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Abstract

For static reductions of isotropic and anisotropic magnetohydrodynamics plasma equilibrium models, a complete classification of admitted
point symmetries and conservation laws up to first order is presented. It is shown that the symmetry algebra for the isotropic equations is finite-
dimensional, whereas anisotropic equations admit infinite symmetries depending on a free function defined on the set of magnetic surfaces.
A direct transformation is established between isotropic and anisotropic equations, which provides an efficient way of constructing new exact
anisotropic solutions. In particular, axially and helically symmetric anisotropic plasma equilibria arise from classical Grad–Shafranov and JFKO
equations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Systems of isotropic Magnetohydrodynamics (MHD) and
anisotropic Chew–Goldberger–Low (CGL) plasma equations,
in particular, their equilibrium reductions, are used for descrip-
tion of plasmas in controlled thermonuclear fusion research,
geophysics and astrophysics (Earth magnetosphere, star forma-
tion, solar activity), and laboratory and industrial applications
[1–3].

MHD and CGL systems, as well as their equilibrium ver-
sions, are essentially nonlinear systems of partial differential
equations in 3D space. Knowledge of physically meaningful
exact solutions and analytical properties of these systems (such
as symmetries, conservation laws, stability criteria, etc.) is im-
portant for understanding the core properties of the underlying
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physical phenomena, for modelling, and for the development of
appropriate numerical methods.

Common ways of finding exact analytical solutions to such
systems include reduction by a symmetry group (similarity so-
lutions), the use of symmetry transformations to generate new
solutions from known ones, and the use of mappings from so-
lutions of other equations. The first approach applied to axially
and helically symmetric static MHD configurations has yielded
the well-known Grad–Shafranov [4–6] and JFKO [7] equa-
tions, and led to several classes of exact solutions (e.g. [8–11]).
A different approach that makes use of equilibrium solution
topology (general existence of 2D magnetic surfaces) was used
in [12].

A symmetry of a system of PDEs is any transformation of
its solution manifold into itself. Several types of symmetries,
such as continuous (point, contact, higher-order, nonlocal) Lie
groups of symmetries and discrete symmetries, can be obtained
algorithmically (e.g. [13–17]). In particular, using Lie’s algo-
rithm for solving symmetry determining equations, one can dis-
cover one-parameter, multi-parameter, and infinite-dimensional
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symmetry groups. Symmetries are used as transformations that
yield new solutions and new conservation laws of differen-
tial equations from known ones, and also for finding particular
symmetry-invariant solutions. Knowledge of symmetries is es-
sential to answer the question about the possibility of mapping
a given PDE system into a target PDE system or a class of PDE
systems.

An important complement to the full symmetry structure of
a PDE system is knowledge of its conservation law structure.
Local conservation laws contain important information about
physical properties of a model under consideration, and pro-
vide conserved norms used in analysis of solutions and also in
development of numerical methods. Conservation laws can be
found algorithmically by a direct construction method in terms
of multipliers that satisfy determining equations related to the
adjoint of the symmetry ones [18,19], without the need for any
Lagrangian. In particular, this method allows one to by-pass all
limitations of Noether’s theorem.

The Letter is organized as follows. In Section 2, we describe
the static plasma models under consideration, as well as their
basic properties, and state the transformation that relates the
two models. In Section 3, we classify and compare point sym-
metries of MHD and CGL static plasma equilibrium systems. In
particular, we demonstrate that the static CGL system admits an
infinite-dimensional symmetry group (which appears to be re-
lated to the infinite-dimensional symmetry group of dynamic
CGL equilibrium system [20]). We derive infinitesimal and
global representations of the admitted symmetry groups, and
discuss physical properties and group structure of the infinite
symmetries that arise for the static CGL system. In Section 4,
we discuss applications of the infinite symmetry group to con-
struction of exact static anisotropic plasma equilibria. In par-
ticular, we show that axial and helical static anisotropic (CGL)
equilibria arise from solutions to conventional Grad–Shafranov
and JFKO equations. An explicit example of an exact solution
describing an anisotropic plasma vortex is presented. Finally,
in Section 5, we complete the analysis by classifying and com-
paring all conservation laws admitted by static MHD and CGL
systems with multipliers linear in first-order partial derivatives,
and discuss their physical meaning. From the comparison of
symmetry and conservation law classifications of the two static
plasma equilibrium systems, we establish a direct transforma-
tion (see Theorem 1) between these two plasma models (includ-
ing the mathematical equivalence of solution sets). In Section 6,
we summarize the results presented in this Letter in a larger
context of dynamical MHD models.

Symbolic software packages GeM for Maple [21] and
Crack/LiePDE/ConLaw for REDUCE [22] were used for
all symmetry and conservation law computations.

2. Static plasma equilibrium models

Equilibrium (time-independent) plasma models with and
without flow are used in many physical applications. In par-
ticular, for the purpose of analysis, static plasma equilibrium
systems are often considered. On one hand, static equilib-
rium equations are much simpler than dynamic ones, and yield

to analytical techniques more easily; on the other hand, they are
still nonlinear 3D models, which inherit many properties from
full plasma equilibrium models. Static plasma equilibria, even
in a simplified force-free (constant-pressure) setting, are used in
astrophysical modelling.

The static MHD equilibrium equations are obtained directly
as a static time-independent reduction of the full system of
MHD equations (e.g. [1]). They have the form

(2.1)curl B × B = gradP, div B = 0.

