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Abstract A family of new PDE systems of one-dimensional nonlinear elastodynam-
ics, which are nonlocally related to the classical Lagrange and Euler formulations, is
derived. These new PDE systems provide alternative equivalent descriptions of the
one-dimensional nonlinear elasticity model. In particular, nonlocally related sys-
tems are used to find nonlocal symmetries of the Euler system for various forms
of constitutive and loading functions. Examples of new dynamical solutions arising
as group invariant solutions with respect to such nonlocal symmetries are construc-
ted. Another application of nonlocally related systems considered in this paper is
the construction of nonlocal conservation laws. Examples of nonlocal conservation
laws are derived for several classes of stress-strain relations and loading functions.

1 Introduction

Analytical studies of nonlinear dynamical elasticity models, and especially, the
problem of finding exact solutions, have attracted significant attention of researchers
in recent years. Lie symmetries are widely used in the analysis of contemporary non-
linear elasticity models, especially for the calculation of similarity (invariant) solu-
tions, arising from symmetry reduction (see [1–4] and further references in [7]). Fo-
cusing on nonlinear elasticity, it is well known that very few closed-form solutions
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of BVPs for compressible elasticity have been obtained in the literature (contrary
to incompressible elasticity), due to the absence of the kinematic incompressibility
constraint, as pointed out in [8,9]. Lie group analysis is of further interest in setting
up numerical schemes preserving the group properties of an initial boundary value
problem (BVP) [5].

The problem of finding conservation laws (full divergence expressions) that hold
for a system of partial differential equations (PDEs) is an important counterpart to
symmetry analysis. In elasticity theory, one well-known application of conservation
laws is the Eshelby energy-momentum tensor, and a related path-independent in-
tegral, which governs the energy release rate at a singularity [10]. Symmetries play
moreover an important role in Eshelbian mechanics, since invariance of a suitable
functional under translations in material space (corresponding to horizontal vari-
ations) highlights the Eshelby tensor in the resulting equilibrium equation [6]. In a
series of papers, Olver studied conservation laws and related path-independent in-
tegrals in linear elastostatics within the framework of hyperelasticity (see [11] and
references therein). Mathematically, conservation laws can be systematically cal-
culated, both for variational problems (Noether’s theorem) and for non-variational
problems [13, 14].

The present contribution is organized as follows. In Section 2, the Euler and
Lagrange PDE systems of one-dimensional systems of nonlinear elastodynamics
are presented. In Section 3, a nonlocal relation between the Euler and Lagrange
PDE systems is derived, and using conservation laws of the Euler system, a set
of additional PDE systems, equivalent but nonlocally related to both the Euler and
Lagrange PDE systems, is constructed. In Section 4, nonlocal symmetries of the
Euler system are classified, arising as point symmetries of its nonlocally related
systems. Such nonlocal symmetries are used in Section 5 to derive an example of
an exact invariant solution of a nonlinear elastodynamics BVP, corresponding to a
nonlinear stretching. In Section 6, one of the considered nonlocally related PDE
systems is used to derive new nonlocal conservation laws of the Euler equations of
nonlinear elastodynamics.

2 Nonlinear Elasticity: Boundary Value Problems in 1D

In the one-dimensional situation, since the transformation gradient is the ratio of
initial to actual density, F = q = ρ0/ρ, the Cauchy stress is given by σ = σ(ρ).
The 1D Euler system is given by [7]

E{x, t ; v, σ, ρ} :
⎧
⎨

⎩

ρt + (ρv)x = 0,

σx + ρf (x, t) = ρ(vt + vvx),

σ = K(ρ).

(1)

In this paper we will only consider conservative forces f (x, t) = f (x).
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The independent variables are the Eulerian coordinates (x, t), the dependent vari-
ables are (ρ, v, σ ), and some freedom of choice is allowed for the possible forms
of the load per unit mass f = f (x) and the material’s constitutive response, i.e.
the function K = K(ρ). Dimensionless variables are adopted in the sequel, follow-
ing [7].

