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Abstract

In this paper we present a method of constructing a wide class of analytical solutions to Anisotropic
Plasma Equilibrium equations in Chew—Goldberger—Low (CGL) approximation.

The method is based on an explicit infinite-dimensional set of transformations between solutions
of isotropic Magnetohydrodynamic (MHD) equilibrium equations and solutions of CGL equilibrium
equations. These transformations depend on the topology of the original solution and allow the build-
ing anisotropic plasma equilibria with a variety of physical properties and topologies, including 3D
solutions with no geometrical symmetries.

Anisotropic plasma equilibrium configurations with and without magnetic surfaces can be built
using these transformations. The examples are given.
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1. Introduction

The two most commonly used single-fluid models of plasma as a continuous medium
are the isotropic magnetohydrodynamics (MHD) equations [1] and the anisotropic CGL
(Chew—Goldberger—Low) magnetohydrodynamics equations [2].
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These systems are used to model phenomena in different areas of physics—controlled
thermonuclear fusion studies [1,3], astrophysical problems (star formation, solar activity,
astrophysical jets) [4-8], terrestrial applications (laboratory and industrial plasmas, ball
lightning models) [9-13].

The isotropic MHD approximation was derived from Boltzmann and Maxwell equations
under the assumption that the mean free path of plasma particles is much less than the
typical scale of the task, therefore the picture is maintained nearly isotropic via frequent
collisions. The system of equations of MHD system is

1 v? )
pdV /ot = pV x curlV — —B x curlB — gradP — pgrad7 + v - VOV,
"

aB/at = curl(V x B) + v, . V2B, Um:i’
dp/dt +divpV =0, divB =0. Q)

HereV is plasma velocityB is the vector of the magnetic field inductiop; plasma
density; P, scalar plasma pressung;, kinetic viscosity;v,,, magnetic viscositys, elec-
trical conductivity; and«, magnetic permeability coefficient.

When the mean free path for particle collisions is long compared to Larmor radius, for
instance, in strongly magnetized or rarified plasmas, the CGL approximation with tensor
pressuré? should be used. The pressure tensor has two different components: the pressure
along the magnetic fielg; and in the transverse directign . In the limit p; = p; = p,

CGL and MHD models coincide.

The CGL system has the form

1 , V2 5
pdV /ot = pV x curlV — —B x curlB — divlP — ,ograd? + v - VOV,
"

aB/ar = curl(V x B) + v, - V2B, Uy = ——,
ap/ot +divpV =0, divB =0. 2)

The MHD system (1) must be extended with a single equation of state to make it closed,
whereas the set of CGL equations (2) needs two equations of state, or one equation of
state and one equation connecting the pressure components. The original work by Chew,
Goldberger and Low contains two adiabatic laws [2], which have been obtained in the
assumption of vanishing of the pressure-transport tensor:

d(pe)_ d (piB%\ _
dt<p3)_0’ dt( 2 )= ®)

However, experimental measurements of anisotropic plasmas yield different empirical
relations. For example, in the studies of the solar wind flow in the Earth magnetosheath,
the relation

pi/py=1+0.847(B%/(2p))) (4)

is proposed [14]. In the Compact Helical System (CHS) plasma confinement device, the
anisotropy factorg)/p1 « 3 have been measured [15].
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In many applications, equilibrium plasma flows and static configurations are of par-
ticular interest. Current paper is devoted to the analytical study of such configurations in
isotropic and anisotropic cases.

The system of MHD equilibrium equations, under the assumptions of infinite conduc-
tivity and negligible viscosity, is found from the time-dependent system (1) to be

1 v?

pV x curlV — —B x curlB — gradP — ,ograd? =0, (5)
"

divpV =0, curl(V x B) =0, divB =0. (6)

For anisotropic plasma equilibria are described by time-independent Chew—Goldberger—
Low equations

1 , V2
pV x curlV — —B x curIB:dleP’ergrad?, @)
w
divpV =0, curl(V x B) =0, divB =0, (8)
whereP is the pressure tensor with two independent components:
pPI—PL

Herel is a unit tensor.