Here B is the vector of the magnetic field induction, and P is
plasma pressure. The electric current density is given by J =
curl B.

In all static isotropic plasma equilibria (2.1), the mag-
netic field B is tangent to 2-dimensional magnetic surfaces
Ψ (x, y, z) = const that span the plasma domain: B ·gradΨ = 0.
The plasma pressure P = P(Ψ ) is constant on magnetic sur-
faces. In a compact domain, magnetic surfaces are generally
tori [23]. When magnetic field lines are closed loops or go to
infinity, magnetic surfaces may not be uniquely defined, and
one may specify Ψ (x, y, z) = const on each magnetic field line.
The only possible case when magnetic surfaces do not exist is
Beltrami-type configurations curl B = αB, α = const.

We note the well-known equivalence between the static
plasma equilibrium system (2.1) and the time-independent
Euler’s equations of inviscid fluid motion

(2.2)(v · grad)v = −gradπ, div v = 0,

with velocity v = B, pressure π = P0 − P − |B|2
2 , and constant

density ρ = 1.
The static time-independent equilibrium of anisotropic plas-

mas is a similar reduction of the CGL equations [2,20,24]

(1 − τ) curl B × B

= gradp⊥ + τ grad
|B|2

2
+ B(B · grad τ),

(2.3)div B = 0.

Here τ is the anisotropy factor, and pressure P is a symmetric
tensor with two independent parameters p‖, p⊥:

(2.4)τ = p‖ − p⊥
|B|2 , P = p⊥I + p‖ − p⊥

|B|2 B ⊗ B,

where I = diag(1,1,1) is the identity tensor in R
3.

Eqs. (2.3) describe equilibria of strongly magnetized or rar-
ified plasmas; p‖ denotes pressure along the strong magnetic
field B, and p⊥ is pressure in the transverse direction. Unlike
static isotropic plasma equilibria, anisotropic plasmas described
by (2.3) in general do not possess 2D magnetic surfaces.

Remark 1. Static plasma equilibrium systems (2.1) and (2.3)
arise from Boltzmann and Maxwell equations under essen-
tially different isotropy assumptions [2,25,26]. In particular,
the isotropic model (2.1) was derived from Boltzmann equa-
tion using expansion in powers of mean free path, while for the
anisotropic model the expansion in powers of ion Larmor ra-
dius was used, which implies p‖ �= p⊥. However it is easy to
see that for τ = 0 Eqs. (2.1) and (2.3) coincide.
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Closure of the anisotropic equilibrium system (2.3) requires
an equation of state. Note that dynamic equations of state, such
as “double-adiabatic” equations

d

dt

(
p⊥
ρ|B|

)
= d

dt

(
p‖|B|2

ρ3

)
= 0

suggested in the original CGL paper [2], cannot be used since
they vanish identically for all static equilibria. In this Letter we
use the equation of state [20]

(2.5)B · grad τ = 0,

which implies that the anisotropy factor τ is constant on mag-
netic surfaces (more generally, on magnetic field lines). Below
we show that the relation (2.5) can be rewritten in a form (2.8)
that is similar to the equation of state used in numerical model-
ing of anisotropic magnetosheath plasma in the CGL approxi-
mation [27] (see also [12]).

In Sections 3 and 5, we classify and compare point symme-
tries and conservation laws admitted by the isotropic (MHD)
static plasma equilibrium model (2.1) and the anisotropic
(CGL) model (2.3) with the equation of state (2.5). The point
symmetry classification of the anisotropic model is found to
differ from that of the isotropic model by only one symmetry
generator Y∞ (3.11) depending on an arbitrary function defined
on magnetic surfaces, which describes infinite symmetries ad-
mitted by the anisotropic system (2.3), (2.5).

Since any solution (B,P ) of static isotropic (MHD) equilib-
rium is automatically a solution (B,p⊥, τ ) = (B,P ,0) of the
static anisotropic (CGL) system (2.3), (2.5), the infinite symme-
tries Y∞ map each MHD equilibrium solution into a continuum
of CGL equilibria. This suggests that a direct relation may exist
between the two static plasma equilibrium systems. Compari-
son of multipliers and fluxes of conservation laws admitted by
the two plasma equilibrium systems (see Section 5) indicates
the specific form of such a transformation: the isotropic equi-
librium magnetic field B should be proportional to

√
1 − τB

of the anisotropic model. This leads to the following important
theorem.

Theorem 1. The static anisotropic (CGL) equilibrium system
(2.3) with equation of state (2.5) can be written in the form

(2.6)curl(
√

1 − τB) × (
√

1 − τB) = gradp,

div(
√

1 − τB) = 0,

(2.7)B · grad τ = 0,

where p = p⊥ + 1
2τB2 = 1

2 (p‖ + p⊥) is the mean pressure
of anisotropic plasma configuration. This form of the static
anisotropic (CGL) equilibrium system (2.3), (2.5) is equiva-
lent to the static isotropic (MHD) equilibrium system (2.1) with
pressure p, magnetic field

√
1 − τB, for any smooth function τ

constant on magnetic surfaces/magnetic field lines.

The proof proceeds by expanding (2.6), (2.7) using vector
calculus identities.

Corollary 1. The 3D domain of every static anisotropic (CGL)
equilibrium plasma configuration satisfying (2.3), (2.5) is
spanned by 2D magnetic surfaces

Ψ (x, y, z) = const

(with the only possible exception being Beltrami-type config-
urations curl

√
1 − τB = α

√
1 − τB, α = const). In particu-

lar, the mean pressure p = p(Ψ ) and the anisotropy factor
τ = τ(Ψ ) are constant on magnetic surfaces.