The relationship between the first Piola–Kirchhoff stress and the Cauchy stress
leads in 1D to σ = T . Therefore, the 1D Lagrange system in dimensionless vari-
ables is given by

L{y, s ; v, σ, q, x} :

⎧
⎪⎪⎨

⎪⎪⎩

q = xy,

v = xt ,

vt = σy + f (x),

σ = K(1/q).

(2)

In the Lagrange system, the independent variables are the Lagrangian coordinates
(y, t), the dependent variables are (x, v, q, σ ), and the free functions are f = f (x)

and K1(q) ≡ K(1/q).

3 Nonlocally Related Systems of 1D Nonlinear Elasticity

Consider a PDE system R{x ; u} of N PDEs of order k with n independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)), given by

Rσ [u] ≡ Rσ (x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (3)

PDE systems nonlocally related to R{x ; u} arise in the following two simple ways
[12].

(a) If the system R{x ; u} has a conservation law

Di�
i [u] = 0, (4)

then one may accordingly introduce nonlocal (potential) variable(s) v, satisfying
corresponding potential equations. The union of the set of equations of R{x ; u}
and the potential equations yields a potential system S{x ; u, v}.

(b) Exclusion of one of the dependent variables of R{x ; u} by differential com-
patibility relations (e.g. vxt = vtx) yields a nonlocally related subsystem.
For example, if u1 can be excluded, the corresponding subsystem is denoted
R{x ; u2, . . . , un}.

Combinations of the above two constructions, including their use in combination
with interchanges of dependent and independent variables, may be used to obtain
further nonlocally related PDE systems.

Solution sets of nonlocally related PDE systems are equivalent, in the sense that
the solution set of one such system can be found from the solution set of of any
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other one. Therefore any method of analysis (qualitative, perturbation, numerical,
etc.) that fails to work for a given PDE system, especially a method that is not
coordinate-dependent, could turn out to be successful when applied to such a non-
locally related PDE system. In particular, for a given PDE system, through Lie’s
algorithm applied to a nonlocally related system, one can systematically calculate
nonlocal symmetries (which in turn are useful for obtaining new exact solutions
from known ones), construct (further) invariant and nonclassical solutions, as well
as obtain linearizations (see e.g. [7, 12]). One could also obtain nonlocal conserva-
tion laws of a given PDE system, through the application of a standard procedure
for finding local conservation laws to a nonlocally related system (see Section 6).

We now construct a tree of nonlocally related systems for 1D nonlinear elasto-
dynamics, starting with the Euler system E{x, t ; v, σ, ρ} (1).

The first equation of the system E{x, t ; v, σ, ρ} (1) is in the form of a conser-
vation law (mass conservation) as it stands; hence a potential w can be introduced.
The corresponding potential system takes the form

EW{x, t ; v, σ, ρ,w} :

⎧
⎪⎪⎨

⎪⎪⎩

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(5)

It is remarkable that a local 1:1 point transformation (an interchange of a de-
pendent and independent variable) of the system EW{x, t ; v, σ, ρ,w} with w = y

and t treated as independent variables, and x, v, σ, q = 1/ρ as dependent vari-
ables, directly yields the Lagrange system L{y, s ; v, σ, q, x} (2). Hence, the sys-
tems EW{x, t ; v, σ, ρ,w} (5) and L{y, s ; v, σ, q, x} (2) are locally related to
each other (by a point transformation), but nonlocally related to the Euler system
E{x, t ; v, σ, ρ} (1). A similar connection exists in higher dimensions, expressed by
the kinematic relation from configurational mechanics given by

y,t + F−1.x,t = 0

In the Lagrange system L{y, s ; v, σ, q, x} (or EW{x, t ; v, σ, ρ,w}), the inde-
pendent variable y = w = ∫

ρ(x, t)dx is a mass coordinate.
Note that in the case of linear elastodynamics, σ = K(ρ) = ρ0/ρ with lin-

ear loading f (x), the system EW{x, t ; v, σ, ρ,w} (5) is a nonlinear PDE system,
whereas the locally equivalent system L{y, s ; v, σ, q, x} (2) becomes linear.