In Section 2 of the current paper we present a mgfimite-dimensionaket of trans-
formations between isotropic (MHD) and anisotropic (CGL) plasma equilibria. These
transformations can be applied to any static plasma equilibrium and to a wide class of
dynamic equilibria to yield physically interesting anisotropic equilibrium solutions.

The topology of the original isotropic plasma equilibrium is essential for the trans-
formations. It is well known that all isotropic nonviscous incompressible MHD equi-
libria (except Beltrami flows) have a special topology—the plasma domain is spanned
by nested 2-dimensionahagnetic surfaces-surfaces on which magnetic field lines and
plasma streamlines lie [16—19]. The new transformations explicitly depend on two arbitrary
functions constant on magnetic surfaces (or constant on magnetic field lines and plasma
streamlines, if the magnetic surfaces seize to exist.) The arbitrary functions are therefore
generally functions on eellular complex

In Section 3 we discuss necessary physical conditions that isotropic and anisotropic
plasma equilibria must satisfy to be physically relevant. We show that the new transfor-
mations often allow the building of anisotropic plasma equilibria satisfying the physical
conditions and stable with respect to fire-hose and mirror instabilities.

Using the new transformations, we build several analytical examples of localized and
nonlocalized anisotropic plasma equilibria with different pressure profiles and different
topologies.

In Section 4, we give examples of building a closed nonsymmetric anisotropic plasma
flux tube (Section 4.1), a plasma configuration with no magnetic surfaces (Section 4.2),
and the model of anisotropic astrophysical jets (Section 4.3).

The new transformations can be successfully applied to other known analytical isotropic
MHD models, such as the Ball lightning model of Kaiser and Lortz [10], to produce cor-
responding anisotropic plasma equilibria with the same topology.
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2. Transformations between MHD and CGL equilibria

The equilibrium states of isotropic moving plasmas are described by the system of MHD
equilibrium equations, which under the assumptions of infinite conductivity and negligible
viscosity has the form (5), (6).

In the case of incompressible plasma, the equation

divV =0 (10)

is added to the above system; for a compressible case an appropriate equation of state must
be chosen. For example, it can be the adiabatic ideal gas equation of state:

P = p? exp(S/cy), V . gradS =0. (11)

Herec, is the heat capacity at constant volumethe adiabatic exponent; aisg entropy.

In this paper we restrict our consideration to incompressible plasmas. Incompressibil-
ity condition is widely used in MHD studies. For example, it is a good approximation for
subsonic plasma flows with low Mach numbes< 1, M2 = V2/(y P/p). For incom-
pressible plasma the continuity equation @ = 0 impliesV - gradp = 0, hence density
is constant on plasma streamlines.

It is known [16-19] that all compact incompressible MHD equilibrium configura-
tions, except the Beltrami case cBri= oB, o = const, possess two-dimensional magnetic
surfaces—the vector field® andV are in every point tangent to magnetic surfaces. The
magnetic surfaces may not exist for unbounded incompressible MHD equilibrium config-
urations withV || B.

For anisotropicnonviscous plasmas with Larmor radius small compared to character-
istic dimensions of the system, the corresponding set of equations was found by Chew,
Goldberger and Low and has the form (7), (8).

For this system to be closed, one needs to add to it two equations of state. In this chapter
we will consider incompressible CGL plasmas: div= 0.