If magnetic surfaces are not uniquely defined (magnetic field
lines are closed loops or go to infinity), Ψ (x, y, z) can have a
different constant value on every magnetic field line.

This corollary follows from the equivalence of Eqs. (2.6)
to the static MHD system (2.1), for which this result is well
known.

We also note that since τ = τ(Ψ ), the equation of state (2.5)
can be rewritten as

(2.8)p⊥/p‖ = 1 − (
τ(Ψ )|B|2/p‖

)
.

3. Point symmetries of plasma equilibrium models

We will classify all point symmetries admitted by static
isotropic (MHD) and anisotropic (CGL) systems. In particular,
we seek Lie groups of point symmetries admitted by the sys-
tem (2.1)

x′ = x + εξ(x,B,P ) + O
(
ε2),

B′ = B + εη(x,B,P ) + O
(
ε2),

(3.1)P ′ = P + εσ (x,B,P ) + O
(
ε2)

with corresponding infinitesimal generator

(3.2)X = ξ� ∂

∂x
+ η� ∂

∂B
+ σ

∂

∂P
,

where the hook denotes summation over vector components.
Symmetry components (ξ ,η, σ ) satisfy determining equations
given by the invariance of the solution set (B(x),P (x)) un-
der X:

curl B × (
η − (ξ · grad)B

) + curl
(
η − (ξ · grad)B

) × B

= grad
(
σ − (ξ · grad)P

)
,

(3.3)div
(
η − (ξ · grad)B

) = 0

holding for all static equilibria satisfying (2.1).
Similarly, a symmetry generator of static anisotropic equi-

librium system (2.3), (2.5) has the form

(3.4)Y = ξ� ∂

∂x
+ η� ∂

∂B
+ σ⊥

∂

∂p⊥
+ ν

∂

∂τ

whose components (ξ ,η, σ⊥, ν) are found from corresponding
determining equations that state the invariance of the solution
set of Eqs. (2.3), (2.5) under the action of Y (3.4).
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3.1. Point symmetries of static MHD and CGL plasma
equilibrium systems

The following theorems describe all Lie point symmetries
of static isotropic and anisotropic plasma equilibrium PDE sys-
tems. The proofs are computational and consist of applying
Lie’s algorithm [13,14] for solving the determining equations
(3.3) and their counterpart for the anisotropic case.

Theorem 2 (Point symmetries of static MHD equations). The
point symmetries admitted by the static isotropic plasma equi-
librium system (2.1) form a nine-dimensional Lie algebra with
the following generators:

• Killing symmetries (translations and rotations)

(3.5)XK = ζ� ∂

∂x
+ (B · grad)ζ� ∂

∂B
;

• Scalings and dilations

(3.6)XS = B� ∂

∂B
+ 2P

∂

∂P
, XD = x� ∂

∂x
;

• Pressure shifts

(3.7)XP = ∂

∂P
.

Here ζ = a + b × x is a Euclidean Killing vector; a,b ∈ R
3 are

constant vectors.

Theorem 3 (Point symmetries of static CGL equations). The
static anisotropic plasma equilibrium system (2.3) with equa-
tion of state (2.5) admits an infinite-dimensional symmetry al-
gebra spanned by the following generators:

• Killing symmetries (translations and rotations)

(3.8)YK = ζ� ∂

∂x
+ (B · grad)ζ� ∂

∂B
;

• Scalings and dilations

(3.9)YS = B� ∂

∂B
+ 2p⊥

∂

∂p⊥
, YD = x� ∂

∂x
;

• Pressure shifts

(3.10)YP = ∂

∂p⊥
;

• Infinite-dimensional transformations

(3.11)Y∞ = f B� ∂

∂B
− f |B|2 ∂

∂p⊥
+ 2f (1 − τ)

∂

∂τ
.

Here ζ = a + b × x is a Euclidean Killing vector (a,b ∈ R
3

are arbitrary constant vectors), and f = f (p, τ) is an arbi-

trary smooth function (p = p⊥ + τ
|B|2

2 is the mean pressure of
anisotropic plasma configuration).

The point symmetry classifications of the static MHD and
CGL equilibrium systems presented in Theorems 2 and 3 coin-
cide except for the infinite symmetries Y∞ (3.11) of the CGL

system. The existence of these infinite symmetries underlies the
equivalence of the static MHD and CGL equilibrium systems
stated in Theorem 1. Corollary 1 of Theorem 1, in turn, leads to
the following clarification of the form of arbitrary function in
the infinite symmetry generator Y∞.

Corollary 2. The arbitrary function f = f (p, τ) in infinite
symmetries (3.11) of CGL equilibrium equations can be ex-
pressed as a function f = f (Ψ ) of a single variable Ψ = Ψ (x)

which enumerates magnetic surfaces (or, in general, magnetic
field lines) of the original plasma configuration.

Remark 2 (Finite form of symmetry transformations corre-
sponding to Y∞). Using a standard reconstruction formula
(Lie’s First Theorem) [13,14], one finds the global Lie group
of point transformation groups corresponding to the infinite-
dimensional symmetry generator (3.11) of the static CGL equa-
tions (2.3):

B′ = M(Ψ )B, τ ′ = 1 − (1 − τ)M−2(Ψ ),

p′⊥ = p⊥ + B2 − (B′)2

2
,

(3.12)p′‖ = p′⊥ + (B′)2
(

1 −
(

1 − p‖ − p⊥
B2

)
M−2(Ψ )

)
,

where the arbitrary function M(Ψ ) is related to the function
f (p, τ) = f (Ψ ) in (3.11).

