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Any partial differential equation �PDE� system can be effectively analyzed through
consideration of its tree of nonlocally related systems. If a given PDE system has n
local conservation laws, then each conservation law yields potential equations and
a corresponding nonlocally related potential system. Moreover, from these n con-
servation laws, one can directly construct 2n−1 independent nonlocally related
systems by considering these potential systems individually �n singlets�, in pairs
�n�n−1� /2 couplets� , . . ., taken all together �one n-plet�. In turn, any one of these
2n−1 systems could lead to the discovery of new nonlocal symmetries and/or
nonlocal conservation laws of the given PDE system. Moreover, such nonlocal
conservation laws could yield further nonlocally related systems. A theorem is
proved that simplifies this framework to find such extended trees by eliminating
redundant systems. The planar gas dynamics equations and nonlinear telegraph
equations are used as illustrative examples. Many new local and nonlocal conser-
vation laws and nonlocal symmetries are found for these systems. In particular, our
examples illustrate that a local symmetry of a k-plet is not always a local symmetry
of its “completed” n-plet �k�n�. A new analytical solution, arising as an invariant
solution for a potential Lagrange system, is constructed for a generalized polytropic
gas. © 2006 American Institute of Physics. �DOI: 10.1063/1.2349488�

I. INTRODUCTION

For any given system of partial differential equations �PDEs�, one can systematically construct
an extended tree of nonlocally related potential systems and subsystems.1 All systems within a tree
have the same solution set as the given system.

The analysis of a system of PDEs through consideration of nonlocally related systems in an
extended tree can be of great value. In particular, using this approach, through Lie’s algorithm one
can systematically calculate nonlocal symmetries �which in turn are useful for obtaining new exact
solutions from known ones�, construct invariant and nonclassical solutions, as well as obtain
linearizations, etc. �Examples are found in Ref. 1.� Perhaps more importantly, as all such related
systems contain all solutions of the given system, any general method of analysis �qualitative,
numerical, perturbation, conservation laws, etc.� considered for a given PDE system may be tried
again on any nonlocally related potential system or subsystem. In this way, new results may be
obtained for any method of analysis that is not coordinate-dependent as the systems within a tree
are related in a nonlocal manner.

In Ref. 1, a tree construction algorithm is described. First, local conservation laws for the
given system are found �through the direct construction method �DCM� or other method�.2–4 For
each conservation law, one or several potentials are introduced.5 Consequently, a potential system
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is obtained. Next, for each potential system, its conservation laws are computed, and further
potential systems are constructed. This procedure terminates when no more new conservation laws
are found. After potential systems are determined, for each potential system, new subsystems may
be generated when one is able to reduce the number of dependent variables �including a reduction
after a point transformation of dependent and independent variables of a potential system in a
tree�. At any step, all locally related potential systems and subsystems are excluded from the tree.

In this article we further extend the tree construction algorithm presented in Ref. 1. In par-
ticular, if a given system of PDEs has n conservation laws, one can directly construct 2n−1
independent nonlocally related systems by considering their corresponding potential systems in-
dividually �n singlets�, in pairs �n�n− l� /2 couplets�,. . ., taken all together �one n-plet�. In turn, any
one of these 2n−1 systems could lead to the discovery of new nonlocal symmetries and/or non-
local conservation laws of the given PDE system. Moreover, such nonlocal conservation laws
could yield further nonlocally related systems and subsystems as described earlier. Hence, for a
given system of PDEs, the construction of its tree of nonlocally related PDE systems through our
extended tree framework can be complex. Most importantly, we introduce and prove a theorem
that simplifies this construction to find such extended trees by eliminating redundant systems. The
work presented in this paper also simplifies and extends to within an algorithmic framework the
heuristic approaches presented in Refs. 9 and 10.

This article gives a comprehensive analysis of trees of nonlocally related systems for classes
of constitutive functions, including a systematic search of corresponding nonlocal symmetries and
nonlocal conservation laws. In particular, new nonlocal symmetries and new conservation laws are
found for planar gas dynamics �PGD� equations and nonlinear telegraph �NLT� equations, extend-
ing work in Refs. 6–10, respectively, and in references therein. Moreover, we extend and simplify
the tree construction framework presented in Ref. 1 through further elimination of redundant
systems. In a related work,11 for a class of diffusion-convection equations, Popovych and
Ivanova11 completely classified its potential conservation laws and, correspondingly, constructed
�hierarchical� trees of inequivalent potential systems.

This article is organized as follows. In Sec. II, we review the DCM for finding conservation
laws for a given system of PDEs. We show how a related potential system arises from each local
conservation law of the given system and, further, how to construct the corresponding 2n−1
nonlocally related systems for a given system of PDEs with n local conservation laws. As ex-
amples, we consider systems of PGD equations. We find local conservation laws and correspond-
ing nonlocally related systems for the PGD system in Lagrangian coordinates.

In Sec. III, we prove a fundamental theorem on finding conservation laws of PDE systems. In
particular, for any given PDE system F with two independent variables �x and t� with precisely n
local conservation laws, we show that from consideration of all combinations of the n correspond-
ing potential systems of PDEs arising from the given system, no nonlocal conservation laws can be
obtained for F through potential systems arising from multipliers that depend only on x and t. In
particular, for such multipliers, all conservation laws of potential systems must be linear combi-
nations of the n local conservation laws of the given system F. Consequently, for such multipliers,
all further potential systems are equivalent to all possible couplets, triplets,. . . ,n-plets of potential
systems obtained from a given system F—a total of 2n−1 systems for consideration. Hence for a
given PDE system F, in order to find additional inequivalent potential systems as well as nonlocal
conservation laws for F, it is necessary to seek conservation laws through multipliers having an
essential dependence on dependent variables. The fundamental theorem is also shown to hold for
PDE systems with any number of independent variables.

In Sec. IV, as a prototypical example, we consider NLT equations. We give a complete
classification of local conservation laws arising from multipliers that are functions of independent
and dependent variables. As a consequence, we find five new local conservation laws arising from
three distinguished cases. We then use the simplified procedure introduced in Sec. III to construct
corresponding trees of nonlocally related PDE systems. Nonlocal symmetries are found for cor-
responding NLT systems with constitutive functions involving power law nonlinearities, including
all nonlocal symmetries found in Ref. 6 as well as a new one. Moreover, six new nonlocal
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conservation laws are constructed for such power law NLT equations through a search of multi-
pliers �which have an essential dependence on potential variables� for the potential systems arising
from its conservation laws.

In Sec. V, we consider PGD equations, with a generalized polytropic equation of state, in
Lagrangian coordinates. We give the point symmetry classification of the seven potential systems
resulting from its three local conservation laws. Two new nonlocal symmetries are found which
arise as point symmetries for only one of these potential systems �a couplet�. We observe that these
new nonlocal symmetries also arise as point symmetries of a subsystem of the Lagrange system
and give the symmetry classification of this subsystem. This yields one more new nonlocal sym-
metry of the PGD equations. We consider invariant solutions that essentially arise from new
nonlocal symmetries.

In Sec. VI, we summarize the new results presented in this article. In particular, we outline the
procedure to construct a tree of nonlocally related PDE systems for a given PDE system.

In this work, a recently developed package GeM for MAPLE
12 is used for automated symmetry

and conservation law analysis and classifications.

II. CONSTRUCTION OF CONSERVATION LAWS AND NONLOCALLY RELATED PDE
SYSTEMS

A. Direct construction method for finding conservation laws

We first present the DCM to find the conservation laws for a general PDE system.
Let G�x ,u�=0 be a system of m partial differential equations

G�x,u� = 0:�G1�x,u� = 0

�
Gm�x,u� = 0

�2.1�

with M independent variables x= �x1 , . . . ,xM�, and N dependent variables u= �u1 , . . . ,uN�. Let �lu
denote the set of all partial derivatives of u of order l.

