
Computer Physics Communications 176 (2007) 48–61

www.elsevier.com/locate/cpc

GeM software package for computation of symmetries and
conservation laws of differential equations ✩

Alexei F. Cheviakov

Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2 Canada

Received 22 February 2006; received in revised form 29 May 2006; accepted 5 August 2006

Available online 18 September 2006

Abstract

We present a recently developed Maple-based “GeM” software package for automated symmetry and conservation law analysis of systems
of partial and ordinary differential equations (DE). The package contains a collection of powerful easy-to-use routines for mathematicians and
applied researchers. A standard program that employs “GeM” routines for symmetry, adjoint symmetry or conservation law analysis of any given
DE system occupies several lines of Maple code, and produces output in the canonical form. Classification of symmetries and conservation laws
with respect to constitutive functions and parameters present in the given DE system is implemented. The “GeM” package is being successfully
used in ongoing research. Run examples include classical and new results.

Program summary

Title of program: GeM
Catalogue identifier: ADYK_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYK_v1_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions: none
Computers: PC-compatible running Maple on MS Windows or Linux; SUN systems running Maple for Unix on OS Solaris
Operating systems under which the program has been tested: Windows 2000, Windows XP, Linux, Solaris
Programming language used: Maple 9.5
Memory required to execute with typical data: below 100 Megabytes
No. of lines in distributed program, including test data, etc.: 4939
No. of bytes in distributed program, including test data, etc.: 166 906
Distribution format: tar.gz
Nature of physical problem: Any physical model containing linear or nonlinear partial or ordinary differential equations.
Method of solution: Symbolic computation of Lie, higher and approximate symmetries by Lie’s algorithm. Symbolic computation of conservation
laws and adjoint symmetries by using multipliers and Euler operator properties. High performance is achieved by using an efficient representation
of the system under consideration and resulting symmetry/conservation law determining equations: all dependent variables and derivatives are
represented as symbols rather than functions or expressions.
Restrictions on the complexity of the problem: The GeM module routines are normally able to handle ODE/PDE systems of high orders (up to
order seven and possibly higher), depending on the nature of the problem. Classification of symmetries/conservation laws with respect to one or
more arbitrary constitutive functions of one or two arguments is normally accomplished successfully.
Typical running time: 1–20 seconds for problems that do not involve classification; 5–1000 seconds for problems that involve classification,
depending on complexity.
© 2006 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

E-mail address: alexch@math.ubc.ca (A.F. Cheviakov).
0010-4655/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2006.08.001

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/
http://www.sciencedirect.com/science/journal/00104655
mailto:alexch@math.ubc.ca
http://dx.doi.org/10.1016/j.cpc.2006.08.001
http://www.sciencedirect.com/science/journal/00104655

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 49
PACS: 02.30.Jr; 02.30.Hq; 02.20.Sv; 02.70.Wz

Keywords: Symbolic computation; Symmetries; Lie symmetry; Lie–Bäcklund symmetry; Higher symmetry; Approximate symmetry; Adjoint symmetry;
Conservation laws; Differential equations; PDE; Classification

1. Introduction

Symmetry, adjoint symmetry and conservation law analysis are practically important means of analyzing nonlinear systems of
ordinary and partial differential equations [1,2].

A symmetry of a system of DEs is any transformation of its solution manifold into itself. One-parameter and multi-parameter
Lie groups of point symmetries are found using the general Lie algorithm, which is equally applicable to algebraic, ordinary and
partial differential equations. Contact and higher symmetries are computed in a similar algorithmic manner. Closely related is the
potential symmetry method [2] for discovering nonlocal symmetries.

Symmetries of ordinary differential equations (ODE) are used for reduction of order and complete integration, as well as for the
construction of invariant solutions. Symmetries of partial differential equations (PDE) yield reductions of order and/or number of
variables. Invariant (in particular, self-similar) solutions that arise from reduced systems often have transparent physical meaning.
Many appropriate examples are found in [3]. Infinite-dimensional symmetry groups are used for the construction of families of
new exact solutions from known ones (e.g. [4–6]). For a nonlinear DE system, from its admitted symmetry group, one can de-
termine whether or not it can be mapped into a linear system by an invertible transformation, and find the explicit form of that
transformation [2].

Application of Lie’s symmetry method for nontrivial systems often requires extensive algebraic manipulation and the solution
of large overdetermined systems of linear PDEs. For many contemporary DE models, especially those that do possess non-trivial
symmetry structure, such analysis presents a significant computational challenge. In Section 2.1, we overview the algorithm for
symmetry group analysis and related challenges.

An important counterpart to knowledge of the symmetry structure of a PDE system is information about its conservation laws.
Conservation laws describe essential physical properties of the modeled process. They are used for the development of appropriate
numerical methods and for analysis, in particular, existence, uniqueness and stability analysis (e.g., [7–9]).

Several algorithms for finding conservation laws of PDEs and PDE systems exist [10]. Such algorithms often involve finding a set
of multipliers, such that a linear combination of equations of the given system is a divergence expression. After finding multipliers,
fluxes are algorithmically reconstructed (Section 2.2). Sets of symmetries and conservation laws for a given PDE system are closely
related (e.g., [11]).

Finding conservation laws and finding symmetries involves similar computational challenges, that consist in reduction of re-
dundant systems of determining equations. Several methods for reduction of large overdetermined systems of partial differential
equations have been developed (for a review, see [12]). Many of these methods have been implemented in symbolic software
packages. In particular, the Rif package1 is a part of Waterloo Maple, and is used in the GeM package described in this paper.

A REDUCE-based set of programs by Wolf [13] includes routines for point, contact and higher symmetry, and conservation
law/adjoint symmetry analysis of DE systems.

