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1. Introduction

Solow (1974) suggested that sustainability for an economy in the
face of depletion of an essential input such as oil for energy could be
contemplated under a program of substituting produced capital in
production for current use of oil capital. Essentially sustainability,
non-declining per capita consumption, follows for an economy with
“easy” substitution possibilities and asymptotic depletion of the stock
of the essential depleting input. Mitra (1983) observed that the same
degree of substitutability among inputs and asymptotic depletion was
compatible with constant per capita consumption under the never-
ending population growth. The economy was required to do “extra”
savings for the case of positive population growth, “extra” being in
excess of simply current , exhaustible resource rent. This striking case
of Mitra-sustainability was re-visited by Asheim et al. (2007). There
saving linear in output was linked directly to population growth of a
quasi-arithmetic sort.! This latter sort of growth is less than ex-
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! Mitra (2008) has cast the ABHMW is a quite general framework and establishes that
quasi-arithmetic population growth is the best that a sustainable economy can do, the savings
function being very general. He also obtains a form for sustainable savings, given a quite
general population growth function. This new savings function he labels: a generalized
Hartwick Rule since it resembles the “invest resource rents” rule in Hartwick (1977).
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ponential but remains unbounded.? Here we probe this model of
ABHMW to examine cases of non-sustainability. When we introduce
radio-active decay in produced capital, sustainability is not possible.
We then consider technical progress as a fix and observe that indeed
exogenous technical progress can restore sustainability, with both
population growth and a positive decay rate for produced capital.
Stiglitz (1974b) considered population growth and exhaustibility and
left us with the impression that technical progress was necessary for
the sustainability of per capita consumption. He however restricted
his attention from the start to the case of exponential population
growth. Our approach, following Mitra and ABHMW, is to start with a
savings function and then solve for the population growth that works
under constant per capita consumption. The population growth that
works for our new model, with radio-active decay in produced capital
and exogenous technical progress, is in the limit, exponential. The
“allowable” population growth that we solve for has an exponent that
depends on the parameters of the problem.

How should people uninterested in the technical details below
react to these new sustainability results? If one is interested in issues
of exhaustibility of say oil stocks one naturally turns first to the hard
case of the input from the depleting stock being essential to current

2 N(t) =T[A + Bt]® has the quasi-arithmetic form. For the case of growth, one usually
has A, B, T and Q) positive.
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production. This restriction pretty well forces one to consider
scenarios involving production with Cobb-Douglas production
function. In addition to inputs being essential, the Cobb-Douglas
case involves inputs in special substitutability relationships. What
the recent extentions of the original Solow (1974) model are
revealing is that “Cobb-Douglas substitutability” plus asymptotic
depletion of an essential input from an exhaustible stock are com-
patible with some quite counter-intuitive outcomes, namely those
involving per capita consumption remaining unchanging forever,
even with population increasing in non-trivial ways. Our work here
reminds us that a constant rate of decay in produced capital is a
powerful “destroyer” of Solow sustainability and that one is obliged
to turn to the familiar fix, namely exogenous technical progress in
order to restore programs with constant per capita consumption.
(This point was made recently by Cairns and Van Long (2006) in a
setting with no population growth.) Stiglitz (1974b) established that
exponential population growth was a powerful “destroyer” of
sustainability and he invoked exogenous technical change to restore
sustainability. Mitra (1983) and followers established that non-
trivial population growth was in fact compatible with sustainability
of the Solow (1974) sort and that a society was obliged to invest more
than resource rents in produced capital if it were to be in a sustainable
mode of development.

2. Exogenous technical progress and limiting exponential
population growth

We start with the accounting relation, C=Y — K — K. Here C is an
aggregate consumption flow, 6 is the constant rate of decay in
produced capital K, N is the labor force or flow input of labor to
current production, K is the net investment or net additions to the
current stock K— 6K, and Y=Y(t, K, R, N) is a production function.
The function R=R(t) is an extraction rate of some finite stock S(t)
(e.g. oil): R(t)=—S(t), and the total used stock Sy = f:R(t)dt is
assumed to be a finite number not exceeding the total available stock
Stot-

Exogenous technical change proceeds at the constant rate 6. The
basic account is then

C = Y(K,R.N,t)—K—5K, Y(K,R,N,t) = e"F(K,R,N). 1)
For the Cobb-Douglas case, with constant returns to scale,

Y = MKORPNTTAP — [eg‘K] *pBp1—ap

and we will see this term 2 as below central. g is then the rate of
capital augmenting technical change and g appears centrally in our
condition below on allowable rates of decay 6 for produced capital.
Roughly speaking then 6 and ? o are countering each other's impact on
the growmg economy. In per caplta terms, we define n=n(t)=N/N,

k= % T = 7, and y=Y/N =e"k“rP, and obtain
¢ =y—k—kjn + 9. )