Using vector calculus identities, the divergence of the pressure tensor may be rewritten
in the form

: B?
divP=gradp, +tcurlBx B+ grad? + B(B - gradr), (12)
pl—PL
Hence the system (7), (8) rewrites as
1
pV x curlV — (— - r)B x curlB
"
v? B2
=gradp, +p grad7 +1 grad7 + B(B - gradr), (14)
divV =0, divB =0, curl(V x B) =0. (15)

The following theorem shows that there exist infinite-dimensional transformations
that map solutions of incompressible MHD equilibrium equations to incompressible
anisotropic (CGL) equilibria.
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Theorem 1. Let {V(r), B(r), P(r), p(r)} be a solution of the syste(d)—(10) of incom-
pressible MHD equilibrium equations, where the dengity) is constant on both magnetic
field lines and streamlings$.e., in magnetic surfaceg = const if they exisi.
Then{V1(r), B1(r), p11(r), pj1(r), p1(r)} is a solution to incompressible CGL plasma

equilibria (14), (15), where

Bi(n) = f(NB(), Vi) =gMV(),  p1=Cop(N)p/g(r)?,

p11(r) = CopP(r) + C1+ (Co— f(1)?/1)B(N)?/2.

pia(r) = CouP(r) + C1— (Co— f(1)?/n)B()?/2. (16)

and 1 (r), g(r) are arbitrary functions constant on the magnetic field lines and streamlines.
Co, C; are arbitrary constants.

Proof. Let us insert the quantities (16) into the system of CGL plasma equilibrium equa-
tions (14), (15), assuming th&¥ (r), B(r), P(r), p(r)} is an isotropic MHD equilibrium
and satisfies (5), (6), (10).

To simplify the notation, we do not write the dependence of functionsexplicitly.

The functionsf (r), g(r) are constant on the magnetic field lines and streamlines, there-
fore

divB1 = fdivB+Bgradf =0,

divVy=gdivV +Vgradg =0. a7
Also, using a vector calculus identity

curl(sq) = s curlg + grads) x q, (18)
we conclude that

curl(V1 x B1) =0, (29)
therefore equations (15) are satisfied.

To prove that (14) holds, we first observe that

1
p1V1 x CUF|V1 — (— — ‘L'1> B1 x CUI‘|B;|_
"
1
= p1g°V x curlV — (— — ‘(1) 2B x curlB
uw

1
+V2p1ggradg) — Bz(; —~ Tl) forad f)

1
= Cou(pv x curlV — —B x curIB)
"

1
+V2p1ggradg) — BZ(; — Tl)fgradf)

VZ

1
= Cou (gradP +p grad7> +V2p1ggradg) — Bz(; - r1>f grad f)
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CopuV?
2g2
Noting thatz; is constant on both magnetic field lines and streamlines, we have

V2 B2
= CopgradP + Copp grad? + gradg? — ?1 gradty).

B1 - gradr; =0.
The right-hand side of (14) is
V2 B?
gradp 1+ p1 grad7l +11 gradEl

VZ 2 BZ V2
= grad(pu + p171 + r171> — 71 gradty) — 71 grad p1)

V2 CopuV?
= CopgradP + Coppugrad— + e
2 2g2

and is identically equal to the left-hand side. The theorem is proven.

BZ
2 1
gradg” — > grady)

Remark 1. Under the conditions of the theorem, the anisotropy factor

= (pj1—p11)/Bi=1/u — Co/f(r)? (20)

is also constant on the magnetic field lines and streamlines, and that the following relations
hold:

p11(r) = CouP(r) + C1 — 11 (r)By(r)?/2,
pia(r) = CopP(r) + C1 + t1(r)B1(r)?/2. (21)

Remark 2 (The structure of functiong'(r), g(r)). The structure of undefined functions
f(r), g(r) in the transformations (16) depends on the topology of the original MHD equi-
librium configuration{VV (r), B(r), P(r), p(r)}.

(i) If the magnetic fieldB and velocityV of the original MHD equilibrium configuration
are not collinear, then the vector fielBsandV are in every point tangent to magnetic
surfaces [18,19], and therefore functiofi§ ), g(r) must be constant on each of these
surfaces.