In this work, we introduce a recently developed package GeM for Maple (Section 3). It contains practically useful routines
to perform local (Lie, contact, higher, adjoint and approximate) symmetry analysis and search for conservation laws of ODEs
and PDEs without human intervention. The use of package routines does not require special knowledge or continuous input. The
package is compatible with modern Maple versions (9.5 and above) and thus available for all popular platforms (Linux, Windows,
UNIX). Package routines automatically generate determining equations in a form suitable for effective automatic reduction and
solution. For DE systems involving constitutive functions or parameters, symmetry/conservation law classification is automatically
performed. The module routines handle DE systems of high order and with many equations and many dependent and/or independent
variables. Programs that use GeM routines, even ones involving advanced classification, in most cases run effectively on a desktop
computer.

Several run examples are presented in the end of the paper; more are available on the program website [14].

2. Symmetry, adjoint symmetry and conservation law analysis of systems of differential equations

2.1. The Lie procedure for finding symmetries

Consider a general system of l differential equations of order p

G(x,u,u
1
, . . . , u

p
) = 0,

1 See Waterloo Maple help system, sections on rifsimp, maxdimsys, and related commands.

50 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
G = (G1, . . . ,Gl), x = (x1, . . . , xn) ∈X , u = (u1, . . . , um) ∈ U,

(2.1)u
k

=
(

∂kuj

∂xi1 · · · ∂xik
| j = 1, . . . ,m

)
∈ Uk, k = 1, . . . , p,

with m dependent and n independent variables. The set of all solutions of (2.1) is a manifold Ω in (m + n)-dimensional space
X × U , which corresponds to a manifold Ωp in the prolonged (jet) space X × U × U1 × · · · × Up of dependent and independent
variables together with partial derivatives [1].

Three types of local symmetries of DE systems are distinguished: point symmetries, contact symmetries and higher symmetries.

1. Lie Point symmetries. The Lie method yields Lie groups of point transformations (symmetries)

(x′)i = f i(x,u, ε), i = 1, . . . , n,

(2.2)(u′)j = gj (x,u, ε), j = 1, . . . ,m,

or, in the local form,

(x ′)i = xi + εξ i(x,u) + O(ε2), i = 1, . . . , n,

(2.3)(u′)j = uj + εηj (x,u) + O(ε2), j = 1, . . . ,m,

that map solutions of (2.1) into solutions. Here ε is a group parameter, or a vector of group parameters (in the case of multi-parameter
groups).

One considers the Lie algebra of infinitesimal operators (or symmetry generators)

(2.4)X = ξ i(x,u)
∂

∂xi
+ ηk(x,u)

∂

∂uk
.

(Here and below, summation with respect to repeating indices is assumed.) Each symmetry generator defines a vector field tangent
to the solution manifold Ω of the system (2.1). To each symmetry generator (2.4) there corresponds a unique prolonged vector field

(2.5)v = ξ i ∂

∂xi
+ ηk ∂

∂uk
+ η

(1) k
i

∂

∂uk
i

+ · · · + η
(p)k
i1,...,ip

∂

∂uk
i1,...,ip

tangent to the solution manifold Ωp in the jet space. Here η
(w)k
i1,...,iw

are the coordinates of the prolonged tangent vector field cor-

responding to the derivatives of order w: uk
i1,...,iw

; w = 1, . . . , p. The prolonged coordinates η
(w)k
i1,...,iw

are fully determined from

(ξ i, ηk) by differential relations

(2.6)η
(w)k
i1,...,iw

= Diwη
(w−1)k
i1,...,iw−1

− (
Diwξ l

)
uk

i1,...,iw−1,l
.

Here it is assumed that η(0)k ≡ ηk . Di = ∂
∂xi + uk

i
∂

∂uk + uk
ij

∂

∂uk
i

+ · · · is a full derivative with respect to xi .

Once a symmetry generator (2.4) is known, the global Lie transformation group (2.2) is reconstructed explicitly by solving the
initial value problem

(2.7)
∂f i

∂ε
= ξ i(f, g),

∂gk

∂ε
= ηk(f, g), f i |ε=0 = xi, gk|ε=0 = uk.

To find all Lie group generators (2.4) admissible by the original system (2.1), one needs to solve linear determining equations

(2.8)vG(x,u,u
1
, . . . , u

p
)|G(x,u,u

1
,...,u

p
)=0 = 0

for m + n unknown functions ξ i , ηk that depend on m + n variables (x,u). The determining equations (2.8) state the invariance of
the solution manifold under the action of the vector field v.

The overdetermined system for ξ i , ηk is obtained from (2.8) using the fact that ξ i , ηk do not depend on derivatives uk
i . Thus

the system (2.8) splits into an N � l(mn + 1) linear partial differential equations. Such overdetermined linear PDE systems can be
rather large (containing hundreds or thousands of equations).

2. Contact and higher symmetries. When tangent vector field components ξ i , ηk of the symmetry generator (2.5) essentially
depend on derivatives,

(x′)i = xi + εξ i(x,u,u
1
, . . . , u

q
) + O(ε2), i = 1, . . . , n,

(2.9)(u′)j = uj + εηj (x,u,u
1
, . . . , u

q
) + O(ε2), j = 1, . . . ,m,

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 51
corresponding symmetries are called higher symmetries [1]. Unlike Lie symmetries, they act on the solution manifold Ω∞ in the
infinite-dimensional space X × U × · · · × Up × · · · of all variables and derivatives. Due to this fact, higher symmetries, in general,
cannot be integrated to yield a global group representation similar to (2.2), and thus can not be used to explicitly map solutions of
differential equations into new solutions.

Contact symmetries are symmetries of the form (2.9) that preserve the contact condition du′ = u′
j dx′

j . Similarly to Lie point
symmetries, contact symmetries act in the finite-dimensional space, and their global group representation can be reconstructed from
the local representation. In the case of one equation, m = 1, tangent vector field components ξ i , η of contact symmetry generators
essentially depend on first derivatives. For m > 1, contact symmetries are independent of derivatives.