We adopt a savings rule, linear in current output (following
ABHMW (2007)):

K + 6K = [B + )Y, y = const. 3)

BY is the resource rent and Y is the supplementary or additional
savings. Consumption is then given by C=[1—B—]Y, and thus

the requirement of constant per capita consumption ¢ = C/N = const
implies

Y N
y N “)

N ()

Thus the current model of sustainable per capita consumption with
an essential exhaustible resource and exogenous technical progress
is given by three nonlinear ordinary differential equations (ODE):
Egs. (3), (5), and (4), for three unknown functions K=K(t), R=R(t)
and N = N(t). It turns out that one is able to obtain the general solution
of this nonlinear ODE system as follows.

Since . =0 + X +BE 4 (1—a—p)N, we use Egs. (3)-(5) to

obtain
i) 2
= (a5 (%) g
§=B§”G%l*~ (8)

In per capita terms, we obtain

(1)
k=py- 2% (10
%—; = % (11)

In the savings rule Eq. (10) By is the per capita resource rent. For
ABHMW, the corresponding savings rule reduced to By = k. “Supple-
mentary savnngs was then yy =kn. Our supplementary savings are

Yy = kn + 8k—ak For Solow (1974) yy =0.

The two equations, namely Eqgs. (10) and (11), imply that y=0

(which follows from substitution into ¥ =6 + oc% + B;r.) The gen-

eral solution of the coupled nonlinear ODE system of Eqgs. (10) and
(11) is

k= kit) = Ae' + —a§y7 (12)

r=r(t) = Bk(t)] © e " (13)
where A, B=const are two constants of integration, and

y = " k* ()" (t) = B® = const (14)

as expected. The long-term behaviour of this solution (t— ) is
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Given the solution in Eqgs. (12) and (13), we observe that the
population dynamics of Eq. (6) integrates yielding

N = N(t) = Ny[k(t)]elel +7) ) (15)

with k(t) given by Eq. (12). Since k(t) — const as t — «, the asymptotic
behaviour of such population is either exponential growth or
exponential decay, depending on the sign of the expression
2(1 +¥)—8. From Egs. (12),(13), and (15) we readily find the
input capital K(t) = N(t)k(t) and oil extraction flow R(t) = N(t)r(t) to
be

K = K(t) = No[k(t))F * el 9=l (16)

R = R(t) = NoBlk(t)] 7 els' * )] (17)

We assume that ae>y. This figures somewhat tangentially below.
The scenario compatible with a finite initial stock of oil requires that
0<j;R(t)dt< + o, Since k(t) is bounded, from Eq. (17) it follows that
the oil stock is finite if and only if

Since k(t) tends to a constant in the limit, for growth in the
economy (i.e. for N(t) and K(t) increasing) we require that the factor
in the exponent, namely

6 Y
&(1 + E)—i">>0.

We have then an upper and lower bound on a value of 6 such that
the economy is feasible and expanding®; namely

81<d<d, (18)

where

N 0 Y—o . 0 Y
= (1 5= 2 (14 7).

The intuition here is that a sufficiently high value of decay, 6,
induces a drag in the economy in order to keep long-run production
within the given initial resource stock, but too large a value of 6 rules
out output growth compatible with the population growing, as
opposed to shrinking. The lower bound on 6 namely 67 will decline for
g smaller (less technical progress) or y smaller (less supplementary
savings). Roughly speaking a 6 “too small” implies “too rapid” an
accumulation of K(t) relative to the availability of natural resources.

2.1. Examples of the solution curves for various initial conditions

In Fig. 1, we show examples of solutions (15), (16), (17) that exhibit
exponential decay (6>63) and exponential growth (6<63). The
constant values used are «=0.65, 3=0.1, y=0.23, 6=0.0025; the
initial conditions are N(0)=R(0)=1, Ko=1000. (Our parameter
values have not been selected to approximate the stylized facts.)
Solution curves are plotted for 6=0.0015; 6 =67=0.0046; 6=0.017;
6=05=0.0296; 6=0.0444. Thus the first solution curve corresponds
to infinite stock oil; third solution curve corresponds to Eq. (18)
(exponentially growing population with finite oil stock), fifth solution