It is easy to see why no infinite transformations similar
to Y∞ are admitted by the static isotropic plasma equilib-
rium system (2.1), in spite of the equivalence (Theorem 1)
between the isotropic and anisotropic systems. Indeed, from
(3.12) it directly follows that for anisotropic equilibria, quanti-
ties

√
1 − τB and p⊥ + 1

2τB2 are invariant with respect to Y∞.
Hence, according to the relations (2.6), (2.7), these infinite sym-
metries correspond to the identity transformation for isotropic
plasma equilibria.

3.2. Properties of the infinite symmetries (3.12) of the static
CGL system

The infinite symmetries (3.11), (3.12) of the static CGL sys-
tem constitute a subgroup of the infinite-dimensional symmetry
group G of dynamic CGL equilibrium system found in [20],
and share many of their properties.

(i) Structure of the arbitrary function. The transformations
(3.12) depend on the topology of the solution they are applied
to, namely, on the set of magnetic field lines Ψ = const. For the
following topologies of the initial solution, the domain of the
function Ψ = Ψ (x) is evident:

1. The lines of magnetic field B are closed loops or go to
infinity. Then the function Ψ (x) is constant on each magnetic
field line.

2. The magnetic field lines are dense on 2D magnetic sur-
faces spanning the plasma domain D. Then the function Ψ (x)

has a constant value in on each magnetic surface, and is gener-
ally a function defined on a cellular complex (a combination of
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1-dimensional and 2-dimensional sets) determined by the topol-
ogy of the initial solution {B,p⊥,p‖}.

3. The magnetic field lines are dense in some 3D domainD.
Then the function Ψ (x) is constant in D.

(ii) Topology, boundary conditions, and physical properties.
From (3.12) it is evident that B′ ‖ B, thus magnetic field lines
of the original plasma configuration {B,p⊥,p‖} are retained by
the transformed solutions {B′,p′⊥,p′‖}. Therefore usual plasma
equilibrium boundary conditions of the type n · B|∂D = 0 (n is
a normal to the boundary ∂D of the plasma domain) are pre-
served.

If the free function M(Ψ ) is separated from zero, the trans-
formed solutions retain the boundedness of the original solu-
tion; the same is true about the magnetic energy B2/2. For
models in infinite domains, the free function must be chosen
so that new solutions {B,p⊥,p‖} have proper asymptotic be-
haviour at |x| → ∞.

(iii) Stability of new solutions. No general stability crite-
rion is available for MHD or CGL equilibria. However, several
explicit instability criteria are known. In particular, under the
assumption of double-adiabatic behaviour of plasma [2] the
condition for the fire-hose instability is [28]

(3.13)p‖ − p⊥ > B2,

or, equivalently, τ > 1. According to (3.12), we have

1 − τ1 = (1 − τ)/M2(Ψ ),

hence the infinite transformations (3.12) do not change fire-
hose stability/instability of the original plasma configuration.

The mirror instability [28] occurs when

(3.14)p⊥
(

p⊥
6p‖

− 1

)
>

B2

2
.

It can be shown that for every initial configuration {B,p⊥,p‖},
there exists a nonempty range of values which M(Ψ ) may take
so that the mirror instability does not occur. The proof is parallel
to that in [20].

(iv) Symmetry group structure. We consider the set GC of all
transformations (3.12) with smooth M(Ψ ). Each such transfor-
mation is uniquely defined by a pair {α,H(Ψ )}:
M(Ψ ) = α exp

(
H(Ψ )

)
, α = ±1.

The composition of two transformations (α,H(Ψ )) and
(β,K(Ψ )) is equivalent to a commutative group multiplication

(α,H) · (β,K) = (αβ,H + K),

and the inverse (α,H)−1 = (α,−H). The group unity is e =
(1,0). Thus GC is an Abelian group

(3.15)GC = AΨ ⊕ Z2

with two connected components; AΨ is the additive Abelian
group of smooth functions in R

3 that are constant on magnetic
field lines of a given static CGL configuration.

4. Construction of anisotropic plasma equilibria

In this section, we show how the infinite group of trans-
formations (3.12) is used to construct families of anisotropic
(CGL) plasma equilibria from a single known exact static CGL
or MHD solution.

4.1. Construction of general 3D anisotropic plasma equilibria

Theorem 4 (Construction of anisotropic plasma equilibria).
For any given solution {B,p⊥,p‖} of the static anisotropic
(CGL) plasma equilibrium equations (2.3), (2.5), or any given
solution {B,P } of the static isotropic (MHD) plasma equi-
librium equations (2.1), there exists an infinite family of
anisotropic (CGL) plasma equilibrium solutions given by (3.12)
depending on an arbitrary function of one variable. The infinite
family of solutions has the same set of magnetic field lines as
the original solution.

This theorem follows directly from Theorem 1 and infinite
transformations (3.12).