A set of multipliers ��k�x ,U ,�U , . . . ,�lU��k=1
m yields a conservation law

�k�x,u,�u, . . . ,�lu�Gk�x,u� = Di�
i�x,u,�u, . . . ,�ru� = 0 �2.2�

of system �2.1� if and only if the linear combination �k�x ,U ,�U . . . ,�lU�Gk�x ,U� is annihilated by
the Euler operators

EUs
�

�Us − Di
�

�Ui
s + ¯ + �− 1� jDi1

¯ Dij

�

�Ui1. . .ij

s + ¯ , �2.3�

i.e., the N determining equations

EUs��k�x,U,�U, . . . ,�lU�Gk�x,U�� = 0, s = 1, . . . ,N , �2.4�

must hold for an arbitrary set of functions U= �U1 , . . . ,UN�. Here and for the rest of this article, we
assume summation over a repeated index.

After solving the determining equations �2.4� and finding a set of multipliers
��k�x ,U ,�U , . . . ,�lU��k=1

m that yield a conservation law, one can obtain the fluxes
�i�x ,u ,�u , . . . ,�ru� by using integral formulas arising from homotopy operators �see Refs. 2 and
3�.

A conservation law Di�
i�x ,u ,�u , . . . ,�ru�=0 is called trivial if its fluxes are of the form

�i=Mi+Hi, where Mi and Hi are smooth functions such that Mi vanishes on the solutions of the
system �2.1�, and DiH

i	0. Two conservation laws Di�
i�u�=0 and Di�

i�u�=0 are equivalent if
Di��i�u�−�i�u��=0 is a trivial conservation law. The more general “triviality” idea is the notion
of linear dependence of conservation laws. A set of conservation laws is linearly dependent if there
exists a linear combination of them which is a trivial conservation law.
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B. Construction of nonlocally related systems from local conservation laws

Case A: Two independent variables. Suppose a PDE system with two independent variables

F�x,t,u� = 0: �F1�x,t,u� = 0,

�
Fm�x,t,u� = 0,

�2.5�

possesses n local conservation laws �Rs�s=1
n of the form

Rs: DxXs�x,t,u,�u, . . . ,�ru� + DtTs�x,t,u,�u, . . . ,�ru� = 0, s = 1, . . . ,n , �2.6�

where Ts and Xs are differentiable functions of their arguments. Each conservation law Rs �2.6� of
the system �2.5� yields a pair of potential equations of the form

Ps: 
�vs�x = Ts�x,t,u,�u, . . . ,�ru� ,

�vs�t = − Xs�x,t,u,�u, . . . ,�ru� .
�2.7�

For each conservation law �2.6�, the corresponding set of potential equations Ps �2.7� can be
appended to the given system F �2.5� to yield a nonlocally related potential system FP

s . �Alterna-
tively, if at least one of the factors of the conservation law does not vanish outside of the solution
space, the potential equations Ps can replace one of the equations of the given system F.�

From the n conservation laws �2.6�, one can obtain further inequivalent nonlocally related
systems, by considering not only potential systems FP

s arising from single conservation laws Rs,
but also couplets �FP

i ,FP
j �i,j=1

n , triplets �FP
i ,FP

j ,FP
k �i,j,k=1

n , . . ., and finally the n-plet of potential
systems �FP

1 , . . .FP
n�. Hence one obtains as many as 2n−1 potential systems of equations nonlo-

cally related to F �2.5� through the n conservation laws �2.6�.
Case B: Several independent variables. Now consider a general PDE system G �2.1� with

M �2 independent variables. Suppose it possesses n local conservation laws �Ks�s=1
n of the form

Ks: Di�s
i�x,u,�u, . . . ,�ru� = 0, s = 1, . . . ,n , �2.8�

with fluxes ��s�i that are differentiable functions of their arguments. Each conservation law �2.8�
yields a set of M potential equations of the form �see Refs. 5 and 14�

Qs: �s
i = �

i�j

�− 1� j �

�xjvij + �
j�i

�− 1�i−1 �

�xjv ji, i = 1, . . . ,M , �2.9�

where the potentials v= �vij�x�� are the 1
2 M�M −1� nonrepeating components of an M �M anti-

symmetric tensor.
For every s, by appending potential equations Qs to the given system G �or replacing an

equation of G by potential equations Qs, whatever is appropriate�, one obtains a potential system
GP

s which is nonlocally related to the given system G �2.1�.
In the same manner as for the case of two independent variables, by considering singlets,

couplets, triplets, . . . ,n-plet of potential systems GP
s , one can obtain as many as 2n−1 independent

PDE systems nonlocally related to the given system G, whose solution sets are equivalent to that
of G.

We now illustrate the use of 2n−1 independent potential systems to study symmetries of a
system of polytropic gas dynamics equations.

C. Conservation laws, nonlocally related PDE systems and nonlocal symmetry
analysis of planar gas dynamics equations

1. Conservation laws and nonlocally related systems

In Lagrangian mass coordinates s= t ,y=�x0

x ����d�, planar one-dimensional gas motion is de-
scribed by the equations
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L�y,s,v,p,q� = 0: �qs − vy = 0

vs + py = 0

ps + B�p,q�vy = 0.

�2.10�

Here x is a Cartesian space coordinate, t is time, v is the gas velocity, q=1/� where � is the gas
density, and p is the gas pressure. In terms of the entropy density S�p ,q�, the constitutive function
B�p ,q� is given by

B�p,q� =
Sq

Sp
.

We note that system �2.10� admits the group of equivalence transformations

s = a1s̃ + a4, y = a2ỹ + a5, v = a3ṽ + a6,

p =
a2a3

a1
p̃ + a7, q =

a1a3

a2
q̃ + a8, B�p,q� =

a2
2

a1
2 B̃�p̃, q̃� �2.11�

for arbitrary constants a1 . . . ,a8 with a1a2a3�0.
We first construct the simplest conservation laws and all corresponding inequivalent potential

systems for the Lagrange system �2.10�. Using the DCM �Sec. II A�, for an arbitrary constitutive
function B�p ,1 /��, we find that for multipliers of the form �i=�i�y ,s�, the Lagrange system
�2.10� has the conservation laws exhibited in Table I.

The potential equations that arise from the conservation law �W1� can be used to replace the
first equation of the Lagrange system �2.10�; potential equations arising from the conservation law
�W2�, can replace the second equation of �2.10�; finally, potential equations arising from the
conservation law �W3�, can equivalently replace either the first or second equation of �2.10�.

The independent set of nonlocally related �potential� systems of the Lagrange system �2.10�
consists of the following:

• Three singlets �potential systems involving a single nonlocal variable wi�

LW1�y,s,v,p,q,w1� = 0: �
w1y = 1,

w1s = v ,

vs + py = 0,

ps + B�p,q�vy = 0;

�2.12�

LW2�y,s,v,p,q,w2� = 0: �
qs − vy = 0,

w2y = v ,

w2s = − p ,

ps + B�p,q�vy = 0;

�2.13�

TABLE I. Local conservation laws of �2.10� with �i=�i�y ,s�.

CL Multipliers ��1 ,�2 ,�3� Conservation law Potential Potential equations

�W1� �1,0 ,0� Ds�q�−Dy�v�=0 w1 w1y =q, w1s=v

�W2� �0,1 ,0� Ds�v�+Dy�p�=0 w2 w2y =v, w2s=−p

�W3� �y ,s ,0� Ds�sv+yq�+Dy�sp−yv�=0 w3 w3y =sv+yq, w3s=−sp+yv
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LW3�y,s,v,p,q,w3� = 0: �
w3y = sv + yq ,

w3s = − sp + yv ,

vs + py = 0,

ps + B�p,q�vy = 0;

�2.14�

• Three couplets

LW1W2�y,s,v,p,q,w1,w2� = 0: �
w1y = q ,

w1s = v ,

w2y = v ,

w2s = − p ,

ps + B�p,q�vy = 0;

�2.15�

LW1W3�y,s,v,p,q,w1,w3� = 0: �
w1y = q ,

w1s = v ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0;

�2.16�

LW2W3�y,s,v,p,q,w2,w3� = 0: �
w2y = v ,

w2s = − p ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0;

�2.17�

• One triplet involving all three conservation laws:

LW1W2W3�y,s,v,p,q,w1,w2,w3� = 0: �
w1y = q ,

w1s = v ,

w2y = v ,

w2s = − p ,

w3y = sv + yq ,

w3s = − sp + yv ,

ps + B�p,q�vy = 0.