To further extend the tree of nonlocally related systems of one-dimensional non-
linear elasticity equations, one can use additional conservation laws and consider
potential systems of the PDE systems E{x, t ; v, σ, ρ}, EW{x, t ; v, σ, ρ,w} and/or
L{y, s ; v, σ, q, x}. In particular, the Euler system E{x, t ; v, σ, ρ} (1) has the con-
servation law

Dt(v − f (x)t) + Dx

(
v2

2
− M(ρ)

)

= 0, (6)
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where M(ρ) = ∫
K ′(ρ)

ρ
dρ. Introducing a potential variable r(x, t), one obtains the

potential equations

rx = v − f (x)t; rt = M(ρ) − v2

2
(7)

The Euler system E{x, t ; v, σ, ρ} (1) also has a conservation law corresponding
to the conservation of energy:

Dt

(

ρ
v2

2
−

∫

M(ρ)dρ − ρ

∫

f (x)dx

)

+Dx

(

ρv

[
v2

2
− M(ρ) −

∫

f (x)dx

])

= 0,

(8)
which yields the potential equations

sx = ρ
v2

2
−

∫

M(ρ)dρ − ρ

∫

f (x)dx; st = −ρv

[
v2

2
− M(ρ) −

∫

f (x)dx

]

.

(9)
The nonlocal variable

s(x, t) =
∫ (

ρ
v2

2
−

∫

M(ρ)dρ − ρ

∫

f (x)dx

)

dx

is an “energy coordinate", analogous to the mass coordinate w and the “velocity co-
ordinate" r . The three conservation laws (mass, average velocity and energy) yield
the following seven distinct nonlocally related (potential) systems of the Euler sys-
tem E{x, t ; v, σ, ρ} [12]:

• Three singlet potential systems: EW{x, t ; v, σ, ρ,w} (5),

ER{x, t ; v, σ, ρ, r} :

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

σ = K(ρ).

(10)

and

ES{x, t ; v, σ, ρ, s} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫

f (x)dx,

st = −ρv

[

v2/2 − M(ρ) −
∫

f (x)dx

]

,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(11)

• Three couplet potential systems:
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ERW{x, t ; v, σ, ρ, r,w} :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

wx = ρ,

wt = −ρv,

σ = K(ρ).

(12)

ESW{x, t ; v, σ, ρ, s,w} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫

f (x)dx,

st = −ρv

[

v2/2 − M(ρ) −
∫

f (x)dx

]

,

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(13)
and

ERS{x, t ; v, σ, ρ, r, s} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫

f (x)dx,

st = −ρv

[

v2/2 − M(ρ) −
∫

f (x)dx

]

,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(14)
• One triplet potential system

ERSW{x, t ; v, σ, ρ, r, s,w} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)x = 0,

rx = v − f (x)t,

rt = M(ρ) − v2/2,

sx = ρv2/2 −
∫

M(ρ)dρ − ρ

∫

f (x)dx,

st = −ρv

[

v2/2 − M(ρ) −
∫

f (x)dx

]

,

wx = ρ,

wt = −ρv,

σx + ρf (x) = ρ(vt + vvx),

σ = K(ρ).

(15)

(For f (x) = const, one can obtain additional nonlocally related PDE sys-
tems, as discussed in [7].) Hence, for arbitrary forms of the constitutive
functions K(ρ) and f (x), one has a tree of equivalent and nonlocally
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Fig. 1 Tree of nonlocally-
related systems of nonlinear
elasticity. (The dotted box
corresponds to nonlocally
related systems that arise for
the case f (x) = const [7].)

related systems of nonlinear elasticity, consisting of eight PDE systems
E{x, t ; v, σ, ρ}, L{y, s ; v, σ, q, x} ⇔ EW{x, t ; v, σ, ρ,w}, ER{x, t ; v, σ, ρ, r},
ES{x, t ; v, σ, ρ, s}, ERW{x, t ; v, σ, ρ, r,w}, ESW{x, t ; v, σ, ρ, s,w},
ERS{x, t ; v, σ, ρ, r, s}, and ERSW{x, t ; v, σ, ρ, r, s,w} (Figure 1). All non-
locally related PDE systems in the tree provide equivalent descriptions of nonlinear
1D elastodynamics, and thus naturally extend the traditional Lagrangian and
Eulerian viewpoints.