Contact and higher symmetries are computed algorithmically—corresponding determining equations are obtained from the
requirement (2.8) that the given system of equations is invariant under the action of the prolonged vector field (2.5). The overde-
termined system of linear PDEs for ξ i , ηk is found by equating to zero all coefficients at derivatives of order higher than q , in the
determining equations (2.8).

3. Approximate symmetries. In literature there exist several definitions of approximate symmetries, used by different authors.
In particular, Fushchich and Shtelen [15] define approximate symmetries as follows. For a given system containing a small

parameter ε, write the solution as u = u1 + εu2, substitute in the given system, and set to zero Taylor coefficients of each equation
at powers ε0, ε1. Thus instead of the system G of l equations for m unknown functions, a new system G′ of 2l equations for 2m

unknown functions is obtained (it does not contain the small parameter ε). Point symmetries of the new system G′ are called by
Fushchich and Shtelen approximate symmetries of the original system G.

A similar but different definition of approximate symmetries was given by Baikov et al. [16]. For a given system containing a
small parameter ε, one seeks generators of approximate symmetries in the form (cf. (2.4))

(2.10)Xε � X1 + εX2,

where X1 and X2 do not involve ε. Components of X1 and X2 are found from an “approximate version” of determining equa-
tions (2.8):

(2.11)vεG(x,u,u
1
, . . . , u

p
)|G(x,u,u

1
,...,u

p
)=O(ε2) = O(ε2),

where vε � v1 + εv2 is a prolonged version of (2.10).
Other definitions of approximate symmetries also exist but are less related to goals and methods of Lie symmetry approach.

2.2. Methods for finding conservation laws of PDE systems

Consider the problem of finding conservation laws in the form

(2.12)DiΦ
i[u] = 0

that follow from the system (2.1). The conserved densities (fluxes) Φi[u] may depend on x, u and derivatives up to an arbitrary
order.

A conservation law (2.12) is called trivial if its fluxes are

Φi = Mi + Hi,

where Mi and Hi are sets of smooth functions such that Mi vanish on the solutions of the system (2.1), and div(H 1, . . . ,Hn) ≡ 0.
Two conservation laws DiΦ

i[u] = 0 and DiΨ
i[u] = 0 are equivalent if Di(Φ

i[u] − Ψ i[u]) = 0 is a trivial conservation law. The
more general ‘triviality’ idea is the notion of linear dependence of conservation laws. Conservation laws are linearly dependent if
there exists a linear combination of them which is a trivial conservation law.

In practice, it is important to obtain nontrivial linearly independent conservation laws of a given system of differential equations.
Most of contemporary practically useful methods for finding conservation laws involve considering a linear combination of

equations of the given system (2.1) with a set of multipliers (or factors, or characteristic functions) {Λp[U]}. Multipliers may
depend on independent and dependent variables and derivatives. A linear combination yields a conservation law (2.12) if and only if

(2.13)Λp[U]Gp(x,U,U
1
, . . . ,U

p
) = DiΦ

i[U]

for some set of fluxes {Φi[U]} (here U denotes a vector of arbitrary functions). Then the conservation law DiΦ
i[u] = 0 holds on

the solutions U = u of the system (2.1).
We note that each conservation law (2.12) of the system (2.1) may be represented by a linear combination (2.13), if the given

system is not degenerate (namely, is of Cauchy–Kovalevskaya type, see [1]).
The determining equations that yield sets of multipliers {Λp[U]} of the conservation laws for the given system (2.1) are found

from the known observation that an expression is a divergence expression if and only if it is annihilated by Euler operators with
respect to all dependent variables in the system. The following theorem holds (see [1,2]):

52 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
Theorem 1. A set of multipliers {Λσ [U]} yields a conservation law of the given system of differential equations (2.1) if and only if
the equations

(2.14)EUk

(
Λi[U]Gi(x,U,U

1
, . . . ,U

p
)
) = 0, k = 1, . . . ,m,

where EUk is the Euler operator with respect to Uk :

(2.15)EUk = ∂

∂Uk
− Di

∂

∂Uk
i

+ · · · + (−1)jDi1 · · ·Dij

∂

∂Uk
i1···ij

+ · · · ,

hold for arbitrary functions U = (U1(x), . . . ,Um(x)).

Eqs. (2.14) are linear determining equations for the multipliers for conservation laws admitted by the given system (2.1). In
practice, to perform a computation, one chooses the maximal order of derivatives q � 0 in the dependence of multipliers Λi[U] =
Λi(x,U,U

1
, . . . ,U

q
). Then, by setting to zero the coefficients of all derivatives of U higher than q , the determining system (2.14) is

split into an overdetermined system of simpler linear PDEs.
After finding a set of multipliers {Λσ [U]} that yield a conservation law (2.13), one can obtain, by an algorithmic procedure, the

corresponding set of fluxes {Φi[u]} for each set of multipliers. This is achieved either by directly solving the system (2.13) for the
unknown fluxes Φi[U], or using integral formulas arising from homotopy operators [17–19].

The described method does not require the PDE system under consideration to have a variational formulation, and does not use
any version of Noether’s theorem when the considered system is variational. The method is algorithmic and therefore practical. It
yields all conservation laws with fluxes depending on a prescribed set of dependent and/or independent variables and derivatives.

Methods involving multipliers yield all conservation laws that involve derivatives up to a certain (prescribed) order. However,
in some cases, conservation law analysis through multipliers may lead to finding the complete set of conservation laws. A relevant
example is the case of evolution equations of even order, for which the maximal order of conservation law is finite. Alternatively, if
a given system possesses a countable number of conservation laws, it may be possible to construct them recursively.

The use of adjoint linearization to find multipliers for conservation laws is demonstrated in the following subsection.