(i) Magnetic field and velocity are collinea8 = k(r)V (k(r) is some smooth function
in R3), and each field line is dense on a 2-dimensional magnetic surface.fThgn
g(r) have to be constant on every such surface.

(iii) Magnetic field and velocity are collinear, and field lines are closed loops or go to infin-
ity. Then the functiong (r), g(r) only have to be constant on the plasma streamlines.

(iv) Magnetic field and velocity are collinear, and their field lines are dense in some 3D
domainD. This situation may only occur if botB andV satisfy Beltrami equations
curlB=aB, curlV = BV, «, B = const. Then the functiong(r), g(r) are constant
inD.

Based on this description, we may conclude that the arbitrary funcfions g(r) are
constant on a cellular complex determined by the topology of the original MHD equilib-
rium solution. The topology of plasma configurations is preserved by the transformations
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(16). All CGL solutions obtained from non-Beltrami MHD equilibria using Theorem 1
have the same magnetic surfaces as the original MHD equilibrium.
Corollary 1. Let{B(r), P(r)} be a solution of the static plasma equilibrium system

curlB x B=pugradP, divB =0. (22)

Then{B1(r), p.L (1), pj(r)} is a solution to static CGL plasma equilibrium system
1 B? .
——t1)curlBxB=gradp; + grad7 + B(B - gradr), divB=0, (23)
n

where

B1(r) = f(NB(r),

p1a(t) = CopP(r) + C1+ (Co— £(N?/1)B(1)?/2,

pia(r) = CopP(r) + C1— (Co— f(1)?/1)B(r)?/2. (24)
Remark 3. The above corollary can be directly used to construct a wide variety of
anisotropic plasma equilibrium solutions of different topologies. From any harmonic func-

tion f:V2f =0 and using a corresponding vacuum magnetic fitd V f we can build
nondegenerate CGL plasma equilibria.

In Section 4, we present several analytical examples of anisotropic CGL plasma equi-
libria obtained with the help of the above corollary.
3. Physical conditions and stability of the new solutions

To model real phenomena, any isotropic and anisotropic MHD equilibrium solution has

to satisfy natural physical conditions. For solutions in bounded doaivith boundary
oD, one should demand

0< pilp < Prmaxs 0< pilp < Pmax
0<Bp<Bhaw  O0<Vip<Viae  0<plD < pmax
n-Blyp =0, n-Vigp=0 or V|yp=0. (25)

For an unbounded domain, the natural conditions are

0< P |D < Pmax 0< pilp < Pmax
0<Bp<Biaw  O0<VIp<Viae  0<plD < pmax
pi» pL. B2 V2 p— const atr| — oo. (26)

For solutions in vacuum, the asymptotic constants must be zero.
If the free functionsf (r), g(r) in the transformations (16) are separated from zero, then
the transformed anisotropic solutions retain the boundedness of the original solution. The
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functionsf(r), g(r) in every particular model must be selected so that the new anisotropic
solution has proper asymptotics|at— oco.

Now we address the question of stability of the new equilibrium solutions (16). Under
the assumption of double-adiabatic behaviour of plasma (3), it is known that the fire-hose
instability takes place when

pi—pL>B%/p 27)
(or, equivalentlyr > 1/u), and mirror instability—when
m("’—l - 1> ~ B2/2u. (28)
6p|

Now we explicitly check these conditions for the transformed CGL equilifdigr),
B1(r), p11(r), pya(r), p2(r)} (16), supposing that the original isotropic MHD equilibrium
configuration{V (r), B(r), P(r), po(r)} satisfies physical conditions (25) or (26).