4 Point and Nonlocal Symmetry Classification of the Lagrange
System EW{x, t ; v, σ, ρ, w} ⇔ L{y, s ; v, σ, q, x}

A symmetry of a system of PDEs is any transformation of its solution manifold
into itself (i.e., a symmetry transforms any solution to another solution of the same
system).

Lie’s algorithm is used to find one-parameter (ε) Lie groups of point transform-
ations (point symmetries)

(x∗)i = f i(x, u; ε), i = 1, . . . , n,

(u∗)j = gj (x, u; ε), j = 1, . . . ,m,
(16)

that leave invariant a given system of N partial differential equations R{x; u} [1–4]
such that Rρ [u∗] = 0, ρ = 1, . . . , N , if and only if Rσ [u] = 0, σ = 1, . . . , N .

Global Lie transformation groups (16) are in one-to-one correspondence with
local transformations

(x∗)i = xi + εξ i(x, u) + O(ε2), i = 1, . . . , n,

(u∗)j = uj + εηj (x, u) + O(ε2), j = 1, . . . ,m,
(17)
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where ξ i, ηj are components of a vector field (infinitesimal generator)

X = ξ i(x, u)
∂

∂xi
+ ηj (x, u)

∂

∂uj
(18)

tangent to the solution manifold of the given PDE system.
For a given PDE system, nonlocal symmetries called potential symmetries can

arise naturally by applying Lie’s algorithm to a related potential system. Such a
symmetry is a nonlocal symmetry when at least one component of the symmetry
generator has an essential dependence on a nonlocal variable. The complete point
symmetry classification for the potential system EW{x, t ; v, σ, ρ,w} (5) in terms
of its constitutive and loading functions was presented in [7]. In particular, it was
found that in the cases

K(ρ) = 1

2

(

arctan
1

ρ
+ ρ

ρ2 + 1

)

or K(ρ) = 1

4
ln

ρ − 1

ρ + 1
− 1

2

ρ

ρ2 − 1
,

for a linear body force f (x) = x, the potential system EW{x, t ; v, σ, ρ,w} (5)
has two point symmetries which are nonlocal symmetries of the Euler system
E{x, t ; v, σ, ρ} (1). One of these nonlocal symmetries is used in the following
section to construct a corresponding exact invariant solution of the Euler system
E{x, t ; v, σ, ρ} (1).

5 Calculation of Group Invariant Solutions Arising from the
Lagrange System EW{x, t ; v, σ, ρ, w} (5)

The general method for finding invariant solutions following from local symmetries
is presented in detail in [1, 4]. For invariant solutions arising from nonlocal (poten-
tial) symmetries, see also [15].

Let G be a one-parameter Lie group of point symmetries of the potential system
EW{x, t ; v, σ, ρ,w} (5), with an infinitesimal generator

X = ξ
∂

∂x
+ τ

∂

∂t
+ ηv ∂

∂v
+ ηρ ∂

∂ρ
+ ηw ∂

∂w
. (19)

Here ξ, τ, ηv, ηρ and ηw are functions of x, t, v, σ, ρ and w. The corresponding
invariant solutions

(v, ρ,w) = (V (x, t), R(x, t),W(x, t)) (20)

of the potential system EW{x, t ; v, σ, ρ,w} satisfy

X ·
⎡

⎣
v − V (x, t)

ρ − R(x, t)

w − W(x, t)

⎤

⎦

∣
∣
∣
∣
∣
∣
(v,ρ,w) = (V (x,t),R(x,t),W(x,t))

= 0 (21)
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Fig. 2 Stress-strain curve
for the constitutive relation
σ = K(ρ) given by (22).
Here q = 1/ρ.