2.3. Symmetries, adjoint symmetries and conservation laws of PDE systems

A symmetry generator (2.4) can be equivalently represented in the evolutionary form (see e.g. [2]):

(2.16)Xev = ζ k[u] ∂

∂uk
, ζ k[u] = ηk(x,u) − uk

i ξ
i(x,u).

It defines a local coordinate transformation

(x′)i = xi (i = 1, . . . , n),

(2.17)(u′)k = uk + εζ k[u] + O(ε2) (k = 1, . . . ,m).

From this fact it follows that if L is the linearizing operator (Fréchet derivative) for the given system (2.1), then the determining
equations (2.8) are equivalent to

(2.18)Lζ [u] = 0.

In other words, the operator Xev (2.16) defines a symmetry if and only if its components solve the linearized version of the given
system (2.1). (The linearization is understood in the Fréchet derivative sense, not as linearization near a particular solution.)

The given system (2.1), as written, has a variational principle (i.e. corresponds to an extremum of some action functional) if and
only if L is a self-adjoint operator, i.e., L∗ = L where L∗ is the adjoint of L. A set of functions κ[u] defines an adjoint symmetry if
these functions satisfy the adjoint linearized equation

(2.19)L∗κ[u] = 0.

One can show [1] that the set of multipliers {Λp[U]} for the conservation law (2.13) satisfies the adjoint equations

(2.20)L∗Λ[u] = 0,

hence a conservation law always defines an adjoint symmetry. However the converse is not true, since the determining equa-
tions (2.14) for conservation law multipliers are more restrictive than the determining equations for adjoint symmetries (2.19). In
particular, the set of determining equations for conservation law multipliers consists of the system of adjoint symmetry determining
equations augmented by the extra determining equations [18].

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 53
3. “GeM” symbolic package for general Lie symmetry computation

3.1. Description

A Waterloo Maple-based package GeM has been recently developed by the author. The package routines are capable of
finding local (Lie, contact and higher) symmetries, approximate symmetries in the sense of Fushchich [15], adjoint symmetries
and conservation laws of any ODE/PDE system without significant limitations on DE order and number of variables, and without
human intervention.

The routines of the module allow the analysis of ODE/PDE systems containing arbitrary constitutive functions and/or parame-
ters. Automatic symmetry and conservation law classification with respect to constitutive functions is implemented. Classification
problems naturally arise in the analysis of classes of DE systems from applications. Classification leads to isolation of particular
forms of constitutive functions and/or parameter values for which the given DE system possesses an extended symmetry or con-
servation law structure. In particular, the discovery of infinite-dimensional sets of symmetries or conservation laws for particular
forms of constitutive functions and/or parameter values may lead to linearization. For review and examples, see [2].

The GeM package employs an efficient representation of the system under consideration and resulting symmetry/conservation law
determining equations: all dependent variables and derivatives are treated as Maple symbols, rather than functions or expressions.
This significantly speeds up the computation of quantities corresponding to derivatives and the production of the overdetermined
system of determining equations for the unknown tangent vector field coordinates/multipliers. The latter is reduced by Rif2 pack-
age routines.

Reduction of overdetermined systems of symmetry/conservation law determining equations is usually the most resource-
demanding task, in particular, in problems that involve classification. Reduced systems of determining equations are normally
much simpler and are integrated automatically or even by hand.

In symmetry analysis, after the determining equations are solved, a GeM routine outputs all symmetry generators (2.4), thus
completing the symmetry analysis. In conservation law analysis, after solving the determining equations and finding conservation
law multipliers, a GeM routine computes fluxes and outputs all conservation laws in a canonical form (2.12).

Below we outline Maple program sequences for symmetry, adjoint symmetry, approximate symmetry and conservation law
analysis using GeM routines. Run examples are presented in the end of the paper.

3.2. “GeM” routine sequence for symmetry analysis

In this section contains an outline the essential structure of a Maple program for local (Lie, contact and higher-order) symmetry
analysis of PDE systems, and a description of related GeM package routines.

A. Initialization

with(GeM) :
with(linalg) : with(DEtools) : with(PDEtools) :

B. Declaration of variables and equations
The following command is used to declare dependent and independent variables, constitutive functions (optional), free constants

(optional), and the given system of equations (ODEs/PDEs):

gem_init_defs([IV], [DV], [AF], [AC],
hi_der, [eqs], [solve_for] <,options>);

Here [IV] is a vector of independent variables, [DV] a vector of dependent variables, and [AF] and [AC] vectors of arbitrary
(constitutive) functions and constants present in the system. hi_der is the integer (� 0) order of highest derivative of a dependent
variable on which arbitrary functions listed in [AF] depend. [eqs] is a vector of differential equations in the form E = 0 or
A = B; [solve_for] a vector of quantities (dependent variables or derivatives, usually highest derivatives) the equations are
solved for. The differential equations of the system under consideration must be solvable for quantities specified in [solve_for],
otherwise an error is returned. The simpler the expressions for these quantities are, the more elegant equations on further steps will
look. The sequence of quantities in [solve_for] does not have to match the sequence of equations in [eqs].

Within this routine, all derivatives are defined as Maple symbols: ∂B1/∂x ≡ B1x, etc. For example, the Maple expression for
the equation involving a divergence of a 3-vector B(x, y, z) = (B1(x, y, z),B2(x, y, z),B3(x, y, z)):

∂

∂x
B1(x, y, z) + ∂

∂y
B2(x, y, z) + ∂

∂z
B3(x, y, z) = 0

2 See footnote 1.

54 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
is represented as

B1x+ B2y+ B3z= 0,

and dependent variables and partial derivatives become Maple symbols: B1, B2, B3, B1x, B2y, B3z,.... After this
conversion, the unknown quantities of the problem (symmetry generator components) are not composite functions but functions of
new “independent variables”, which now include dependent and independent variables of the system under consideration and all
necessary partial derivatives.