�2.18�

The Lagrange system �2.10� has also a nonlocally related subsystem obtained by excluding v
�See Ref. 1�:

L�y,s,p,q� = 0: 
qss + pyy = 0,

ps + B�p,q�qs = 0.
�2.19�

2. Nonlocal symmetry analysis for polytropic gas flows

We consider the polytropic equation of state
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B�p,q� = 	
p

q
.

Applying group analysis to the triplet potential system �2.18�, for arbitrary 	, one finds the basis
of the ten-dimensional point symmetry algebra admitted by the given Lagrange system �2.10�:

X1 =
�

�s
+ w2

�

�w3
, X2 =

�

�y
+ w1

�

�w3
,

X3 = s
�

�s
+ v

�

�v
+ 2q

�

�q
+ 2w1

�

�w1
+ w2

�

�w2
+ 2w3

�

�w3
,

X4 =
�

�v
+ s

�

�w1
+ y

�

�w2
+ ys

�

�w3
, X5 = s

�

�s
+ y

�

�y
+ w1

�

�w1
+ w2

�

�w2
+ 2w3

�

�w3
,

X6 = v
�

�v
+ p

�

�p
+ q

�

�q
+ w1

�

�w1
+ w2

�

�w2
+ w3

�

�w3
,

X7 =
�

�w1
, X8 =

�

�w2
, X9 =

�

�w3
,

X10 = y2 �

�y
+ �w2 − yv�

�

�v
+ yp

�

�p
− 3yq

�

�q
+ �sw2 − w3�

�

�w1
+ yw2

�

�w2
+ ysw2

�

�w3
.

�2.20�

In particular, the operators X1 , . . . ,X9 project onto point symmetries of the given Lagrange
system �2.10�; the operator X10 yields a nonlocal symmetry of the Lagrange system L.1,10

If 	=3, system �2.10� admits one additional symmetry9

X11 = s2 �

�s
+ �w1 − sv�

�

�v
− 3sp

�

�p
+ sq

�

�q
+ sw1

�

�w1
+ �yw1 − w3�

�

�w2
+ ysw1

�

�w3
,

which also yields a nonlocal symmetry of the Lagrange system L.
If 	=−1, system �2.10� corresponds to Chaplygin gas and is linearizable, as will be shown in

Sec. II C 3.
Remark 1: Among all of these constructed potential systems of L, symmetries X1 . . . ,X10 �or

their projections� are obtained simultaneously as point symmetries only for the triplet potential
system LW1W2W3, which in this sense is a grand system for the Lagrange system L. �All other
potential systems admit the corresponding projected proper subalgebras of the Lie algebra arising
from �2.20�.� The practical value of such a grand system is evident—possessing the largest known
symmetry group, it allows the construction of a maximal possible set of invariant solutions of the
given system.

Note that it does not automatically follow that the potential system with the maximum number
of potential variables is a “grand system” for determining symmetries, as is the case in this
example. Counterexamples will be presented in Secs. IV and V.

3. Further conservation laws for a general constitutive function

We now look for conservation law multipliers for the Lagrange system L �2.10� in terms of
the more general form �i=�i�y ,s ,V , P ,Q�, i=1,2 ,3.

The solution of the conservation law determining equations �2.4� yields the following multi-
pliers:
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�1 = 
y − �P + B�P,Q��3 + � ,

�2 = 
s + �V + 
 ,

�3 = �3�y,P,Q� , �2.21�

where 
, �, 
, and � are arbitrary real constants, and �3�y , P ,Q� is any solution of the PDE

��3�Q = �B�P,Q��3�P − � . �2.22�

Conservation laws corresponding to �=0, �3=0 and � ,
 ,
�0 are, respectively, the conser-
vation laws �W1�, �W2�, and �W3� listed in Table I. Additional conservation laws arise when �3

�0. It is possible to show that from multipliers �2.21� only two new linearly independent conser-
vation laws follow. The first conservation law corresponds to �=1 and represents conservation of
energy. It is given by


�v2

2
+ K�p,q��

s
+ �pv�y� = 0, �2.23�

where K�p ,q� is a solution of the equation Kq�p ,q�=B�p ,q�Kp�p ,q�− p.
The second conservation law ��=0� defines the adiabatic process in Lagrangian coordinates:

�S�p,q��s = 0, �2.24�

where the entropy S�p ,q� is a solution of the equation Sq�p ,q�=B�p ,q�Sp�p ,q�.
For forms of B�p ,q� for which the functions K�p ,q�, S�p ,q� can be explicitly evaluated, the

conservation laws �2.23� and �2.24�, respectively, yield explicit potential systems with potentials
w4, w5.

For the polytropic case B�p ,q�=	p /q, we find that S�p ,q�=q	p. The conservation law
�S�p ,q��s=0 �2.24� can equivalently replace the last equation of the given system L �2.10�. This
leads to the potential system

LW5�y,s,v,p,q,w5� = 0:�
�w5�y�y,s� = q	p ,

�w5�s�y,s� = 0,

qs − vy = 0,

vs + py = 0

�2.25�

Noting that w5�y ,s�=w5�y� and expressing q=k�y�p−1/	, for an arbitrary k�y�, we find a subsystem

LW5�y,s,v,p,k� = 0:
vy − �k�y�p−1/	�s = 0,

vs + py = 0
�2.26�

nonlocally related to the given system L �2.10�.
Remark 2: For the case of a Chaplygin gas 	=−1, the Lagrange PGD system L �2.10� is

nonlinear as it stands, and cannot be linearized by a point transformation. But the equivalent
system LW5 for 	=−1 becomes linear. Thus in the Chaplygin gas case, the Lagrange PGD system
L is linearized by a nonlocal transformation.

Remark 3: Excluding the variable v from �2.26�, we see that the Lagrange polytropic PGD
system is equivalent to

LW5= �y,s,p� = 0: pyy + �k�y�p−1/	�ss = 0, �2.27�

which is a nonlinear elliptic equation for k�y��0,	�−1,	�0, and a nonlinear hyperbolic equa-
tion for k�y��0,	�−1.

Remark 4: The solutions of �2.26� for a particular form of k�y� correspond to a subset of the
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solutions of the given system L �2.10�. In particular, for k�y�=const, the system LW5= �2.26� can
be mapped into a linear system by a hodograph transformation �e.g., Ref. 18�. Thus it is possible
to obtain a special class of solutions of the given nonlinear system L �2.10� through solving this
linear PDE system.

III. LINEAR DEPENDENCE OF CONSERVATION LAWS AND LOCAL EQUIVALENCE OF
POTENTIAL SYSTEMS

For a given PDE system, its conservation laws can be constructed systematically �through the
Direct Construction Method or other method2–4�. For each conservation law, one or several po-
tentials are introduced, and the corresponding potential system is constructed. Next, for each such
nonlocally related system, its conservation laws are computed, and from these, more potentials are
introduced, which in turn lead to the construction of further potential systems, etc. Together with
subsystems �obtained by a reduction of the number of dependent variables for a potential system,
which includes consideration of reductions after an interchange of dependent and independent
variables�, this systematic procedure yields an extended tree of PDE systems nonlocally related to
the given one �see Ref. 1 and Sec. II B�.

In this section, we present theorems which simplify the tree construction through elimination
of redundant systems.

A. Linear dependence of conservation laws and tree simplification. Two-dimensional
case

Definition 1: Suppose the system of PDEs �2.5� has precisely n local conservation laws. Its
general potential system P is the set of 2n−1 potential systems arising from these n local conser-
vation laws.

We now prove the following fundamental theorem concerned with the construction of further
potential systems arising from P.

Theorem 1: Each conservation law of any potential system in P, arising from multipliers that
depend only on x and t, is linearly dependent on the n local conservation laws of the given system
�2.5�.