From (16), for the new solutions

2\p2 Bzfz 2
pir—pri1=(1/u—Co/f*)B =T—COB :

Hence the fire-hose instability is not present when

242 B2 242
BY” 2 BL_B/T
M M
Thus any choice o€ > 0 prevents the new solutions from having the fire-hose insta-

bility.
Now we consider the sufficient condition of the mirror instability (28). We define
CouP(r) + C1, and demand

pl1 B2
— 1)< ==,
pu<6pn1 ) 2u
which rewrites as
7(f2 1/ 2
—(50+ = f——co B2)(0o-= f——co B2
2\ 1 2\ 1
3 ZBZ 2
< f <2Q+Bz<f——Co>>-
21 w

This is a square inequality with respect to an unknown functiea f2(r) constant on
magnetic field lines and plasma streamlines:

4
S—Mzz — 4B%(20 + CoB?)z — %u(lOQ — 7CoB?) (20 + CoB?) < 0. (29)

From this inequality we determine the possible rangeféfr). If we take C1 > 0
(and thusQ > 0) and assumd? > 0 in the plasma domain, then the discriminant
D = 3B4(20 + CoB?)(14Q + 3CoB?) is nonnegative, and the roots are

uN'D
B4

4
2= B_l; (20 + CoB?) F (30)
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Under the above assumptions of boundednes® ahdB2, in many configurations there
may exist ranges afg, C1 such that on every magnetic surfage0d < maxsz1 < mingz>.
(In the case of static plasma equilibria it is always true, bec#®se= const> 0, hence
Ql|s = const> 0, and it is easy to check thai|s(B) is always concave down, while
z2|s(B) is concave up).

The values of f2(r) on magnetic surfaces must be selected within the interval
maxs z1 < f2(r)|s < mingz2, and thus the new CGL solution will not have the mirror
instability. This is the only limitation on the choice of the functigA(r).

In Section 4 below, we discuss particular examples and explicitly verify the fire-hose
and mirror instability conditions.

Therefore for any MHD equilibrium satisfying necessary physical conditions one can
construct infinitely many anisotropic CGL equilibria that are free from fire-hose and mirror
instabilities.

4. Examples of anisotropic (CGL) plasma equilibria
4.1. A closed flux tube with no geometrical symmetries

The transformations between isotropic and anisotropic motionless plasmas (24) can in-
deed be applied to vacuum magnetic field configurations

B =gradf(r), divB =0, (31)

which are equivalent to solutions of the Laplace equaliry (r) = 0. Magnetic fields
produced by linear electric currents represent a part of this family; they have a critical line
coinciding with the line of current and decrease at infinity, according to Bio-Savart law

ul dl x(r—ry)
B = 4 / (r—rp3 ° (32)

Such magnetic fields can have different topologies, depending on the shape of current
circuit. For instance, if the current circuit is flat, one readily shows that the magnetic field
lines are closed, and therefore lie on magnetic surfaces (which in this case are not defined
uniquely).

Such fields themselves represent degenerate plasma equilibria (22) with no pressure and
currents, but they can be used for construction of nontrivial CGL plasma equilibria.

In this example we apply the Corollary 1 to a magnetic field produced by a nonsymmet-
ric closed line of current having the parametrization

x(t) =10.0cos2nr1), y(t) =7.7sin2rt),
2(t) = 10.0(t? — 1) sir?(16m1), (33)

where all coefficients have appropriate dimensions sathatz are measured in meters.
It is no analytical representation for a magnetic field from such a circuit. For several
starting points, we numerically traced magnetic field lines parameterize@ by

ar (o)
o = Br). (34)

using with Runge—Kutta method of degregd/4r =1,1 =1).
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Fig. 1. Three toroidal magnetic surfaces of an anisotropic flux tube configuration. These surfaces are nested one
inside another from the right to the left. They are displayed separately for clear visibility purposes.

Fig. 2. The mutual position of the current conductor and the boundary of the anisotropic flux tube around it.

For the current conductor configuration (33), the calculations suggest that the magnetic
field lies on 2-dimensional nested tori, which were reconstructed using Delaunay triangu-
lation algorithm implemented incocone software.

The shape of three such nested tori is shown on Fig. 1, whereas the position of one of
these tori with respect to the circuit is presented on Fig. 2.