0
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0.4

0.6

0.8

1 2 3 4 5

σ

q

as well as the system EW{x, t ; v, σ, ρ,w} (5). We now calculate specific invariant
solutions of the potential system EW{x, t ; v, σ, ρ,w} (5) arising as reductions from
a point symmetry that is a potential symmetry of the Euler system E{x, t ; v, σ, ρ}
(1).

We choose the constitutive relation σ = K(ρ) given by

σ = K(ρ) = 1

2
arctan

1

ρ
+ 1

2

ρ

ρ2 + 1
, (22)

(see Figure 2), and a linear body force f (x) = x. In this case, the potential Euler
system EW{x, t ; v, σ, ρ,w} (5) has the point symmetry

Y4 = et

ρ

[
∂

∂t
+ (v + ρw)

∂

∂x
+ (x + ρw)

∂

∂v
− ρ(ρ2 + 1)

∂

∂ρ
− ρ(x − v)

∂

∂w

]

,

which is clearly a nonlocal symmetry of the Euler system E{x, t ; v, σ, ρ} (1), since
its x- and v-components depend on the potential variable w.

The physical dependent variables ρ, v,w, σ are found as functions of x and t .
The velocity v(x, t) solves the implicit equation:

v(x, t) = et

(
C(U)

A(U)
− U

A2(U)

)

(23)

where A(U) and C(U) are given by

A(U) =
√

U2 + α2, C(U) = 1

2

αU + (U2 + α2)
(
β − arctan U

α

)

α(U2 + α2)
, (24)

with α, β constants of integration, and the similarity variable given by U = et(x −
v(x, t)).

For every value of x and t , the solution v(x, t) of (23) can be found numerically.
After v(x, t) (and thus the similarity variable U ) is determined, the density and the
mass coordinate are obtained from the formulas
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Fig. 3 Solution curves of
the implicit equation (23)
defining the material ve-
locity v(x, t) (α = 2;
t = 1, 1.2, 1.4, 1.6).
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ρ(x, t) =
√

U2 + α2
√

e2t − U2 − α2
, w(x, t) = v(x, t) − x

ρ(x, t)
.

We seek a solution describing a nonlinear deformation of an elastic slab x0 <

x < L(t), attached at x = x0 (i.e., subject to the boundary condition v (x0, t) = 0).
We use the boundary conditions

v (x0, t) = 0, ρ (x0, t) = R(t), w(x0, t) = 0. (25)

The latter boundary condition is due to the definition of the mass coordinate (po-
tential variable): w(x, t) = ∫ x

x0
ρ(s, t)ds. When substituted into equation (23), this

boundary condition yields β = 0, x0 = 0.

The velocity v(x, t) following from equation (23) turns out to be a three-valued
function for 0 ≤ x < x∗(t), where x∗(t) is a bifurcation point. Sample curves of
v(x, t) for α = 2 and times t = 1, 1.2, 1.4, 1.6 are shown in Figure 3.

From the three possible values of v(x, t) that arise from the implicit equation
(23), only one branch is physical. Indeed, one may check that only the middle branch
(the one closest to v(x, t) = x) yields a real-valued density function [7].

It is also important to note that the geometrical velocity of the bifurcation point
v∗(t) = dx∗(t)/dt is always greater than the physical velocity v(x∗(t), t) at the bi-
furcation point. The expression for the total mass between x = 0 and the bifurcation
point x∗(t) (per unit area of the slab cross-section) is given by

w(x∗(t), t) = 1 − αe−t , (26)

which is an increasing function of time, in agreement with the previous remark. The
invariant solutions are defined for 0 < x < x∗(t). If the initial length of the slab
L(t0) is chosen (0 < L(t0) < x∗(t0)), then the solution is regular for all times.