Proof: Each conservation law of any system in P, constructed from multipliers depending only
on x and t, must be of the form

Dx�bi�t,x�vi + ��t,x,u�� + Dt�ai�t,x�vi + 
�t,x,u�� = 0, �3.1�

for some functions bi�t ,x� ,ai�t ,x� ,��t ,x ,u� ,
�t ,x ,u�.
From the compatibility conditions for multipliers of conservation laws, we immediately obtain

Dta
i+Dxb

i=0. Hence

� aidx +� bidt = f i�t� + gi�x� , �3.2�

for some functions f i�t� and gi�x�.
Now consider a conservation law �3.1� on the solution manifold of the system in P that it was

constructed from. We have

Dx�bivi + �� + Dt�aivi + 
� = Dx
bivi + � + Dt��� aidx −� bidt�vi�� + Dt
aivi + 


− Dx��� aidx −� bidt�vi�� = Dx
� − �vi�t� bidt� + Dt



− �vi�x� aidx� + DxDt
�� bidt +� aidx�vi� = Dx
�
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− �vi�t� bidt� + Dt

 − �vi�x� aidx� + DxDt��f i�t� + gi�x��vi�

= Dx
� − �vi�t� bidt + gi�x��vi�t� + Dt

 − �vi�x� aidx + f i�t��vi�x� .

�3.3�

As all derivatives of potentials vi can be expressed in terms of local variables x, t and u, it follows
that a conservation law �3.1� is linearly dependent on local ones constructed from the given system
�2.5�. �

Remark 5: From Theorem 1 it follows that a conservation law of any system in P related to the
given system �2.5�, arising from multipliers that depend only on x and t, is trivial on the solution
manifold of P.

The next theorem immediately follows from Theorem 1.
Theorem 2: Suppose one finds the set of n local conservation laws for a given system �2.5�

and then constructs the corresponding general potential system P. It follows that if one starts with
any one of the 2n−1 potential systems in P and seeks conservation laws from multipliers depend-
ing only on x and t, each of the resulting potential systems is locally equivalent to one of the 2n

−1 potential systems in P.

B. Linear dependence of conservation laws and tree simplification. General case: M
�2 independent variables

We now consider the general case for M �2 independent variables. Suppose the system of
PDEs �2.1� has a set of n conservation laws �Ks�s=1

n of the form �2.8�. Each conservation law Ks

yields a set of M potential equations Qs of the form �2.9� �Sec. II B�.
Definition 1: Suppose the system of PDEs �2.1� has precisely n local conservation laws of the

form �2.8�. Its general potential system Q is the set of 2n−1 potential systems arising from
combinations of these n local conservation laws.

The following theorems generalize Theorems 1 and 2 for the case of M �2 independent
variables.

Theorem 3: Each conservation law of any potential system in Q, arising from multipliers that
depend only on independent variables x, is linearly dependent on the n local conservation laws of
the given system �2.1�.

The proof of Theorem 3 is presented in the Appendix. The following theorem holds.
Theorem 4: Suppose one finds the set �Ks�s=1

n of n local conservation laws for the given
system G �2.1�, and then constructs the corresponding general potential system Q. It follows that
if one starts with any one of the potential systems in Q and seeks conservation laws from multi-
pliers depending only on the independent variables x, each of the resulting potential systems is
locally equivalent to one of the potential systems in Q.

Remark 6: From Theorem 4 it follows that no new nonlocally related potential systems of a
given system G �2.1� can arise from conservation laws constructed from known potential systems
of G with multipliers depending only on independent variables x.

Remark 7: Note that for any potential system in Q, one can allow gauge constraints relating
the potentials �vij�x��. In order to find nonlocal symmetries of the given system �2.1� from point
symmetries of a potential system in Q it is necessary to adjoin such gauge constraints.15–17

IV. EXTENDED TREES OF NONLOCALLY RELATED PDE SYSTEMS, NONLOCAL
SYMMETRIES AND NONLOCAL CONSERVATION LAWS FOR NONLINEAR TELEGRAPH
EQUATIONS

As a prototypical example, for classes of NLT equations, we use the simplified procedure
introduced in Sec. III to construct trees of nonlocally related PDE systems and, as a consequence,
find new nonlocal symmetries and new nonlocal conservation laws.
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A. Local conservation laws for the NLT equation

We consider NLT equations of the form

U�x,t,u� = 0: utt − �F�u�ux�x − �G�u��x = 0. �4.1�

Equation �4.1� and its potential versions, including

UV�x,t,u,v� = 0: 
ut − vx = 0,

vt − F�u�ux − G�u� = 0,
�4.2�

are known to possess rich conservation law and symmetry structure for various classes of consti-
tutive functions F�u� ,G�u�.6–8,13 In particular, the point symmetry classification of �4.1� appears in
Ref. 13; the point symmetry and local conservation law classification of �4.2� appear in Refs. 6
and 7, respectively.

Using the DCM, we now construct nontrivial linearly independent local conservation laws for
the NLT equations U �4.1�. First we note that Eq. �4.1� admits the group of equivalence transfor-
mations

x = a1x̃ + a4, t = a2t̃ + a5, u = a3ũ + a6,

F�u� = a1
2a2

−2F̃�ũ�, G�u� = a1a2
−2a3G̃�ũ� + a7, �4.3�

where a1 , . . . ,a7 are arbitrary constants, a1a2a3�0. We classify the local conservation laws and
point symmetries of �4.1� modulo the equivalence transformations �4.3�. A multiplier of the form
A�x , t ,U� yields a local conservation law

Dx�X�x,t,u,ux,ut�� + Dt�T�x,t,u,ux,ut�� = 0

of �4.1� if and only if the equation

EU���x,t,U��Utt − �F�U�Ux�x − �G�U��x�� = 0 �4.4�

holds for an arbitrary function U�x , t�.
Solving determining equation �4.4�, one obtains an overdetermined system of linear PDEs in

terms of the unknown multiplier ��x , t ,U�. It is easy to show that �=��x , t�. Three cases are
distinguished. For arbitrary functions F�u� and G�u�, one has two conservation laws �V1� and
�V2�; for the case G�=F, there are two additional conservation laws �B1� and �B2�; for the case
G=u, there are also two additional conservation laws �C1� and �C2�. The classification is presented
in Table II. �Note that the case where G is linear in u and F=const is the linear case and hence is
not considered. The case G=const �with arbitrary F� is linearizable and hence also is not consid-
ered.�

The local conservation laws �V2�, �B3�, �B4�, �C3�, and �C4� have not previously appeared in
the literature.

The following potential systems result from the conservation laws listed in Table II.
Case (a): Arbitrary F�u� ,G�u�.

UV1�x,t,u,v1� = 0:
v1x − ut = 0,

v1t − F�u�ux − G�u� = 0;
�4.5�

UV2�x,t,u,v2� = 0:
v2x − �tut − u� = 0,

v2t − t�F�u�ux + G�u�� = 0.
�4.6�

Case (b): G��u�=F�u� ,F�u� arbitrary. In addition to potential systems �4.5� and �4.6�, here
we also have
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UB3�x,t,u,b3� = 0:
b3x − exut = 0,

b3t − exF�u�ux = 0;
�4.7�

UB4�x,t,u,b4� = 0:
b4x − ex�tut − u� = 0,

b4t − texF�u�ux = 0.
�4.8�

Case (c): G�u�=u ,F�u� arbitrary. In addition to potential systems �4.5� and �4.6�, here we
also have

UC3�x,t,u,c3� = 0:�c3x − ��x −
t2

2
�ut + tu� = 0,

c3t − ��x −
t2

2
��F�u�ux + u� −� F�u�du� = 0;� �4.9�

UC4�x,t,u,c4� = 0:�c4x − ��tx −
t3

6
�ut − �x −

t2

2
�u� = 0,

c4t − ��tx −
t3

6
��F�u�ux + u� − t� F�u�du� = 0.� �4.10�

We now apply Theorem 2 to find inequivalent nonlocally related potential systems for the
NLT equation �4.1�. The following statements hold.

Corollary 1: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for the NLT equation �4.1� with general nonlinearities F�u� and G�u� is ex-
hausted by the following PDE systems:

• Two potential systems �4.5� and �4.6�, involving single potentials;
• One couplet ��4.5�, �4.6��.