Fig. 3 shows the Poincare section of the dynamical system (34) for the initial data lying
on the same three tori.

In this family of nested tori, one can choose a particular tdfgisand a transverse
variabley, continuously enumerating all the family members inside & ¢ < oco. For
example, one can choogér, = 0 to correspond to the outmost torus,— oo near the
axis of the family. Then by Corollary 1 one has an infinite-dimensional set of CGL plasma
equilibrium configurations

B1(r) = f(¥)B(),
p11(t) = C1+ (Co— f(¥)?/1)B(r)?/2,
pin(r) = C1— (Co— f(¥)?/1)B(1)?/2,
1Y) =1/p — Co/f (¥)°. (35)

We select the torus on Fig. 1(a) to be the boundary of the plasma dd@mdine calcu-
lations show that A4 < B?|p < 6.82.
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Fig. 3. The Poincare section of the magnetic field lines (dynamical system (34)) lying on three nested magnetic
surfaces of the anisotropic flux tube configuration.

We choose nowo =5, C1 = 2. f () is an arbitrary function defined on the range of
¥; the range off (¥) must be chosen so that within the whole plasma domain the mirror
instability condition is satisfied (30):

4 » D _fn? 4 » /D
@(ZQ‘FCOB )— B4 < o < §(2Q+COB )+¥
Using the parameters listed above, this gives
2
r
4.46 < AL <4024, (36)

o
The requirement for pressure positive-definitenggs> 0, p; > 0 is expressed
from (24) and gives an additional condition gir)?:

2Cq
uCo — B2 < f(r)ZMCO +

which in the given set-up gives

2
" 558, 37)

2Cq
B2’

4.42<

Finding the intersection of the two ranges (24) and (24), we conclude that all solutions
having the range

2
FO° 558 (38)

4.46<
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satisfy physical conditions for pressure and are not subject to mirror or fire-hose instabili-
ties.

The domain in which the solution is defined is bounded by the t¢rus0, which is a
magnetic surface, therefore everywhere on the bounB8afry) is tangent to it. Hence we
may defineB1(r) = 0 outside of the domain. The discontinuity in tangent component of
the magnetic field corresponds to a surface current on the bounding torus

ip(r) = 1B1(r) x ny(r),

whereny(r) is an outward normal.

The presented exact solutions model a closed flux tube with no geometrical symmetries.
The notion of nested flux tubes has been extensively used in theoretical MHD analysis (see,
e.g., [18]) and in applications (e.g., a model of a ball lightning as a knotted system of closed
force-free flux tubes presented in [20]).

In this family of solutions, as in all solutions built using Theorem 1, the arbitrary func-
tion f(r) is a function on a cellular complex which is in this case represented by a closed
line segment enumerating the nested toroidal magnetic surfaces from the outmost to the
magnetic axis.

4.2. An anisotropic plasma equilibrium with magnetic field dense in a 3D region

We now construct a CGL plasma equilibrium from a magnetic field produced by the
same closed current circuit (33) and an additional straight cuikesat3 in the positive
direction ofz-axis.

Fig. 4 shows the Poincare section of the dynamical system (34) describing a magnetic
field line starting from the point = 1.1; y = 10.0; z = 1.2. The calculation thus suggests
that the magnetic filed line does not lie on any compact magnetic surface, but is dense in
some 3D region.

Applying Corollary 1, one gets an anisotropic plasma equilibrium from this pure mag-
netic field configuration. In this case the topology requirement on the fungtionis that
it must be constant in the whole plasma domain.

4.3. An anisotropic model of helically-symmetric astrophysical jets

Below we present an anisotropic helically-symmetric model of astrophysical jets. It is
obtained by application of the Theorem 1 to certain isotropic helically symmetric MHD
equilibria.