In particular, for any given solution {B,P } of the static iso-
tropic (MHD) plasma equilibrium equations (2.1), from (3.12)
we see that the corresponding infinite family of anisotropic
(CGL) plasma equilibrium solutions {B′,p′⊥,p′‖} is given by

B′ = M(Ψ )B, τ ′ = 1 − M−2(Ψ ),

p′⊥ = P1 + P + 1

2
B2(1 − M2(Ψ )

)
,

(4.1)p′‖ = P1 + P − 1

2
B2(1 − M2(Ψ )

)
,

where P1 is an arbitrary constant, M(Ψ ) is an arbitrary smooth
function, and Ψ = Ψ (x) enumerates magnetic surfaces (or, in
general, magnetic field lines) of the original isotropic plasma
configuration.

4.2. Axially and helically symmetric anisotropic plasma
equilibria

It is well known that in the case of axial or helical symme-
try, static isotropic (MHD) equilibrium equations (2.1) reduce
to single equations: Bragg–Hawthorne–Grad–Shafranov (GS)
equation [4–6] and JFKO equation [7], respectively.

Though an analogue of the GS equation exists for anisotropic
(CGL) plasmas [29], this equation is so complicated compared
to the original GS equation, that using it for finding exact solu-
tions is impractical.

A practical way of obtaining families of axially and helically
symmetric anisotropic plasma configurations (2.3) is through
the application of transformations (4.1) to known exact solu-
tions of conventional GS or JFKO equations (many of such
solutions are known in literature, see e.g. [8,9,11]). For a given
axially or helically symmetric isotropic (MHD) plasma equi-
librium (B,P ) in a domain D, transformations (4.1) yield a
family of anisotropic (CGL) equilibria. This family of solu-
tions involves an arbitrary function M(Ψ ) defined, in general,
on a cellular complex, as follows (see Section 3.2, part (i)):
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• In parts of the plasma domain D where magnetic field
lines are dense on closed 2D magnetic surfaces, M(Ψ ) is a
function of one variable Ψ enumerating magnetic surfaces;

• In parts ofD where magnetic field lines of the given MHD
equilibrium are closed loops or go to infinity, values of M(Ψ )

can be chosen independently on each magnetic field line, i.e.
M(Ψ ) is a function of two transverse coordinates.

In particular, starting from an axially (helically) symmetric
isotropic plasma equilibrium (2.1), one may obtain a family
of axially (helically) symmetric anisotropic plasma equilibria
(2.3), where in (4.1) Ψ is the flux function solving the GS
(JFKO) equation. Moreover, if the given isotropic plasma equi-
librium has magnetic field lines that are closed loops or go to
infinity, one may also obtain a wider class of anisotropic plasma
equilibria (2.3), by choosing the value of the arbitrary functions
M(Ψ ) in (4.1) separately on every field line. In this case, the
resulting anisotropic equilibria may have no geometrical sym-
metries (symmetry breaking).

4.3. Example of an exact solution: An anisotropic plasma
vortex

In [10], Bobnev derived a localized vortex-like solution to
the static isotropic MHD equilibrium system (2.1) in 3D space.
The solution is presented in spherical coordinates (ρ, θ,φ) and
is axially symmetric, i.e. independent of the polar variable φ.1

The solution has the form

B = eρV (ρ) cos θ + eθW(ρ) sin θ + eφU(ρ) sin θ,

(4.2)P = P0 − p(ρ) sin2 θ,

where

U(ρ) = λnρV (ρ), p(ρ) = γρ2V (ρ),

W(ρ) = −V (ρ) − ρV ′(ρ)/2,

V (ρ) = B0
V0(2λnρ) − V0(2λnR)

1 − V0(2λnR)
,

V0(x) ≡ 3

(
sinx

x3
− cosx

x2

)
,

(4.3)γ = B0
V0(2λnR)

1 − V0(2λnR)
= const, B0,P0 = const .

Here λn, n = 1,2, . . . , is any member of the countable set of
solutions of the equation

(4.4)

(
3 − 4R2λ2

n

)
sin(2Rλn) − 6Rλn cos(2Rλn) = 0,

R = const .

(In particular, Rλ1 ≈ 2.882, Rλ2 ≈ 4.548, Rλ3 ≈ 6.161.)
Bobnev’s solution satisfies boundary conditions

(4.5)B|ρ=R = 0, P |ρ=R = P0, B|ρ=0 = B0ez,

1 Bobnev’s solution was found by an ad hoc method without using the GS
equation. Since the solution is axially symmetric, it corresponds to some flux
function Ψ (r, z) that satisfies the GS equation. However, the explicit form of
such flux function is not known.

i.e. the domain W ∈ R
3 where the magnetic field is nonzero is

a sphere of radius R. The pressure outside of W is constant:
P = P0. The magnetic surfaces Ψ = const inside W are fami-
lies of nested tori of non-circular section, separated by spherical
separatrices on which the pressure is P = P0 = const; the num-
ber and mutual position of the families depends on the choice
of R, λn.

We take R = 1, λ = λ3 ≈ 6.161, B0 = 100, and P0 = 4500,
and find γ ≈ −72.831. Magnetic surfaces P = const and levels
of constant magnetic energy density B2/2 = const (with P and
B given by (4.2)) are shown in Fig. 1(a), (b), respectively. The
spherical separatrix magnetic surfaces have approximate radii
ρ1 ≈ 0.376, ρ2 ≈ 0.597.