When an approximate symmetry is being computed, the following options must be used: symm_type=ApproxFS,
small_param=epsilon, where epsilon (or any other identifier) is a small parameter present in the given system of equa-
tions. The small parameter must be also included in the declaration of free constants: the list [AC]. According to the algorithm
of Fushchich–Shtelen type approximate symmetry analysis, each dependent variable (e.g., U) is split in a combination (e.g.,
U=U1+epsilon*U2), and each equation is split into two (powers zero and one of the small parameter.) For each user-listed
dependent variable (e.g. U), GeM declares two corresponding variables (e.g., U1, U2), which should be used in further analysis.
For an example, see [14].

C. Generation of symmetry determining equations
The overdetermined (split) system of determining equations is obtained by the command

overdet_sys := gem_get_split_sys([symmetry_depends_on],
max_der_order <,options>);

Here [symmetry_depends_on] is a list that specifies the dependence of tangent vector field components ξ i , ηk . It may include
independent variables, dependent variables, and derivatives of dependent variables. On this stage, one can introduce an ansatz, for
example, assume independence of ξ i , ηk of independent variables. Ansatzes can be useful for complicated PDE systems for which
complete symmetry analysis is not affordable.

The parameter max_der_order specifies maximal order of derivative present in [symmetry_depends_on].
An optional parameter in_ev_form=true forces the computation of symmetries in evolutionary form. This is normally done

in computing contact and higher symmetries (i.e. when max_der_order>0.)

D. Simplification of the overdetermined system. Classification
Overdetermined systems are often large and contain many redundant equations. In Maple, overdetermined PDE system simpli-

fication is effectively done using Rif package routines.3

First, the names of unknown GeM-defined tangent vector field coordinates are stored in a program variable:

twf_coords := gem_tvf_coords_get_();
Then the Rif package routine is called:

simplified_sys := rifsimp(overdet_sys,twf_coords) :
After the execution of the above command, the reduced system of determining equations is found in the variable simpli-

fied_sys[Solved].

Remark. If the given PDE system contains constitutive functions and/or parameters, it is necessary to perform a classification of all
cases of constitutive functions and parameter values that give different results. This is achieved by running the rifsimp command
with an option casesplit:

split_sys := rifsimp(overdet_sys,twf_coords,casesplit);
The result is a Maple table of cases (“pivots”) and equations on tangent vector field components for each case. A tree of cases is
visualized, with pivots explicitly written, by the command

caseplot(split_sys,pivots);

3 See footnote 1.

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 55
E. Solution of determining equations
The possibility of complete automatic integration of the reduced system of determining equations depends on the actual com-

plexity of the symmetry structure of the DE system under consideration.
First we suggest to check the dimension of solution space:

maxdimsystems(overdet_sys,twf_coords,output= rif)[dimension];
If the dimension is finite, the Maple built-in integrator is used for automated integration:

symmetry_sol := pdsolve(simplified_sys[Solved],twf_coords) :
For systems with constitutive functions or arbitrary constants, one applies the same routine to one of the cases in the case tree:

symmetry_sol := pdsolve(split_sys[i][Solved],twf_coords) :
where i is an integer between 1 and the number of cases in the case tree.

We note that though the Maple pdsolve routine is one of the best of its kind, it sometimes returns incomplete or unnecessarily
complicated results, or no result, even when it is not difficult to obtain it by hand. However we enthusiastically recommend to use
it, in conjunction with a completeness test.4

3.3. “GeM” routines for conservation law/adjoint symmetry analysis

A, B: Initialization, declaration of variables, functions and equations
Same as for symmetry analysis.

C. Generation of an overdetermined PDE system for conservation law multipliers/adjoint symmetry components
The following routine generates an overdetermined system of determining equations for conservation law multipliers/adjoint

symmetry components:

CLde := gem_CL_gen_det_eqs([vars],max_der_order <,options>);
The routine proceeds by computing determining equations (2.14) using Euler operators, and setting to zero the coefficients at all

derivatives on which the multipliers do not depend.
Here [vars] is a vector that can include independent variables, dependent variables, and derivatives of dependent variables. It

specifies the dependence of conservation law multipliers or adjoint symmetry components. max_der_order is the integer (� 0)
order of the highest derivative present in [vars].

The only possible option is on_solution_space=true, which forces the adjoint symmetry computation. In this case,
determining equations (2.14) are computed on the solution space of the given DE system. The default value of the option is
on_solution_space=false, which requires the determining equations to be considered off solution space, and hence multi-
pliers of conservation laws will be found (see Section 2.3).

The returned set variable CLde contains the corresponding overdetermined system of determining equations.

D. Solution of determining equations. Canonical form
First, multipliers are stored in a program variable, using a command

Multipliers := gem_CL_multipliers_get_();
Then the overdetermined system of determining equations is simplified and reduced to eliminate redundancy:

(3.1)simplified_system := rifsimp(CLde,Multipliers);
If the given PDE system contains constitutive functions, then instead of (3.1), one performs a classification, as follows:

split_system := rifsimp(CLde,Multipliers,casesplit);
After classification, the resulting tree of cases (“pivots”) can be plotted with the command

caseplot(split_system,pivots);

4 The completeness test consists in checking the agreement of the number of arbitrary constants in the solution returned by pdsolve and the number returned by
the maxdimsystems command. Note that it is a necessary but not sufficient indication of completeness of a solution returned by pdsolve. For example, for a
PDE system {2FF 2

xx − FFxFxxx − F 2
x Fxx = 0,Fy = 0} on F = F(x, y), pdsolve does find a 3-parameter class of solutions {F = a(x + b)c; a, b, c = const},

but misses another class of solutions {F = aebx ; a, b = const}. This is however a rare case and one of the few mistakes that pdsolve makes.