We start with the following helically symmetric [21] magnetic fields:

Vu R A ayy —riy ary +yyr
Bn = —& + B1&, + Bo&y, By = , By =
h=- r + B1€; + B2€y 1 722 2 7212

whereé,, &, &, are the unit orts in the cylindrical coordinates, ¢ andy = ¥ (r, u) is
the flux function,u = z — y¢, @ = const,y = const. In [7], the exact plasma equilibria
(39), curlB x B = gradP, divB = 0 were obtained, that correspond to the flux functions

. (39)

Unmn = e P" (an Boy () + "™ Buun () (i COSMU/Y) + byn SiN(mu/v))),  (40)
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Fig. 4. The Poincare section of a magnetic field line (dynamical system (34)) for another anisotropic plasma
configuration (Section 3.2). The figure suggests that this magnetic field line does not lie on a 2D surface.

whereN, m, n are arbitrary integers 0 satisfying the inequality ® > 2n +m, andy =
2Br2. The plasma pressure B = pg — 282%2/u, and the plasma velocity = 0. The
functionsB,,,, (y) are polynomials [7].

The simplest exact solution (40) is defined /0= 1, m = 1, » = 0 and has the form

Y1100, 2, ¢) = e P (1= 4Br2 + arr cosz/y — ). (41)

Applying the symmetry transforms [7] to the exact solutions (39), (40) Wita 0, an
infinite family of new field-aligned MHD equilibria was obtained [7]:

_ kshd(r) B
NTAG)

Hered (r) and the plasma densipyg (r) > 0 are arbitrary smooth functions that are constant
on the magnetic field lines (39), which coincide with plasma streamlines.

We now apply the transformations (16) to the dynamic equilibria (42) and obtain new
anisotropic CGL equilibria

k2
Bi=kchd(r)B,, Vi i P1=k2P—2—erd(r)B,§. (42)
ol

Ba=f(NB1,  Va=g("V1,  ps=Cop1it/g(r)?,
Pia=CouPr+ C1+ (Co— f(1)?/1)B3/2,
Pla(t) = CopPL+ C1— (Co— f(r)?/1)B3/2, (43)
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and 1 (r), g(r) are arbitrary functions constant on the magnetic field lidgss 0, C1 are
arbitrary constants.

We note that for this family of solutions magnetic field lines all go to infinity in the
variablez [7]. Therefore functionsi(r) and p1(r) in the MHD solution (42) andf (r),
g(r) in the CGL solution (43) depend on two transversal variables and have no symmetry
in general. Hence the generic exact solutions (43) are honsymmetric.

Let us consider a particular solution from the family (43) in greater detail. We take the
flux function ¥y, in the simplest form (41), and the arbitrary functions and constants in
the form

) =(Co+1/coshyd))?,  g)=0, Co=10, C1=00L (44)

This choice corresponds to a static equilibrium.

Fig. 5 shows the section= 0 of the magnetic surfaceg(r, ) = const fora; = —1,
B=01,y=.5/2,0a=3/2y.

Fig. 6 represents the profiles of pressure alongXhaxis (Original isotropic pressure
P shown with a thin solid line, anisotropjg, with a thick dash line, ang ., with a thick
solid line). Positive-pressure requirement is evidently satisfied.

On Fig. 7, the original isotropic and the transformed anisotropic magnetic field mag-
nitudesB? and B2 along the X-axis are shown (isotropic with a thin solid line, and
anisotropic with a thick solid line). The magnetic field is evidently bounded from above,
therefore, in accordance with stability considerations presented in Section 3, the presented
sample solution is free from fire-hose and mirror instabilities.

On Fig. 8, the cellular complex is shown on which the arbitrary functipas, g(r) of
the transformations (43) are defined (See Remark 2 in Section 2).