The family of invariant solutions presented in this section describes the nonlinear
deviation of a trivial “homogeneous stretching" solution v(x, t) = x, ρ(x, t) = e−t
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of the Euler system E{x, t ; v, σ, ρ} (1). A specific numerical example of such an
invariant solution was constructed in [7].

6 Conservation Laws of Dynamical Nonlinear Elasticity

For a PDE system R{x ; u} (3), one can consider the problem of finding local conser-
vation laws of the form (4). The fluxes �i[u] may depend on x, u and derivatives of
u up to an arbitrary order. In practice, conservation laws are used for direct physical
interpretation, analysis, and development of efficient numerical methods.

The direct method of finding conservation laws involves considering a linear
combination of equations of a given PDE system (3) with a set of multipliers {�σ },
which may depend on independent and dependent variables and their derivatives. A
linear combination yields a conservation law (4) if and only if

�σ [U ]Rσ [U ] ≡ Di�
i[U ] (27)

for some fluxes {�i[U ]} (here U denotes a vector of arbitrary functions of x). Then
the conservation law Di�

i[u] = 0 holds on the solutions U = u(x) of the system
(3).

In the direct method, the determining equations that yield sets of multipliers
{�σ [U ]} are found from the known fact: an expression is a divergence expression
if and only if it is annihilated by Euler operators with respect to all dependent vari-
ables [2, 13, 14]:

EUk

(
�σ [U ]Rσ [U ]) = 0, k = 1, . . . ,m. (28)

Here U = (U1(x), . . . , Um(x)) is a set of arbitrary functions, and EUk is the Euler
operator with respect to Uk , given by

EUk = ∂

∂Uk
− Di

∂

∂Uk
i

+ · · · + (−1)jDi1 · · · Dij

∂

∂Uk
i1···ij

+ · · · .

Symbols Uk
i1···ij denote partial derivatives ∂j Uk

∂xi1 ...∂x
ij

.

Equations (28) are linear determining equations for the multipliers {�σ [U ]}. In
practice, to perform a computation, one chooses the maximal order of derivatives
q ≥ 0 in the dependence of multipliers �σ [U ]. When the multipliers are determ-
ined, one finds the corresponding set of fluxes of the conservation law (4) either by
solving (27) directly, or using integral homotopy operators [13, 14].

Note that the direct method does not require the PDE system to have a variational
formulation, and does not use any version of Noether’s theorem.

Now our goal is to construct examples of nonlocal conservation laws of the Euler
system E{x, t ; v, σ, ρ} (1) of nonlinear elastodynamics, which arise as local con-
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servation laws of a potential system of E{x, t ; v, σ, ρ}. The following important
theorem holds [16].

Theorem 1. Let S{x ; u, v} given by

Sµ[u, v] ≡ Sµ(x, u, v, ∂u, ∂v, . . . , ∂ku, ∂kv) = 0, µ = 1, . . . ,M (29)

be a potential system of a PDE system R{x ; u} (3), where v = (v1, . . . , vl ) are
nonlocal (potential) variables. A local conservation law

�̃µ[u, v]Sµ[u, v] = Di�
i[u, v] = 0 (30)

of the potential system S{x ; u, v} (29) yields a nonlocal conservation law of R{x ; u}
(3) if and only if the multipliers �̃µ[u, v] essentially depend on the nonlocal vari-
able(s) v.

We now seek local conservation laws of the potential system EW{x, t ; v, σ, ρ,w}
(5) that yield nonlocal conservation laws of the Euler system E{x, t ; v, σ, ρ} (1),
i.e., conservation laws of the potential system EW{x, t ; v, σ, ρ,w} (5) arising from
one or more of multipliers with an essential dependence on the potential variable w.
One may write

EW{x, t ; v, σ, ρ,w} :

⎧
⎪⎪⎨

⎪⎪⎩

wx − ρ = 0,

wt + ρv = 0,

K ′(ρ)

ρ
ρx + f (x) − (vt + vvx) = 0.