We apply transformations (4.1) to this isotropic (MHD) so-
lution, using the arbitrary function

(4.6)M(Ψ ) = 1 + Ψ

Ψ1
sin

(
Ψ

Ψ2

)
, Ψ1,Ψ2 = const,

which is constant on the magnetic surfaces of the original sta-
tic MHD configuration given by (4.2). The arbitrary constants
Ψ1, Ψ2 are chosen so that M(Ψ ) is separated from zero. [In the
particular example below, we take Ψ1 = 200, Ψ2 = 60.] As the
result, we obtain an explicit anisotropic (CGL) plasma equilib-
rium configuration {B′,p′⊥,p′‖} given by (4.1), with the same
set of magnetic surfaces. The anisotropic pressure components
p′⊥, p′‖ are no longer constant on these surfaces. Contour plots
of p′⊥, p′‖, and their profile along the radius of the vortex in the
direction perpendicular to z, are shown in Fig. 2.

Fig. 3(a) shows profiles of magnetic energy densities E =
B2/B2

0 and E′ = B′2/B2
0 of the original isotropic and the new

anisotropic plasma vortex respectively. Fig. 3(b) shows profiles
of normalized anisotropic pressure components p⊥/B2

0 , p‖/B2
0

along the radius of the spherical vortex in the direction perpen-
dicular to the axis of symmetry z.

The presented solution is an explicit example of a physically
meaningful axisymmetric static anisotropic plasma equilibrium
configuration in 3D space, arising from the model (2.3), (2.5).
This solution is regular in the whole domain (a ball of unit ra-
dius) and satisfies boundary conditions

B′|ρ=1 = 0, p′⊥|ρ=1 = p′‖|ρ=1 = const .

The solution describes a static anisotropic plasma vortex con-
fined by external gas pressure. Other choices of the arbitrary
function M(Ψ ) lead to different resulting anisotropic configu-
rations.

5. Conservation law analysis of static MHD and CGL
equations

5.1. Construction and interpretation of conservation laws

A local conservation law is a continuity equation

(5.1)∂tΦ
0 + div� = 0

holding locally in 3D space for some physical variable. For dy-
namical plasma equations, one basic example is conservation
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(a) (b)

Fig. 1. Magnetic surfaces P = const (a) and levels of constant magnetic energy density B2/2 = const (b) in the static isotropic magnetic vortex (4.2) (R = 1,
λ = λ3 ≈ 6.161, B0 = 100, and P0 = 4500). Here z is the symmetry axis, and x is the radial axis.

(a) (b)

Fig. 2. Surfaces of constant level of anisotropic plasma pressure components p‖ (a) and p⊥ (b) in an anisotropic vortex (R = 1, λ = λ3 ≈ 6.161, B0 = 100, and
P0 = 4500). Here z is the symmetry axis, and x is the radial axis.

of mass where Φ0 = ρ is mass density and � = ρv is momen-
tum vector density in terms of the fluid velocity v. When static
equilibria are considered, such conserved densities Φ0 are man-
ifestly time-independent, ∂tΦ

0 = 0, while the associated flux
vectors � are divergence free, div� = 0. In general, a local
conservation law of static MHD systems will be a vector density
� which depends on the spatial coordinates x, pressure P , mag-

netic field B, and their partial derivatives with respect to x, such
that it is divergence free for all static equilibria. Vector densities
are physically trivial if they identically have the form of curls,
� = curl�, when evaluated on static equilibria, with � being
a local function of the same variables as �. A conservation law
on static equilibria will be nontrivial if � is not such a curl,
namely, div� vanishes essentially as a consequence of the sta-
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(a) (b)

Fig. 3. (a) Comparison of normalized energy densities E = B2/B2
0 (thick) and E′ = (B′)2/B2

0 (thin) for isotropic and anisotropic plasma vortex. (b) Comparison of

normalized plasma pressure components p‖/B2
0 (thick) and p⊥/B2

0 (thin) in an anisotropic vortex in the radial direction. The axis x is chosen in the radial direction
perpendicular to symmetry axis z. Here R = 1, λ = λ3 ≈ 6.161, B0 = 100, and P0 = 4500.

tic field equations. Nontrivial conservation laws that differ by a
trivial flux vector are considered to be physically equivalent.

The integral of a static conservation law in any domain V in
3D space physically describes the net flux through the boundary
∂V . In particular, if V is a connected 3D region enclosed by a
smooth closed surface S, then the net flux

(5.2)F(�, S) =
∮
S

� · dS

through S vanishes on smooth static equilibria, while non-
vanishing net flux for a static conservation law would indicate
the presence of a singularity in the flux Φ inside V . More gen-
erally, this net flux is independent of S, F(�, S1) = F(�, S2),
due to Gauss’ divergence theorem

∮
S1

� · dS − ∮
S2

� · dS =∫
V

div�dV = 0 where V is the region bounded by the two
surfaces S1, S2 in 3D space.