3 The economy will be feasible and contracting when & > Z{l)’ :): V}.
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Fig. 1. Profiles of K(t), R(t) and N(t) of the solution (15), (16), (17) of the model of
sustainable consumption with exogenous technical progress (Section 2). Here o= 0.65,
B=0.1, y=0.23, 6=0.0025. The initial conditions are N(0)=R(0)=1, Ko=1000.
Curves are given for values of 6 = (0.0015; 67 =~0.0046; 0.017; 65=~0.0296; 0.0444). This
range of 6 includes cases of infinite and finite oil stock (6s67), growing and shrinking
population (6s63), as well as boundary cases § = 67, 63.

curve corresponds 6>65 (exponentially shrinking population with
finite oil stock). Solution curve two corresponds to the boundary case
6=257 with constant rate of oil extraction R(t) =const and growing
population. Solution curve four corresponds to the boundary case
6= 2065 with finite oil stock and constant population: N(t)=const,
K(t) =const.
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3. Population growth exponential and exogenous

Consider the special case of n constant (Stiglitz (1974a)). This
indicates that k is constant in the per capita version of the savings
rule (3):

ok
Yy =[n+ E)]k—a
in addition to y = const. Hence we have
y_ _9
Y=+ 0=
and the condition

(n+8)—9 > 0.
o

We insert the expression for% in Eq. (7) to observe that

= =

= %(n('y—oc)—ott‘) + 0).

This must be negative for sustainable consumption to be feasible in
this “balanced growth” solution. For the Stiglitz case of =0 and n>0,
we thus require (n(y—a)+6) negative or a>7y (noted by Stiglitz
(1974a; Proposition 3)). Stiglitz's saddlepath is always achievable,
given the correct initial value for R(t).

4. No technical progress

We return to our original model above with population change
endogenous. We specialize now to the case of no technical progress.
This case is basically the one investigated in detail in Asheim et al.
(2007) (i.e. 5=6=0 in our original model.) The principal result in
ABHMW was that supplementary savings linear in current output, yy
“allows for” population growth with constant per capita consumption
of a quasi-arithmetic form. The converse is also true: namely quasi-
arithmetic population growth implies extra savings linear in current
output. Quasi-arithmetic growth takes the form N(t) = {[A + Bt]* for
¢, A, A and B positive constants. The value of vy affects the rate of
population growth via the value of A but not the form of the function.
This is a major extension of accepted views of sustainability (e.g.
Solow (1974)) since per capita consumption can be held constant
forever, even with an ever increasing population and a finite stock of
the essential resource input.

The interesting new special case of our general model above has
0=0 but decay 6 positive. This is an extension of ABHMW with a
new non-trivial solution and a new behaviour, namely collapse for the
economy. We have the same core system here (Eqs. (9)-(11) with
0=0), yielding y = 0. We can re-solve the model above with both n(t)
and 6 non-zero. The model is now

k= Py, (19)
r oy

S=— (20)
N_ Yy

§ ===+ (%) 1)

Now extra savings yy covers nk plus 6k. Recall that k=pk%"
{ _PY N _ [B+vy]ay_ F_ —okorP . . R _
=ty = [P0 and = =4 implies ¢ =

=— {%]%—8 For the case of N(t) decreasing, the rate

=| =

implies
_y \
k

zlz

of decline in R(t) will be faster. One might interpret this as sort of
conservation-oriented for oil.

Using y = const, the solution of ODEs (19), (20) is readily found
to be

k = k(t) = b, + byt, (22)

r=r(t)=(B"'by)"/"lb, + byt (23)
The population dynamics (21) are therefore satisfied by

N(t) = Be (b, + b,t)"'"

for B a positive constant. This form for N(t) implies exponential
decline in N(t) in the limit. That is, population must decline if constant
consumption is to be maintained, with produced capital subject to
radio-active decay at rate 4. poA /B
For oil use dynamics R(t)=N(t)r(t) we have R(t) = (ﬁ)
Be““(bl + bzt)7¥
Also k(t)=N(t)k(t) yields

L

K(t) = Be ™™ (by + byt)' P,

These solutions are very similar to those above for the Mitra
(1983)-ABHMW model* with quasi-arithmetic population growth
except that each has the new term, e, This latter implies decline at
rate 6 in the limit for K, N and R. This suggests that the level of per
capita consumption sustainable in this economy will be zero.

5. Concluding remark

We have extended the recent work in Asheim et al. (2007) to come
up with new interesting scenarios and new closed form solutions. Of
interest is the sensitivity of the ABHMW model to a positive rate of
decay for produced capital. Expansion turns to inevitable collapse.
And we get a new picture of expansion in Stiglitz (1974b) with our
addition of decay in produced capital. A fairly natural collapse scenario
emerges as well as a somewhat richer range of possibilities for ex-
pansion in “balanced growth”.
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