(31)

For the conservation law multipliers, we use the ansatz

�̃µ = �̃µ(x, t, V ,R,w, Vx, Vt ), µ = 1, 2, 3,

and require that for arbitrary functions V (x, t), P(x, t), W(x, t), one has

�̃1(x, t, V , P,W,Vx, Vt )(Wx − R) + �̃2(x, t, V , P,W,Vx, Vt )(Wt + RV )

+�̃3(x, t, V , P,W,Vx, Vt )

(
K ′(R)

R
Rx + f (x) − (Vt + V Vx)

)

≡ Di�
i[U,V ].

(32)
Then on solutions V = v, P = ρ,W = w of the PDE system EW{x, t ; v, σ, ρ,w}
(5), the expression (32) becomes a conservation law.

Subsequent application of the Euler operators with respect to V,P and W to
the left-hand side of (32) yields determining equations for the multipliers �̃µ,
µ = 1, 2, 3. From the determining equations, it follows that one or more of the
multipliers essentially depend on W , and thus a nonlocal conservation law of the
Euler system E{x, t ; v, σ, ρ} (1) arises in the following cases.

Case 1: f (x) = f1 = const, K(ρ) = ρ1/3

(Aρ+B)1/3 + C, A,B �= 0. In this case, the
multipliers are given by
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�1 = V − f1t + Vx

(

f1
t2

2
− x − 3AW

B

)

,

�2 = V 2 + xVt + f1

[
t2

2
(1 − Vt) − x − tV

]

+ 3AW

B
(Vt − f1) + P−2/3

(AP + B)1/3
,

�3 = P

(

f1
t2

2
− x − 3AW

B

)

− 2W.

(33)
Case 2: f (x) = f0x+f1, K(ρ) = Aρ1/3+B, A, B, f0, f1 = const. The multipliers
are given by

�1 = f0(V − xVx) − f1Vx,

�2 = −f 2
0 x2 + f0(x(Vt − 2f1) + V 2) + f1(Vt − f1) + Af0P

−2/3,

�3 = −f0(xP + 2W) − f1P.

(34)

Case 3: f (x) = f1, K(P) = Aρ1/3 + B. The multipliers are given by

�1 = −f1t + V − Vx

(

x − f1
t2

2

)

,

�2 = f 2
1 − f1

(

x + tV + t2

2
Vt

)

+ V 2 + xVt + AP−2/3,

�3 = −
(

x − f1
t2

2

)

P − 2W.

(35)

Case 4: f (x) = f0x + f1, K(ρ) = ρ0/ρ, ρ0 = const. This case corresponds
to linear elasticity with linear loading. Here one finds that the potential system
EW{x, t ; v, σ, ρ,w} (5) has an infinite number of conservation laws corresponding
to nonlocal conservation laws of the Euler equations E{x, t ; v, σ, ρ}. This reflects
the fact that for linear elasticity with linear loading, the system EW{x, t ; v, σ, ρ,w}
(5) can be linearized by a point transformation [17]. Indeed, this transformation is
the interchange of dependent and independent variables that transforms the system
EW{x, t ; v, σ, ρ,w} (5) to the Lagrange system L{y, s ; v, σ, q, x} (2) (see Sec-
tion 3).

7 Conclusions

In this paper, we presented the complete set of dynamic nonlinear elasticity equa-
tions in Lagrangian and Eulerian formulations, as well as in several other equivalent
formulations. The corresponding nonlocally related systems were used for the clas-
sification of nonlocal symmetries and construction of examples of invariant solu-
tions of the Euler system E{x, t ; v, σ, ρ} (1). Moreover, we demonstrated how non-
local conservation laws can be obtained for the Euler system through consideration
of local conservation laws of its potential system.
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Future work will include flux computation, interpretation and applications of the
nonlocal conservation laws of the Euler system E{x, t ; v, σ, ρ} (1) obtained in this
paper, and also the study of conservation laws of two-dimensional models of non-
linear elasticity.
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