Fig. 5. The sectiorz = 0 of the magnetic surfaceg(r, ¢) = const for a helically-symmetric astrophysical jet
model @1 =-1,8=0.1,y =/5/2,a =3/2y).
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Fig. 6. The profiles of pressure along tieaxis for a helically-symmetric astrophysical jet mode| & —1,
B=01,y =.5/2, « = 3/2y). Original isotropic pressuré is shown with a thin solid line, anisotropic
P|la—With a thick dash line, ang | ,—with a thick solid line. Positive-pressure requirement is satisfied.

5 4 2 7 4 B

Fig. 7. The magnetic field magnitudB§ and Bzz, for isotropic and anisotropic helically-symmetric astrophysical
jetmodels ¢ = —1,8=0.1,y = /5/2,a = 3/2y) (along theX -axis). Isotropic is shown with a thin solid line,
and anisotropic—with a thick solid line.
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Fig. 8. The cellular complex is shown on which the arbitrary functigis), g(r) are defined (astrophysical jet
model solutions (43)).

5. Conclusion

In this paper we present a new method of constructing new anisotropic plasma equi-
librium configurations as solutions to the Chew—Goldberger—-Low (CGL) system of partial
differential equations (7), (8) [2].

The CGL system is a continuum approximation used to describe plasmas in which the
mean free path for particle collisions is long compared to Larmor radius, for instance, this
is the case in strongly magnetized or rarified plasmas. Unlike isotropic magnetohydrody-
namics (MHD) where plasma pressure is a scalar, in the CGL approximation pressure is
a tensor with two different components: along the magnetic figldnd in the transverse
direction p; . The Chew—Goldberger-Low system is used to model and study anisotropic
plasmas in different areas of physics, such as Earth ionosphere studies [14], plasma con-
finement [15], and others.

In this paper we considered equilibrium plasma flows and static configurations, which
are particularly important in many applications.

In Section 2 we present new infinite-dimensional transformations (16) between isotropic
(MHD) and anisotropic (CGL) plasma equilibria. These transformations can be applied to
any static plasma equilibrium and to a wide class of dynamic equilibria (those with density
p constant on plasma streamlines and magnetic field lines) and yield physically interesting
anisotropic equilibrium solutions. The result is formulated in Theorem 1, which contains
the explicit form of the transformations.

The new anisotropic solutions obtained from these transformations retain the topology
of the original isotropic plasma equilibrium solution.

For the solutions of the equations to model the physical reality, they must satisfy nat-
ural boundary conditions for a phenomenon under consideration. These constraints are
discussed in Section 3, along with another important issue for equilibrium solutions—their
stability.

Itis shown that if the free functiong(r), g(r) in the transformations (16) are separated
from zero, then the transformed anisotropic solutions retain the boundedness of the original
solution.

No general methods for proving stability of an MHD or a CGL plasma equilibrium
are known; however, there are explicit instability conditions. In Section 3, we also show
that the new anisotropic solutions obtained with the help of transformations (16) can be
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made free of fire-hose and mirror instability by the proper choice of the transformation
parameters.

The examples of using the transformations to construct new anisotropic plasma equi-
librium solutions are given in Section 4. The first example is a closed nonsymmetric
anisotropic plasma tube spanned by nested toroidal flux surfaces. It is obtained by applying
the transformations (16) to a pure magnetic field of a closed thin current conductor.

The second example suggests the existence of static anisotropic nonsymmetric plasma
equilibria with magnetic field lines dense in a 3D domain. The exact form of the solution is
known; the shape of the magnetic field lines was reconstructed from the dynamical system
dr /dt = B(r) numerically. The computations suggest the topology mentioned above.

The third example is a model of anisotropic helically-symmetric astrophysical jets. It
which is based on the family of solutions for isotropic MHD equations obtained in [7].

The method of constructing anisotropic plasma equilibrium configurations from known
isotropic MHD equilibrium solutions presented in this paper can be applied to any static
MHD equilibrium or any dynamic incompressible MHD equilibrium with density constant
on magnetic field lines and plasma streamlines.
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