56 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
Second, the reduced system of determining equations simplified_system[Solved] (or, in the case of classification, the
reduced system of determining equations for each case, split_system[i][Solved]) is solved. To use the built-in Maple
solver pdsolve, one needs first to check the dimension of solution space by an appropriate command:

maxdimsystems(simplified_system[Solved],Multipliers,output= rif)[dimension];
or for one of the cases in the classification:

maxdimsystems(split_system[i][Solved],Multipliers,output= rif)[dimension];
where i is an integer between 1 and the number of cases.

If the returned dimension is finite, it is convenient to use pdsolve:

(3.2)solved_mult := pdsolve(simplified_system[Solved],Multipliers);
or for the cases in the classification:

(3.3)solved_mult := pdsolve(split_system[i][Solved],Multipliers);

Remark. If the dimension of solution space returned by maxdimsystems is infinite, as well as in some other (rare) cases, the
pdsolve routine returns only particular solutions. Such situations are to be considered individually. In particular, the presence of
infinite-dimensional conservation laws or adjoint symmetries can imply that the given PDE system is linearizable by an invertible
mapping [2].

If adjoint symmetry analysis is being undertaken, the procedure stops here, since adjoint symmetry components {Λp} are
found. In the case of conservation law analysis, after finding the multipliers {Λp}, the canonical form of the conservation law
DiΦ

i[u] = 0 (2.12) is yet to be determined. The fluxes Φi are found through the conversion of an expression Λp[u]Gp = 0 to the
form DiΦ

i[u] = 0, which in many cases is a simple computational exercise. Fluxes can be automatically found using the following
routine provided in GeM:

(3.4)gem_GetFluxes([solved_multipliers_set],max_der_order);
As input, this routine takes the set of multipliers solved_mult found in (3.2) or one of the cases (3.3), which are to be supplied
in the place of the parameter [solved_multipliers_set]. The second parameter max_der_order specifies the highest
order of derivative present in [solved_multipliers_set].

This routine attempts to solve the condition Λp[u]Gp = DiΦ
i[u] to find and output the general expression for fluxes. If multipli-

ers [solved_multipliers_set] are linear combinations involving constants of integration, the fluxes are split accordingly,
which results in a set of linearly independent nontrivial conservation laws.

4. Summary and further remarks

The GeM package for Maple presented in this paper contains a set of automated routines for local (Lie, contact and higher-order)
and approximate symmetry analysis and classification, conservation law analysis and classification (through the determination of
conservation law multipliers), and adjoint symmetry analysis and classification, for systems of partial and ordinary differential
equations. The package routines efficiently produce sets of determining equations that are optimized for further reduction and
solution with Waterloo Maple internal routines. The integration results are presented as symmetry generators or conservation
laws in the canonical form.

GeM is effectively used in the research of the author and his collaborators. Maple programs that use GeM are readily created
for most PDE and ODE systems that arise in theoretical research and applications. Such programs are short, time-efficient, and
demonstrate reliable behavior in the analysis of DEs or DE systems involving various numbers of dependent/independent variables,
and nonlinear DEs of higher order.

Further development of the package will proceed, in particular, in the following directions:

(1) Increasing work efficiency and speed in problems that involve more than two independent variables and (explicitly or implicitly)
derivatives of high orders, 8 and above;

(2) Increasing the effectiveness and generality of integration of expressions of the type M = Λp[U]Gp = 0 to obtain the canonical
form of the corresponding conservation law DiΦ

i[U] = 0, by using alternative methods (including homotopy operators);
(3) Implementation of automatic introduction of potential variables and generation of potential systems (nonlocally related to the

given system). Implementation of automatic generation of subsystems, nonlocally related to the given system, by eliminating
dependent variables. Creation of routines for automatic nonlocal symmetry/nonlocal conservation law analysis through the
consideration of potential systems and subsystems nonlocally related to the given system [20].

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 57
The current version of the GeM package with examples is available on the website [14]. New versions with additional features
will be published on the same website.

Acknowledgements

The author thanks George Bluman, Stephen Anco, Nataliya Ivanova and the referee of this paper for useful discussion and
suggestions, and the National Sciences and Engineering Council of Canada and the Killam Foundation for support.

Appendix A. Test run output

This section contains code and output for several examples:

(a) Higher symmetry analysis of Burgers’ equation (Example A.1);
(b) Classification of local conservation laws of Nonlinear Telegraph equations, with respect to two constitutive functions (Exam-

ple A.2);
(c) A comparison of point symmetries and adjoint symmetries of a nonlinear equation (Example A.3).

Example A.1 (Higher symmetries of Burgers’ equation). As en example, we present Maple code and output of a program that
computes higher-order symmetries of Burgers equation. Following [2, Chapter 5.2], we seek symmetries of Burgers’ equation

(A.1)ut + uux = uxx

that depend on (x, t, ux, uxx, uxxx), in the evolutionary form (2.16).
The Maple program has the form:

restart;
with(GeM) : with(linalg) : with(DEtools) : with(PDEtools) :
gem_init_defs([x,t], [U(x,t)], [], [],0,

[diff(U(x,t),t) + U(x,t) ∗ diff(U(x,t),x) = diff(U(x,t),x,x)], [diff(U(x,t),t)]);
overdet_sys := gem_get_split_sys(

[x,t,U(x,t),diff(U(x,t),x),diff(U(x,t),x,x),

diff(U(x,t),x,x,x)],3,in_ev_form= true);
twf_coords := gem_tvf_coords_get_();
simplified_system := rifsimp(overdet_sys,twf_coords) :
#Verify dimension of solution space :
maxdimsystems(overdet_sys,twf_coords,output= rif)[dimension];
#Solve for symmetry generator :
SymmetrySolution := pdsolve(simplified_system[Solved],twf_coords) :
#Print 9 independent symmetry generators :
gem_GenAllX(SymmetrySolution,9);

The computation of the nine-dimensional Lie algebra of symmetry generators takes several seconds. The output symmetry
generators are as follows (cf. [2]):

X1 =
(

4

3
t3uxxx + 2(x − tu)t2uxx − 2t3u2

x + (t2u2 + x2 + 4t − 2xtu)tux

− 2t − t2u2 + 2xtu − x2
)

∂

∂u
;

X2 =
(

2t2uxxx + (2x − 3tu)tuxx − 3t2u2
x

+
(

3
t2u2 − 2xtu + 3t + 1

x2
)

ux + xu − tu2
)

∂ ;

2 2 ∂u

58 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
Fig. 1. Tree of cases of constitutive functions F(u), G(u) in the classification of conservation laws of the NLT equations (A.2).