Corollary 2: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for Eq. �4.1� with G��u�=F�u� is exhausted by the following systems:

• Four potential systems �4.5�–�4.8� involving single potentials;
• Six couplets ��4.5�, �4.6��, ��4.5�, �4.7��, ��4.5�, �4.8��, ��4.6�, �4.7��, ��4.6�, �4.8��, and ��4.7�,

�4.8�� involving pairs of potentials;
• Four triplets ��4.5�, �4.6�, �4.7��, ��4.5�, �4.6�, �4.8��, ��4.5�, �4.7�, �4.8��, and ��4.6�, �4.7�,

TABLE II. Local conservation laws of �4.1�.

F�u� G�u� CL Multipliers T −X

Arbitrary Arbitrary �V1� �=1 ut F�u�ux+G�u�
�V2� �= t tut−u t�F�u�ux+G�u��

Arbitrary G��u�=F�u� �B3� �=ex exut exF�u�ux

�B4� �= tex ex�tut−u� texF�u�ux

Arbitrary
�F�u��const� u �C3� � = x −

t2

2
�x −

t2

2
�ut + ut �x −

t2

2
��F�u�ux + u� − � F�u�du

�C4� � = xt −
t3

6
�tx −

t3

6
�ut − �x −

t2

2
�u �tx −

t3

6
��F�u�ux + u� − t � F�u�du
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�4.8�� for combinations involving three potentials;
• One quadruplet ��4.5�, �4.6�, �4.7�, �4.8�� involving all four potentials.

Corollary 3: In terms of multipliers depending only on x and t, the set of locally inequivalent
potential systems for Eq. �4.1� with arbitrary F�u� and G�u�=u is exhausted by the following
systems:

• Four potential systems �4.5�, �4.6�, �4.9�, and �4.10� involving single potentials;
• Six couplets ��4.5�, �4.6��, ��4.5�, �4.9��, ��4.5�, �4.10��, ��4.6�, �4.9��, ��4.6�, �4.10��, and

��4.9�, �4.10�� involving pairs of potentials;
• Four triplets ��4.5�, �4.6�, �4.9��, ��4.5�, �4.6�, �4.10��, ��4.5�, �4.9�, �4.10��, and ��4.6�, �4.9�,

�4.10�� for combinations involving three potentials;
• One quadruplet ��4.5�, �4.6�, �4.9�, �4.10�� involving all four potentials.

B. Point and nonlocal symmetry analysis of NLT equations with power nonlinearities

We now apply the results of Sec. III to seek point and nonlocal symmetries of the NLT
equation �4.1� with power nonlinearities F�u�=u
 ,G�u�=u��
 ,��0� by considering its locally
inequivalent potential systems.

Case (a): Arbitrary power nonlinearities F�u� ,G�u�. We first consider general power non-
linearities: F�u�=u
, G�u�=u� �
 ,��0 arbitrary constants.� In this case, the given system �4.1�
has two conservation laws �V1� and �V2� exhibited in Table II. From Corollary 1, the set of
inequivalent nonlocally related potential systems of the PDE U �4.1� is exhausted by the systems
UV1 �4.5�, UV2 �4.6�, and the couplet UV1V2:

UV1V2�x,t,u,v1,v2� = 0:�
v1x − ut = 0,

v1t − F�u�ux − G�u� = 0,

v2x − �tut − u� = 0,

v2t − t�F�u�ux + G�u�� = 0.

�4.11�

Symmetry generators of the given NLT equation �4.1�, its potential systems �4.5� and �4.6� and
the couplet �4.11� are given in Table III.

From the form of the symmetries in Table III it follows that no nonlocal symmetries arise for
systems U and UV1. The generator X3 is a nonlocal symmetry for the system UV2 �i.e., the system
UV2 is not invariant under translations in t� and a point symmetry for the other systems. All other
generators define point symmetries for all systems in Table III.

Case (b): G��u�=F�u�. We now consider power nonlinearities F�u�= �
+1�u
, G�u�=u
+1,

�0,−1. From the equivalence relation �4.3�, this case is equivalent to F�u�=u
, G�u�=u
+1.

TABLE III. Symmetries of the NLT equation �4.1� and its potential systems �4.5�, �4.6�, �4.11� for the general case �a�:
F�u�=u
, G�u�=u��
 ,� , �0�.

System Symmetries

UV1V2, UV1, UV2, U

X1 = �
 − � + 1�x
�

�x
+ �


2
− � + 1�t

�

�t
+ u

�

�u

+

 + 2

2
v1

�

�v1
+ �
 − � + 2�v2

�

�v2
,

X2 =
�

�x
, X3 =

�

�t
+ v1

�

�v2
, X4 =

�

�v1
, X5 =

�

�v2
.
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From Corollary 2, the set of inequivalent nonlocally related potential systems of the PDE U
�4.1� is exhausted by the potential systems UV1 �4.5�, UV2 �4.6�, UB3 �4.7�, UB4 �4.8�, their six
couplets, four triplets and one quadruplet. The corresponding classification of symmetry genera-
tors is presented in Table IV.

A point symmetry of any of these potential systems, where the symmetry generator compo-
nents for u, x or t have an essential dependence on at least one of the potentials v1 ,v2 ,b3 ,b4, is a
nonlocal �potential� symmetry of the given NLT equation �4.1�.

The case 
=−2 is not considered in Table IV as here the system UV1 is linearizable by a point
transformation.18,19

The point symmetries of PDE U �4.1� and system UV1 �4.5� were completely classified in
Refs. 13 and 6, respectively. In Ref. 6, many new nonlocal symmetries of U �4.1� for other than
power nonlinearities were found from the point symmetries of corresponding UV1 systems.

Most importantly, from Table IV, we see that for the case when F�u�=3u2 ,G�u�=u3, through
the potential system UV1V2, we have discovered a new nonlocal symmetry Y9 for the scalar PDE
U.

Note that Y3 is a nonlocal symmetry for the systems UV1V2B4, UV2B3B4, UV1B4, UV2B3,
UV2B4, UV2, and UB4, and a point symmetry for the other nine systems; Y8 is a nonlocal
symmetry for the systems UV1V2B3, UV1B3B4, UV1B3, UV1B4, UV2B3, UV1, UB3 and a point
symmetry for the other nine systems; Y9 is a point symmetry for UV1V2 and a nonlocal symmetry
for the other listed 15 inequivalent systems, which include UV1V2B3, UV1V2B4, and UV1V2B3B4!

Case (c): F�u�=u
 ,G�u�=u. In this case, similarly to case �b�, the set of independent non-
locally related potential systems of �4.1� is exhausted by the potential systems UV1 �4.5�, UV2

�4.6�, UC3 �4.9�, UC4 �4.10�, their six couplets, four triplets and one quadruplet. The correspond-
ing classification of symmetry generators is found in Table V. The linear cases 
=0,1 are not
considered.

As the simplification of overdetermined systems of linear determining equations in classifi-
cation problems involving triplets UV1C3C4, UV2C3C4 and couplets UV1C4, UC3C4 presented a
computational difficulty, the corresponding entries in Table V are not known.

From the form of the symmetries in Table V, it follows that no nonlocal symmetries arise for
systems U and UV1; Z2 is a nonlocal symmetry for the systems UV2C3, UC3, and UC4 and a point
symmetry for the other listed systems; Z3 is a nonlocal symmetry for the systems UV1V2C4,
UV1C3, UV2C3, UV2C4, UV2, UC3, and UC4 and a point symmetry for the other listed systems.
All other generators define point symmetries for the systems listed in Table V.

TABLE IV. Symmetries of the potential NLT systems for case for case �b�: F�u�= �
+1�u
, G�u�=u
+1�
�0,−1�.