There is a computational algorithm (Direct Construction
Method) for finding conservation laws (5.1) [13,19,31]. For
static MHD systems, it is outlined as follows. Because static
MHD systems are Cauchy–Kovalevskaya type PDE systems
(i.e. each system can be written in solved form with respect
to a first partial derivative of any one spatial coordinate), all of
their nontrivial conservation laws arise from multipliers whose
summed product with the static field equations is identically
a divergence. Specifically, for isotropic models without fluid
flow as considered hereafter, multipliers Γ,� = (Λ1,Λ2,Λ3)

are functions of the spatial coordinates x, pressure P , magnetic
field B, and their partial derivatives with respect to x, such that

(5.3)Γ (div B) + � · (curl B × B − gradP) = div�

holds identically (i.e. off of solutions).
Determining equations for multipliers can be obtained from

the fact that divergences (5.3) are annihilated by variational
derivatives (Euler operators) with respect to B and P . In the
simplest case of multipliers with no dependence on partial
derivatives of B and P , the determining equations are equiv-
alent simply to the adjoint of the symmetry determining equa-
tions (3.3):

(5.4)div� = 0, gradΓ = � × J − curl(� × B)

holding for all static equilibria. For Γ and � depending on
partial derivatives of B and P , there are additional determin-
ing equations involving variational derivatives of the multipli-
ers themselves. The complete system of multiplier determining
equations can be solved by an analog of Lie’s algorithm for
solving the symmetry determining equations. When a set of
multipliers is known, several approaches can be used to com-
pute the flux vector � (for a comparison, see [30]). In par-
ticular, there exists an integral formula involving a homotopy
scaling of the field variables [18,19]. Alternatively, since the
static MHD system (2.1) admits a scaling symmetry (3.6), the
integral formula for � can be replaced by a purely algebraic
expression [31] in terms of Γ and �.

5.2. Conservation laws of the static isotropic plasma
equilibrium system

For static MHD equilibria (2.1), we will determine nontriv-
ial conservation laws. In particular, we seek multipliers Γ and
�, such that the summed product of these multipliers with the
static MHD equilibrium equations (2.1) yields a nontrivial di-
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Table 1
Conservation laws (5.5) of the static isotropic (MHD) plasma equilibrium system (2.1)

# Multipliers Conservation law Remarks

1 Γ = B · ζ , � = ζ div(ζ · T) = 0 Conservation of stress and angular stress, depending on a general Euclidean Killing vector ζ = a + b × x,
with a,b ∈ R

3 constant vectors.

2 Γ = f (P ),� = −f ′(P )B div(f (P )B) = 0 Conservation of magnetic flux depending on an arbitrary function that is constant on magnetic surfaces,
which reflects the fact that P = const on magnetic surfaces.

3 Γ = 0,� = f ′(P )J div(f (P )J) = 0 Generalized Kirchhoff’s current law. Reflects the fact that plasma electric current density J is tangent to
surfaces of constant pressure.

Table 2
Conservation laws (5.7) of the static anisotropic (CGL) system (2.3), (2.5)

# Multipliers Conservation law Remarks

1 Π = (1 − τ)(B · ζ ), � = ζ , Υ = −B · ζ div(ζ · S) = 0, Conservation of stress and angular stress, depending on a general
Euclidean Killing vector ζ = a + b × x, with a,b ∈ R

3 constant vectors.
2 Π = f,� = −fpB, Υ = fτ + 1

2 fp |B|2,
f = f (p, τ)

div(f (p, τ )B) = 0 Conservation of magnetic flux depending on an arbitrary function that is
constant on magnetic surfaces, which reflects the fact p, τ = const on
magnetic surfaces.

3 Π = 0,� = f ′(p)A, Υ = − 1
2 f ′(p)A · B;

here A = curl
√

1 − τB
div(f (p)A) = 0 Conservation of flux related to vorticity of the vector field

√
1 − τB.

vergence

(5.5)Γ div B + � · (curl B × B − gradP) = div�

which vanishes when evaluated on static equilibria. An appli-
cation of the Direct Construction Method [19] leads to the fol-
lowing results.

Theorem 5. The complete set of conservation laws admitted by
the static isotropic plasma equilibrium system (2.1), for mul-
tipliers Γ , � linear in first partial derivatives of (B,P ) and
with otherwise arbitrary dependence on (x,B,P ), is given in
Table 1.

In Table 1, the symmetric conserved tensor T is the sum of
electromagnetic and fluid stress tensors:

(5.6)T = −B ⊗ B +
(

P + 1

2
|B|2

)
I.

The arbitrary function f (P ) in conservation laws #2 and
#3 has, in general, the form f = f (Ψ ) given by an arbitrary
function that is constant on magnetic field lines (and on mag-
netic surfaces, when they exist). Conservation law #3 involving
plasma electric current is analogous to conservation of vortic-
ity in time-independent incompressible Euler equations of fluid
motion (2.2).

5.3. Conservation laws of the static anisotropic plasma
equilibrium system

For static anisotropic (CGL) equilibria (2.3), (2.5), we like-
wise determine multipliers Π , �, and Υ , such that their
summed product with the corresponding equations (2.3), (2.5)

is a nontrivial divergence:

(5.7)

Π div B + � ·
(

(1 − τ) curl B × B − gradp⊥ − 1

2
τ grad |B|2

)

+ Υ (B · grad τ) = div�.

Such divergence expressions vanish on anisotropic static equi-
libria and thus yield conservation laws.

The following theorem is obtained by an application of the
Direct Construction Method [19].

Theorem 6. The complete set of conservation laws (5.7) admit-
ted by the static anisotropic plasma equilibrium system (2.3),
(2.5), for multipliers Π,�,Υ linear in first partial deriva-
tives of (B,p⊥, τ ) and with otherwise arbitrary dependence on
(x,B,p⊥, τ ), is given in Table 2.

In Table 2, similarly to the isotropic case, the symmetric con-
served tensor S is a sum of the electromagnetic stress tensor and
the anisotropic fluid stress tensor:

(5.8)S = −(1 − τ)B ⊗ B +
(

p + 1

2
(1 − τ)|B|2

)
I.

