of geometrical quantities such as the normal vector and curvature measures. These additional
equations emerge either directly from the G-equation or, more naturally, from invariant quantities pointed out in
Sect. 2.2, which arise from the higher-order symmetries discussed therein, and propagate on the G level-set.

In the simplest possible procedure, which goes beyond solving the G-equation alone, the coupled system consists
of
dG

dt
= 0, (74)

1 A simple example is given by u(x) = {−1, x < 0; 1, x ≥ 0}. One finds u′(x) = 2δ(x), where δ(x) is the Dirac delta function. By
symmetry, it is natural to define u(x)δ(x) = 0. Consider u2(x)δ(x). On one hand, u2(x)δ(x) = u(x)(u(x)δ(x)) = 0. On the other
hand, one has u2(x)δ(x) = (u(x)u(x))δ(x) = δ(x) �= 0. Thus for the pair of functions (u(x), δ(x)), multiplication is not associative.
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and

dni

dt
= −∂uk

∂xi
nk + ∂uk

∂xl
nknlni , (75)

where the Lagrange-like operator is given by

d

dt
= ∂

∂t
+ (uk + slnk)

∂

∂xk
. (76)

Note that in the numerical solution, G and n are considered independent variables.
If higher-order accuracy is intended, the system may be further extended by the equation for second derivatives

G,i j , as follows

dG,i j

dt
= − ∂2uk

∂xi∂x j
G,k − ∂uk

∂xi
G,k j − ∂uk

∂x j
G,ki + sl

(
G,im G, jm√

G,nG,n
− G,im G,m G, jnG,n

(G,k G,k)
3/2

)
. (77)

Similarly, one may also consider equations for even higher orders of spatial derivatives of G.

5 Discussion

The two pivotal goals of the present paper have been to compute higher-order symmetries for the G-equation with
arbitrary flow velocity and to derive local conservation laws. Symmetries for the G-equation with zero flow velocity
were already exhaustively computed up to the order two in [19]. We have shown that for an arbitrary flow velocity
only the reduction to a system of ODE is conducted and hence only a formal procedure has been derived. A complete
solution was not computed. Instead for a given flow velocity the symmetries may be computed by solving the latter
ODE system.

Second, it has been shown that for arbitrary flow velocity there exists no conservation law for the G-equation.
Instead it was discovered that an infinite set of conservation laws exist for the G-equation with constant flow
velocity, or, without loss of generality, for zero flow velocity. For the two-dimensional case the complete set of
multipliers were computed up to the order two. From this and the infinitesimals the conserved densities and fluxes
have been derived. For the three-dimensional case only a reduced set of multipliers were computed because of its
computational complexity.

Based on the latter, novel algorithms for the numerical solution of the G-equation (1) based on local symmetry
and conservation law structure of the G-equation have been proposed. The numerical properties of these schemes
such as accuracy or scheme stability will be investigated in subsequent research.

In particular, the scheme based on local conservation laws of the G-equation (Sect. 4.1) is rather different from
classical splitting schemes, and its accuracy and stability will depend on the algorithms employed for solving the
sub-equations (72) and (73) in conserved form.

For the symmetry-based numerical scheme (Sect. 4.2), the actual numerical implementation can be chosen from
a broad variety of schemes, either based on field equations, such as finite-volume and finite-difference schemes, or
based on geometrical concepts such as ray-tracing algorithms. Combinations of such approaches are also possible.

Several advantages and disadvantages of the proposed symmetry-based numerical scheme may be observed.
The entire system may be solved using classical field methods with level-set specific ideas (such as the extension
velocity method) built in. Hence any existing scheme for the G-equation may readily be extendable. Since the
system (74) and (75) is polynomial, no near-singular behavior is to be expected for short times. Still, if strong
topology changes are expected, a re-initialization scheme may be employed to avoid numerical instabilities. Also,
it should be observed that there is a weak coupling, i.e., one-way coupling between (74) and (75).

Finally, two important things need to be pointed out. First, both numerical procedures described in Sect. 4 may
need a flame-front reconstruction algorithm, if the location of the flame front is of interest. Second, additional
schemes are needed if the G-equation is solved in conjunction with some fluid-dynamic transport equations. In
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the majority of practical applications, a density jump at the flame front needs to be accounted for, and hence
complementary algorithms need to be employed such as cut-cell methods.

In future research, it intended to perform numerical simulations for both of the above schemes, using a parallel
discontinuous Galerkin code that is currently being developed. In terms of further analysis of the G-equation (1), it is
of interest to classify all second-order conservation laws for 2D and 3D cases, and to seek higher-order conservation
laws, in particular, in the case of nonzero flow velocity.
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