System F�u� G�u� Symmetries

UV1V2B3B4, �
+1�u
 u
+1 Y1=− 

2 t �

�t +u �
�u +v2

�
�v2

+ 
+2
2 v1

�
�v1

+ 
+2
2 b3

�
�b3

+b4
�

�b4
,

UV1V2B3, Y2= �
�x +b3

�
�b3

+b4
�

�b4
, Y3= �

�t +b3
�

�b4
+v1

�
�v2

, Y4= �
�v1

,

UV1V2B4, Y5= �
�v2

, Y6= �
�b3

, Y7= �
�b4

UV1B3B4,

UV2B3B4, −3u−4 u−3 Y8= t2 �
�t + tu �

�u −v2
�

�v1
−b4

�
�b3

UV1V2 ,UV1B3,

UV1B4 ,UV2B3,

UV2B4 ,UB3B4,

UV1 ,UV2,

UB3 ,UB4,

U

UV1V2 3u2 u3 Y9=3v1
�
�x + �tv1−v2+3u� �

�t −uv1
�
�u −v1

2 �
�v1

−v1v2
�

�v2
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C. New nonlocal conservation laws for NLT equations with power nonlinearities

In this section, new nonlocal conservation laws are constructed for NLT equations �4.1� with
power nonlinearities. We use the DCM for all singlet potential systems of the NLT equation �4.1�
in each of cases �a�, �b�, and �c�, allowing multipliers to have an essential dependence on depen-
dent variables. We obtain new conservation laws for particular classes of constitutive functions.
The classification is presented in the following.

For power nonlinearities F�u�=u
, G�u�=u�, the set of nonlocal conservation laws is given in
Table VI.

The computations were done for all systems: UV1, UV2, UB3, UB4, UC3, and UC4. No
nonlocal conservation laws were found for the UC4 system.

The nonlocal conservation laws for PDE U �4.1� arising from analysis of the system UV1 were
first found in Ref. 6. All other nonlocal conservation laws for PDE U �4.1� found in Table VI are
new.

The case �b� with 
=−2 is not considered in Table VI as here the system UV1 is linearizable
by a point transformation.18,19

V. NONLOCAL SYMMETRY CLASSIFICATION FOR GENERALIZED POLYTROPIC GAS
FLOWS

We now consider the Lagrange PGD system L �2.10� with a generalized polytropic equation
of state

B�p,q� =
M�p�

q
, M��p� � 0. �5.1�

To construct a corresponding tree of nonlocally related potential systems, first we search for
local conservation laws with multipliers of the form

�i = �i�y,s�, i = 1,2,3.

The classification with respect to the constitutive function M�p� reveals no special case and thus
the conservation laws listed in Table I are exhaustive. According to Theorem 2, from these
conservation laws we obtain the following inequivalent potential systems for the generalized
polytropic Lagrange PGD system L �2.10�:

• Three potential systems �2.12�–�2.14� involving single potentials;
• Three couplets �2.15�–�2.17� involving pairs of potentials;

TABLE V. Symmetries of the potential NLT systems for case �c�: F�u�=u
 ,G�u�=u�
�0,1�.

System Case Symmetries

UV1V2C3C4, 
�−1 Z1= 

2 t �

�t +
x �
�x +u �

�u + 
+2
2 v1

�
�v1

+v2�a+1� �
�v2

+ 3
+2
2 c3

�
�c3

+ �2
+1�c4
�

�c4
,

UV1V2C3, Z2= �
�x +v1

�
�c3

+v2
�

�c4
, Z3= �

�t +v1
�

�v2
−v2

�
�c3

+c3
�

�c4
,

UV1V2C4

UV1V2,
UV1C3,

Z4= �
�v1

, Z5= �
�v2

, Z6= �
�c3

, Z7= �
�c4

.


=−1 Z8=− 1
2 t �

�t −x �
�x +u �

�u + 1
2v1

�
�v1

− �t+ 1
2c3

� �
�c3

− � t2

2 +c4
� �

�c4

Z2 , Z3 , Z4 , Z5 , Z6 , Z7.UV2C3,

UV2C4,

UV1 ,UV2,

UC3 ,UC4

U,

UV1C3C4 ,UV2C3C4 ?

UV1C4,UC3C4
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• One triplet �2.18� involving all three potentials.

TABLE VI. Nonlocal conservation laws of �4.1�.

Case System Subcase Multipliers Fluxes

�a� UV1 �=−1 �1=x+
v1

2

2 + u
+2


+2 ,�2=uv1 X=−� u
+2


+2 +
v1

2

6 +x�v1,

T=� u
+2

�
+2��
+3� +
v1

2

2 +x�u.

F�u�=u
 �1=v1 ,�2=u. X=− u
+2


+2 −
v1

2

2 ,

T=uv1− t.

G�u�=u� 
=−1 �1=
v1

3

3 +2�x+u�v1+ t, X=−
v1

4

12 − �x+u�v1
2− tv1− u2

2 −2xu,

�=−1 �2= �v1
2+u+2x�u. T= �u+

v1
2

3
�uv1+2xuv1+ t�u−2x�.

�1= v1
4 � 12 + �u+x�v1

2+ tv1+2xu+x2+ u2

2 , X=−
v1

5

60 −
�x+u�v1

3

3 −
�tv1+u2�v1

2 −�2u+x�xv1− tu,

�2= � v1
3

3 + t+uv1+2xv1
�u. T=− t2

2 + � u
3 +v1

2+2x� u2

2 +
uv1

4

12 + �xv1+ t�uv1+x2u.

UV2 �=−1 �1=−
v2

t2
,�2= u

t . X=−
v2

2

2t2
− u
+2


+2 ,T=
uv2−t2

t .

�b� UV1 
�−1 �1=exu
+1 ,�2=exv1, X=−exu
+1v1,

F�u�= �
+1�u
 
�−2 T=ex� u
+2


+2 +
v1

2

2
�.

G�u�=u
+1 UV2 
=−4 �1=−ex t

u3 ,�2=exv2. X=ex tv2

u3 ,T=ex� t2

u2 −v2
2�.

UB3 
�−1 �1=−u
+1 ,�2=e−xb3. X=−u
+1b3 ,T=ex u
+2


+2 +e−x b3
2

2 .

UB4 
=−4 �1=− t

u3 ,�2=e−xb4. X=−
tb4

u3 ,T= 1
2e−xb4

2−ex t2

2u2 .

�c� UV1 
=1 �1= t4

12 −xt2+ tv1− u2

2 +x2, X= � v1

2 −xt+ t3−2tu
6

�u2

F�u�=u
 −�tv1+ t4

12 −xt2+x2�v1,

G�u�=u �2=− t3

3 + t�u+2x�−v1. T=− u3

6 + � t4

12 +x2−xt2+ tv1
�u

+�2xt− v
2 − t3

3
�v1.

�1= t3

6 −xt+v1 X= � t2

2 − u
3 −x�u2+ �2xt− t3

3 −
v1

2
�v1,

�2=− t2

2 +u+x. T= � t3

3 −2xt�u+ �u+2x− t2�v1.

UV2 
=1 �1= t2

4 −x+
v2−x2

t2
, X= u3

3 + 2x−t2

2 u2+
v2

2

2t2
+

�t4−4x�t2+x��v2

4t2
,

�2= t− u+2x
t . T=−

uv2

t −
�t4−4x�t2+x��u

4t −
�2x−t2�v2

t .

UC3 
=1 �1=− t2−2x
80 + 2xt2+5u2

40�t2−2x�
+

4x3+5tc3

10�t2−2x�2 , X=−
�t2−2x��tu2+2c3�

64 +
t�u3+3tc3�

48 +
t4�tu2−10c3�+20u2c3

160�t2−2x�
+

t�t5+5c3�c3

40�t2−2x�2 ,

�2=
3t5−20c3

40�t2−2x�2 −
t�2x+u�

4�t2−2x�
. T=

�t4−4x2�u

64 +
u3−3t4u−6tc3

96 +
t�t5+10c3�u

80�t2−2x�
+

�t5+5c3�c3

40�t2−2x�2 .
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A. Classification of point and nonlocal symmetries

The classification of point symmetries of the seven potential systems �2.12�–�2.18� �modulo
the equivalence transformations �2.11�� yields Table VII of point symmetries and nonlocal sym-
metries for the Lagrange PGD system �2.10� with the equation of state �5.1�.

From Table VII, we observe that Z13,Z14 are point symmetries for the system LW2 and
nonlocal symmetries for all other systems, including the given system L; Z9 , . . . ,Z12 are point
symmetries for systems L and LW2 and nonlocal symmetries for all other systems.