X3 = (
4tuxxx + 2(x − 3ut)uxx − 6x2tu + (3ut − 2x)uux − u2) ∂

∂u
;

X4 = (
t2uxx + (x − tu)tux − x + tu

) ∂

∂u
;

X5 = (
2tuxx + (x − 2ut)ux + u

) ∂

∂u
;

X6 = (uxx − uux)
∂

∂u
;

X7 =
(

2

3
uxxx − uuxx − u2

x + 1

2
u2ux

)
∂

∂u
;

X8 = (1 − tux)
∂

∂u
;

X9 = ux

∂

∂u
.

Example A.2 (Classification of local conservation laws of Nonlinear Telegraph equations). We consider Nonlinear Telegraph
(NLT) equations

(A.2)utt − (
F(u)ux

)
x

− (
G(u)

)
x

= 0

for general F(u), G(u), and with power nonlinearities F(u) = uα , G(u) = uβ (α,β �= 0).
We perform a classification of conservation laws of these equations for multipliers of the form Λ = Λ(x, t,U).
The Maple code for conservation law classification is

restart;
with(GeM) : with(linalg) : with(DEtools) : with(PDEtools) :
gem_init_defs([x,t], [U(x,t)], [F(U(x,t)),G(U(x,t))], [],0,

[diff(U(x,t),t,t) = diff((F(U(x,t)) ∗ diff(U(x,t),x) + G(U(x,t))),x)],
[diff(U(x,t),t,t)]);
#Generate and print conservation law determining equations.

CLde := gem_CL_gen_det_eqs([t,x,U(x,t)],0);
Multipliers := gem_CL_multipliers_get_();
#Simplify and split cases

split_system := rifsimp(CLde union {F(U) <> 0},Multipliers,casesplit);
caseplot(split_system,pivots);

The output of the last command, showing the tree of cases in the conservation law classification, is shown on Fig. 1.

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 59
Table 1
Classification of Local Conservation Laws DtT + DxX = 0 of NLT equations (A.2)

F(u) G(u) Multiplier T −X

Arbitrary Arbitrary Λ = 1 ut F (u)ux + G(u)

Λ = t tut − u t(F (u)ux + G(u))

(α + 1)uα uα+1 Λ = ex exut ex(uα+1)x

Λ = tex ex(tut − u) tex(uα+1)x

(α + 1)uα u Λ = x − t2

2 (x − t2

2)ut + ut (x − t2

2)
(
(uα+1)x + u

) − uα+1(
Λ = xt − t3

6

)
(tx − t3

6)ut − u(x − t2

2) (tx − t3

6)
(
(uα+1)x + u

) − tuα+1

We now explicitly find conservation laws for all cases, restricting ourselves to power nonlinearities F(u) = uα , G(u) = uβ

(α,β �= 0).
The most general case 1 holds for all functions F(u), G(u), in particular, for arbitrary powers F(u) = uα , G(u) = uβ (α,β �= 0).

We compute and output multipliers and fluxes of conservation laws with the following commands:

mm := 1;
maxdimsystems(split_system[mm][Solved],Multipliers);
lambdas_solved := pdsolve(split_system[mm][Solved]);
gem_GetFluxes(lambdas_solved,0);

The output multipliers and fluxes of conservation laws are given in Table 1.
For the power nonlinearities, two possibilities exist in which case 2 on Fig. 1 is realized: (2a) F(u) = (α + 1)uα , G(u) = uα+1

and (2b) F(u) = (α + 1)uα , G(u) = u (α �= −1). We compute and output multipliers and fluxes of conservation laws with the
following sets of commands.

For the case (2a):

mm := 2;
maxdimsystems(split_system[mm][Solved],Multipliers);
F(U) := (alpha+ 1) ∗ Uˆalpha : G(U) := Uˆ(alpha+ 1);
lambdas_solved := pdsolve(split_system[mm][Solved]);
gem_GetFluxes(lambdas_solved[1],0);

For the case (2b):

mm := 2;
maxdimsystems(split_system[mm][Solved],Multipliers);
F(U) := (alpha+ 1) ∗ Uˆalpha : G(U) := U;
lambdas_solved := pdsolve(split_system[mm][Solved]);
gem_GetFluxes(lambdas_solved[1],0);

For each of the cases (2a) and (2b), two new conservation laws are found. The output multipliers and fluxes are given in Table 1.
In case 3, F(u) = const, G(u) = uα+1, no new conservation laws compared to case 1 are found. Case 4 is linear and hence is

not considered.
The full Maple program for the above example is available in [14].

Example A.3 (A comparison of point symmetries and adjoint symmetries). In this example, we follow [11] to compare symmetries
and adjoint symmetries (in evolutionary form) of a nonlinear PDE equation

(A.3)utt + H ′(ux)uxx + H(ux) = 0,

for the case H(y) = y4.
The following program computes symmetries of (A.3) in evolutionary form (note the option in the call to gem_get_split_

sys):

restart;
with(GeM): with(linalg): with(DEtools): with(PDEtools):

60 A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61
HH:=x->xˆ4;
gem_init_defs([t,x], [U(x,t)],[],[],0,
[diff(U(x,t),t,t)+diff(HH(diff(U(x,t),x)),x)+HH(diff(U(x,t),x))=0],
[diff(U(x,t),t,t)]);
#Generate symmetry determining equations in evolutionary form:
overdet_sys:=gem_get_split_sys([x,t,U(x,t),diff(U(x,t),x),diff(U(x,t),t)],

1,in_ev_form=true);
twf_coords:=gem_tvf_coords_get_();
#Simplify:
simplified_system:=rifsimp(overdet_sys, twf_coords):
#Dimension of solution space:
maxdimsystems(overdet_sys, twf_coords, output=rif)[dimension];
#Symmetry tangent vector field coordinates:
SymmetrySolution:=expand(pdsolve(simplified_system[Solved],twf_coords)):
#Output:
gem_GenAllX(SymmetrySolution,5);

The output symmetry generator is

X =
(

C1 + C2t + C3ux + C4ut + C5

(
tut + 2

3
u

))
∂

∂u
.