The arbitrary function f in conservation laws #2 and #3 is, in
general, equal to a constant on magnetic field lines (and on mag-
netic surfaces, when they exist).

The classification of multipliers and fluxes admitted by the
CGL equilibrium system in Table 2 coincides with that of
the isotropic MHD system in Table 1, with the vector field√

1 − τB corresponding to the isotropic equilibrium magnetic
field B and with p corresponding to the isotropic pressure P .
Note that this relation directly manifests the equivalence of the
systems stated in Theorem 1.
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5.4. Conservation laws of an isotropic plasma vortex (4.2)

As a simple example, we consider integral forms of conser-
vation laws for smooth static isotropic plasma equilibria (Ta-
ble 1). If V is a connected 3D region with a smooth boundary S,
then integrals of conservation laws #1, #2 and #3 in Table 1 are
respectively

∮
S

ζ · T · ndS = 0,

∮
S

f (P )B · ndS = 0,

(5.9)
∮
S

f (P )J · ndS = 0,

where n is an outer normal to S.
We now write down flux expressions for the Bobnev’s

isotropic plasma vortex solution presented in Section 4.3, when
S is a sphere of radius ρ < R = 1. In spherical and Cartesian
coordinates, the arbitrary constant vectors a,b in a Euclidean
Killing vector ζ = a + b × x have the form

a = aρeρ + aθeθ + aφeφ = axex + ayey + azez,

aρ = ax sin θ cosφ + ay sin θ sinφ + az cos θ,

aθ = ax cos θ cosφ + ay cos θ sinφaz sin θ,

(5.10)aφ = −ax sinφ + ay cosφ

with similar expressions holding for b. [Note that ax , ay , az

and Cartesian components of b are constants, whereas spherical
components of a and b depend on spherical angles.]

Using the solution (4.2), we find flux expressions

(5.11)

ζ · T · n

= aρ

[
−P0 + p(ρ) sin2 θ + 1

2

(
V 2(ρ) cos2 θ

− (
U2(ρ) + W 2(ρ)

)
sin2 θ

)]

+ V (ρ) sin θ cos θ
[
U(ρ)(aφ − rbθ )

+ W(ρ)(aθ + rbφ)
];

(5.12)f (P )B · n = f (P )V (ρ) cos θ;
(5.13)f (P )J · n = 2f (P )

U(ρ)

ρ
cot θ.

In particular, on each of the two separatrix spheres with
radii ρ = ρ1, ρ2 (see Section 4.3), one has V (ρ) = 0, therefore
U(ρ) = p(ρ) = 0, W(ρ) = −ρV ′(ρ)/2, and P = P0 = const.
Hence on these separatrix spheres, fluxes (5.12), (5.13) of the
conservation laws #2 and #3 in Table 1 vanish identically, and
the flux (5.11) of the conservation law #1 becomes

ζ · T · n = aρ

[
−P0 + 1

2
ρV ′(ρ)2 sin2 θ

]
, ρ = ρ1, ρ2.

Substituting (5.10), it is easy to verify that the integral∫ 2π

0

∫ π

0 (ζ · T · n)ρ2 sin θ dθ dφ vanishes.

6. Conclusions

Magnetohydrodynamics (MHD) and Chew–Goldberger–
Low (CGL) models are the two most widely used continuum
plasma descriptions, valid for the cases of isotropic and strongly
magnetized (anisotropic) plasmas respectively. Knowledge of
analytical properties of these nonlinear PDE systems and, in
particular, methods of finding exact solutions, are highly im-
portant for applications.

In this Letter we have classified complete sets of admitted
point symmetries and conservation laws of the static isotropic
plasma equilibrium system (2.1) and the static anisotropic
plasma equilibrium system (2.3), (2.5). This classification has
led to establishing a direct transformation (2.6), (2.7) between
the two systems. The transformation implies the equivalence of
solution sets: every static anisotropic (CGL) equilibrium can be
obtained from a solution of static isotropic (MHD) equilibrium
system, and to each solution of the static MHD system there
corresponds an infinite family of CGL equilibria depending on
an arbitrary function defined on the set of magnetic surfaces.

The established equivalence yields an effective procedure of
construction of exact explicit anisotropic (CGL) static plasma
configurations from a single known MHD or CGL solution.
Many physically meaningful static MHD solutions are known,
and each of them gives rise to families of anisotropic (CGL)
equilibria with the same topology of the magnetic field. It
follows that all axially and helically symmetric CGL config-
urations can be found from solutions of conventional Grad–
Shafranov and JFKO equations. An example of an explicit solu-
tion describing an anisotropic axially symmetric plasma vortex
is given in Section 4.

We note that symmetry classification of the static isotropic
MHD system (2.1) does not lead to a symmetry classification
of the Grad–Shafranov or JFKO equations, since the latter are
reductions of the system (2.1). The conservation laws found in
this Letter for the static isotropic MHD system (2.1) yield some
particular conservation laws of the Grad–Shafranov equation
(see [33]), but again not a full classification.

A natural next step will be to accomplish a similar complete
symmetry and conservation law analysis of dynamic (v �= 0)
plasma equilibrium models, and further, of time-dependent
(non-equilibrium) equations. Dynamic equilibrium models are
already known to possess rich symmetry structure [20,32], but
the complete analysis was not done due to the complexity of
these PDE systems. Recently developed symbolic computation
software [21,22] used in this Letter will be applied to study
symmetries and conservation laws of these systems.
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