Most importantly, we have shown that for cases �ii� and �iii�, when M�p�=−p ln p and
M�p�=	p+�p�	+1�/	, respectively, through the potential system LW2 we have discovered new
nonlocal symmetries Z13 and Z14 for the generalized polytropic Lagrange PGD system L �2.10�,
�5.1�. Note that all other generators in Table VII project onto point symmetries of the Lagrange
PGD system L �2.10� and thus were found from point symmetry analysis of L in Ref. 9.

Note that the newly discovered nonlocal symmetries Z13 and Z14 of the Lagrange system L
�2.10�, �5.1� with M�p�=−p ln p and M�p�=	p+�p�	+1�/	 project onto point symmetries of the
corresponding Lagrange subsystem L �2.19�. In other words, the point symmetries Z13

=y2�� /�y�+ py�� /�p�− �3− �1/ ln p��yq�� /�q�, Z14=y2�� /�y�+yp�� /�p�− �3− �� /	��p1/	 / ��p1/	

+	���yq�� /�q� of L yield nonlocal symmetries of L.1 It can be shown that symmetries Z13 and Z14

also yield nonlocal symmetries of the corresponding system written in terms of Eulerian
coordinates.1 The classification of point symmetries of L �2.19� yields Table VIII with respect to
the equation of state given by �5.1�.

From Table VIII we observe that point symmetries of the Lagrange subsystem L �2.19�
include all corresponding point symmetries of LW2, and additionally for M�p�=3p+�p4/3 one
new symmetry Z15 is obtained. The new symmetry Z15 is a nonlocal symmetry of the Lagrange
system L �2.10� and all its potential systems �2.12�–�2.18�.

TABLE VII. Symmetries of the generalized polytropic PGD system �2.10�, �5.1�.

System M�p� Symmetries

L, �i� Arbitrary Z1= �
�s +w2

�
�w3

, Z2= �
�y +w1

�
�w3

,

LW1,LW2 ,LW3, Z3= �
�v +s �

�w1
+y �

�w2
+sy �

�w3
,

LW1W2 ,LW1W3, Z4=−y �
�y +2q �

�q +v �
�v +w1

�
�w1

,

LW2W3, Z5=s �
�s +y �

�y +w1
�

�w1
+w2

�
�w2

+2w3
�

�w3
,

LW1W2W3 Z6= �
�w1

, Z7= �
�w2

, Z8= �
�w3

,

L ,LW2 �ii� − p ln p Z9=y �
�y +2p �

�p + 2q
ln p

�
�q +v �

�v +2w2
�

�w2
.

�iii� 	p+
p�	+1�/	
Z10=

�	+1�y

2	
�
�y + p �

�p − q

�p1/	+	

�
�q +

�	−1�v

2	
�
�v +w2

�
�w2

.

	�0,−1

�iv� 1+
ep ,

= ±1

Z11= �
�p + 
ep

1+
ep q �
�q −s �

�w2
,

Z12=y �
�p + 
ep

1+
ep yq �
�q −s �

�v −sy �
�w2

.

LW2 �ii� − p ln p Z13=y2 �
�y +yp �

�p − �3− 1
ln p

�yq �
�q − �yv−w2� �

�v +yw2
�

�w2
.

�iii� 	p+�p�	+1�/	 Z14=y2 �
�y +yp �

�p −�3− �
	

p1/	

�p1/	+	
�yq �

�q − �yu−w2� �
�v +yw2

�
�w2

.

	�0,−1
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B. Nonlocally related systems and invariant solutions

1. Construction of invariant solutions for generalized polytropic PGD equations

For any given form of the constitutive function M�p�, different combinations of corresponding
point and nonlocal symmetry generators can be used to construct families of invariant solutions of
the Lagrange system L �2.10�. As an example, we consider the case M�p�=−p ln p.

The potential system LW2 has the largest algebra of symmetry generators. Thus it has the
largest set of invariant solutions. The algebra A of symmetry generators for the constitutive
function of interest is spanned by projections of the eight operators Z1 , . . . ,Z5 ,Z7 ,Z9 ,Z13 on the
space of variables �y ,s ,v , p ,q ,w2� of LW2:

A = Span�Z1,Z2,Z3,Z4,Z5,Z7,Z9,Z13� . �5.2�

The simplest way to find all solutions of LW2 invariant with respect to elements of A consists
of two steps20:

1. Finding optimal systems of one-dimensional invariant subalgebras Ai�A and constructing
solutions invariant with respect to each subalgebra Ai;

2. Using the transformation groups corresponding to symmetry generators in A to extend the
set of solutions.

The solutions of the Lagrange system L �2.10� are obtained from solutions of the potential system
LW2 by excluding the potential variable w2.

Following the above procedure, we first find the optimal system of one-dimensional subalge-
bras of A �5.2� �see Ref. 20.� This optimal system consists of the invariant subalgebras given by

A1 = Z2 + �1Z3,

A2 = Z2 + �1Z1 + �2Z3,

A3 = Z4 + �1Z1 + �2Z7,

A4 = Z4 + �1Z1 + �2Z2 + �3Z3,

TABLE VIII. Point symmetries of the subsystem L �2.19� of the generalized polytropic PGD system �2.10�, �5.1�.

M�p� Symmetries

�i� Arbitrary Z1= �
�s , Z2= �

�y ,

Z4=−y �
�y +2q �

�q , Z5=s �
�s +y �

�y .

�ii� − p ln p Z9=y �
�y +2p �

�p + 2q
ln p

�
�q ,

Z13=y2 �
�y +yp �

�p − �3− 1
ln p

�yq �
�q .

�iii� 	p+�p�	+1�/	
Z10=

�	+1�y

2	
�
�y + p �

�p − q

�p1/	+	

�
�q ,

Z14=y2 �
�y +yp �

�p − �3− 

	

p1/	

�p1/	+	
�yq �

�q .

	=3 Z15= 1
3s2 �

�s −sp �
�p + 1

�p4/3+3
spq �

�q .

�iv� 1+
ep Z11= �
�p + 
ep

1+
ep q �
�q ,

Z12=y �
�p + 
ep

1+
ep yq �
�q .
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A5 = Z4 + �1Z1 + 
Z9,

A6 = Z5 + 
Z4,

A7 = Z5 + �1Z3,

A8 = Z13 + �1Z1 + �2Z2 + �3Z7 + 
Z9. �5.3�

Here �i=0, ±1, 
�R.
The set of all resulting invariant solutions of the potential system LW2 �and, consequently,

corresponding solutions of the Lagrange system L �2.10�� is obtained from solutions invariant
with respect to each of the subalgebras A1 , . . . ,A8 by means of the group transformations corre-
sponding to the operators Z1 , . . . ,Z9 ,Z13. These group transformations are as follows:

Z1: y� = y, s� = s + �1, v� = v, p� = p, q� = q, w2 = w2;

Z2: y� = y + �2, s� = s, v� = v, p� = p, q� = q, w2 = w2;

Z3: y� = y, s� = s, v� = v + �3, p� = p, q� = q, w2� = w2 + �3y;

Z4: y� = e−�4y, s� = s, v� = v, p� = p, q� = a2�4q, v� = w2 + �4y;

Z5: y� = e�5y, s� = e�5s, v� = v, p� = p, q� = q, w2� = e�5w2,

Z7: y� = y, s� = s, v� = v, p� = p, q� = q, w2� = w2 + �7;

Z9: y� = e�9y, s� = s, v� = e�9v, p� = e2�9p, q� = �1 + 2�9/ln p�q, w2� = e2�9w2;

Z13: y� =
y

1 − �13y
, s� = s, v� = v + �13�w2 − yv� ,

p� =
p

1 − �13y
, q� =

1 − �13y

ln p
q ln

p

1 − �13y
, w2� =

w2

1 − �13y
.

�5.4�

Particular solutions of the Lagrange system L �2.10� are obtained as solutions invariant with
respect to any linear combination of generators Z1 , . . . ,Z5 ,Z7 ,Z9 ,Z13, possibly transformed further
by using one or more Lie groups �5.4�.

2. An invariant solution from a nonlocal symmetry

For the case M�p�=−p ln p, we construct a solution of the Lagrange system L �2.10� arising
from a solution of the potential system LW2 �2.13� invariant with respect to the subalgebra A8

�5.3� with �1=�2=�3=0 ,
=1, i.e., from operator

X = Z13 + 
Z9 = �y2 + y�
�

�y
+ �y + 2�p

�

�p
− �3y −

y − 2

ln p
�q

�

�q
− �yv − v − w2�

�

�v
+ �y + 2�w2

�

�w2
.