We now compute adjoint symmetries of (A.3):

restart;
with(GeM): with(linalg): with(DEtools): with(PDEtools):
HH:=x->xˆ4;
gem_init_defs([t,x], [U(x,t)],[],[],0,
[diff(U(x,t),t,t)+diff(HH(diff(U(x,t),x)),x)+HH(diff(U(x,t),x))=0],
[diff(U(x,t),t,t)]);
#Generate adjoint symmetry determining equations:
ASde:=gem_CL_gen_det_eqs([x,t, U(x,t),diff(U(x,t),x),diff(U(x,t),t)],
1, on_solution_space=true);
AdjSymmComp:= gem_CL_multipliers_get_();
#Simplify:
simplified_system:=rifsimp(ASde, AdjSymmComp);
#Dimension of solution space:
maxdimsystems(simplified_system[Solved],AdjSymmComp,
output=rif)[dimension];
#Adjoint symmetry vector field coordinates:
solved_adjsym:=pdsolve(simplified_system[Solved], AdjSymmComp);

The resulting adjoint symmetry generator is

X∗ = ex

(
C1 + C2t + C3ut + C4

(
tut + 2

3
u

))
∂

∂u
,

which does not coincide with X. This shows that the linearization of Eq. (A.3) as it stands is not self-adjoint (which can also be
checked directly), and hence Eq. (A.3) does not follow from a variational principle.

However, for the equation

(A.4)ex
(
utt + H ′(ux)uxx + H(ux)

) = 0,

its linearization and adjoint linear system coincide. Analogous computation can be used to check that indeed point symmetry and
adjoint symmetry generators also coincide. Therefore (A.4) does follow from a variational principle. This example demonstrates
that the property of existence of a variational formulation for a nonlinear PDE is not “invariant” in a reasonable sense, and therefore
is artificial.

A.F. Cheviakov / Computer Physics Communications 176 (2007) 48–61 61
References

[1] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
[2] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, Berlin, 1989.
[3] N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, FL, 1993.
[4] O.I. Bogoyavlenskij, Infinite symmetries of the ideal MHD equilibrium equations, Phys. Lett. A 291 (4–5) (2001) 256–264.
[5] A.F. Cheviakov, O.I. Bogoyavlenskij, Exact anisotropic MHD equilibria, J. Phys. A 37 (2004) 7593.
[6] A.F. Cheviakov, Construction of exact plasma equilibrium solutions with different geometries, Phys. Rev. Lett. 94 (2005) 165001.
[7] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968) 467–490.
[8] T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328 (1972) 153–183.
[9] R.J. Knops, C.A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rat. Mech. Anal. 86 (1984) 234–249.

[10] T. Wolf, A comparison of four approaches to the calculation of conservation laws, EJAM 13 (2) (2002) 129–152.
[11] G. Bluman, Connections between symmetries and conservation laws, SIGMA 1 (2005), Paper 011, 16 pages.
[12] W. Hereman, Review of symbolic software for Lie symmetry analysis, Math. Comp. Mod. 25 (1997) 115–132.
[13] T. Wolf, Crack, LiePDE, ApplySym and ConLaw, Section 4.3.5 and computer program on CD-ROM, in: J. Grabmeier, E. Kaltofen, V. Weispfenning (Eds.),

Computer Algebra Handbook, Springer, Berlin, 2002, pp. 465–468.
[14] The GeM package and documentation is available at http://www.math.ubc.ca/~alexch/gem/.
[15] W.I. Fushchich, W.M. Shtelen, On approximate symmetry and approximate solutions of the non-linear wave equation with a small parameter, J. Phys. A 22

(1989) L887–L890.
[16] V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, Perturbation methods in group analysis, J. Sov. Math. 55 (1991) 1450–1455.
[17] S. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications,

European J. Appl. Math. 13 (2002) 545–566.
[18] S. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations. Part II: General treatment, European J. Appl. Math. 13

(2002) 567–585.
[19] W. Hereman, Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions, Preprint, 2006.
[20] G. Bluman, A.F. Cheviakov, Framework for potential systems and nonlocal symmetries: Algorithmic approach, J. Math. Phys. 46 (2005) 123506.

http://www.math.ubc.ca/~alexch/gem/

	GeM software package for computation of symmetries and conservation laws of differential equations
	Introduction
	Symmetry, adjoint symmetry and conservation law analysis of systems of differential equations
	The Lie procedure for finding symmetries
	Methods for finding conservation laws of PDE systems
	Symmetries, adjoint symmetries and conservation laws of PDE systems

	``GeM'' symbolic package for general Lie symmetry computation
	Description
	``GeM'' routine sequence for symmetry analysis
	A. Initialization
	B. Declaration of variables and equations
	C. Generation of symmetry determining equations
	D. Simplification of the overdetermined system. Classification
	E. Solution of determining equations

	``GeM'' routines for conservation law/adjoint symmetry analysis
	A, B: Initialization, declaration of variables, functions and equations
	C. Generation of an overdetermined PDE system for conservation law multipliers/adjoint symmetry components
	D. Solution of determining equations. Canonical form

	Summary and further remarks
	Acknowledgements
	Test run output
	References