One can show that this solution of L �2.10� does not arise as an invariant solution of an admitted
point symmetry of L. In particular, this solution has the form

p�y,s� =
	�2


2

y2

y + 

�1 − tanh2��s�� ,

q�y,s� = −
	

�y + 
�3 ln
	�2


2

y2

y + 

�1 − tanh2��s��� ,
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v�y,s� = −
	�


2

y�y + 2
�
�y + 
�2 tanh��s� , �5.5�

where 
, �, and 	 are arbitrary constants.
For 
=1, �=1, 	=−2, after the application of the equivalence transformation �2.11� with

a1=a3=1, a2=a4=a6=0, a5=−1, a7= p0, a8=q0, this yields the solution

p = p̃�y,s� = p0 −
2y2

y + 1

1

cosh2 s
,

q = q̃�y,s� = q0 −
2

�y + 1�3 ln
 2y2

y + 1

1

cosh2 s
� ,

v = ṽ�y,s� = 2
y�y + 2�
�y + 1�2 tanh s �5.6�

of the Lagrange system L �2.10� for the constitutive function

B�p,q� = −
�p0 − p̃�ln�p0 − p̃�

q0 − q
.

For p0=9 ,q0=1, the pressure p= p̃�y ,s�, density p=1/ q̃�y ,s� and velocity v= ṽ�y ,s� profiles
at times s=0.1,0.8,1.3 are shown in Figure 1 with thin, medium and thick lines, respectively. The
solution is regular, bounded and satisfies physical conditions p�0,��0 for all times s�0 for the
material space interval 0�y�5.

VI. CONCLUDING REMARKS

In this article, we extended the procedure presented in Ref. 1 to construct a tree of nonlocally
related systems for a given PDE system G �2.1�. In summary, the extended procedure is as
follows.

1. Construction of conservation laws. Using the DCM �Sec. II A� or other method, construct
local conservation laws of the given system G. Note that some conservation laws can be
present in the given system as it stands.

2. Construction of potential systems. For each of the n known conservation laws �Ks�s=1
n of

the given system G, introduce potential�s� and construct a potential system GP
s �s=1, . . . ,n�.

Let T1 denote the set of systems that consists of the given system G, potential systems GP
s

and all possible couplets, triplets,…, n-plets of the potential systems GP
s . The tree T1 includes

a total of 2n inequivalent systems.
3. Construction of subsystems. For each system in the tree T1, exclude where possible, one by

one, dependent variables �including exclusions following interchanges of independent and
dependent variables, i.e., where an independent variable becomes a dependent variable and
vice versa through a point transformation�, to generate all subsystems of the systems in the
tree T1. Eliminate subsystems that are locally related to existing systems. This yields a
possibly larger tree T2.

4. Continuation. In the tree T2, first distinguish the systems that arise from multipliers depend-
ing only on independent variables. For each such system, use the DCM or other method to
construct the conservation laws for multipliers with an essential dependence on dependent
variables. Construct all combinations of further potential systems arising from these conser-
vation laws �i.e., couplets, triplets, etc.�. For the other systems in the tree T2, construct all
possible conservation laws �these can even arise from multipliers that depend only on the
independent variables� and, correspondingly, construct all combinations of further potential
systems. Find all nonlocally related subsystems by reduction of dependent variables. This
yields an extended tree T3.
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Where possible, repeat step 4 to obtain a further tree extension �growth�, etc.
The new theorem presented in Sec. III simplifies the construction of a tree of nonlocally

related inequivalent systems for a given system of PDEs through elimination of redundant sys-
tems. To illustrate this theorem, as a prototypical example, we considered the nonlinear telegraph
equations. Five new local conservation laws were constructed. Specializing to NLT equations with
constitutive functions having power law nonlinearities, we found one nonlocal symmetry not
found in Ref. 6. Further, from nonlocally related potential systems arising from new conservation
laws for such NLT equations, we have found six new nonlocal conservation laws in addition to the
nine nonlocal conservation laws found in Ref. 7.

FIG. 1. Profiles of pressure p, density �, and velocity v at times s=0.1, 0.8, and 1.3.

113505-21 Framework for nonlocally related PDE systems J. Math. Phys. 47, 113505 �2006�



For a system of planar gas dynamics equations, with a generalized polytropic equation of
state, we found three new symmetries which are nonlocal for this system written in either La-
grangian or Eulerian coordinates.

It still remains a challenge to solve the overdetermined linear systems of PDEs for the sym-
metry classifying problems corresponding to the two couplet systems UV1C4, UC3C4 and the two
triplet systems UV1C3C4, UV2C3C4 as we have been unable to solve any of these four systems.
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APPENDIX: PROOF OF THEOREM 3

Proof: Each conservation law of any k-plet potential system �GP
i1 , . . . ,GP

ik� in Q, arising from
multipliers that depend only on independent variables x, is a linear combination of terms involving
potential equations in �GP

i1 , . . . ,GP
ik� and, possibly, equations of the given system �2.1�.

For simplicity, we prove the theorem for the case when the new conservation law is obtained
as a linear combination of potential equations of a singlet potential system GP

s in Q arising from
the given system �2.1� and a single conservation law �2.8�, and involving M potential equations Qs

�2.9�. The proof directly carries over to the case when the new conservation law involves a linear
combination of potential and non-potential equations of any k-plet potential system in Q, 1�k
�n.

A new conservation law obtained using the DCM from a set of M potential equations Qs has
the form

DkA
k�x, u,�u, . . . ,�ru,v,�v, . . . ,�sv� = �i�x���

i�j

�− 1� j �

�xjvij�x� + �
j�i

�− 1�i−1 �

�xjiv ji�x�

− �i�x,u,�u, . . . ,�ru�� = 0. �A1�

where Ak�x ,u ,v ,�u , . . . ,�ru� are fluxes of the new conservation law, and �i�x��i=1, . . . ,M� are
multipliers. �Note that for the case of M independent variables, from a given conservation law
�2.8�, one obtains M potential equations �2.9�. Hence, when one seeks a new conservation law, the
number of multipliers is the same as the number of independent variables.�

It is evident that the dependence of fluxes of the new conservation law �A1� on the potentials
v is as follows:

Ak = �
i�k

�− 1�k�ivik + �
k�i

�− 1�i−1�ivki + 
k�x,u� . �A2�

We substitute �A2� in the conservation law �A1�, and deduce the following compatibility
conditions for multipliers:

��q

�xp −
��p

�xq = 0, 1 � p,q � n . �A3�

This means the differential form ��=�idxi is closed. A closed form is locally exact within an open
domain, and hence for some sufficiently smooth ��x� :��=d��x�. Equivalently �i

=���x� /�xi , i=1, . . . ,M.
We now demonstrate that the conservation law �A1� with fluxes Ak is equivalent to a conser-

vation law whose fluxes do not contain the nonlocal variables vik, but only their derivatives.
Indeed,
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DkA
k = Dk��

i�k

�− 1�k�ivik + �
k�i

�− 1�i−1�ivki + 
k�x,u��
= Dk��

i�k

�− 1�k��

�xivik + �
k�i

�− 1�i−1��

�xivki + 
k�x,u��
= Dk�
�

i�k

�− 1�k���vik�
�xi + �

k�i

�− 1�i−1���vki�
�xi �

− �
�
i�k

�− 1�k�vik

�xi + �
k�i

�− 1�i−1�vki

�xi � + 
k�x,u�� .

The divergence of the flux part involving the first rectangular bracket is identically zero �see
�2.8�, �2.9��.

As all derivatives of potentials vik can be expressed in terms of local variables x and u on the
solution manifold of GP

s , it follows that the flux part involving the second rectangular bracket and

k�x ,u� contains only local variables of the given system �2.1�. Hence the conservation law �A1�
is linearly dependent on local ones constructed from the given system �2.5�, and hence is trivial on
the solution manifold of GP

s . This concludes the proof. �
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